Running Manual
Transcription
Running Manual
Table of contents 05. TenarisHydril 11. GENERAL GUIDELINES 13. 15. Quick Start Running Guidelines Running and Handling Guidelines 33. Technical Recommendations Pipe Identification Handling and Care of Pipes and Connections 51. Running and Thread Lock Compounds Application 85. Make-up Acceptance Criteria 131. Chrome Running Guidelines 137. FGL and CB® Options 143. Dopeless® Running Guidelines 35. 45. __ NOTE: Find the table for Group 1 and Group 2 connections on the flap at the end of this manual. TenarisHydril Worldwide Support TenarisHydril premium connections are supplied and supported by Tenaris, a leading manufacturer and supplier of steel pipes and integrated tubular services to the world’s energy industry. REPAIR SHOPS A broad international network of licensed threading facilities provides services for TenarisHydril products. Please check our website to find the nearest authorized repair shop. We offer our customers running assistance and technical assistance in accordance with the summarized and general description detailed below. Should you require a complete description of Tenaris field services, please contact us at fieldservices@tenaris.com. TenarisHydril This Running Manual includes Tenaris’s recommendations on best practices for the care, handling and installation of our products. These recommendations aim to maximize the value of our products before, during and after installation. In addition to the guidelines described in our Running Manual, we recommend the assistance of a Tenaris field services specialist when running TenarisHydril premium connections to ensure optimum efficiency and best performance. Based on their experience and judgment, Tenaris field service specialists may adjust these guidelines to the specific conditions of a given situation. RUNNING MANUAL Field Services 5 Running Assistance Services – Rig site activity 1. Interaction with the operating company representative. 2. Interaction with services companies. 3. General application of TenarisHydril Running Manual recommendations. 4. Visual inspection of TenarisHydril products at the well site. 5. Verification of running equipment calibration. . . . . 6. Verification of ancillary running equipment such as, but not limited to: Appropriate Drift, OD & length Stabbing guides Handling plugs Quick fit protectors the operating company representative on: . 7.HSEAdvise issues relating to field service operations. . Care, handling and preparation of TenarisHydril prior to, during and after running activities. . products Correct application of appropriate thread compound to . connections. make-up parameters. . Connection Recommended best practices for the running and processes. . pulling Preparation of surplus pipe post running. . Segregation and identification of rejected joints. 8. Monitor make-up operations during running. 9. Field repair connections as per applicable guidelines if necessary. 6 Technical Assistance Services – On-land activity (yard, machine shop, bucking facility) 1. Interaction with customers, operating company representatives, drilling and completion technicians. 2. General application of field services guidelines, Tenaris procedures and TenarisHydril Running Manual. 3. Visual inspection of our pipe and connections on-site. 4. Verification of make-up / buck-on equipment calibration. 6. Accessory inspection at customer or third-party premises. 8. Dopeless® technology support: Inspection and repair of connections with Dopeless® technology. 9. Periodic stock inspection, traceability, coating condition check. RUNNING MANUAL 7. Field repair of TenarisHydril connections as per applicable guidelines. 10. Advise best practices for storage and transportation. 11. Organize rig-ready preparation. TenarisHydril . . . . . 5. Sub-assembly make-up verification at Tenaris or at third-party premises: Buck on / off couplings Make-up completion assemblies Make-up shoe tracks Make-up hangers Make-up packers 7 12. Participate in pre-job and drilling on paper meetings. 13. Proactively advise on process efficiency improvement. 14. Customer and service company training and presentations. Job development and completion During job development, a field services specialist will advise and recommend best practices for the handling and use of Tenaris products in accordance with the scope summarized above. Any final decision made on any job will remain with the customer’s company representative at the worksite. Any deviations or anomalies contrary to Tenaris procedures, the advice of the field service specialist, and/or the TenarisHydril Running Manual recommendations, which may be deemed detrimental to the performance of the product, will be documented by the field services specialist. Upon completion of field services, and prior to the departure of the Tenaris representative from the worksite, a service ticket shall be prepared by the Tenaris representative to be signed by the customer’s company representative at the worksite. The service ticket will contain a brief description of the services performed, including any deviations or anomalies mentioned, among other relevant information. In addition, a detailed report will be delivered to the customer if agreed by the parties. Commitment to sustainable business Tenaris would like to emphasize the importance of paying utmost attention to all aspects of health, safety and environmental protection during the running of our TenarisHydril premium connections. 8 Tenaris is committed to incorporating the principles of sustainable development throughout its operations with practices aiming to protect personal health, uphold group safety and minimize environmental impact. During the execution of running operations on the premises of the oil and gas company, all HSE procedures applicable at the rig site should be fully acknowledged, addressed and followed. Moreover, we strongly recommend the assistance of Tenaris field service specialists, who receive comprehensive HSE training as part of their qualification plan. Regarding health, rest periods should be respected as well as the physical fitness requirements for each job. Concerning the environment, water, pipe protectors, cleaning rags and all other site waste should be correctly disposed, in accordance with the oil and gas company procedures. RUNNING MANUAL We are convinced that all efforts devoted to health, safety and environment will result in an improved performance and sustainable development. TenarisHydril As regards safety pipe running operations generally involve several hazards and exposure to risks, including moving objects; H2S and risks involved in handling and exposure to chemical substances; manipulation of heavy pipe and equipment; road, sea and air transportation; fire and explosion risks and many more which are well known to oil and gas operators. All applicable safety measures must be addressed, including procedures, protective measures and equipment, risk analysis, emergency response drills and a toolbox safety talk prior to operations startup. An attitude involving a permanent awareness of safety should be fostered and encouraged among personnel. 9 General Guidelines Quick Start Running Guidelines Connection preparation Follow the recommendations for applying running and thread lock compounds with great care to ensure optimum connection performance. Install handling plugs on integral connections each time the pipe is moved to or from the rig floor. Alignment 1. Check that the traveling block and rotary hole are aligned. 2. Check that the centerlines of the suspended pin are over the box, and adjust if necessary. SECTION. __ REFER TO THE STABBING DETAIL IN THE RUNNING SECTION. Rotation speeds 1. Spin in at 15 RPM or slower. 2. For final make-up, use low gear. Do not exceed 5 RPM. RUNNING MANUAL REFER TO EQUIPMENT / SERVICE TOOLS DETAIL IN THE RUNNING GENERAL GUIDELINES __ REFER TO THE MAKE-UP DETAIL IN THE RUNNING SECTION. TenarisHydril __ 13 Torque application . . Always use the recommended torque values for TenarisHydril connections. The updated values are on our website: Data Sheets: http://premiumconnectiondata.tenaris.com/index.php Torque Tables: http://www.tenaris.com/en/Products/ PremiumConnections/TorqueTables.aspx __ NOTE: FOR WEDGE SERIES 500™ SIZES 10 3/4” AND LARGER, EITHER APPLY THE TARGET TORQUE TWICE OR HOLD THE TORQUE FOR SEVERAL SECONDS. Chrome and CRA 1. Take special care with chrome steels (9% or higher) to avoid damage to the connection during handling and running operations. 2. Running compound application processes for these materials are different from low carbon steel pipe. 3. Always walk connections in by hand until hand-tight before applying power tongs. 4. Apply the Chrome Running Guidelines as well as the General Guidelines to stainless steels and high alloy materials. __ REFER TO THE CHROME RUNNING GUIDELINES. Dopeless® technology 1. General Guidelines apply to our Dopeless® technology except for cleaning, visual inspection and running and thread lock compound application. __ REFER TO THE DOPELESS® RUNNING GUIDELINES. 14 Running and Handling Guidelines Pre-running 1. Locate and confirm availability of all necessary accessories and tools on location, such as: pup joints, crossovers, float equipment, stabbing guides, handling/ lifting plugs, single-joint elevators, thread compound, etc. 2. Verify interchangeability with size, weight and connection type. __ REFER TO THE PREMIUM CONNECTIONS CATALOGUE Drifting 4. Drift from box to pin. Be careful not to damage connections during drifting operations. 5. Pipes that fail the drift test should be marked with a red paint band on either side where the drift is sticking and then laid aside for further investigation. Label the pipe “No drift” to avoid confusion with other types of damage. RUNNING MANUAL 3. Blow out the pipe ID from box to pin to completely remove loose mill scale and accumulated debris. TenarisHydril 2. Carry out drifting before cleaning and inspecting the connection. GENERAL GUIDELINES 1. Ensure drift mandrels meet API dimensional requirements (reference API Specification 5CT) or specified special drift requirements. 15 API standard drift mandrel size (min.) products & sizes LENGTH diameter inch mm inch mm Casing and Liners 6 152 d - 1/8 d - 3.18 9 5/8” to 13 3/8” 12 305 d - 5/32 d - 3.97 Larger than 13 3/8” 12 305 d - 3/16 d - 4.76 2 7/8”and smaller 42 1,067 d - 3/32 d - 2.38 3 1/2”and larger 42 1,067 d - 1/8 d - 3.18 Smaller than 9 5/8” Tubing d= Nominal pipe body internal diameter Check tables C.31 and E.31 in the last version of API 5CT Cleaning . . . . 1. Clean connections using one of the following methods: A non-metallic brush and cleaning solvent. Steam cleaning with water and cleaning solvent. A rotary bristle brush with high pressure water jet and cleaning solvents. High pressure water blast. 2. Diesel and oil-based products are not recommended as cleaning solvents, as it is difficult to remove them from the threads and they can affect running compound lubrication. 3. Wipe or blow out solvents and/or water from the thread roots and from the bottom of the box. In freezing temperatures, ensure that no moisture remains on the connection as ice may prevent proper seal and shoulder engagement during make-up. 16 Inspecting 1. Only Tenaris plants and authorized repair facilities make genuine TenarisHydril connections, identified by the stencil on the pipe body. Most genuine threads also have a low stress roller mark on the pin and box connections. In case of doubt, contact your local Tenaris representative. 2. Place pipes so that the joints can be rolled 360 degrees to facilitate complete cleaning and inspection. 3. Inspect all connections for damage, such as out-of-round, handling damage, thread damage, dents, mashed areas, rust and scaling. Seal areas must be free of longitudinal or transverse cuts, scratches, corrosion pitting, rust and scaling. Segregate and label properly all pipes with suspected connection damage. Further evaluation and hand repair must be performed by a Tenaris field service specialist. 3. Use a thermal grade running compound when the service temperature exceeds 250°F / 120°C. 4. Use an Arctic-grade running compound in freezing temperatures. The compound should be free of water and ice particles and kept warm in the dog house or with a warming device. RUNNING MANUAL 2. API-Modified running compound is recommended for Group 1 and Group 2 connections. To check whether a particular thread compound works with a specific connection, contact fieldservices@tenaris.com TenarisHydril 1. Handle all pipes with the right thread protectors in place. GENERAL GUIDELINES Connection preparation 17 PRE-RUNNING Running compound application. 5. Running compound must be homogenized prior to use. Never use a running compound that has reached its expiry date, as its lubrication properties may have been affected. __ FOR SPECIFIC INSTRUCTIONS, SEE RUNNING AND THREAD LOCK COMPOUND APPLICATION SECTION Running EQUIPMENT / SERVICE TOOLS 1. Use slip-type elevators for integral and special clearance coupled connections. Do not set elevators on the upset or connection area. 2. Collar-type elevators may be used with coupled connections. 18 3. When using collar-type elevators on integral connections or special clearance coupled connections, the bored ID of the elevators should be able to pass over the box connection OD and shoulder onto a lift plug. An internal diameter of approximately 0.5% more than the section OD is recommended. 4. Do not use bottleneck elevators. 5. Preferably use single-joint elevators as they improve stabbing alignment and promote safer operations. When running integral or special clearance coupled connections, ensure elevators are bored to the appropriate diameter and used in conjunction with a handling plug. 6. Check for traveling block and rotary hole alignment. RUNNING MANUAL TenarisHydril 8. Use a torque-turn monitoring system for Group 1 connections. Torque turn equipment is not necessary for the proper make-up of Group 2 connections. Every time torque-turn equipment is used, verify the calibration dates on load cells. GENERAL GUIDELINES 7. Power tongs are required for final torque application. Dies that are improperly mounted or poorly maintained can damage the pipe body. Torque measurement equipment must be calibrated by tubular running company and documentation provided at work site. 19 Handling 1. Handle all pipes with adequate thread protectors in place. 2. If pipes are to be left on the rack for an extended period of time prior to running, apply a suitable compound to the thread and seal areas. Verify manufacturer’s specifications before use as running compounds do not normally have corrosion protection properties. In doubt, use storage compound. Place dry, clean and damage-free thread protectors on all connections. 3. Re-inspect connections if there is any accidental mishandling. 4. Before rolling or hoisting integral connection joints, install a handling plug in the box end and ensure pin-end protectors are in place. Boxes that will not accept a handling plug should be set aside. 5. Special care should be taken with CRA and sour service materials to avoid pipe surface damage. Stabbing 1. Do not remove the pin thread protector until the pin is hanging in the derrick and the joint is ready to stab to prevent damage from accidental mishandling. 2. For integral connections, remove the handling plug when the box end is suspended in the rotary table. 3. Clean and re-inspect the connections if in doubt. Check centerlines of the suspended pin over the box, and adjust if necessary (Fig. 1). 20 YES NO 1. ALIGNMENT The pipe should be aligned with the coupling axis. 7. If an error occurs when stabbing, or the pipe tilts to one side after stabbing, pick up and clean connections, then inspect and repair as required. Do not roll pin into box if an error occurs when stabbing. RUNNING MANUAL 6. If an automated pipe racking system is not used, ensure the pin is stabbed vertically with the assistance of someone on the stabbing board and lower joint taking care to avoid damaging connections. TenarisHydril 5. Use a stabbing guide on the box end. GENERAL GUIDELINES 4. Verify that the amount and distribution of running compound complies with the Running and Thread Lock Compound Application section. Ensure the running compound is kept free of contaminants. Excess compound should be removed. 21 Make-up . . 1. Updated torque values for TenarisHydril connections can be found on our website. Data Sheets: http://premiumconnectiondata.tenaris.com/index.php Torque Tables: http://www.tenaris.com/en/Products/ PremiumConnections/TorqueTables.aspx ! . . 1.1. When combining different weights (e.g., 5” 15 lb/ft with 5” 18 lb/ft) or different grades (e.g., L80 with P110) verify the compatibility of connections and define the torque to be applied as follows: For all Group 1 connections and any shouldered Group 2 connections (SLX™, MAC II™, TenarisXP™ BTC, PH6™, PH4™, and CS®) use the lower of the two torque values. For any Group 2 Wedge Series 500™ and Wedge Series 600™ connection use the higher of the two torque values. When making up accessories: . 1.2. Verify that both the power tong and back-up tong are . of the correct diameter and can grip properly. Incorrect tong dies or size can deform or damage the pipe body. Use torque values as described in point 1.1. above. __ NOTE: FOR ACCESSORIES MANUFACTURED IN A MATERIAL AND WALL THICKNESS VERY DIFFERENT TO THE PIPE TO WHICH IT WILL BE ASSEMBLED TO, PLEASE CONTACT US AT fieldservices@tenaris.com 2. Do not use pipe wrenches, rig tongs and spinning chains for final torque application. __ NOTE: GIVEN THE VARIOUS SHAPES AND SIZES OF TUBULAR ACCESSORIES, RIG TONGS MAY NEED TO BE EMPLOYED. DURING MAKE-UP ACCURATE TORQUE MEASURING EQUIPMENT MUST BE USED. 22 3. Use power tongs to obtain the final recommended torque values. Torque values of Data Sheets may need to be adjusted considering the friction factor of running compounds if it is different to 1. __ NOTE: FOR FURTHER DETAILS ON MAKE-UP PARAMETERS, PLEASE REFER TO MAKE-UP ACCEPTANCE CRITERIA SECTION. 4. During make-up, the pipe must be vertical and allowed to spin freely, which may require slacking off or the elevator to be unlatched. 5. The power tong lead line should be attached to a back-up post, leveled and positioned at a 90° angle to the power tongs (Fig. 1 and 2). __ NOTE: WHEN THREAD LOCKING, MAKE-UP AS SOON AS POSSIBLE USING LOW RPM IN LOW GEAR, AND CHECK FINAL MAKE-UP POSITION. RUNNING MANUAL 8. Maximum rotation speeds must not exceed 15 RPM during spin-in nor 5 RPM for final make-up in low gear. TenarisHydril 7. Use full wrap-around back-ups on thin-walled or plastic-coated pipe to reduce the possibility of damaging either pipe or coating. GENERAL GUIDELINES 6. For integral connections, do not latch back-up tongs over the box ends. For threaded and coupled connections this practice is not recommended, as this greatly increases the risk of galling the connection. Do not use pipe wrenches as back-up tongs as they may damage the pipe body. 23 power tong torque 90° 1 90° load cell close as practical short as practical 2 MAKE-UP 1. Power tong, upper view. 2. Load cell installation, side view. 24 REFER TO MAKE-UP ACCEPTANCE CRITERIA SECTION. 9. Monitor the rotation speed for irregularities. Irregular speeds may indicate connection misalignment. Joints made up at irregular speeds should be backed out and inspected for possible damage. 10. If the pipe has a tendency to wobble greatly during make-up due to harmonics, wind or rig motion, reduce the make-up rotation speed to prevent damage. 11. If excessive wobbling persists despite reduced rotation speed, stop using the power tong for spinning in. Check running compound distribution and walk the connection in with a strap wrench. When hand-tight, apply the power tong to reach target torque and monitor make-up graph evolution. TenarisHydril RUNNING MANUAL GENERAL GUIDELINES 12. Power tongs should be in low gear at approximately one turn prior to connection shouldering. When using connections with installed rings for CB® or FGL options, run in low gear throughout make-up in order to prevent ring displacement. 25 ! . . . . . 26 13. For connections from Wedge Series 500™, use the following procedure on the first joint. 13.1. Make up the first joint to the specified target torque and relax the tongs. 13.2. Draw a longitudinal line across the pin and box and reapply the target torque as indicated in the Data Sheet. 13.3. If the drawn line does not move more than ½” after the second torque application, continue running the rest of the string normally using the specified target torque. 13.4. If the drawn line moves more than ½” after the second torque application, this indicates that a portion of the torque was absorbed by other variables in the make-up system. If this occurs, follow these steps: Increase the target torque by 15% and reapply the torque. Draw a second line and apply the original, specified target torque. If the second drawn line does not move more than ½”, continue running the rest of the string normally using the 15% higher target torque. If the second drawn line moves more than ½”, recheck the alignment, dope application and tong function, then continue to repeat this procedure from step 13.2 above until the drawn line does not move more than ½”. It is best practice to repeat this procedure if the tongs are changed out during the running of the pipe. Sufficient torque must be reached to ensure that it not lost to other variables in the make-up system such as rig motion, misalignment or tong inconsistencies. 14. Make up connections to the target torque. Only for Wedge Series 500™ connection sizes 10 3/4” and larger: either apply the target torque twice or hold the torque for several seconds. For Wedge Series 500™ connection sizes smaller than 10 3/4”, and Wedge Series 600™ connections in all sizes, apply target torque only once without holding. 15. Always check that make-up acceptance criteria are met. __ NOTE: REFER TO MAKE-UP ACCEPTANCE CRITERIA SECTION. 16. During temperatures at freezing or below, maximum make-up torque may be needed to overcome running compound viscosity and ensure the right make-up. 1. Pick up and lower pipes carefully. Be careful when setting floor slips to avoid shock-loading the string. 2. Ensure the elevator slips are set well below the connection area. 3. If possible keep the handling plug in the box connection until the joint is lowered and set in the floor slips. The plug will help keep drilling mud off the thread and seal areas if overflow occurs. RUNNING MANUAL Lowering TenarisHydril 18. If making up the pipe from racked back stands, it is best practice to re-tong all connections before running downhole. This will ensure no loose joint goes into the hole. GENERAL GUIDELINES 17. When using tubing as a workstring or test string, make up the first one or two turns by hand to extend the life of the connection. 27 4. If fill-up is required during running, the handling plug should be left installed in the box to prevent the fill-up hose from damaging box threads and seals. 5. Do not hammer on the box to break the handling plug free, as this may damage the connection. If necessary, hammer on the handling plug flange. Pulling BREAK-OUT 1. A weight compensator should be used to avoid thread damage. 2. Use power tongs in low gear to break out connections. 3. Do not hammer on connections to assist breakout as this may damage the pipe or connections. 4. During breakout and spinout, the pipe must be vertical and allowed to spin freely, which may necessitate slacking off or unlatching elevators. 5. To break out a Group 1 coupled connection, the back-up tongs must be set on the mill side of the coupling, leaving the field side free to disengage (Fig. 1). For Group 2 coupled connections, placing the back-up tongs on the pipe body below the coupling will extend connection life. Coupling turn should not occur due to the higher buck on torque applied to the mill end. If gripping the coupling cannot be avoided, use a full wraparound back-up tong and grip the coupling as close to the pipe end as possible. The back-ups must be released as soon as the field end is disengaged, and re-set on the pipe body for spin out completion if necessary. 28 POWER TONG FIELD SIDE MILL SIDE BACK UP TONG 1. BREAK OUT Tongs positioning for breaking out of Group 1 coupled connections. RUNNING MANUAL 8. Exercise care when lifting the pin out of the box. Maintaining breakout rotation and keeping the pin centered in the box when disengaging can prevent thread hang-up and damage. The use of a stabbing guide will help in this process. TenarisHydril 7. Excess torque during break-out or irregular rotation speed indicate poor alignment that may cause damage. Any rotational movement should be stopped until the cause is determined and corrected. GENERAL GUIDELINES 6. Rotation speed should not exceed 15 RPM. 29 Standing back / laying down 1. Clean all pipes thoroughly to remove corrosive fluids from the internal bore and inspect as soon as possible. 2. Handle all pipes with protectors in place. 3. Using a mustache brush, re-distribute the existing running compound on the connection when standing back for extended periods. 4. Install a clean, undamaged thread protector to the pin end and stand back on platform. The protector should be on straight and tight. 5. Tubing set back in the derrick must be properly supported with a bellyband to prevent excessive bending. 6. When pulling out a workstring, and in order to extend the service life of the connections, break out a different joint every 3 round trips. 30 End of job / storage 1. Clean any used connections to remove dope, mud and corrosive fluids, using the methods described in the cleaning section, on page 16. 2. Inspect cleaned connections for apparent damages. 3. Apply a corrosion-inhibiting storage compound on clean and dry pin and box connections when storing. Install clean, undamaged thread protectors. 4. Rejected connections must be properly marked. __ NOTE: DAMAGED AND REJECTED CONNECTIONS ALSO REQUIRE PROTECTION. AFTER INSPECTION, THE DAMAGE MAY BE FIELD-REPAIRABLE. FAILURE TO APPLY PROTECTORS OR STORAGE COMPOUND MAY RENDER THE CONNECTIONS UNSUITABLE FOR REPAIR TenarisHydril RUNNING MANUAL GENERAL GUIDELINES AND THE WHOLE JOINT AS SCRAP. 31 32 Technical Recommendations 34 Pipe identification Pipe manufacturers apply color bands to pipe body and couplings to help identify different steel grades from a distance. In addition to color bands, the stencils on the pipe body and couplings provide information on the tubular product and its manufacturing process (e.g., dimensions, material, threaded connection, test pressure, if seamless or welded, manufacturing mill, heat number, etc). __ Note: Color bands may also be applied according to customer specifications. The tables given below do not apply to these cases. Color codes for API grades COUPLING (**) H40 (*) J55 tubing J55 casing K55 N80 1 2 nd. Black – – Bright Green – – Bright Green White – – – – – Bright Green Red Bands 1 st. 2 nd. 3 rd. Black – – Bright Green – – Bright Green – – Bright Green Bright Green – Red – – (*) Optional: bare (**) Special-clearance coupling also has a black band. Pipe identification Bands 1 st. COLOR CODE RUNNING MANUAL Body PIPE BODY TenarisHydril STEEL GRADES 35 STEEL GRADES COUPLING (**) Body PIPE BODY Bands 1 st. N80 Q Red Green L80 1 Red Brown L80 13Cr Silver C90 1 2 nd. Bands 1 st. 2 nd. 3 rd. – Red Bright Green – – Red Brown – Yellow – Red Brown Yellow Purple – – Purple – – C90 2 Purple Yellow – Purple Yellow T95 1 Silver – – Silver – – T95 2 Silver Yellow – Silver Yellow – R95 Brown – – Brown – – P110 White – – White – – C110 White Brown Brown White Brown Brown Q125 1 Orange – – Orange – – Q125 2 Orange Yellow – Orange Yellow – Q125 3 Orange Green – Orange Green – Q125 4 Orange Brown – Orange Brown – (**) Special-clearance coupling also has a black band. 36 COLOR CODE – Color codes for proprietary grades COUPLING 2 nd. Bands 1 st. 2 nd. 3 rd. TN 80S Pink Blue – Blue Pink – TN 90S Pink Purple – Purple Pink – TN 95S Pink Orange Sky Blue Orange Sky Blue Pink TN 80SS Brown Blue – Blue Brown – TN 90SS Brown Purple – Purple Brown – TN 95SS Brown Orange Sky Blue Orange Sky Blue Brown TN 100SS Brown Silver – Silver Brown – TN 110SS Brown Pink Yellow Pink Yellow Brown TN 125SS Brown Blue Blue Blue Blue Brown TN 80HC White Blue – Blue White – TN 95HC White Orange Sky Blue Orange Sky Blue White TN 110HC White Pink Yellow Pink Yellow White TN 125HC White Blue Blue Blue Blue White TN 140HC White Brown – Brown White – Pipe identification Bands 1 st. COLOR CODE RUNNING MANUAL Body PIPE BODY TenarisHydril STEEL GRADES 37 STEEL GRADES COUPLING Body Bands 1 st. 38 PIPE BODY 2 nd. COLOR CODE Bands 1 st. 2 nd. 3 rd. P110-IC P110-ICY White – – White – – Q125-IC Q125-ICY Orange – – Orange – – TN 80HS Silver Blue – Blue – TN 95HS Silver Orange Sky Blue Orange Sky Blue Silver TN 100HS Silver – – Silver Silver – TN 110HS Silver Pink Yellow Pink Yellow Silver TN 135DW Sky Blue Blue Brown Blue Brown Sky Blue TN 140DW Sky Blue Brown – Brown Sky Blue – TN 150DW Sky Blue Red Red Red Red Sky Blue TN 55CS Green Pink – Pink Green – TN 70CS Green Sky Blue – Sky Blue Green – TN 75CS Green Gray Gray Gray Gray Green TN 80Cr3 Green Blue – Blue Green – TN 95Cr3 Green Orange Sky Blue Silver Orange Sky Blue Green COUPLING 2 nd. Bands 1 st. 2 nd. 3 rd. TN 110Cr3 Green Pink Yellow Pink Yellow Green TN 55LT Violet Pink – Pink Violet – TN 80LT Violet Blue – Blue Violet – TN 95LT Violet Orange Sky Blue Orange Sky Blue Violet TN 110LT Violet Pink Yellow Pink Yellow Violet TN 125LT Violet Blue Blue Blue Blue Violet TN 35HD (*) – – – Pink Pink Yellow TN 45HD (*) – – – Yellow Blue Yellow TN 60HD (*) – – – Pink Yellow – TN 70HD (*) – – – Sky Blue Yellow – TN 55TH Red Pink – Pink Red – TN 80TH Red Blue – Blue Red – TN 80Cr13 Gray Red – Gray – Red TN 85Cr13 Gray Purple – Gray – Purple Pipe identification Bands 1 st. COLOR CODE RUNNING MANUAL Body PIPE BODY TenarisHydril STEEL GRADES (*) Steel grade for special application. 39 STEEL GRADES COUPLING Body Bands 1 st. 2 nd. COLOR CODE Bands 1 st. 2 nd. 3 rd. TN 95Cr13 Gray Brown TN 95Cr13M Light Brown Orange Sky Blue Orange Sky Blue Light Brown Pink Pink Light Brown TN 110Cr13M Light Brown – Yellow Gray – Yellow Brown Orange Sky Blue Orange Sky Blue Bright Green TN 110Cr13S Bright Pink Yellow Pink Yellow Bright Green TN 125Cr13S Bright Blue Blue Blue Blue Bright Green TN 95Cr13S Bright Green Green Green 40 PIPE BODY Marking API threaded pipe 5CT: API specification Q1 53.5: Mass designation P: Grade S: Seamless TSD TAT: TenarisAlgoma 7/2 8/1: 2008 RUNNING MANUAL TenarisHydril 8/1 9 5/8 53.5 P S P9200 BC DA8.500 (Customer´s brand) HNXXXX 0765 14,32 MADE IN CANADA Pipe identification 8/1 . Manufacturer . Manufacturing . specification monogram . API Date of manufacture . OD . Mass designation . Grade . Process of manufacture . Hydrostatic test pressure . Thread type . Drift diameter if drift . alternative Customer brand . Heat number . Pipe number . Length (mts) TAT Pipe Stencil Tenaris AT ISO11960 5CT 0514 . . . . . . Hard stamp 41 Marking premium threaded pipe TTM TenarisTamsa API specification 0124: API licence number 4/1: 2004 Q1 SF: Special end-finish 53.5: Mass designation P: Grade S: Seamless TSH MS: Thread type TTM: 0124 SF 5CT: TENARIS TM ISO11960 5CT 0124 TTM . . . . . . . . . Hard stamp/stencil coupling Pipe Stencil HNYYYY 0126 14,32 MADE IN MEXICO . Manufacturer . Manufacturing . specification monogram . API Date of manufacture . Special end-finish . OD . Mass designation . Grade . Process of manufacture . Hydrostatic test pressure . Drift diameter alternative drift . ifThread . Customertypebrand / PO . number number . Heat Pipe number . Length (mts) __ NOTE: THE PIPE MARKING SHOWN IS ONLY AN EXAMPLE. SOME DIFFERENCES MAY BE OBSERVED DEPENDING ON WHERE PRODUCTS ARE MANUFACTURED. 42 Tenaris mills marking codes Siderca Argentina Tenaris SD TSD SIAT VA ARGENTINA Tenaris VA TVA CONFAB BRAZIL Tenaris CF TCF TUBO CARIBE COLOMBIA Tenaris TC TTC Tamsa Mexico Tenaris TM TTM Algoma Canada Tenaris AT TAT PRUDENTIAL CANADA Tenaris PS TPS CONROE USA Tenaris CR TCR HICKMAN USA Tenaris HK THK COUNCE USA Tenaris CN TCN Dalmine Italy Tenaris DL TDL Silcotub Romania Tenaris SL TSL NKTubes Japan Tenaris NKKtubes TNK SPIJ indonesia Tenaris SPIJ TIJ Pipe identification HARD STAMP RUNNING MANUAL WHITE INK STENCIL TenarisHydril Production unit 43 44 Handling and Care of Pipes and Connections These guidelines are for the general care and handling of TenarisHydril connections and pipes at the well site to ensure their optimum performance. All queries should be sent to fieldservices@tenaris.com. __ NOTE: REFER TO API RECOMMENDED PRACTICE 5C1. 2. Pipes manufactured in CRA, High Chrome grades or Sour Service grades (TN S, TN SS, TN HS) must be handled as follows: 2.1. In bundles using the appropriate slings, before placing individually on the racks with non-metallic slings. Do not use steel wire slings as these may affect pipe performance during service. 2.2. Do not use steel hooks. 2.3. If using forklifts at any stage, ensure the forks are adequately padded to avoid sharp edges or bulges. 2.4. Use crow bars made of wood rather than steel, or other non-metallic soft material to move this type of pipe. 2.5. Take all precautions to prevent aggressive contact with carbon steel. RUNNING MANUAL ! TenarisHydril 1. Carefully place the pipes on the racks when they arrive at the well site. Handling and Care of Pipes and Connections Pipe handling 45 3. If damage has been caused to the pipe or connections, the pipe should be clearly identified / labeled, and set aside for further examination. 4. Only move the pipe when the correct thread protectors have been securely installed. Ensure all relevant precautions are taken to avoid damage to either pipe body or connections. 5. Only use protectors that correspond to the threaded pin/box ends. The use of incorrect protectors may damage the connections. Pipe storage at rig site 1. For all steel grades: stack pipes on wooden batons and avoid contact between pipe bodies by aligning at least three rows of wooden spacers perpendicular to the length of the pipe between layers. 2. Stack pipes so as to avoid any bending during storage. 3. For best results, ensure the stack of pipes is at least 1.5 ft (46 cm) above the ground to protect them from moisture. 4. Use bumper rings for pipes with flush and/or near flush connections to limit the chances of damaging the ends. 5. Do not mix pipes of different grades when storing, as this makes it more difficult to locate them for pre-running inspections and can lead to grade mixing in the well. 46 TOTAL LENGTH (TL) EFFECTIVE LENGTH (EL) EL = TL - MUL MAKE-UP LOSS (MUL) 1. MEASURING Be sure to use the effective length of each pipe to be run into the hole. Pipe measuring from make-up loss when determining the effective length of each pipe. Protectors 1. Stack protectors on a clean, dry surface as they are removed and ensure they are not contaminated by debris, corrosive fluids or water. 2. If debris or fluid contaminate the protectors, they should be thoroughly cleaned and dried prior to re-installation on the connections (Fig. 2). RUNNING MANUAL NOTE: Take into account the reduction in length ensuing TenarisHydril __ Handling and Care of Pipes and Connections Remove protectors for measuring then reinstall immediately after measuring each pipe (Fig. 1). 47 46 cm 2. HANDLING Proper handling and care reduces damage on pipes and connections. Cleaning ! 1. Storage compounds do not have the right lubrication properties for making up connections. It is very important to completely remove storage compound and clean connections prior to running. 2. Cleaning of the connections to remove storage compound should be carried out as close to the time of running as possible. 3. Only clean connections with fresh water or cleaning solvent which does not leave any residue when mixed with water. Do not use diesel or oily solvents, as these are difficult to remove from the threads and affect running compound lubrication. 4. Dry the clean connections using compressed air then reinstall clean, dry protectors. 5. If possible only remove protectors and clean connections on one row of pipes at a time prior to hoisting to the rig floor. This avoids exposing the complete string to the elements if there are delays in running. 48 6. If clean connections are left exposed for over 12 hours, apply a light oil to the connections with a spray or soft brush and install clean, dry protectors. 7. The lightly-oiled connections can then be lifted to the rig floor to remove the protectors. Wipe off the oil (wash it off if possible) before applying running compound prior to running. 8. If connections need to be exposed for over 24 hours, apply a suitable storage compound and install clean, dry protectors. Ensure storage compound is completely removed before applying running compound prior to running. 3. Ensure no corrosive fluids, debris or water come into contact with the connection during transportation and/ or storage. 4. Clean protectors thoroughly to remove all debris and corrosive fluids, then dry before reinstalling on connections. ! 5. Ensure connections are clean, the right storage compound applied and clean, dry protectors installed before back-loading the pipes. RUNNING MANUAL 2. Ensure enough storage compound is applied to protect the entire thread and seal area. TenarisHydril 1. Once running is completed, immediately clean all remaining connections and dry using compressed air. Then apply the appropriate storage compound to the entire thread and seal area of the connections. Handling and Care of Pipes and Connections Surplus pipe 49 Pulled pipe 1. Thoroughly clean the inside and outside of all pipes pulled from the hole after running using a highpressure wash-down gun and fresh water. Dry the clean connections and completely coat with the appropriate storage compound. Install clean, dry protectors before transportation to an inspection facility. 2. Clean thoroughly any connections which have come into contact with completion fluid. 3. When the pulled pipe is racked back in stands to be re-run later: 3.1. Thoroughly clean connections and the inside and outside of the pipe body with high-pressure water jets and allow to drain as much as possible. 3.2. Dry pin connections on the bottom of the stands and apply running compound. 3.3. Install open (driftable) pin end protectors to allow water to drain. Alternatively, regular protectors with a hole drilled in the bottom can be used. Use composite thread pin protectors for heavy pipe as plastic protectors may split/break due to the weight. 3.4. The excess compound must be removed after the stand is picked up before running again. 50 Running and Thread Lock Compounds Application The recommendations in this section apply to Group 1 and Group 2 connections in both carbon steel and high chrome materials. Follow these steps carefully to ensure the successful performance of the connection. 1. Storage compound must be thoroughly removed from the connection before applying running or thread lock compounds. 2. Keep the running compound well mixed and stir thoroughly before using. If the compound is too thick, due to low external temperatures, it can be warmed up to a maximum of 30º C for mixing. Never use oil or solvent to dilute compound. Never use a running compound that has reached its expiry date, as its lubrication properties might have been affected. RUNNING MANUAL API-Modified running compound is recommended for Group 1 and Group 2 connections. To check whether a particular compound works with a specific connection, contact fieldservices@tenaris.com TenarisHydril For connections with Dopeless® Technology, refer to the “Dopeless® Technology Running Guidelines” section. Running and Thread Lock Compounds Application For high chrome grades, further details are provided in the “Chrome Running Guidelines” section. 51 3. Keep the running compound container covered in order to avoid contamination from dust, water or other substances. 4. Use new brushes with a clean soft bristle; never use metallic brushes or spatulas to apply running compound. It is practical to use a mustache-type brush for the box end and a plain type brush for the pin end. 5. Thread compound should be applied as a continuous film covering the different zones detailed in this section for each connection. The thread form outline should be clearly visible. 6. For Wedge Series 500™ and 600™ connections: if pipes arrive with running compound already applied, the boxes should be thoroughly cleaned and excess compound removed from the pins. This is essential to the smooth performance of the connections. 7. In the following illustrations, running compound is shown in black and thread lock compound in grey. Metal to Metal Seal pin CONNECTION PROFILE Main features. 52 Thread Form Torque Shoulder box Blue® Running compound application Carbon steel and high chrome materials Apply a thin even coat of running compound covering the full thread area, the seal surface and torque shoulder. Use approximately half the amount of running compound applied to the pin. Do not fill dope pocket. RUNNING MANUAL BOX TenarisHydril Apply an even coat of running compound to the full thread area, covering the seal surface and pin nose. Running and Thread Lock Compounds Application PIN 53 Blue® Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end, excluding the seal area. A uniform coat should be applied all round (360°). Do not apply thread lock compound on either seal or pin nose. BOX Apply running compound all round the internal seal of the box (360°). Do not fill dope pocket. 54 Blue® Thermal Liner Running compound application Carbon steel and high chrome materials Apply an even coat of running compound, covering the full thread area and torque shoulder. Use approximately half the amount of running compound as applied to the pin. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area and pin nose. Running and Thread Lock Compounds Application PIN 55 Blue® Thermal Liner Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end. A uniform coat should be applied all round (360º). BOX Do not apply any compound. 56 Blue® Near Flush Running compound application PIN BOX Apply running compound to internal and external seals. TenarisHydril RUNNING MANUAL Apply running compound to threads, seals and pin nose. Running and Thread Lock Compounds Application Carbon steel and high chrome materials 57 Blue® Near Flush Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound to the first half of each threaded section close to the pin end. Apply running compound to the external seal. BOX Apply a thin even coat of running compound to the internal seal at the back of the box. 58 ER™ Running compound application Carbon steel and high chrome materials Apply an even coat of running compound, covering the full thread area and torque shoulder. Use approximately half the amount of running compound as applied to the pin. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area and pin nose. Running and Thread Lock Compounds Application PIN 59 ER™ Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end. A uniform coat should be applied all round (360º). BOX Do not apply any compound. 60 TenarisXP™ Buttress Running compound application Carbon steel and high chrome materials Apply an even coat of running compound, covering the full thread area and torque shoulder. Use approximately half the amount of running compound as applied to the pin. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area and pin nose. Running and Thread Lock Compounds Application PIN 61 TenarisXP™ Buttress Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end. A uniform coat should be applied all round (360º). BOX Do not apply any compound. 62 Wedge Series 500™ Running compound application Carbon steel grades Do not apply running compound. TenarisHydril Wedge 533TM RUNNING MANUAL BOX TenarisHydril Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. Running and Thread Lock Compounds Application PIN 63 Wedge Series 500™ Running compound application High chrome materials PIN Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. BOX Apply a very thin layer of running compound to thread and seals. TenarisHydril Wedge 533TM 64 Wedge Series 500™ Thread lock compound application Carbon steel and high chrome materials BOX Apply running compound to the metal seal area and the last threads at the back of the box. RUNNING MANUAL Apply thread lock compound to top-half of pin thread only, approximately 3 to 4 threads. Running and Thread Lock Compounds Application PIN Wedge 533TM TenarisHydril TenarisHydril 65 Wedge 625™ Running compound application Carbon steel grades PIN Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. BOX Do not apply running compound. 66 Wedge 625™ Running compound application High chrome materials Apply a very thin layer of running compound to thread and seals. RUNNING MANUAL BOX TenarisHydril Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. Running and Thread Lock Compounds Application PIN 67 Wedge 625™ Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound to the larger (wider) step of the pin thread – do NOT apply thread lock compound to the seal area. BOX Apply running compound to the metal seal area and the full smaller (narrower) step of the box threads. 68 MS™ Running compound application Carbon steel and high chrome materials Apply an even coat of running compound covering the full thread area, the seal surface and torque shoulder. Use approximately half the amount of running compound applied to the pin. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area, the seal surface and pin nose. Running and Thread Lock Compounds Application PIN 69 MS™ Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end, excluding the seal area. A uniform coat should be applied all round (360º). Do not apply thread lock compound on either seal or pin nose. BOX Apply running compound to the internal seal of the box. 70 3SB™ Running compound application Carbon steel and high chrome materials Apply an even coat of running compound covering the full thread area, the seal surface and torque shoulder. Use approximately half the amount of running compound applied to the pin. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area, the seal surface and pin nose. Running and Thread Lock Compounds Application PIN 71 3SB™ Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end, excluding the seal area. A uniform coat should be applied all round (360º). Do not apply thread lock compound on either seal or pin nose. BOX Apply running compound to the internal seal of the box. 72 HW™ Running compound application Carbon steel and high chrome materials Apply an even coat of running compound covering the full thread area, the seal surface and torque shoulder. Use approximately half the amount of running compound applied to the pin. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area, the seal surface and pin nose. Running and Thread Lock Compounds Application PIN 73 HW™ Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound only to the first two-thirds of the pin threads near the pipe end, excluding the seal area. A uniform coat should be applied all round (360º). Do not apply thread lock compound on either seal or pin nose. BOX Apply running compound to the internal seal of the box. 74 PJD™ Running compound application Carbon steel and high chrome materials Apply an even coat of running compound covering the full thread area, seal surface and torque shoulder. RUNNING MANUAL BOX TenarisHydril Apply a thin even coat of running compound covering the full thread area, seal surface and pin nose. Running and Thread Lock Compounds Application PIN 75 SLX™ Running compound application Carbon steel PIN Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. BOX Do not apply running compound. 76 SLX™ Running compound application High chrome materials Apply a very thin layer of running compound to thread and seals. RUNNING MANUAL BOX TenarisHydril Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. Running and Thread Lock Compounds Application PIN 77 SLX™ Thread lock compound application Carbon steel and high chrome materials PIN Apply thread lock compound to the large step of the pin thread only. BOX Apply running compound on the smallest step of the box threads and seal. 78 MACII™ Running compound application Carbon seel Do not apply running compound. RUNNING MANUAL BOX TenarisHydril Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas Running and Thread Lock Compounds Application PIN 79 MACII™ Running compound application High chrome materials PIN Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas BOX Apply a very thin layer of running compound to thread and seals. 80 MACII™ Thread lock compound application Carbon steel and high chrome materials Apply running compound on the smallest step of the box threads and seal. RUNNING MANUAL BOX TenarisHydril Apply thread lock compound to the large step of the pin thread only. Apply running compound to the external seal area. Running and Thread Lock Compounds Application PIN 81 CS®, PH4™ and PH6™ Running compound application Carbon steel PIN Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. BOX Do not apply running compound. TenarisHydril PH4TM 82 CS®, PH4™ and PH6™ Running compound application High chrome materials Apply a thin, even coat of running compound (thread form should be visible) to the entire pin thread and seal areas. BOX RUNNING MANUAL Apply a very thin layer of running compound to thread and seals. Running and Thread Lock Compounds Application PIN PH4TM TenarisHydril TenarisHydril 83 84 Make-up Acceptance Criteria These guidelines indicate the acceptance and rejection criteria to be used when making up TenarisHydril connections at the well site. The same criteria apply for any specific TenarisHydril connection either in the regular or in the Dopeless® version. Highly recommended: Use of a torque vs. turn monitoring system for Group 1 connections. different from the pipe on which they are being made up, torque values may vary from those published. In these situations please contact fieldservices@tenaris.com or follow the advise of the onsite Tenaris field service specialists. RUNNING MANUAL NOTE: For accessories whose wall thickness is significantly TenarisHydril Unless otherwise stated, torque values published in TenarisHydril Data Sheets are for pipe-in-pipe make-up with a running compound having a torque factor of 1. Use of other compounds may result in higher or lower torque values. Make-up Acceptance Criteria A torque vs. turn system is not necessary for Group 2 connections, as long as all other recommendations are correctly followed. Verify validity of calibration dates on load cells every time torque vs. turn equipment is used. 85 Group 1 Connections TURN MEASUREMENT RECOMMENDATIONS 1. Use a turn transducer device independent from the power tongs. 2. Perform a test to ensure that one turn of the transducer device indicates one turn on the graph. 3. Use a turn transducer that can deliver preferably 1,000 pulses per turn for an accurate reading. TIME MEASUREMENT Time measurement is useful but not necessary for monitoring the make-up of TenarisHydril premium connections. DUMP VALVE RECOMMENDATIONS 1. Check the dump valve opening time before the first make-up. 2. Test the dump valve by applying the torque vs. turn system to the pipe body. 3. If the final torque reading does not meet the target, fix or replace the dump valve. 86 Group 1 Connections Torque vs. turn MONITORING SYSTEM The following torque parameters should be loaded into the computer: . Reference torque . Minimum shoulder torque . Maximum shoulder torque . Minimum make-up torque . Optimum/target make-up torque . Maximum make-up torque (1) (2) As well as the following data: . Calibration value of the load cell . Dump valve sensitivity . Turn transducer sensitivity __ (1) THE INITIAL RECOMMENDED VALUE FOR THE REFERENCE TORQUE IS 5% OF THE OPTIMUM TORQUE. WHILE RUNNING, THE REFERENCE TORQUE FACTOR CORRECTION If the torque factor is different to 1, all torque parameters (see above) must be adjusted by multiplying the parameters by the torque factor. This applies to both running compound and thread lock compound. RUNNING MANUAL TORQUE. TenarisHydril (2) FOR THESE PURPOSES, OPTIMUM TORQUE IS THE SAME AS TARGET Make-up Acceptance Criteria TORQUE CAN BE ADJUSTED TO DISPLAY AT LEAST THE LAST TWO TURNS. 87 Group 1 Connections TORQUE PARAMETERS Torque parameters for regular connections can be obtained from the connection Data Sheet and Torque Tables, available online from our website. As a reference, the following table expresses torque shoulder parameters as a percentage of optimum torque: SHOULDER TORQUE Minimum Maximum Shoulder Torque Shoulder Torque (% Optimum Torque) (% Optimum Torque) Blue® / Blue® Thermal Liner 15 85 Blue® Near Flush (2) 10 85 3SB™ (1) 5 80 HW™ (1) 5 80 MS™ (1) 10 75 MS XT/XC™ (1) 10 75 PJD™ 15 75 ER™ (1) 15 80 NOTES: (1) For the special clearance option, torque values can be different to those used in regular connections. (2) In the case of Blue NearFlush, for shoulder torque values above maximum limit and up to 90% of optimum torque, the make up can be accepted provided a Delta torque higher than 5% is obtained. fieldservices@tenaris.com for advice. Delta torque= (Final torque - Shoulder torque)*100/Optimum torque When dealing with accessories manufactured in a material and/or wall thickness very different to the pipe on which they will be assembled, please contact us at fieldservices@tenaris.com or follow present FSS advice. For any other information which is not available on our website, please contact fieldservices@tenaris.com 88 Group 1 Connections Graph interpretation Torque vs. turn make-up graphs are useful to evaluate if a joint is correctly made-up. Torque-time graphs are not suitable for this. The make-up curves shown throughout this section are schematic and for illustration purposes only. Some variations may be observed in real make-up graphs. For a correct interpretation of make-up graphs, it is important to consider the behavior exhibited by the joints that were previously run into hole. TenarisHydril RUNNING MANUAL Make-up Acceptance Criteria Any graph reflecting abnormalities should be investigated (i.e., back out and inspect joint). 89 TORQUE Main features of the torque vs. turn graph Shouldering Section MAX. MAKE-UP TORQUE Delta Turns Value OPTIMUM MAKE-UP TORQUE MIN. MAKE-UP TORQUE MAX. SHOULDER TORQUE Thread & Seal Interference Section Delta Torque Value Shoulder Torque Value Top Turns MIN. SHOULDER TORQUE REFERENCE TORQUE TURNS Typical graph profile The graph pattern will indicate at least the following: . The shoulder torque value will be within the specified shoulder torque range. . The final torque value will be within the specified torque window. 90 . Automatic shouldering torque determination on each graph should show a value close to that determined visually. group 1 connections torque vs. turn acceptance criteria TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Shoulder Torque OK MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Acceptable curve Follow the recommended guidelines for running and RUNNING MANUAL acceptable curves. TenarisHydril application to achieve Make-up Acceptance Criteria thread lock compounds 91 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Shoulder Torque MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Acceptable curve Follow the recommended guidelines for running and thread lock compounds application to achieve acceptable curves. 92 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Shoulder Torque OK MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Acceptable curve with slight oscillations Slight oscillations in the thread interference section are TenarisHydril RUNNING MANUAL Make-up Acceptance Criteria allowed. 93 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Hump Effect MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Acceptable curve with hump effect not exceeding the SHOULDER POINT . . . . . . Possible causes Recommendations Running compound excess In this case it is recommended Dirt between threads to break out the first two Decanted running compound connections to verify that the Running compound not hump effect is produced by an homogenized excess of running compound High friction running thus ensuring no damage has compound been caused. Running compound contamination 94 group 1 connections torque vs. turn rejection criteria TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Shoulder Torque MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-acceptable curve with high final torque Load cell problem . . Possible effects Too much stress Galling on thread and/or seal Dump valve problem Tong operator error High momentum . Recommendations Break out, clean and perform visual inspection (drift if . possible) If the results from the inspection are acceptable, re-apply running compound and make-up again. Make-up Acceptance Criteria Over torque RUNNING MANUAL Possible causes TenarisHydril . . . . . 95 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Shoulder Torque MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-acceptable curve with low final torque . . . . . Possible causes Torque interruption Load cell problem Dump valve problem . . . Possible effects Connection leak Poor energization Back-off Tong operator error Back-up slip + dump delay . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the inspection are acceptable, re-apply running compound and make-up again. 96 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-acceptable curve with yielded connection Wrong box and/or pin grade Load cell problem Dump valve problem Tong operator error Low friction running compound . . . . . Possible effects No drift after make-up Pin plastic deformation Special clearance box plastic deformation Tools could not pass . . . . Connection could fail due to: Running compound contamination Compression Tension Collapse Burst . Recommendations Reject pin and box joints Make-up Acceptance Criteria Over torque RUNNING MANUAL Possible causes TenarisHydril . . . . . . . 97 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with hump effect exceeding the Shoulder Point . . . . . . Possible causes Running compound excess . Recommendations Break out the first two Dirt between threads connections when this effect Decanted running compound appears and check if it is Running compound not caused by an excess in the homogenized amount of applied running High friction running compound. compound In this case, reduce the amount Running compound for the next make-up, applying contamination the same distribution as indicated in the running . . . . Possible effects Thread damage Seal damage Shoulder damage Connection leak 98 compound guidelines. TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE High Shoulder torque MAXIMUM SHOULDER TORQUE MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with high shoulder torque Wrong running compound Running compound contamination . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the inspection Presence of storage compound are acceptable, re-apply Load cell problem running compound increasing High thread interference the amount respecting the recommended distribution and . Possible effects Leakage due to connection pre-load make-up again. Make-up Acceptance Criteria Wrong torque RUNNING MANUAL Possible causes TenarisHydril . . . . . . 99 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE MINIMUM SHOULDER TORQUE Low Shoulder torque REFERENCE TORQUE TURNS Non-Acceptable curve with low shoulder torque . . . . . . . Possible causes Wrong torque Wrong running compound (low friction) Running compound . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the contamination inspection are acceptable, Presence of storage compound re-apply running compound Other friction reducer decreasing the amount of it Load cell problem respecting the recommended Low thread interference distribution and make-up again. . . Possible effects Back-off High localized stress 100 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM MAKE UP TORQUE MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with non-defined torque shoulder Misalignment Damaged threads Dirty threads . . . . Possible effects Leak Galling Back-off Jump-out Wrong torque Incorrect running compound amount Incorrect running compound Load cell problem . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the inspection are acceptable, re-apply running compound and make-up again. Make-up Acceptance Criteria Cross threads RUNNING MANUAL Possible causes TenarisHydril . . . . . . . . 101 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with abnormal thread interference . . . . . . . . . Possible causes Cross-threads Dings or cut threads Galled threads Threads with burs Threads with razor edges . . . . . Possible effects Severe thread damages Thread galling Connection leak Connection back-off Connection jump-out Running compound contamination Spider or slip turns during make-up Back-up tong dies slip during make-up . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the Mechanical interference of inspection are acceptable, pipes during rotation re-apply running compound and make-up again. 102 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE MAXIMUM SHOULDER TORQUE Dies Slipping on Pipe Body MINIMUM SHOULDER TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with excessive jaw slips Dirty or worn tong dies Dirty or worn slips dies Dirty or worn spider dies . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the Spider movement inspection are acceptable, Not enough string weight for re-apply running compound proper slips grip . and make-up again. Minor jaw slip can be accepted. . Possible effects Pipe body damage Make-up Acceptance Criteria Jaw dies poor grip RUNNING MANUAL Possible causes TenarisHydril . . . . . . 103 Group 2 Connections The primary make-up criterion for Group 2 connections is to achieve target torque. Check correct make-up final position of the connection using the following visual aids: Wedge Series 500™ AND WEDGE SERIES 600™ If the face of the coupling/ box end surpasses the maximum limits of the band, mark both ends and set both pipes aside. If the face falls 104 TSH W521, TSH W561, TSH W563, short of the band, break-out TSH W551, TSH W553 AND TSH the joint, clean pin and box, W625 and inspect for damage. These connections have Any damage must be a make-up band stenciled repaired. round the circumference Reapply running compound of the pin OD. and make up again. If the The face of the coupling/ face still fails to reach the box end should be within band, mark both ends and the range of the band. set them aside. These connections have a These connections have no wear indicator gap between make-up band on pin end. the pin and box shoulders Correct make-up has been after make-up. achieved if no pin threads are This gap should always be visible after make-up. visible. When the gap is closed, it is an indication that the connection is worn, and both pin and box should be marked and sent to be re-cut. Make-up Acceptance Criteria AND TSH W523 RUNNING MANUAL TSH W511, TSH W513 AND TSH W503 TenarisHydril TSH W533 105 Legacy Series MacII™ This connection should have the external seal in contact after make-up. 106 PH4™, PH6™ and CS® SLX™ There should be no pin threads visible in the connection after make-up. RUNNING MANUAL with no visible gap. TenarisHydril made up to the external seal Make-up Acceptance Criteria These connections are to be 107 TENARISXP™ SERIES TXP™ BUTTRESS 108 This connection has a triangle height when at the right torque stamped on the pin end. When values. The coupling face correctly made-up, the position should never exceed 1/3 of of the face of the coupling is the triangle height as from approximately 1/4 of the triangle the base of the triangle. Group 2 Connections TORQUE FACTOR CORRECTION When using running compound, apply the following recommendations: . For the TenarisXP™ Buttress connection, torque values . should be adjusted by multiplying by the corresponding torque factor. For all other Group 2 connections (with the exception of TenarisXP™ Buttress), it is recommended not to apply any torque factor correction, regardless of the recommendations made by the compound's manufacturer. Use the TenarisHydril make-up torque published. For thread lock compound, apply the following recommendations: RUNNING MANUAL TenarisHydril . applied should be 15-20% over target torque regardless of compound manufacturer recommendations. Do not exceed 1.75 times minimum torque. SLX™ and MACII™: Use maximum torque value from Data Sheet. Make-up Acceptance Criteria . Wedge Series 500™ and Series 600™: Torque 109 Group 2 Connections Graph interpretation Although the use of a torque monitoring system is not required for Group 2 connections, in those cases where torque vs. turn make-up graphs are available, the following illustrations are provided for reference purposes to aid with interpretation. By design, Group 2 connections do not have requirements for shoulder torques. Most torque monitoring systems in the industry require the introduction of shoulder torque parameters to operate. Program any appropriate values for these parameters in the computer. 110 WEDGE group 2 CONNECTIONS These connections will not show a shoulder torque on the make-up graphs, due to their unique design. TORQUE Main features of the torque vs. turn graph YIELD TORQUE Safety Margin OPERATING TORQUE MAX. MAKE-UP TORQUE Allowed down-hole torque range TARGET MAKE-UP TORQUE MIN. MAKE-UP TORQUE Recommended surface power tong range REFERENCE TORQUE ski-slope increase in torque. It will not show a shoulder. RUNNING MANUAL The graph pattern will show a TenarisHydril Typical graph profile Make-up Acceptance Criteria TURNS 111 TORQUE WEDGE GROUP 2 CONNECTIONS TORQUE VS TURN ACCEPTANCE CRITERIA TARGET TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Acceptable curve Follow the recommended guidelines for running and thread lock compounds application to achieve acceptable curves. 112 TORQUE TARGET TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Acceptable curve with slight oscillations Slight oscillations in the RUNNING MANUAL TenarisHydril allowed. Make-up Acceptance Criteria thread interference section are 113 TORQUE TARGET TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Acceptable curve with hump effect . . . . . . Possible causes Running compound excess Recommendations Dirt between threads In this case it is recommended Decanted running compound to break out the first two Running compound not connections to verify that the homogenized hump effect is produced by an High friction running excess of running compound compound thus ensuring no damage has Running compound been caused. contamination 114 TORQUE WEDGE GROUP 2 CONNECTIONS TORQUE VS TURN REJECTION CRITERIA TARGET TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with abnormal thread interference Running compound excess . Recommendations Break out the first two Dirt between threads connections when this effect Decanted running compound appears and check if it is Running compound not caused by an excess in the homogenized amount of applied running High friction running compound. compound In this case, reduce the amount Running compound for the next make-up, applying contamination the same distribution as indicated in the running . . . . Possible effects Thread damage Seal damage compound guidelines. Make-up Acceptance Criteria Possible causes RUNNING MANUAL . . . . . . Connection leak TenarisHydril Shoulder damage 115 TORQUE TARGET TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with abnormal thread interference . . . . . . . . . Possible causes Cross-threads Dings or cut threads Galled threads Threads with burs Threads with razor edges . . . . . Possible effects Severe thread damages Thread galling Connection leak Connection back-off Connection jump-out Running compound contamination Spider or slip turns during make-up Back-up tong dies slip during make-up . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the Mechanical interference of inspection are acceptable, pipes during rotation re-apply running compound and make-up again. 116 TORQUE TARGET TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE Non-Acceptable curve with excessive jaw slips Dirty or worn tong dies Dirty or worn slips dies Dirty or worn spider dies . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the Spider movement inspection are acceptable, Not enough string weight for re-apply running compound proper slips grip . and make-up again. Minor jaw slip can be accepted. . Possible effects Pipe body damage Make-up Acceptance Criteria Jaw dies poor grip RUNNING MANUAL Possible causes TenarisHydril . . . . . . 117 NON-WEDGE GROUP 2 CONNECTIONS These are shouldered connections which are not required to comply with any shoulder torque window. However, even though shoulder torque may take any value, the presence of a torque shoulder must be verified in any make-up graph for these connections. TORQUE Main features of the torque vs. turn graph MAXIMUM MAKE-UP TORQUE TARGET MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Shoulder REFERENCE TORQUE TURNS Typical graph profile The graph pattern will show a shoulder point. 118 NON-WEDGE GROUP 2 CONNECTIONS TORQUE VS. TURN ACCEPTANCE CRITERIA TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Shoulder Follow the recommended guidelines for running and thread lock compounds application to achieve acceptable curves. RUNNING MANUAL Acceptable curve TenarisHydril TURNS Make-up Acceptance Criteria REFERENCE TORQUE 119 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Shoulder REFERENCE TORQUE TURNS Acceptable curve Follow the recommended guidelines for running and thread lock compound application to achieve acceptable curves. 120 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Shoulder REFERENCE TORQUE TURNS Acceptable curve with slight oscillations Slight oscillations in the thread interference section TenarisHydril RUNNING MANUAL Make-up Acceptance Criteria are allowed. 121 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Hump Effect REFERENCE TORQUE TURNS Acceptable curve with hump effect not exceeding the SHOULDER POINT . . . . . . Possible causes Recommendations Running compound excess In this case it is recommended Dirt between threads to break out the first two Decanted running compound connections to verify that the Running compound not hump effect is produced by an homogenized excess of running compound High friction running thus ensuring no damage has compound been caused. Running compound contamination 122 NON-WEDGE GROUP 2 CONNECTIONS TORQUE VS. TURN REJECTION CRITERIA TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Shoulder REFERENCE TORQUE TURNS Non-acceptable curve with high final torque Load cell problem . . Possible effects Too much stress Galling on thread and/or seal Dump valve problem Tong operator error High momentum . Recommendations Break out, clean and perform visual inspection (drift if . possible) If the results from the inspection are acceptable, re-apply running compound and make-up again. Make-up Acceptance Criteria Over torque RUNNING MANUAL Possible causes TenarisHydril . . . . . 123 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Shoulder REFERENCE TORQUE TURNS Non-acceptable curve with low final torque . . . . . Possible causes Torque interruption Load cell problem Dump valve problem . . . Possible effects Connection leak Poor energization Back-off Tong operator error Back-up slip + dump delay . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the inspection are acceptable, re-apply running compound and make-up again. 124 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Non-acceptable curve with yielded connection Wrong box and/or pin grade Load cell problem Dump valve problem Tong operator error Low friction running compound . . . . . Possible effects No drift after make-up Pin plastic deformation Special clearance box plastic deformation Tools could not pass . . . . Connection could fail due to: Running compound contamination Compression Tension Collapse Burst . Recommendations Reject pin and box joints Make-up Acceptance Criteria Over torque RUNNING MANUAL Possible causes TenarisHydril . . . . . . . 125 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with hump effect exceeding the SHOULDER POINT . . . . . . Possible causes Running compound excess . Recommendations Break out the first two Dirt between threads connections when this effect Decanted running compound appears and check if it is Running compound not caused by an excess in the homogenized amount of applied running High friction running compound. compound In this case, reduce the amount Running compound for the next make-up, applying contamination the same distribution as indicated in the running . . . . Possible effects Thread damage Seal damage Shoulder damage Connection leak 126 compound guidelines. TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with non-defined torque shoulder Misalignment Damaged threads Dirty threads . . . . Possible effects Leak Galling Back-off Jump-out Wrong torque Incorrect running compound amount Incorrect running compound Load cell problem . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the inspection are acceptable, re-apply running compound and make-up again. Make-up Acceptance Criteria Cross threads RUNNING MANUAL Possible causes TenarisHydril . . . . . . . . 127 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE REFERENCE TORQUE TURNS Non-Acceptable curve with abnormal thread interference . . . . . . . . . Possible causes Cross-threads Dings or cut threads Galled threads Threads with burs Threads with razor edges . . . . . Possible effects Severe thread damages Thread galling Connection leak Connection back-off Connection jump-out Running compound contamination Spider or slip turns during make-up Back-up tong dies slip during make-up . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the Mechanical interference of inspection are acceptable, pipes during rotation re-apply running compound and make-up again. 128 TORQUE MAXIMUM MAKE-UP TORQUE OPTIMUM MAKE-UP TORQUE MINIMUM MAKE-UP TORQUE Dies Slipping on Pipe Body REFERENCE TORQUE TURNS Non-Acceptable curve with excessive jaw slips Dirty or worn tong dies Dirty or worn slips dies Dirty or worn spider dies . Recommendations Break out, clean and perform visual inspection (drift if . possible). If the results from the Spider movement inspection are acceptable, Not enough string weight for re-apply running compound proper slips grip . and make-up again. Minor jaw slip can be accepted. . Possible effects Pipe body damage Make-up Acceptance Criteria Jaw dies poor grip RUNNING MANUAL Possible causes TenarisHydril . . . . . . 129 130 Chrome Running Guidelines These guidelines have been written to ensure optimum performance when running chrome pipes –high Cr alloyed (with a chrome content greater than 9%) and Ni based alloys– which have higher thread galling tendencies than standard carbon grade pipe. Follow all the procedures in the General Guidelines section of this Manual when running chrome pipe and use these Chrome Running Guidelines as a complement. Guidelines EQUIPMENT & TOOLS 1. Use pick-up/lay-down equipment with a rubber or soft-coated traveling basket. 2. Metal-to-metal contact is not acceptable: Cover any V door, catwalk, stanchions and ferrous steel areas and use nylon slings where appropriate to protect the chrome pipe from aggressive contact. Use a Teflon or plastic coated drift for best results. RUNNING MANUAL Never use direct flame-heating or welding on chrome pipe, as this drastically reduces its anti-corrosion properties. TenarisHydril ! CHROME RUNNING GUIDELINES Make sure that the accessories have been manufactured from material with the same chrome content (or higher) as the chrome pipe to avoid faster corrosion. 131 3. Use equipment with non-ferrous low marking dies for best results. . . . 4. Use slip type elevators with the following characteristics: Long slip body to distribute string load. Fine tooth and curved face slip inserts to minimize tooth marks. Slip-gripping surfaces which uniformly match pipe OD. 5. Using a weight compensator helps with hand make-up (while running) and avoids thread damage (while pulling). 6. Use a stabbing guide for running and pulling operations for best results. 7. For Wedge™ Series connections, ensure that handling/ lifting plugs and all service tools (cementing/circulating swage, etc.) are peened and moly-coated before use. PRE-RUNNING 1. Use a non-metallic drift mandrel when drifting. 2. After removing protectors, do not clean excessively or too vigorously. 3. Inspect the connections after cleaning to make sure they are free from any contamination, debris and foreign matter. 4. For TSH Blue® in CRA grades (Cr>13%), spray a thin coat of molybdenum disulfide on the pin seals and threads for best results. For Group 2 connections, apply a thin even coat of moly coat spray to any shiny areas of the pin metal seal. Allow the moly coating to dry according to manufacturer's recommendation. 5. Reinstall clean and dry thread protectors. 132 RUNNING 1. Check for traveling block and rotary hole alignment: if these are badly misaligned, they must be adjusted. Most chrome connection make-up problems such as galling and high shoulders are caused by poor alignment. 2. Use a weight compensator to help with hand makeup for best results. 5. For Group 2 connections apply a very thin, even coat of running compound (the thread form outline should be clearly visible) to both pin and box using a mustache brush. For other TenarisHydril connections, apply the running compound as described in the Running and Thread Lock Compound Application section. 6. Stab with a stabbing guide, and carefully lower the pin into the box slowly and smoothly. RUNNING MANUAL ! TenarisHydril 4. If handling/lifting plugs are used on integral connections, they must be kept free of damage, debris or dirt to avoid damaging the box threads. The condition of plug and box end threads must be checked to make sure that they are right before each plug installation. CHROME RUNNING GUIDELINES 3. Preferably do not run chrome pipe in stands because the stand movement is difficult to control during stabbing and spinning-in. This leads to high loads on the threads of sensitive material and increases the chances of damaging the product. If pulling or running in stands cannot be avoided, strict adherence to the recommendations given in these Guidelines is imperative. 133 ! 7. Make up the connections by hand using a strap wrench and a steady pulling motion for best results. The power tongs should only be engaged after ensuring a connection is hand-tight in order to apply the final make-up torque. Do not jerk on the connection. 8. When fully-automatic power tongs are used, the connections must be made up at low RPM (10 RPM max, 5 RPM recommended) in the first threads to prevent galling. 8.1. Monitor the make-up and rotation speed for possible irregularities at the start, and adjust as necessary. 8.2. Pay attention to any instant indication of high torque, as this is a sign of possible misalignment. If misalignment is detected, it must be corrected before continuing rotation: stop the rotation, check the thread alignment and then restart rotation. 9. If a joint needs to be re-made, it must be broken out completely and both ends cleaned for visual inspection. Re-apply the dope before making it up again. ! 134 10. Visually check for tong die or slip marks on the pipe before running the pipe in the hole – noticeable marks mean that the joint should be retrieved and replaced. PULLING ! 1. Use power tongs in low gear only to break out the connections. After the initial break, walk the joint out by hand using a strap wrench. 2. Exercise extreme care when lifting the pin out of the box and use a stabbing guide to stop the hanging pin smashing into the box ID. Lift the joint slowly and steadily in order to avoid a hang-up. 3. Wash the pipes with fresh water both internally and externally after pulling from the well. 4. Dry out pipe using compressed air. 8. For offshore operations, use a suitable corrosion inhibitor to avoid pitting on the pulled pipe. All pipes should be sent to an onshore location as soon as possible for further cleaning and storage. RUNNING MANUAL 7. Keep the pipe dry to prevent rust or corrosion during storage at well site. TenarisHydril 6. Apply storage or running compound depending on the kind operation planned and install clean, dry protectors. CHROME RUNNING GUIDELINES 5. Clean, dry and inspect the pin and box connections. 135 136 FGL and CB® Options These guidelines only apply to the connections listed in the table below with the Corrosion Barrier (CB®) or Fiber Glass Lining (FGL) options. Compatibility The compatibility of connections with CB® or FGL options with standard connection is described in the table below. CONNECTIONS No No TSH MS-FGL No TSH MS-CB No TSH W563-CB Yes TSH W553-CB Yes TSH W533-CB Yes TSH PH4-CB Yes TSH PH6-CB Yes TSH CS-CB Yes TSH PJD-CB Yes __ NOTE: PLEASE SEND ALL QUERIES TO THE TENARIS LICENSEE SUPPORT GROUP (LICENSEES@OILFIELD.TENARIS.COM). Accesories 1. Accessories for FGL or CB® options are specially designed by Tenaris. This means that standard connections accessories must on no account be used. RUNNING MANUAL TSH Blue-CB TenarisHydril TSH Blue-FGL FGL AND CB® OPTIONS Compatible with standard OPTION 137 2. The only accessories that should be used are those threaded by Tenaris or one of its licensed repair shop facilities. Drifting 1. Use a non-metallic drift or a drift coated with plastic or Teflon in order to avoid damages. 2. For FGL option, the connection drift is different to that of a standard connection, due to pipe internal coating. Check that the drift mandrel OD complies with the Product Data Sheet, or with customer’s specifications (if the required drift is smaller than the one in the Data Sheet). Field Repair 1. Never run a pipe with a damaged coating or a damaged fiber glass lining (FGL coating). 2. Any damage to the coating or lining must be repaired either by the coating company or by certified personnel of a third-party company. In the meantime the joint must be segregated and clearly identified. Installation of seal rings 1. Check the available seal rings are the specific ones for product to be run. Ensure there are some additional seal rings, as backup. ! 138 2. Install the seal rings just before running the pipe. Install them either at the v-door or at the rig floor. Do not install them on a pipe bench. 3. Make sure seal rings and pipes are at the same temperature before installation. 4. Fully clean and dry box end connection and perform a visual thread inspection. 5. Check there are no seal rings already installed on the connection. Any seal rings already installed must be removed and discarded before installing the new ones. If any pre-existing seal ring is found, it must be removed and discarded. RUNNING MANUAL TenarisHydril 7. Instructions for installing a seal ring on the FGL options (this only applies to TSH Blue-FGL and TSH MS-FGL). 7.1. Take a brand new seal ring and compress it with the fingers so that it partially collapses into the inside diameter of the pipe (Fig. 1). 7.2. Place collapsed seal ring into the seal ring lodging area and release it (Fig. 2). Make sure the "T" end of the seal ring fits into the gap between the flange and the ID of the coupling. 7.3. Manually push the seal ring into place, pressing all around the edge of the ring. You can use a nonmetallic instrument like a wooden hammer handle to nudge it into place. 7.4. Make sure the seal ring is properly inserted between the flange (the front of the pin) and the ID of the coupling. The seal ring must be in contact with the ID of the coupling all the way round and should not stick out at any point. If in doubt, use a straight edge to check whether it is properly aligned. 8. For seal ring installations on CB® options. 8.1. Take a brand new seal ring and compress it with the fingers so that it partially collapses into the inside diameter of the pipe (Fig. 1). FGL AND CB® OPTIONS 6. Make sure the seal ring is in perfect condition before installing it. This means no cuts, deformations or dents. If the seal ring is not in perfect condition it must be discarded. 139 1. seal ring Manually collapse the seal ring. flange 2. FGL seal ring and flange Ensure proper installation of both elements. pin CB ring box 3. TSH W533-CB 140 8.2. Place the collapsed seal ring into the seal ring groove and release it (Fig. 3). 8.3. Manually push the seal ring into place, pressing all around the edge of the ring. You can use a non-metallic instrument like a wooden hammer handle to nudge it into place. 8.4. Make sure the seal ring is properly inserted in the groove. The seal ring must be in contact with the ID of the coupling all the way round and should not stick out at any point. If in doubt, use a straight edge to check whether it is properly aligned. 9. If you cannot install the seal ring, check the size of the ring, as this could be the problem. Running compound application 1. Before stabbing the pin end in, make sure the seal ring is still in place. 2. If corrections need to be made, do them manually. Do not use pliers or any other objects to adjust the seal ring as it could fall into the pipe column. RUNNING MANUAL Stabbing TenarisHydril 2. Apply the running compound to connections with the FGL option in the same way as for standard connections. Keep the protruding nose and flange clear of running compound (Fig. 2). FGL AND CB® OPTIONS 1. Apply the running compound to connections with the CB® option in the same way as for the corresponding standard connections. 141 End of job / Storage 1. Check that there are no seal rings on the box ends of surplus or laid-out pipes. 2. Clean and dry threads, then apply storage compound on them, and finally install clean dry thread protectors. 142 Dopeless® Technology Running Guidelines These guidelines apply only to TenarisHydril connections with Dopeless® technology and should be used in conjunction with the relevant section of this manual as indicated. 1 2 RUNNING MANUAL Dopeless® Technology Running Guidelines Throughout this section, the term "standard connection" refers to a connection without Dopeless® coating. A Dopeless® connection is a TenarisHydril premium connection with Dopeless® coating applied. Dopeless® technology applied to the connection gives the pin and the box different colors. 1. Blue® Dopeless® connection TenarisHydril VISUAL APPEARANCE OF DOPELESS® CONNECTIONS 2. Wedge 533™ Dopeless® connection 143 Cleaning 1. Remove pin and box protectors, setting them aside in a clean place. Clean the protectors with a rag or non-metallic bristle brush and fresh water. Dry them with a clean rag or compressed air. 2. If connections are contaminated (dirt, mud, oil, brine, etc.) wipe them with clean rags. If connections are heavily contaminated they may be cleaned with soap and water. Thereafter, the connections must be dried with clean rags or compressed air. ! Do not use a high-pressure water jet, wire brushes or any other mechanical method for cleaning. Do not use solvents or any other chemicals to clean the connections. Visual inspection and field repairs Only authorized personnel trained by Tenaris may perform inspection and field repairs on Dopeless® connections. Torque values and running compound application 1. Download the Dopeless® connections datasheets from our website. If you require further assistance, contact your local Technical Sales representative or write to us at fieldservices@tenaris.com. 2. Dopeless® connections do not need thread compound to be run. 144 3. Do not apply running compound to handling/lifting plugs. Check that these have a phosphate coating, are not damaged and are clean of dope, dirt, etc., before usage. 4. Special cases 4.1. When assembling Dopeless® connections to standard connections (for example accessories), use thread compound. 4.2. Dopeless® connections can also be made up using thread compound if required. both situations: . For PIN: Thread lock compound application 1. PIN: Completely remove the Dopeless® coating only from the pin threads. Do not remove Dopeless® coating from the seal and pin nose. Use either a wire brush or a rotating machine with steel or brass wire wheels; or a high-pressure hot water jet, drying the connection afterwards. RUNNING MANUAL (both joints) should be considered as standard, i.e. no longer a Dopeless® connection since the prevailing lubrication mechanism is provided by the running compound. Therefore use the torque values for the corresponding standard connections affected by a friction factor when applicable. (Do not use Dopeless® connections torques). Refer to the "Make-up acceptance criteria" section. TenarisHydril . For torque-related practical purposes, the connection Dopeless® Technology Running Guidelines Apply a very thin layer of running compound on threads, seals and nose. BOX: Apply a very thin layer of running compound to seals and shoulder only. Do not fill any dope pocket. 145 . 2.ForBOX: Dopeless . . ® coupled connections at yard/repair shop: use a standard coupling. If a Dopeless® coupling has already been made up and the joint is to be thread-locked, remove the coupling and replace it with a standard version. For Dopeless® coupled connections at rig site: if a standard coupling cannot be used replace it with a Dopeless® coupling. Clean it thoroughly with high-pressure hot water jets. For integral Dopeless® connections: thoroughly clean the box end with high-pressure hot water jets. 3. Clean and dry both pin and box ends before applying thread lock compound. 4. Apply thread lock compound as described in the “Running and thread lock compound application” section. 5. Make up applying the torque values of the equivalent standard connection. Refer to the “Make-up acceptance criteria” section. Make-up and break-out 1. When making up Wedge Series 500™ Dopeless® and Wedge Series 600™ Dopeless® connections of all diameters, apply target torque only once without holding. . . 146 2. After breaking out a Dopeless® connection, wipe with clean rags or use compressed air to remove any excess coating which has balled up during the make-up process. Shiny silver areas will appear on some parts of the pin connection. Some of the coating on the box may flake off. Excess coating which has balled up during the make-up process is removed with a clean rag. 2. BREAK-OUT RUNNING MANUAL 1. BREAK-OUT Dopeless® Technology Running Guidelines This is normal behavior for Dopeless® coating and should not be confused with galling. There is still enough dry lubricant on the connections for further usage (Fig. 1 and 2). Dopeless® coating after three make-and-breaks. TenarisHydril TenarisHydril Blue® with 147 End of job / storage 1. All used connections should be cleaned in order to remove any foreign matter and contaminants from the surface. 2. Do not apply storage compound, light oils, lubricants or any other chemicals to Dopeless® connections. The Dopeless® coating already has anticorrosion properties (Fig. 3). 3. Prior to storage, install clean, dry, undamaged Dopeless® thread protectors on clean, dry connections. During storage periodically check that protectors continue to remain properly installed and that connections are dry and free from rust. 3. Dopeless® Protectors Pin and box protectors for Dopeless® connections use a special rubber ring sealant system to prevent water getting in. These protectors should not be replaced by standard ones. 148 CONNECTIONS GROUP 1 Blue® Blue® Near Flush Blue® Thermal Liner MS™ 3SB™ HW™ PJD™ ER™ GROUP 2 Wedge Series 500™ Wedge 625™ MACII™ SLX™ PH6™, PH4™ and CS® TenarisXP™ Buttress For clarity, our premium connections are organized into two separate groups. Should you require assistance, please contact fieldservices@tenaris.com. Open the flap to see the Table for Group 1 and Group 2 Connections For additional information, please visit www.tenaris.com TSH / RM / Version 03 / IDM code GDL00337 / November 2012 Tenaris has produced this manual for general information only. While every effort has been made to ensure the accuracy of the information contained within this publication, Tenaris does not assume any responsibility or liability for any loss, damage, injury resulting from the use of information and data herein. Tenaris products and services are only subject to the Company’s standard Terms and Conditions or otherwise to the terms resulting from the respective contracts of sale, services or license, as the case may be. The information in this publication is subject to change or modification without notice. For more complete information please contact a Tenaris representative or visit our website at www.tenaris.com. This manual supersedes TSH / RM / Pocket Version 01 / 2011 and TSH / RM / IDM codes GDL 00259, GDL 00260, GDL 00261, GDL 00262, GDL 00263, GDL 00264, GDL 00265, GDL 00266. ©Tenaris 2012. All rights reserved. www.tenaris.com/tenarishydril