curiculum vitae - IIT Demokritos

Transcription

curiculum vitae - IIT Demokritos
CURICULUM VITAE
CONSTANTINE D. SPYROPOULOS
ECCAI FELLOW
M.Sc., Ph.D. in Computer Science
Research Director
Institute of Informatics & Telecommunications
N.C.S.R. “DEMOKRITOS”
Athens, June 2010
1
APPENDIX I: CITATIONS DATA
Α1. NON-SELF CITED CITATIONS
Γημοζιεύζεις ζε Γιεθνή Δπιζηημονικά Περιοδικά
G Sigletos, G Paliouras, CD Spyropoulos, M Hatzopoulos ―Combining Information
Extraction Systems Using Voting and Stacked Generalization‖, The Journal of
Machine Learning Research archive, Volume 6, December 2005 (cited by 20)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Wong Tak-Lam, Lam Wai. Learning to adapt web information extraction knowledge and
discovering new attributes via a bayesian approach. IEEE Transactions on Knowledge
and Data Engineering, vol. 22, no. 4, pp 523-536, 2010
Michael Zuckermana, Ariel D. Procacciab and Jeffrey S. Rosenschein ―Algorithms for
the coalitional manipulation problem‖, in Artificial Intelligence, Volume 173, Issue 2,
February 2009, Pages 392-412
Z Chen, DV Kalashnikov, S Mehrotra ―Exploiting context analysis for combining
multiple entity resolution systems‖, in Proceedings of the 35th SIGMOD international
conference on Management of data, pp 207-218, 2009
Dah-Jye Leea, Sameer Antanib, Yuchou Changa, Kent Gledhillc, L. Rodney Longb and
Paul Christensen ―CBIR of spine X-ray images on inter-vertebral disc space and shape
profiles using feature ranking and voting consensus‖, in Data & Knowledge Engineering,
Volume 68, Issue 12, December 2009, Pages 1359-1369
David Leake and Joseph Kendall-Morwick ―Four Heads Are Better than One: Combining
Suggestions for Case Adaptation‖, in Case-Based Reasoning Research and Development,
Volume 5650/2009, pp 165-179
Tak-Lam Wonga and Wai Lam ―An unsupervised method for joint information extraction
and feature mining across different Web sites‖, Data & Knowledge Engineering Volume
68, Issue 1, January 2009, Pages 107-125
Andreas Janecek ―Efficient Feature Reduction and Classification Methods‖, Dissertation,
University of Vienna, 2009
Prasanna Sridhar ―Scalability and Performance Issues in Deeply Embedded Sensor
Systems‖, in International Journal On Smart Sensing And Intelligent Systems, Vol. 2, No.
1, March 2009
M Banko, O Etzioni, T Center ―The tradeoffs between open and traditional relation
extraction‖, Proceedings of the 46th Annual Meeting of the …, 2008
Y Chang, S Antani, DJ Lee, K Gledhill ―CBIR of spine X-ray images on inter-vertebral
disc space and shape profiles‖, 21st IEEE International Symposium on Computer- …,
2008
DJ Russomanno, M Yeasin, E Jacobs ―Sparse detector sensor: profiling experiments for
broad-scale classification‖, Proc. SPIE 2008
AD Procaccia ―Computational Voting Theory: Of the Agents, By the Agents, For the
Agents‖, thesis 2008
G Tepvorachai ―An Evolutionary Platform for Retargetable Image and Signal Processing
Applications‖, thesis 2008
Alberto Lavelli,Mary Elaine Califf,Fabio Ciravegna, Dayne Freitag, Claudio Giuliano,
Nicholas Kushmerick, Lorenza Romano and Neil Ireson ―Evaluation of machine learningbased information extraction algorithms: criticisms and recommendations‖, in Language
Resources and Evaluation, Volume 42, Number 4 / December, 2008
Y Chang, DJ Lee, Y Hong, J Archibald ―Edge Detection from Global and Local Views
Using an Ensemble of Multiple Edge Detectors‖, Proceedings of the 4th International
Symposium on …, 2008
2
16. FA Barros, EFA Silva, RBC Prudêncio ―Hidden Markov Models and Text Classifiers for
Information Extraction on Semi-Structured Texts‖, Proceedings of the 2008 8th
International Conference …, 2008
17. Peleg, B., Procaccia, A.: Mediators and truthful voting. Working paper (2008)
18. M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open
information extraction from the Web. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, 2007
19. Talib, Fatima, ―Computational aspects of voting: a literature survey‖, in RIT Digital
Library, 2007
20. Ioannis Caragiannis and Ariel D. Procaccia, ―Low-Distortion Embeddings into Voting
Rules‖, 2007 (http://www.cs.huji.ac.il/~arielpro/papers/embedding.pdf)
G. Petasis, G. Paliouras, V. Karkaletsis, C. Halatsis, and C.D. Spyropoulos, ―eGRIDS: Computationally Efficient Grammatical Inference from Positive
Examples‖. GRAMMARS, (7) 2004, pp. 69-110, (cited by 11)
21. C de la Higuera, ‗Grammatical inference: learning automata and grammars‘, Cambridge
Univarsity Press, 2010
22. R Reichart, A Rappoport ―Unsupervised induction of labeled parse trees by clustering
with syntactic features‖, in Proceedings of the 22nd International Conference on
Computational Linguistics - Volume 1, pp 721-8, 2008
23. W Zuidema ―An annotated bibliography of grammar induction models for natural
language learning‖, paper at Institute for Logic, Language and Computation, University
of Amsterdam, May 23, 2008
24. R. Eyraud, C. de la Higuera and J-C Janodet, ―LARS: A Learning Algorithm for
Rewriting Systems‖, Machine Learning Journal , 2007, vol.66, No1, pp.7-31.
25. G. Borensztajn, and W. Zuidema. 2007. Bayesian Model Merging for Unsupervised
Constituent Labeling and Grammar Induction. Technical Report. ILLC.
26. MATSUNO, I.P. Um Estudo do Processo de Inferência de Gramáticas Regulares e Livres
de Contexto Baseados em Modelos Adaptativos. Dissertação de Mestrado, USP, São
Paulo, 2006
27. Alpana Dubey, ―Inferring Grammar Rules from Programs‖, PhD Thesis, Indian Institute
Of Technology Kanpur, 2006
28. Rémi Eyraud, ―Inférence grammaticale de langages hors-contextes‖, PhD thesis,
University of Saint-Etienne, 2006
29. C. de la Higuera, & J. Oncina (2006). Learning context-free languages. Artificial
Intelligence Reviews.
30. Ivone Penque Matsuno, ―Um Estudo dos Processos de Inferencia de Gramaticas
Regulares e Livres de Contexto Baseados em Modelos Adaptivos‖ Master Dissertation,
2006.
31. R. Eyraud, C. de la Higuera and J-C Janodet, ―Representing Languages by Learnable
Rewriting Systems‖, Proceedings of the 7th International Colloquium on Grammatical
Inference (ICGI), Lecture Notes in Computer Science, 3264, pp. 139- 150, 2004.
D. Pierrakos, G. Paliouras, C. Papatheodorou and C.D. Spyropoulos, ―Web
Usage Mining as a tool for personalization: a survey,‖ User Modeling and UserAdapted Interaction, 13(4), pp. 311-372, November 2003. (cited by 119)
32. Knud Möller, Michael Hausenblas, Richard Cyganiak, Siegfried Handschuh, Gunnar
Grimnes "Learning from Linked Open Data Usage: Patterns & Metrics", Web Science
Conference 2010, 2010
33. Karin Beckera, Corresponding Author Contact Information, E-mail The Corresponding
Author and Mariângela Vanzin, ―O3R: Ontology-based mechanism for a human-centered
3
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
environment targeted at the analysis of navigation patterns‖, in Knowledge-Based
Systems, Volume 23, Issue 5, July 2010, Pages 455-470
P.Venketesh, R Venkatesan, L. Arunprakash, ―Semantic Web Prefetching Scheme Using
Naïve Bayes Classifier‖, in International Journal of Computer Science and Applications,
Vol. 7, No. 1, pp. 66 – 78, 2010
Markus Zanker and Markus Jessenitschnig, ―Case-studies on exploiting explicit customer
requirements in recommender systems‖, in User Modeling and User-Adapted Interaction,
Volume 19, Numbers 1-2, pp 133-166, 2009
Marti A. Hearst, ―Search User Interfaces‖, 1 st Version, Book, Pages: 408, Cambridge
University Press, Year of Publication: 2009
凌海峰, 刘业政, 杨善林, “基于蚁群算法与 K-means 算法相结合的 Web
用户聚类”, in 情报学报, v. 4, pp. 105-108, 2009
Thanassis Hadzilacos, Dimitris Kalles, Dionysis Karaiskakis, Maria Pouliopoulou,
―Using Graphs in Developing Educational Material‖, in Proceedings of the 2nd
International Workshop on Building Technology Enhanced Learning solutions for
Communities of Practice, pp 55-66, 2009
Mrs Geeta R.B., Prof. Shashikumar G.Totad, Dr. Prasad Reddy PVGD, ―Amalgamation
of Web Usage Mining and Web Structure Mining‖, in International Journal of Recent
Trends in Engineering, Vol. 1, No. 2, May 2009
I-Hsien Ting, Lillian Clark, Chris Kimble, ―Identifying web navigation behaviour and
patterns automatically from clickstream data‖, in International Journal of Web
Engineering and Technology, Volume 5, Number 4, pp 398 - 426 , 2009
Giovanna Castellano, Anna Maria Fanelli, Maria Alessandra Torsello and Lakhmi C.
Jain, ―Innovations in Web Personalization‖, in Web Personalization in Intelligent
Environments, Volume 229/2009, pp 1-26
Matthias Mayer, ―Web History Tools and Revisitation Support: A Survey of Existing
Approaches and Directions‖, book 2009
Hamid Rastegari, Siti Mariyam Shamsuddin, "Review of Artificial Immune System in
Web Personalization," socpar, pp.699-702, 2009 International Conference of Soft
Computing and Pattern Recognition, 2009
I-Cheng Yeha, Che-hui Lienb, Tao-Ming Tingc and Chin-Hao Liu, ―Applications of web
mining for marketing of online bookstores‖, in Expert Systems with Applications,
Volume 36, Issue 8, October 2009, Pages 11249-11256
I-Hsien Ting, Hui-Ju Wu, Pei-Shan Chang, ―Analyzing Multi-source Social Data for
Extracting and Mining Social Networks‖, in Proceedings of the 2009 International
Conference on Computational Science and Engineering, Volume 04, pp 815-820, 2009
H Deng, ―Web Mining Techniques for Query Log Analysis and Expertise Retrieval‖,
PhD Thesis, The Chinese University of Hong Kong, 2009
Luis Carlos Couto de Souza, ―Metodologia De Mineração De Dados Aplicada A
Navegação De Dispositivos Móveis‖, Dissertation, 2009
张炜, 洪霞, ―基于 OPAC 读者行为挖掘的个性化服务系统关键技术分析‖, v3,
pp62-64, 2009
Fadoua Ouamani, Hajer Baazaoui Zghal, Zeina Jrad, Marie-Aude Aufaure, Henda Ben
Ghézala, ―Conception d‘un système multi-agent du Web Usage Mining pour la
personnalisation du web‖ in MUPIW-EGC08 page 47, 2008.
MF Rutledge-Taylor, A Vellino, RL West, ―A Holographic Associative Memory
Recommender System‖, Digital Information Management, 2008. ICDIM 2008.
G Castellano, AM Fanelli, MA Torsello ―Computational Intelligence techniques for Web
personalization‖, Web Intelligence and Agent Systems, 2008 IOS Press
M Zanker, M Jessenitschnig ―Case-studies on exploiting explicit customer requirements
in recommender systems‖, User Modeling and User-Adapted Interaction Journal,
Volume 19, Numbers 1-2, pp 133-166, 2008
M Hadjouni, H Baazaoui, MA Aufaure, C Claramunt ―Towards a personalized spatial
web architecture‖, in Workshop ―Semantic Web meets Geospatial Applications‖, held in
conjunction with AGILE 2008, 11th International Conference on Geographic Information
Science, on Monday, May 5th, 2008.
M Rupert, A Rattrout, S Hassas, ―The web from a complex adaptive systems
perspective‖, Journal of Computer and System Sciences, Volume 74, Issue 2, March
2008, Pages 133-145.
4
55. D Zhu, H Dreher, WA Perth ―Improving Web Search by Categorization, Clustering, and
Personalization‖, In ADMA '08, pages 659{666, Berlin, Heidelberg, 2008
56. Montgomery, Alan and Michael Smith (2008), ―Prospects for Personalization on the
Internet,‖ Journal of Interactive Marketing, 23 (2), 130–7
57. G Castellano, AM Fanelli, P Plantamura ―A Neuro-Fuzzy Strategy for Web
Personalization‖, in aaai 2008
58. T Hadzilacos, D Kalles, D Karaiskakis, M Pouliopoulou ―Using Graphs in Developing
Educational Material‖, in ―Web-Based Learning Solutions for Communities of Practice:
Developing Virtual Enviroments for Social and Pedagogical Advancement‖ by Nikos
Karacapilidis, premier reference source, 2008, Chapter 5 pp 55-61
59. Juan D. Velásquez, Vasile Palade, Adaptive Web Sites - A Knowledge Extraction from
Web Data Approach, ISBN 978-1-58603-831-1, IOS Press, 2008
60. DN Sotiropoulos, AS Lampropoulos, GA Tsihrintzis ―Individualization of Content-Based
Image Retrieval Systems via Objective Feature Subset Selection‖, in Multimedia Services
in Intelligent Environments, Volume 120/2008 pp 181-201
61. Q Zhang, Rs Segall ―Web Mining: A Survey Of Current Research, Techniques, And
Software‖, - in International Journal of Information Technology & Decision Making
(IJITDM) , Volume: 7, Issue: 4 (2008) pp. 683-720
62. G Korfiatis ―Modeling Web Navigation Using Grammatical Inference‖ in Applied
Artificial Intelligence (AAI 2008), 2008
63. Le Bigot, L., Bretier, P., Terrier, P.: Detecting and exploiting user familiarity in natural
language human-computer dialogue. In: Asai, K. (ed.) Human Computer Interaction: New
Developments, pp. 269–382. InTech Education and Publishing (2008); ISBN: 978-9537619-14-5
64. MA Bayir, IH Toroslu, A Cosar, G Fidan ―Discovering More Accurate Frequent Web
Usage Patterns‖, Arxiv preprint arXiv:0804.1409, 2008
65. Hollink, V., Van Someren, M., and De Boer, V. (2008). Capturing the needs of amateur
web designers by means of examples. In Proceedings of the 16th Workshop on Adaptivity
and User Modeling in Interactive Systems, Würzburg, Germany, pages 26–31
66. A Cuzzocrea ―Knowledge Personalization in Web-Services-Based Environments: A
Unified Approach‖, in Evolution of the Web in Artificial Intelligence Environments,
Volume 130/2008 pp 101-135. 2008
67. B Mojtaba, I Mashhad, M Reza ―A New Hybrid Recommender System Using Dynamic
Fuzzy Clustering‖, http://profsite.um.ac.ir/~rmonsefi/conferences/baghebani1.pdf, 2008
68. S Park, NC Suresh, BK Jeong, ―Sequence-based clustering for Web usage mining: A new
experimental framework and ANN-enhanced K-means algorithm‖, in Data & Knowledge
Engineering, Volume 65, Issue 3, June 2008, Pages 512-543
69. Cristina Gena and Stephan Weibelzahl, ―Usability Engineering for the Adaptive Web‖, In
Lecture Notes in Computer Science, vol. 4321, pp. 720-762, 2007.
70. Susanne Gudrun Burklen, ―Vorab¨ubertragung schwach strukturierter Informationen in
ortsbasierten mobilen Systemen‖, PhD thesis, 2007.
71. Pythagoras Karampiperis and Aristeidis Diplaros, ―Exploiting Image Segmentation
Techniques for Social Filtering of Educational Content‖, 2007
72. Chen Ding and Jin Zhou, ―Multiple Evidence Combination in Web Site Search Based on
Users‘ Access Histories‖,
Lecture Notes in Computer Science, Book: ―User
Modeling 2007‖, Vol. 4511, pp. 405-409, 2007.
73. K Markellos, P Markellou, A Panayiotaki, A Tsakalidis, ―Semantic Web Mining for
Personalized Public E-Services‖, in Global E-government: Theory, Applications and
Benchmarking, pp.1-21, 2007.
74. 宁小红, 余森森, ―Study on s-Tree Algorithm for Personalized Recommendation‖,
2007.
75. Anna Goy, Liliana Ardissono and Giovanna Petrone, ―Personalization in E-Commerce
Applications‖, Lecture Notes in Computer Science, ―The Adaptive Web‖, Vol. 4321,
pp.485-520, 2007.
76. Rosario Girardi , Leandro Balby Marinho, A domain model of Web recommender
systems based on usage mining and collaborative filtering, Requirements Engineering,
v.12 n.1, p.23-40, 2007.
77. G. Castellano, A. M. Fanelli, M. A. Torsello, ―Log Data Preparation For Mining Web
Usage Patterns‖, IADIS International Conference Applied Computing 2007, pp.371-378,
2007.
5
78. J Vesanen, ―What is personalization? A conceptual framework‖, European Journal of
Marketing Vol. 41 No. 5/6, 2007, pp. 409-418
79. M Barla, M Bielikova, M. Barla and M. Bielikova ―Estimation of User Characteristics
using Rule-based Analysis of User Logs‖. In Data Mining for User Modeling Proceedings
of Workshop held at the International Conference on User Modeling UM2007, pages
5{14, Corfu, Greece, 2007.
80. T Hadzilacos, D Kalles, M Pouliopoulou, ―On the Software and Knowledge Engineering
Aspects of the Educational Process‖, in International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), 2007.
81. V Hollink, M van Someren, BJ Wielinga, ―Navigation behavior models for link structure
optimization‖, in User Modeling and User-Adapted Interaction, Vol 17, No 4, pp.339377, 2007.
82. DN Sotiropoulos, AS Lampropoulos, GA Tsihrintzis, ―MUSIPER: a system for modeling
music similarity perception based on objective feature subset selection‖, in User
Modeling and User-Adapted Interaction, 2007.
83. G Castellano, F Mesto, M Minunno, MA Torsello, ―Web User Profiling Using Fuzzy
Clustering‖, in Lecture Notes in Computer Science, book: Applications of Fuzzy Sets
Theory, Vol 4578, pp.94-101, 2007
84. S Mongy, F Bouali, C Djeraba, ―Analyzing User‘s Behavior on a Video Database‖,
SpringerMultimedia Data Mining and Knowledge Discovery, Part V, pp. 458-471,
2007.
85. M. Virvou, A. Savvopoulos, G. A. Tsihrintzis and D. N. Sotiropoulos, ―Constructing
Stereotypes for an Adaptive e-Shop Using AIN-Based Clustering‖, Springer- Lecture
Notes in Computer Science, book: Adaptive and Natural Computing Algorithms, Volume
4431, pp. 837-845, 2007.
86. David Albrecht and Ingrid Zukerman, ―Introduction to the special issue on statistical and
probabilistic methods for user modeling‖, Springer- User Modeling and User-Adapted
Interaction, Volume 17, Numbers 1-2 / March, 2007, pp. 1-4.
87. T Dalamagas, P Bouros, T Galanis, M Eirinaki and T Sellis, ―Mining user navigation
patterns for personalizing topic directories‖, Proceedings of the 9th annual ACM
―international workshop on Web information and data management‖, Lisbon, Portugal,
pp.81-88, 2007.
88. H Lam, D Russell, D Tang, T Munzner, ―Session Viewer: Visual Exploratory Analysis of
Web Session Logs‖, IEEE Symposium on Visual Analytics Science and Technology,
Sacramento, CA, USA, 2007.
89. Hollink, M., van Someren, M., Wielinga, B. ―Discovering stages in web navigation for
problem- oriented navigation support‖ User Model. User Adapt. Interact., vol.17, No 1-2,
March, 2007, pp 183-214.
90. Herder, H. (2006). Forward, back, and home again: Analyzing user behavior on the Web.
Ph.D. Thesis, University of Twente.
91. Stefani, B. Vassiliadis and M. Xenos, ―Behavioural patterns in hypermedia systems: a
study of e-commerce vs. e-learning practices‖, Proceedings of the International Workshop
on Adaptive and Personalized Semantic Web, 16th ACM Conference on Hypertext and
Hypermedia (HT), Salzburg, Austria, 2006.
92. Xi HuiDan;Yan Hui, ―The Application of Concept Lattice in Web_log Mining‖,
Computer Systems& Applications, 2006.
93. XU Jing, CAI Qiong,YU Jun-jie, ―Application and Research of Web Log Mining Based
on Fuzzy Clustering‖, Computer Knowledge and Technology(Academic Exchange), 2006
94. Mostafa Hanoune*, Fouzia Benabbou, ―Traitement et exploration du fichier Log du
Serveur Web, pour l‘extraction des connaissances: Web Usage Mining‖, 2006.
95. Yanwu Yang, ―L‘ Ecole Nationale Supérieure D‘Arts et Métiers‖, Towards Spatial Web
Personalization, PhD Thesis, 2006
96. G. Castellano, A. M. Fanelli, M. A. Torsello, ―Dynamic Link Suggestion By A NeuroFuzzy Web Recommendation System‖, IADIS International Conference WWW/Internet
2006.
97. M Bober, P Šaloun, ―Adaptation of Navigation by the Modified Results of Full Scan
Algorithm in Adaptive Hypermedia Systems‖, 2006
98. JD Velasquez, V Palade, ―Testing Online Navigation Recommendations in a Web Site‖,
in Lecture Notes in Computer Science, Knowledge-Based Intelligent Information and
Engineering Systems, vol. 4253, pp.487-496, 2006.
6
99. Q Song, M Shepperd, ―Mining web browsing patterns for E-commerce‖, Computers in
Industry, Vol 57, Issue 7, September 2006, Pages 622-630, 2006
100. C Schwendtner, F König, A Paramythis, ―Prospector: An adaptive front-end to the
Google search engine‖, LWA 2006
101. T. Maier, ―Modeling ETL for Web Usage Analysis and Further Improvements of the Web
Usage Analysis Process‖, PhD Thesis, 2006.
102. Carlos Soares, Edgar de Graaf, Joost N. Kok, ―Sequence Mining On Web Access Logs: A
Case Study‖, 2006.
103. B Zhou, SC Hui, ACM Fong, ―An Effective Approach for Periodic Web Personalization‖,
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence,
pp 284-292, 2006.
104. Prasanna Desikan and Jaideep Srivastava, ―Mining Temporally Changing Web Usage
Graphs‖, In Lecture Notes in Computer Science, book: Advances in Web Mining and
Web Usage Analysis, vol. 3932, pp.1-17, 2006.
105. Alfredo Cuzzocrea, ―Combining multidimensional user models and knowledge
representation and management techniques for making web services knowledge-aware‖.
In ―Web Intelligence and Agent Systems‖, Issue: Volume 4, Number 3, pp.289-312,
2006.
106. M.Rigou, S. Sirmakessis, G. Tzimas, ―A method for Personalized Clustering in Data
Intensive Web Applications‖, Conference on Hypertext and Hypermedia-Proceedings of
the joint international workshop on Adaptivity, personalization & the semantic web,
Odense, Denmark p.p. 35-40 , 2006.
107. Sriram Kalyanaraman & S. Shyam Sundar, ―The Psychological Appeal of Personalized
Content in Web Portals: Does Customization Affect Attitudes and Behavior?‖ Journal of
Communication, Volume 56 Issue 1 Page 110 - March 2006.
108. Przemysław Kazienko, Marcin Pilarczyk, ―Hyperlink assessment based on web usage
mining”, Conference on Hypertext and Hypermedia -Proceedings of the seventeenth
conference on Hypertext and hypermedia, Odense, Denmark, Pages: 85 - 88, 2006.
109. R. Kaschek , C. Matthews , K.-D. Schewe and C. Wallace, ―Information systems design:
through adaptivity to ubiquity‖, Information Systems and E-Business Management, vol.
4, n. 2, pp. 137-158, April 2006.
110. Z. Zeng and G. Yao, ―System for personalization based on web mining‖, Computer
Engineering and Design, vol. 27, no. 7, pp. 1155-1157, 2006.
111. M. Rupert, S. Hassas and A. Rattrout, ―The Web and Complex Adaptive Systems‖,
Proceedings of the 20th International Conference on Advanced Information Networking
and Applications (AINA), pp. 200-204, Vienna, Austria, 2006.
112. E. Michopoulou and D. Buhalis, ―Developing an eTourism Platform for Accessible
Tourism in Europe: Technical Challenges‖, Proceedings of the 13th International
Conference on Information Technology and Travel & Tourism (ENTER), January 18 -20
2006, Lausanne, Switzerland.
113. 吴丽花, 刘鲁, “ 个性化推荐系统用户建模技术综述”, 2006.
114. 崔林, 宋瀚涛, 龚永罡, 陆玉昌, ―基于 Web 使用挖掘的个性化服务技术研究‖ ,
2005.
115. Frina Albertyn, Fleur Fritz, Phuong Nguyen, Sergiy Zlatkin, Alastair Tennant, Roland
Kaschek, ―Towards Engineering Clinical Pathways‖, 2005.
116. Gustavo de la Cruz Martìnez, Fernando Gamboa Rodrìguez, ―Exploración Del
Aprendizaje De Los Estudiantes Haciendo Uso De Ambientes Colaborativos: Enseñando
Inteligencia Artificial‖ (Exploring the student‘s learning using collaborative
environments: teaching artificial intelligence), RIED – Revista Iberoamericana de
Educación a Distancia Volumen 8, No 1 & 2, pp. 147-158, 2005.
117. JDV Silva, ―Extracting knowledge from data originated in web sites‖, University of
Chile, 2005.
118. M. Chau, X. Fang and O. R. Liu Sheng, ―Analysis of the query logs of a Web site search
engine‖, Journal of the American Society for Information Science and Technology, vol.
56, no. 13, pp. 1363 – 1376, August 2005.
119. C. K. Georgiadis, I. Mavridis and A. Manitsaris, ―Context-Based Humanized and
Authorized Personalization in Mobile Commerce Applications‖, International Journal of
Computing and Information Systems, v. 3, n. 2, pp. 1-9, 2005.
7
120. S. D. Afantenos, V. Karkaletsis and P. Stamatopoulos, ―Summarization from Medical
Documents: A Survey‖, Journal of Artificial Intelligence in Medicine, v. 33, iss. 2, pp.
157-177, 2005.
121. J. Fuernkranz, ―Web Mining‖, In Data Mining and Knowledge Discovery Handbook, O.
Maimon and L. Rokach (eds.), pp. 899-920, Springer-Verlag, 2005.
122. J.J Jung, ―Semantic preprocessing of Web request streams for Web usage mining‖,
Journal of Universal Computer Science 11 (8), pp. 1383-1396, 2005.
123. L. Liao and T. Xiao, ―Data Mining in Parametric Product Catalogs‖, Proceedings of the
9th International Conference on Knowledge-Based Intelligent Information and
Engineering Systems (KES), Lecture Notes in Computer Science, 3681, pp. 353-358,
2005.
124. I.-H. Ting, C. Kimble and D. Kudenko, ―A pattern restore method for restoring missing
patterns in server side clickstream data‖, Proceedings of the 7th Asia-Pacific Web
Conference (APWeb), Lecture Notes in Computer Science, 3399, pp. 501-512, 2005.
125. R. Girardi, L.B. Marinho, I.R. De Oliveira, ―A system of agent-based software patterns
for user modeling based on usage mining‖, Interacting with Computers, 17 (5), pp. 567591, 2005.
126. E. Frias-Martinez, G. Magoulas, S. Chen and R. Macredie, ―Modeling human behavior in
user-adaptive systems: Recent advances using soft computing techniques‖, Expert
Systems with Applications, n. 29, pp. 320–329, 2005.
127. Kristofic and M. Bielikova, ―Improving Adaptation in Web Based Educational
Hypermedia by means of Knowledge Discovery‖, Proceedings of the 16th ACM
Conference on Hypertext and Hypermedia (HT), pp. 184-192, Salzburg, Austria,
September 2005.
128. Y. Zhao, Y.Y. Yao and N. Zhong, ―Multilevel web personalization‖, Proceedings of the
4th IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 649-652,
IEEE Press, 2005.
129. R. Girardi, L. Balby Marinho and A. Neres Lindoso, ―WUMA-Miner: An Agent-based
Design Pattern for Mining Users with Similar Navigational Behavior‖, Proceedings of the
5th Latin American Conference on Pattern Languages of Programming (SugarLoafPLoP),
Campos do Jordão, Brazil, August 2005.
130. T. Zhang, The Value of IT-Enabled Retailer Learning: Can Personalized Product
Recommendations (PPRS) Improve Customer Store Loyalty in Electronic Markets?, PhD
Thesis, Department of Decision and Information Technologies, University of Maryland,
USA, 2005.
131. Perry, Extraction of Useable Stractures from Click Stream Data, BEng Thesis,
Department of Computer Science, University of York, March 2004.
132. T. Zhang and R. Agarwal, ―The Value of IT-Enabled Retailer Learning: Can Personalized
Product Recommendations Cognitively Lock-in Consumers in Electronic Markets?‖,
Proceedings of the pre-conference Workshop on E-Business, International Conference on
Information Systems (ICIS), pp. 258-264, Washington, DC, USA, December 2004.
133. P. Desikan and J. Srivastava, ―Mining Temporally Evolving Graphs‖, Proceedings of the
6th Workshop on Webmining and Web Usage Analysis (WEBKDD), 10th ACM
SIGKDD conference on knowledge discovery and data mining (KDD), Seattle,
Washington, USA, August 2004.
134. S. W. Schilke, U. Bleimann, S. M. Furnell and A. D. Phippen, ―Multi-dimensional
personalisation for location and interest-based recommendation‖, Internet Research,
Volume 14, Number 5, pp. 379-385, Emerald Group Publishing Limited, 2004.
135. E. Cesario, F. Folino and R. Ortale, ―Putting Enhanced Hypermedia Personalization into
Practice via Web Mining‖, Proceedings of the 15th International Conference on Database
and Expert Systems Applications (DEXA), Lecture Notes in Computer Science, 3180, pp.
947-956, 2004.
136. R. Girardi, C. Gomes de Faria, L. Balby Marinho, ―Ontology-based Domain Modeling of
Multi-Agent Systems‖, Proceedings of the 3rd International Workshop on Agent-Oriented
Methodologies, 19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Vancouver, British Columbia, Canada
October 24-28, 2004.
137. W. P. Fok and H. H. S. Ip, ―Personalized Education (PE) - An Exploratory Study of
Learning Pedagogies in Relation to Personalization Technologies‖, Proceedings of the
8
International Conference on Web-Based Learning, Lecture Notes in Computer Science,
3143, pp.407-415, Springer, Berlin, 2004.
138. N. Manouselis, D. Sampson, M. Charchalos and X. Tsilibaris, ―Evaluation of the Greek
Go-Online Web Portal for e-Business Awareness and Training of vSMEs: Log File
Analysis and User Satisfaction Measurement‖, Proceedings of the 9th International
Telework Workshop, Crete, Greece, September 2004.
139. M. Koutri, N. Avouris, S. Daskalaki, ―A survey on web usage mining techniques for webbased adaptive hypermedia systems‖, In S. Y. Chen and G. D. Magoulas (ed), Adaptable
and Adaptive Hypermedia Systems, pp. 125-149, IRM Press, Hershey, 2005.
140. K. Heikkinen, Conceptualization of User-Centric Personalization Mangement, PhD
Thesis, Lappeenranta University of Technology, Lappeenranta, Finland, May 2005.
141. K. Church, M. T. Keane and B. Smyth, ―The First Click is the Deepest: Assessing
Information Scent Predictions for a Personalized Search Engine‖, Proceedings of the
Third Workshop on Empirical Evaluation of Adaptive Systems, 3rd International
Conference on Adaptive Hypermedia and Adaptive Web Based Systems (AH), pp. 173182, 2004.
142. Romero, S. Ventura and P. De Bra, ―Knowledge Discovery with Genetic Programming
for Providing Feedback to Courseware Authors‖, User Modeling and User-adapted
Interaction, v. 14 n. 5, pp. 425-464, January 2004.
143. P. Mertens, M. Stößlein and Th. Zeller, Personalisierung und Benutzermodellierung in
der betrieblichen Informationsverarbeitung Stand und Entwicklungsmöglichkeiten,
Technical Report 2/2004, University Erlangen-Nürnberg. Bereich Wirtschaftsinformatik,
2004.
144. R. Bellazzi, T. Giorgino, I. Azzini, C. Larizza, S. Quaglini and E. Hernando, ―New
frontiers of telemedicine systems - for chronic patients monitoring: adaptive systems and
multi-access services‖, Measurement and Control 37 (5), pp. 146-150, June 2004.
145. X. Jin, Y. Zhou and B. Mobasher, ―Web Usage Mining Based on Probabilistic Latent
Semantic Analysis‖, Proceedings of the 10th ACM SIGKDD conference on knowledge
discovery and data mining (KDD), pp. 197-205, Seattle, USA, August 2004.
146. H. Krottmaier, ―The need for sharing user-profiles in digital libraries‖, Proceedings of the
ICCC 8th International Conference on Electronic Publishing (ELPUB), Brasilia, Brazil,
June 2004.
147. X. Jin, Y. Zhou and B. Mobasher, ―A Unified Approach to Personalization Based on
Probabilistic Latent Semantic Models of Web Usage and Content‖, Proceedings of the
Workshop on Semantic Web Personalization (SWP), 19th National Conference on
Artificial Intelligence (AAAI), San Jose, July 2004.
148. Mobasher, X. Jin, Y. Zhou, ―Semantically Enhanced Collaborative Filtering on the Web,‖
In Web Mining: From Web to Semantic Web, B. Berendt et al. (eds.), Lecture Notes in
Artificial Intelligence, 3209, pp. 57-76, Springer Verlag, 2004.
149. G. McCalla, ―The Ecological Approach to the Design of E-Learning Environments:
Purpose-based Capture and Use of Information About Learners‖, Journal of Interactive
Media in Education, n. 7 2004.
150. G. de la Flor, User Modeling & Adaptive User Interfaces, Research Report Number 1085,
Institute for Learning & Research Technology, University of Bristol, UK, July 2004
G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos
and P. Stamatopoulos, ―A Memory-Based Approach to Anti-Spam Filtering for
Mailing Lists,‖ Information Retrieval, 6(1), pp. 49-73, 2003. (cited by 170)
151. Chen-Huei Choua, Atish P. Sinhab and Huimin Zhao, ―Commercial Internet filters: Perils
and opportunities‖, in Decision Support Systems, Volume 48, Issue 4, March 2010, Pages
521-530
152. Guzella, Thiago S., Caminhas, Walmir M, ―A review of machine learning approaches to
Spam filtering‖, in Expert Systems with Applications. Vol. 36, no. 7, pp. 10206-10222.
Sept. 2009
9
153. Matthew Chang and Chung Keung Poon, ―Using phrases as features in email
classification‖, Journal of Systems and Software, Volume 82, Issue 6, June 2009, Pages
1036-1045
154. El-Sayed M. El-Alfy, ―Discovering classification rules for email spam filtering with an
ant colony optimization algorithm‖, in Proceedings of the Eleventh conference on
Congress on Evolutionary Computation, pp 1778-1783, 2009
155. Hui Yin, Fengjuan Cheng, Dexian Zhang, "Using LDA and Ant Colony Algorithm for
Spam Mail Filtering," isise, pp.368-371, 2009 Second International Symposium on
Information Science and Engineering, 2009
156. E.-S. M. El-Alfy. ―Discovering Classification Rules for Email Spam Filtering with an Ant
Colony Optimization Algorithm‖, In: IEEE Congress on Evolutionary Computation, pp.
1778 - 1783, 2009
157. M. Tariq Banday and Jan, Tariq R, ―Effectiveness and Limitations of Statistical Spam
Filters‖, in Proceedings International Conference on ―New Trends in Statistics and
Optimization‖, 2009
158. ESM El-Alfy, RE Abdel-Aal, ―Using GMDH-based networks for improved spam
detection and email feature analysis‖, in Using GMDH-based networks for improved
spam detection and email feature analysis, accepted 4 December 2009
159. Gordon V. Cormack (2008) "Email Spam Filtering: A Systematic Review", Foundations
and Trends in Information Retrieval: Vol. 1: No 4, pp 335-455
160. CP Wei, HC Chen, TH Cheng ―Effective spam filtering: A single-class learning and
ensemble approach‖ Decision Support Systems, 2008, Volume 45, Issue 3, June 2008,
Pages 491-503
161. W Ma, D Tran, D Sharma ―Filtering Spam Email With Flexible Preprocessors‖ In
Advances in Communication Systems and Electrical Engineering, Volume 4 pp 211-227,
2008
162. Abu-Nimeh, S.; Nappa, D.; Xinlei Wang; Nair, S., "Bayesian Additive Regression TreesBased Spam Detection for Enhanced Email Privacy," Availability, Reliability and
Security, 2008. ARES 08. Third International Conference on , vol., no., pp.1044-1051, 47 March 2008
163. CH Chou, AP Sinha, H Zhao ―A text mining approach to Internet abuse detection‖ In
Information Systems and E-Business Management Journal, Volume 6, Number 4 /
September, 2008, pp 419-439
164. S Chakraborti, UC Beresi, N Wiratunga, S Massie, R Lothian, D Khemani ―Visualizing
and Evaluating Complexity of Textual Case Bases‖ in
Advances
in
Case-Based
Reasoning, Volume 5239/2008, pp 104-119 2008
165. El-Alfy, E.-S.M.; Al-Qunaieer, F.S., "A fuzzy similarity approach for automated spam
filtering," Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS
International Conference on , vol., no., pp.544-550, March 31 2008-April 4 2008
166. C Chen, Y Gong, R Bie, X Gao ―Searching for Interacting Features for Spam Filtering‖, I
Proceedings of the 5th international symposium on Neural Networks - ISNN 2008 –
Springer Volume 5263/2008, pp 491-500
167. A Çıltık, T Güngör, ―Time-efficient spam e-mail filtering using n-gram models‖, in
Pattern Recognition Letters Volume 29, Issue 1, 1 January 2008, Pages 19-33
168. P Kolan, R Dantu, JW Cangussu ―Nuisance level of a voice call‖, in ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMCCAP), Volume 5 ,
Issue 1 (October 2008) , Article No. 6, 2008
169. Xun Yue1, Ajith Abraham, Zhong-Xian Chi, Yan-You Hao and Hongwei Mo, ―Artificial
immune system inspired behavior-based anti-spam filter‖, Journal Soft Computing - A
Fusion of Foundations, Methodologies and Applications, Springer, Volume 11, Number 8
/ June, 2007, pp. 729-740.
170. Yu-Fen Chiu, Chia-Mei Chen, Bingchiang Jeng, Hsiao-Chung Lin, "An Alliance-Based
Anti-spam Approach," icnc, pp. 203-207, Third International Conference on Natural
Computation (ICNC 2007) Vol IV, 2007.
171. F. Fdez-Riverolaa, E.L. Iglesiasa, F. Dìazb, J.R. Méndeza and J.M. Corchado,
―SpamHunting: An instance-based reasoning system for spam labelling and filtering‖, In
Decision Support Systems, vol 43, Issue 3, Pages 722-736, April 2007
172. Robert Zwerus, ―Storing Personal Information Management data‖, thesis 2007
173. P Kolan, R Dantu, ―Socio-technical defense against voice spamming‖, ACM Transactions
on Autonomous and Adaptive Systems (TAAS), Volume 2 , Issue 1, article 2, 2007.
10
174. Van Zyl, Jacobus, ―Fuzzy set covering as a new paradigm for the induction of fuzzy
classification rules‖, dissertation Mannheim, Universität Mannheim, 2007.
175. TL Wong, KO Chow, F Wong, ―Incorporting Keyword-Based Filtering to Document
Classification for Email Spamming‖, In ―Machine Learning and Cybernetics, 2007
International Conference‖, 19-22 Aug. 2007, Vol: 7, page(s): 3899-3904
176. Krishnamurthy R,Orasan, ―Support vector machine application on filter against spam‖,
2007.
177. Ígor Assis Braga, Marcelo Ladeira ―Um Modelo Adaptativo para a Filtragem de Spam‖,
in ENIA 2007, 2007.
178. G. Cormack and A. Bratko, ―Batch and Online Spam Filter Comparison‖, CEAS, July
2006, pp. 41-49.
179. SJ Delany, ―Using Case-Based Reasoning for Spam Filtering‖, PhD thesis, March 2006.
180. Sutanu Chakraborti, Robert Lothian, Nirmalie Wiratunga, and StuartWatt. Sprinkling:
Supervised Latent Semantic Indexing. In ECIR, pages 510–514. Springer, 2006.
181. I Kanaris, K Kanaris, E Stamatatos, ―Spam Detection Using Character N-Grams‖, In
Lecture Notes in Computer Science, Springer, Volume 3955, pp.95-104, 2006.
182. George Tzanis, Ioannis Katakis, Ioannis Partalas, Ioannis Vlahavas, ―Modern
Applications of Machine Learning‖, Proceedings of the 1st Annual SEERC Doctoral
Student Conference – DSC 2006.
183. Chih-Hung Wu, Chi-Yuan Yeh, Chih-Chin Lai, ―Generating Behavior-based
Classification Rules for Spam Filtering Using Enhanced Induction Trees‖, 2006.
184. Adriano Veloso, Wagner Meira Jr., "Lazy Associative Classification for Content-based
Spam Detection," la-web, pp. 154-161, Fourth Latin American Web Congress (LAWEB'06), 2006.
185. Hyun-Jun Kim, Jenu Shrestha, Heung-Nam Kim and Geun-Sik Jo, ―User Action Based
Adaptive Learning with Weighted Bayesian Classification for Filtering Spam Mail‖, In
Lecture Notes in Computer Science, book:
AI 2006: Advances in Artificial
Intelligence, Volume 4304/2006, pp 790-798.
186. Dimitris Gavrilis, Ioannis G. Tsoulos and Evangelos Dermatas, ―Neural Recognition and
Genetic Features Selection for Robust Detection of E-Mail Spam‖, In Lecture Notes in
Computer Science, book: AI 2006: Advances in Artificial Intelligence, Volume
3955/2006, pp 498-501
187. K. N. Junejo, M. M. Yousaf and A. Karim, ―A Two-Pass Statistical Approach for
Automatic Personalized Spam Filtering‖, Proceedings of the Discovery Challenge at the
Joint European Conference on Machine Learning and on Principles and Practices of
Knowledge Discovery in Databases (ECML/PKDD), pp. 16-26, Berlin, Germany,
September, 2006.
188. Bratko, G. V. Cormack, Bogdan Filipic, T. R. Lynam and B. Zupan, ―Spam Filtering
Using Statistical Data Compression Models‖, Journal of machine learning research, 2006,
14(2), pp. 1-38
189. Katakis, G. Tsoumakas and I. Vlahavas, ―Email Mining: Emerging Techniques for Email
Management‖, In Web Data Management Practices: Emerging Techniques and
Technologies, Athena Vakali, George Pallis (Eds.), Idea Group Publishing, 2006.
190. J. Chen, Z. Chen, H. Jia, Q. Shen and W. Yang, ―Research and Implementation of
Pattern-based Bayesian SPAM Filtering‖, Computer Engineering and Applications, vol.
42, no. 6, pp. 172-175, 2006.
191. S. J. Delany and P. Cunningham, ECUE: A Spam Filter that Uses Machine Learning to
Track Concept Drift, Technical Report TCD-CS-2006-05, Dept. of Computer Science,
Trinity College Dublin, Ireland, 2006.
192. Delany, Sarah, Cunningham, Pádraig, Coyle, Lorcan, ―An Assessment of Case-Based
Reasoning for Spam Filtering‖, Artificial Intelligence Review, Volume 24, Numbers 3-4,
November 2005 , pp. 359-378(20)
193. A. Seewald, An Evaluation of Naive Bayes Variants in Content-Based Learning for Spam
Filtering, Technical Report TR-2005-20, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, Austria, 2005.
194. Gulsen Eryigit , A. Cuneyd Tantug, ―A Comparison Of Support Vector Machines,
Memory-Based And Naïve Bayes Techniques On Spam Recognition‖, Proceedings of the
23rd IASTED International Multi-Conference Artificial Intelligence and Applications, Feb
14-16,2005, Innsbruck, Austria.
11
195. Pollach, ―A Typology of Communicative Strategies in Online Privacy Policies: Ethics,
Power and Informed Consent‖, Journal of Business Ethics, vol. 62, no. 3, pp. 221-235,
2005.
196. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖ , Knowledge-Based Systems 18 (4-5), pp. 187195, 2005.
197. X. Yue, Z. Chi, H. Mo and Y. Hao, ―A Spam Acquirement Technology Based on
Immune-Inspired Clustering Algorithm‖, Computer Engineering and Applications, vol.
41, no. 35, pp. 12-14, 2005.
198. Wang Bin and Pan Wenfeng, ―A Survey of Content-based Anti-spam Email Filtering‖,
Journal of Chinese Information Processing, vol.19, no.5 pp.1-10, 2005.
199. F. Sebastiani, ―Text Categorization‖, In Text Mining and its Applications to Intelligence,
CRM and Knowledge Management, Alessandro Zanasi (ed.), Chapter 5, WIT Press,
Southampton, UK, 2005.
200. Xiao Luo and Zincir-Heywood, N. , ―Comparison of a SOM based sequence analysis
system and naive Bayesian classifier for spam filtering‖, Proceedings of the IEEE
International Joint Conference on Neural Networks (IJCNN), vol. 4, pp. 2571 – 2576,
2005.
201. Veloso and M. Jr Wagner, ―Rule Generation and Rule Selection Techniques for CostSensitive Associative Classification‖, Proceedings of the 20th Brazilian Symposium on
Databases (SBBD) and the 19th Brazilian Symposium on Software Engineering (SBES),
Federal University of Uberlandia, Brazil, October 2005.
202. R. Dantu and P. Kolan, ―Detecting Spam in VoIP Networks‖, Proceedings of the
USENIX Workshop on Steps on Reducing Unwanted Traffic on the Internet (SRUTI), pp.
31-37, July 2005.
203. S. Dixit, S. Gupta and C. V. Ravishankar, ―LOHIT: An Online Detection & Control
System for Cellular SMS Spam‖, Proceedings of the IASTED International Conference
on Communication, Network and Information Security (CNIS), Phoenix, USA,
November 2005.
204. N. Wiratunga, R. Lothian, S. Chakraborti, and I. Koychev, ―A Propositional Approach to
Textual Case Indexing‖, Proceedings of 9th European Conference Proceedings of the 9th
European Conference on Principles and Practice of KDD (PKDD), Lecture Notes in
Artificial Intelligence, n. 3721, pp. 380-391, Springer Verlag, 2005.
205. Y. Zhou, M. S. Mulekar and P. Nerellapalli, ―Adaptive Spam Filtering Using Dynamic
Feature Space‖, Proceedings of the 17th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 302-309, 2005.
206. M. Chang, and C.K. Poon, ―Catching the picospams‖, Proceedings of the Foundations of
Intelligent Systems, 15th International Symposium (ISMIS), Lecture Notes in Artificial
Intelligence, 3488 pp. 641-649, 2005.
207. V. Sharma, P. Sarda and S. Sharma, ―An add-on to rule-based sifters for multi-recipient
spam emails‖, Proceedings of the 10th International Conference on Applications of
Natural Language to Information Systems (NLDB), Lecture Notes in Computer Science,
3513 pp. 361-364, 2005.
208. P. Gburzynski, SFM: a Friendly and Reliable Implementation of Mail Channels for Total
Spam Avoidance, Technical Report, Department of Computer Science, University of
Alberta, Canada, 2005.
209. M. Davy, A Review of Active Learning and Co-Training in Text Classification, Technical
Report, Department of Computer Science, Trinity College Dublin, November 2005.
210. Yue Xun, Chi Zhongxian, Mo Hongwei and Hao Yanyou ―A Spam Acquirement
Technology Based on Immune-Inspired Clustering Algorithm‖, Computer Engineering
And Applications, 2005 Vol.41 No.35 P.12-14.
211. David Claude Trudgian, ―COM3401 Individual Project SpamKANN: A k-Nearest
Neighbour Spam Filter‖, 2004
212. Gray and M. Haahr, ―Personalised, Collaborative Spam Filtering‖, Proceedings of the
first Conference on Email and Anti-Spam (CEAS), Mountain View, CA, USA, 2004.
213. C. Trudgian, ―Spam Classification Using Nearest Neighbour Techniques‖, Proceedings of
the 5th International Conference on Intelligent Data Engineering and Automated Learning
(IDEAL), Lecture Notes in Computer Science, 3177, pp. 578-585, 2004.
12
214. S.J. Delany and P. Cunningham, ―An Analysis of Case-base Editing in a Spam Filtering
System‖, Proceedings of 7th European Conference on Case-Based Reasoning (ECCBR),
Lecture Notes in Artificial Intelligence, n. 3155, pp.128-141, Springer Verlag, 2004.
215. S. J. Delany, P. Cunningham, and L. Coyle, ―An Assessment of Case-Based Reasoning
for Spam Filtering‖, Proceedings of the Fifteenth Irish Conference on Artificial
Intelligence and Cognitive Science (AICS), pp. 9-18, 2004.
216. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖, Proceedings of the 24th SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence, (AI),
pp3-16, Springer, 2004.
217. C-C Wang, ―Sender and Receiver Addresses as Cues for Anti-Spam Filtering‖, Journal of
Research and Practice in Information Technology, Volume 36, No. 1, pp. 3-7, 2004.
218. N. Wiratunga, I. Koychev and S. Massie, ―Feature Selection and Generalisation for
Retrieval of Textual Cases‖, Proceedings of 7th European Conference on Case-Based
Reasoning (ECCBR), Lecture Notes in Artificial Intelligence, n. 3155, pp. 806-820,
Springer Verlag, 2004.
219. N. Dalvi, P. Domingos, Mausam, S. Sanghai and D. Verma, ―Adversarial Classification‖,
Proceedings of the 10th ACM SIGKDD conference on knowledge discovery and data
mining (KDD), pp. 99-108, Seattle, Washington, USA, August 2004.
220. F. Reitmeir, Benutzerorientierter Datenfilter fuer Umgebungsinformationen als
Erweiterung eines Navigationssystems fuer sehbehinderte und blinde Mitmenschen
(NAVI – Navigation Aid for Visually Impaired), MSc. Thesis, Technische Universitaet
Muenchen, Fakultaet fuer Informatik, Germany, December 2003.
G. Paliouras, C. Papatheodorou, V. Karkaletsis and C.D. Spyropoulos,
―Discovering User Communities on the Internet Using Unsupervised Machine
Learning Techniques‖, Interacting with Computers, 14(6), pp. 761-791, 2002.
(cited by 16)
221. AR Barreto, ―Aspectos a considerar para adaptar el contenido y el despliegue de la
información‖, in Revista Avances en Systemas e Informatica, v.6, n.2, 2009
222. P Tzouveli, P Mylonas, S Kollias ―An intelligent e-learning system based on learner
profiling and learning resources adaptation‖ in Computers & Education Volume 51, Issue
1, Pages 224-238, August 2008
223. P Tzouveli, P Mylonas, S Kollias ―An intelligent e-learning system based on learner
profiling and learning resources adaptation‖ in Computers & Education Volume 51, Issue
1, Pages 224-238, August 2008
224. Petros Belsis, Charalampos Konstantopoulos, Basilis Mamalis, Grammati Pantziou and
Christos Skourlas ―Interactive Cluster-Based Personalized Retrieval on Large Document
Collections‖, in New Directions in Intelligent Interactive Multimedia Volume 142/2008,
Springer pp.211-220
225. Amershi, S. and Conati, C. Unsupervised and Supervised Machine Learning in User
Modeling for Intelligent Learning Environments. In Intelligent User Interfaces, 2007, pp.
10.
226. Phivos Mylonas, Paraskevi Tzouveli, Stefanos Kollias ―E-learning and intelligent content
adaptation: an integrated approach‖, in International Journal of Continuing Engineering
Education and Life Long Learning, Volume 17, Number 4-5, pp.273-293, 2007.
227. J Ma, J Lu, G Zhang, ―A Two-level Information Filtering Model in Generating Warning
Information‖, in ―Computational Intelligence in Multicriteria Decision Making, IEEE
Symposium on 2007‖, pp. 354-359, 2007.
228. Méndez, J.R., Fdez-Riverola, F., Iglesias, E.L., Dìaz, F., Corchado, J.M.: A Comparative
Performance Study of Feature Selection Methods for the Anti-Spam Filtering Domain. In:
Proc. of the 6th Industrial Conference on Data Mining, pp. 106–120, 2006.
13
229. Eliane Maria De Bortoli, ―Modelo Computacional De Percepção De Contextos De
Atividade Para Identificação De Comunidades‖, 2006
230. C. G. Minetou, S. Y. Chen and X. Liu, ―Grouping users' communities in an interactive
Web-based learning system: a data mining approach‖, Proceedings of the 5th IEEE
International Conference on Advanced Learning Technologies (ICALT), pp. 474-475,
IEEE Press, 2005.
231. E. Huang and T.-C. Chou, ―Factors for web mining adoption of B2C firms: Taiwan
experience‖, Electronic Commerce Research and Applications, 3 (3), pp. 266-279, 2004
232. M. Wallace, I. Maglogiannis, K. Karpouzis, G. Kormentzas, and S. Kollias, ―Intelligent
one-stop-shop Travel Recommendations Using an Adaptive Neural Network and
Clustering of History‖, Information Technology and Tourism, Volume 6, Number 3, pp.
181-193, 2003.
233. L. H. Bogo and A. M. Rodriguez, ―Agentes inteligentes para a formação de comunidades
virtuais de aprendizado,‖ Bate Byte, 135, September, 2003.
234. M.C. Rosatelli and P.A. Tedesco, ―Diagnosticando o usuário para criação de sistemas
personalizáveis‖, Proceedings of the 23rd Congresso da SBC - III Jornada de MCIA , vol.
8, pp. 153-201, 2003.
235. R. S. Legaspi and M. Numao, ―Efficiently learning teaching strategies that remain
effective for different learner categories while becoming efficient over time‖, Japanese
Society for Information and Systems in Education (JSiSE-W) Young Researchers Forum,
July 2003.
236. R. B. Almeida and V. A. F. Almeida, Local Community Identification through User
Access Patterns, Technical Report (arXiv/cs/0212045), Department of Computer Science,
Universidade Federal de Minas Gerais, Brazil, 2003.
Spyropoulos, C.D. ―AI planning and scheduling in the medical hospital
enviroment‖, Artificial Intelligence in Medicine, 20 (2), Oct.2000, pp. 101-111.
(cited by 21)
237. Peter Demeestera, Wouter Souffriaua, Patrick De Causmaeckerb and Greet Vanden
Berghe, ―A hybrid tabu search algorithm for automatically assigning patients to beds‖, in
Artificial Intelligence in Medicine, Volume 48, Issue 1, January 2010, Pages 61-70
238. Juan Fdez-Olivares, Juan A. Cózar and Luis Castillo, ―OncoTheraper: Clinical Decision
Support for Oncology Therapy Planning Based on Temporal Hierarchical Tasks
Networks‖, in Knowledge Management for Health Care Procedures, Volume 5626, pp
25-41, /2009
239. A.V. den Boer1, G.M. Koole, R.D. van der Mei, B. Zwart ―Capacity management for a
diagnostic medical facility‖, 2009
240. JG Bazan ―Hierarchical classifiers for complex spatio-temporal concepts‖, in
Transactions on Rough Sets IX, Volume 5390, pp 474-750, Springer 2008
241. Ivan Vermeulen, Sander Bohte, Sylvia Elkhuizen, Piet Bakker, Han La Poutre,
―Decentralized Online Scheduling of Combination-Appointments in Hospitals‖, in
Proceedings of the Eighteenth International Conference on Automated Planning and
Scheduling (ICAPS 2008), pp372-379, 2008
242. Juan Fdez-Olivares,Luis Castillo, Juan A. Cozar and Oscar Garcıa Perez ―Supporting
clinical processes and decisions by hierarchical planning and scheduling‖, in Proceedings
of the Eighteenth International Conference on Automated Planning and Scheduling
(ICAPS 2008), 2008
243. Juan Fdez-Olivares,Luis Castillo, Juan A. Cozar ―Automating Oncology Therapy Plans
by means of Temporal Hierarchical Task Networks Planning‖, in Proceedings of the
ECAI 2008
244. Ching-Chin Chern, Pei-Szu Chien and Shu-Yi Chen ―A heuristic algorithm for the
hospital health examination scheduling problem‖, European Journal of Operational
Research, Volume 186, Issue 3, Pages 1137-1157, May 2008
245. Ivan Vermeulen, Sander Bohte, Koye Somefun and Han La Poutré ―Multi-agent Pareto
appointment exchanging in hospital patient scheduling‖, Service Oriented Computing and
Applications Journal, Volume 1, Number 3, pp.185-196, November, 2007
14
246. Gersende Georg and Marc Cavazza ―Integrating Document-Based and Knowledge-Based
Models for Clinical Guidelines Analysis‖ in
Lecture Notes in Computer Science,
―Artificial Intelligence in Medicine‖, Springer Berlin / Heidelberg , vol. 4594, pp. 421430, 2007
247. Ivan Vermeulen, Sander Bohte, Koye Somefun, Han La Poutre, "Improving Patient
Activity Schedules by Multi-agent Pareto Appointment Exchanging," cec-eee, p. 9, The
8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE
International Conference on Enterprise Computing, E-Commerce, and E-Services
(CEC/EEE'06), 2006
248. Shu-Kay Ng, Geoffrey J. McLachlan, Andy H. Lee, ―An incremental EM-based learning
approach for on-line prediction of hospital resource utilization‖, Artif. Intelligence in
Medicine, Vol.36 No3 March 2006 pp 257-267
249. Keele and Wray, ―Software agents in molecular computational biology‖, Briefings in
Bioinformatics.2005; 6: 370-379
250. Juan Carlos Augusto. ―Temporal reasoning for decision support in medicine. Artificial
Intelligence in Medicine (2005) 33, 1-24
251. Dean Yergens, Deidre Hennessy, Dr. Joerg Denzinger, Dr. Tom Noseworthy, ―Intelligent
Systems Applications in Health Care‖ Final Report, March 2005, Precarn Incorporated
252. Gareth Richard Beddoe, Ph.D. Thesis, ―Case-Based Reasoning in Personnel Rostering‖,
The University of Nottingham, 2004
253. *AT Ernst, H Jiang, M Krishnamoorthy, B Owens, ―An Annotated Bibliography of
Personnel Scheduling and Rostering‖ Annals of Operations Research 127 , 2004,Springer
21–144, 2004
254. L. Maruster, ―A Machine Learning Approach to Understand Business Processes‖, 2003 –
Alexandria.tue.nl
255. F Puppe, F Klugl, R Herrler, S Kirn, C Heine, Konzeption einer flexiblen
Agentenkomponente fur Schedulingaufgaben im Krankenhausumfeld
256. Laura Maruster, Ton Weijters, Geerhard de Vries, Antal van den Bosch, Walter
Daelemans - Logistic-based patient grouping for Multi-disciplinary Treatment, Artificial
Intelligence in Medicine 26/1-2, 2002, Eds. K. Cios, J. Berman, W. Moore, Elsevier, pp.
87-107.
257. Rainer Herrler, Christian Heine, Frank Puppe, Konzept einer Schedulingkomponente f¨ur
ein Krankenhaus-Multiagentensystem University of Wurzburg, Department for Artificial
Intelligence, In: Proceedings des 2. Kolloquiums des Schwerpunktprogrammes
"Intelligente Softwareagenten und betriebswirtschaftliche Anwendungsszenarien", 2000
Marinagi, C, Spyropoulos, C.D., Papatheodorou, C., Kokkotos, S., ―Continual
planning and scheduling for managing patient tests in hospital laboratories‖,
Artificial Intelligence in Medicine, 20 (2), Oct. 2000, pp 139-154. (cited by 15)
258. Peter Demeestera, Wouter Souffriaua, Patrick De Causmaeckerb and Greet Vanden
Berghe, ―A hybrid tabu search algorithm for automatically assigning patients to beds‖, in
Artificial Intelligence in Medicine, Volume 48, Issue 1, January 2010, Pages 61-70
259. Ivan B. Vermeulen, Sander M. Bohte, Sylvia G. Elkhuizen, Han Lameris, Piet J. M.
Bakker, Han La Poutré, ―Artificial Intelligence in Medicine‖, Volume 46 , Issue 1, pp
67-80, 2009
260. Chien C F, Huang Y C, Hu C H. A hybrid approach of data mining and genetic
algorithms for rehabilitation scheduling. International Journal of Manufacturing
Technology and Management, 2009, 16(1-2): 76−100
261. D Conforti, F Guerriero, R Guido ―Optimization models for radiotherapy patient
scheduling‖, in 4OR: A Quarterly Journal of Operations Research, Volume 6, Number 3 /
September, 2008
262. Ching-Chin Chern, Pei-Szu Chien and Shu-Yi Chen ―A heuristic algorithm for the
hospital health examination scheduling problem‖, European Journal of Operational
Research, Volume 186, Issue 3, Pages 1137-1157, May 2008
15
263. Ivan Vermeulen, Sander Bohte, Koye Somefun and Han La Poutré ―Multi-agent Pareto
appointment exchanging in hospital patient scheduling‖, Service Oriented Computing and
Applications Journal, Volume 1, Number 3, pp.185-196, November, 2007.
264. CHEN Xian-lai, DENG Rang-yu, YANG Lu-ming, ―The Design of a Multi-agent-based
Clinical Diagnosis Support System‖, Journal of National University Of Defense
Technology, Vol.29 No.1 P.96-99,105, 2007.
265. Ivan Vermeulen, Sander Bohte, Koye Somefun, Han La Poutre, "Improving Patient
Activity Schedules by Multi-agent Pareto Appointment Exchanging," cec-eee, p. 9, The
8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE
International Conference on Enterprise Computing, E-Commerce, and E-Services
(CEC/EEE'06), 2006
266. H Song, J Brennan, N Negahban, ―PatternFinder 2.0: Usability Test and Redesign of a
Patient History Search System‖, University of Maryland, 2005.
267. Juan Carlos Augusto. ―Temporal reasoning for decision support in medicine. Artificial
Intelligence in Medicine (2005) 33, 1-24
268. D. Ouelhadj,J. Garibaldi,J. MacLaren, R. Sakellariou, K. Krishnakumar, Amnon Meisels,
A Multi-agent Infrastructure and a Service Level agreement Negotiation Protocol for
Robust Scheduling in Grid Computing, Advances in Grid Computing-EGC, 2005
269. Djamila Ouelhadj, A Multi-Agent System For The Integrated Dynamic Scheduling Of
Steel Production, Thesis submitted to The University of Nottingham for the degree of
Doctor of Philosophy in The School of Computer Science & Information Technology,
August 2003
270. J Nealon, A Moreno, Agent-based health care systems, Applications of Software Agents
Technology in the Health Care Domain, pp. 1-18 Whitestein,( eds. J Nealon, A Moreno)
Birkhauser, 2003.
271. N Avradinis, T Panayiotopoulos, A Forward Temporal Planning System For Monitoring
Tutoring Dialogues, 21st Annual UK PlanSIG Workshop, Delft, Netherlands, November
21-22, 2002.
272. Puppe, F.; Herrler, R.; Klügl, F.; Kirn, S.; Heine,C. Konzept einer Schedulingkomponente
für ein Krankenhaus-Multiagentensystem In: Proceedings des 2. Kolloquiums des
Schwerpunktprogrammes "Intelligente Softwareagenten und betriebswirtschaftliche
Anwendungsszenarien", 2000
V. Karkaletsis, G. Paliouras, G. Petasis, N. Manousopoulou and C.D.
Spyropoulos, "Named-Entity Recognition from Greek and English Texts".
Journal of Intelligent and Robotic Systems v. 26, n.2, 1999, pp. 123-135. (cited by
9)
273. M Mcshane, ―Developing Proper Name Recognition, Translation and Matching
Capabilities for Low-and Middle-Density Languages‖, in book Language Engineering for
Lesser-studied Languages, editors S. Nierenburg, IOS Press 2009, pp 81-115
274. G. Lucarelli, X.Vasilakos and I. Androutsopoulos ―Named Entity Recognition In Greek
Texts With An Ensemble Of SMVS And Active Learning‖, International Journal on
Artificial Intelligence Tools, vol. 16, No 6, pp-1015-1045, 2007
275. B. Bekavac, M. Tadić, (2007), Implementation of Croatian NERC System, BaltoSlavonic Natural Language Processing 2007, ACL 2007, Prague, str. 11-18,
[http://acl.ldc.upenn.edu/W/W07/W07-1702.pdf]
276. Georgios Lucarelli and Ion Androutsopoulos, ―A Greek Named-Entity Recognizer That
Uses Support Vector Machines and Active Learning‖, in ―Lecture Notes in Computer
Science‖, pp 203-213, Volume 3955, Springer, 2006
277. I. Michailidis, K. Diamantaras, S. Vasileiadis, and Y. Frµere. Greek named entity
recognition using Support Vector Machines, Maximum Entropy and Onetime. In
Proceedings of the 5th International Conference on Language Resources and Evaluation,
pages 45{72, Genova, Italy, 2006
278. Manolis Maragoudakis§, Katia Kermanidis§, Aristogiannis Garbis‡ and Nikos Fakotakis,
―Dealing with Imbalanced Data using Bayesian Techniques‖, in LREC 2006, pp 10451050, 2006
16
279. Marjorie McShane, Ron Zacharski, Sergei Nirenburg, Stephen Beale, ―The Boas II
Named Entity Elicitation System‖, 2005.
280. H. Dalianis and E. Astrom, SweNam - A Swedish Named Entity Recogniser - Its
construction, training and evaluation, Technical Report TRITA-NA-P0113, IPLab-189,
KTH NADA, University of Stockholm, July 2001.
281. F. Vichot, F. Wolinski, H.-C. Ferri, and D. Urbani, ―Feeding a Financial Decision
Support System with Textual Information,‖ Journal of Intelligent and Robotic Systems, v.
26, n. 2, pp. 157-166, 1999
Karkaletsis, V., Spyropoulos, C.D., and Vouros, G., ―A Knowledge-Based
Methodology for Supporting Multilingual and User-tailored Interfaces‖. In
Interacting with Computers: The Interdisciplinary Journal of Human Computer
Interaction, 9, 1998, pp. 311-333. (cited by 6)
282. M SHAUGHNESSY, CALL, commercialism and culture: inherent software design
conflicts and their resultsReCALL 15 (2):251–268. © 2003 Cambridge University Press
DOI.
283. R. Collins. ―Software localization for Internet software: Issues and methods‖, IEEE
Software, 19 (2): 74-80, 2002
284. RW Collins, SOFTWARE LOCALIZATION: ISSUES AND METHODS Global CoOperation in the New Millennium The 9th European Conference on Information Systems
Bled, Slovenia, June 27-29, 2001
285. Report on Building the Joint Battlespace Infosphere, SAB-TR-99-02, United States Air
Force,
Scientific
advisory
Board
(http://unicoi.kennesaw.edu/ase/ase02_01/bookcase/sprpts/jbi/files/JBI_Volume_2_Intera
ctive_Information_Technologies.pdf) 2002
286. Bateman, C.Mathiessen, L.Zeng, ―Multilingual Natural Language Generation for
Multilingual Software: A Functional Linguistic Approach‘, Applied Artificial Intelligence
– An International Journal, vol. 13, no 6, 1999, pp. 607-640.
287. Day D.L., 1998. ―Shared values and shared interfaces: The role of culture in the
globalisation of human-computer systems‖. In Special Issue of Interacting with
Computers: The Interdisciplinary Journal of Human Computer Interaction, 9 (1998), pp.
269-274.
Kokkotos S., Ioannidis E.V., Spyropoulos C.D. "A System for Efficient
Scheduling of Patient Tests in Hospitals", Medical Informatics, 22(2), 1997, pp.
79-100. (cited by 1)
288. K. D.Naidu, K.M. Sullivan, P.P. Wang and Yi Yang, ―Managing Personnel through Staff
Scheduling
Algorithms‖,
CARING
vol.4,
No
4,
4 th
quarter,
2005
(http://data.memberclicks.com/site/car/Vol__20,_No__4.pdf) p.10.
Kokkots, S.; Spyropoulos, C.D. (1997). An architecture for designing
internationalized software. Iš: Software Technology and Engineering Practice.
Proc. 8th IEEE International Workshop on incorporating Computer Aided
Software ngineering. London, p. 13–21. (cited by 1)
289. V Dagienė, T Jevsikova, ―Lokalizuojamųjų Programinės Įrangos Išteklių
Metainformacijos Formalizavimo Metodas‖, (in eng: Formalization Of Software
17
Localizable Resources‘ Metainformation), Information sciences (Informacijos mokslai),
issue: 50 / 2009, pages: 205 - 211
Marinagi C.C., Panayiotopoulos T., Vouros G.A., Spyropoulos C.D. ―Advisor:
A knowledge-based Planning System‖, International Journal of Expert Systems:
Research and Applications, vol.9, no.3, 1996, pp. 319-335. (cited by 1)
290. Dimitris Vrakas and Ioannis Vlahavas, ―ViTAPlan: A Visual Tool for Adaptive
Planning‖, Proceedings of the 9th Panhellenic Conference on Informatics, (Thessaloniki,
Greece, 2003), pp. 167-177.
Vouros G.A. Panayiotopoulos T. Spyropoulos C.D., ―A Framework for
Developing Expert Loading Systems for Product Carriers‖, Expert Systems with
Applications, Volume 10, Number 1, 1 November 1996 , pp. 113-126(14), (cited
by 2)
291. Lau, H.C.W., Tsui, W.T., Lee, C.K.M., Ho, G.T.S. and Ning, A. (2006) 'Development of
a profit-based air cargo loading information system', IEEE Transactions on Industrial
Informatics, Vol. 2, pp.303-312
292. Hvattum Lars, Magnus Fagerholt, Kjetil Armentano, Vinicius Amaral ―Tank allocation
problems in maritime bulk shipping‖, Computers & Operations Research. Vol. 36, no. 11,
pp. 3051-3060. Nov. 2009
S. Kokkotos, E. V. Ioannidis, T. Panayiotopoulos, and C. D. Spyropoulos. On the
Issue of Valid Time(s) in Temporal Databases. SIGMOD Record, 24(3): 40–43,
1995 (cited by 1)
293. Alperin, Juan P., ―A spatio-temporal model for the evaluation of education quality in
Peru‖, M.A., UNIVERSITY OF WATERLOO , 2008, 185 pages
Kokkotos S., Ioannidis E.V., Panayiotopoulos T., Spyropoulos C.D. ―On the
Issue of Valid Time(s) in Temporal Databases‖, SIGMOD Record, Vol. 24, No. 3,
Sept. 1995 pp. 40-43. (cited by 3)
294. Juan P. Alperin, ―Spatio-Temporal Model for the Evaluation of Education Quality in
Peru‖. A thesis presented to the University of Waterloo in fulfillment of the thesis
requirement for the degree of Masters in Arts In Geography Waterloo, Ontario, Canada,
2005
295. Carlo Combi, Angelo Montanari, ―Data Models with Multiple Temporal Dimensions:
Completing the Picture‖, Advanced Information Systems Engineering: Proceedings of
the13th International Conference, CAiSE 2001, Vol. 2068, Springer Berlin / Heidelberg,
p.187, Interlaken, Switzerland, June 4-8, 2001
296. Darween H. ―SQL3 Part 7‖, Internal Report ISO/IEC JTC1/SC21/WG3 DBL LHR‑33,
International Organization for Standardization, Nov. 1995, (θεωρεί ασηή ηη δημοζίεσζη
ζαν ζημανηική πηγή πληροθοριών ζτεηικά με ηην ανάγκη πολλαπλών τρονικών
αναθορών).
Karkaletsis, E., Spyropoulos, C.D., Vouros, G., Halatsis, C. "Organisation and
Exploitation of Terminological Knowledge in Software Localisation". In TermNet
18
News - Journal of the International Network for Terminology, no 48, 1995, pp.
42-48. (cited by 1)
297. Soergel, D. ―SemWeb: An environment for integrated access to distributed ontological
and lexical knowledge bases and their collaborative development and maintenance. A
Proposal‖, Proceedings of the IJCAI-97 Workshop ―Multilinguality in Software Industry:
the AI Contribution - MULSAIC‘97‖, pp. 78-84, Aug. 1997.
Ioannidis E., Kokkotos S., Spyropoulos C.D. ―A Temporal Framework for
Managing Retroactive and Delayed Updates: An Application to the Payroll
Information System of the Greek Public Sector‖, European Journal of Information
Systems, Vol. 2, No. 2, April 1993, pp. 149-154. (cited by 2)
298. Davies C., Lazell B., Hughes M., Cooper L. ―Time is just another attribute - or at least,
just another dimension‖, Proceedings of the International Workshop on Temporal
Databases, Zurich, Switzerland, Recent Advances in Temporal Databases, Clifford J. and
Tuzhilin A. (editors) Springer-Verlag, pp. 175-193, Sept. 1995.
299. Kline N. ―An Update of the Temporal Database Bibliography‖, SIGMOD RECORD, Vol.
22, No. 4, pp. 66-80, Dec. 1993.
Spyropoulos C.D., Evans D.J. "Generalized Worst-Case Bounds for a
Homogeneous Multiprocessor Model with Independent Memories-Completion
Time Criterion" Performance Evaluation: Αn International Journal, NorthHolland Publishing Co., νοl.5, 1985, pp. 225-234. (cited by 1)
300. Tzafestas S, Triantafullakis a deterministic scheduling in computing and manufacturing
systems - a survey of models and algorithms math COMPUT SIMULAT 35: (5) 397434 NOV 1993
Spyropoulos C.D., Evans D.J. ―Analysis of Q.A.D algorithm for a Homogeneous
Multiprocessor Computing Model with Independent Memories", International
Journal of Computer Mathematics, vol. 17, 1985, pp. 237-255. (cited by 2)
301. J Fakcharoenphol, B Laekhanukit, D Nanongkai, ―Faster Algorithms for Semi-Matching
Problems‖, to appear in ICALP 2010
302. Tzafestas S, Triantafullakis a deterministic Scheduling in computing and manufacturing
systems - a survey of models and algorithms math COMPUT SIMULAT 35: (5) 397434 NOV 1993
Κεθάλαια ζε Βιβλία
G. Paliouras, V. Karkaletsis and C.D. Spyropoulos (editors), Machine Learning
and Applications. Lecture Notes in Computer Science (LNCS) no. 2049,
Springer-Verlag, 2001. (cited by 5)
303. Van Someren M., Urbančič T. (2006) Applications of machine learning: matching
problems to tasks and methods, The Knowledge Engineering Review, 20(4), pp. 363-402.
19
304. Berendt, A. Hotho, D. Mladenic, M. van Someren, M. Spiliopoulou, G. Stumme. "A
roadmap for web mining: From web to semantic web", "Web Mining: From Web to
Semantic Web", 1-22, First European Web Mining Forum, 2003.
305. Milan Šorf, Jan Hodný and Lenka Lhotská, ―Software For Skin Conductance Response‖,
Czech Technical University in Prague, Faculty of Electrical Engineering, Department of
Cybernetics.
306. Jan van Leeuwen, ―Approaches in Machine Learning‖,
307. LB Holder, Z Markov, I Russell, ―Advances In Knowledge Acquisition And
Representation‖, in Proceedings of the International Journal on Artificial Intelligence
Tools Vol. XX, No. X (2006) 1–8.
G. Petasis, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos, and I.
Androutsopoulos, ―Using Machine Learning Techniques for Part-of Speech
Tagging in the Greek Language‖. In ―Advances in Informatics‖, ed. D. I. Fotiadis
and S. D. Nikolopoulos, World Scientific, August 2000, pp. 273-281. (cited by
9)
308. F. Lazarinis, ―Automatic Extraction of Knowledge from Greek Web Documents‖,
Proceedings of the 6th Dutch-Belgian Information Retrieval Workshop (DIR), TNO ICT,
Delft, The Netherlands, March 13-14, 2006.
309. G. Xydas, D. Spiliotopoulos and G. Kouroupetroglou, ―Modeling Improved Prosody
Generation from High-Level Linguistically Annotated Corpora‖, IEICE Trans. of Inf. and
Syst., Special Section on “Corpus-Based Speech Technologies”, vol. E88-D, no 3, pp.
510-518, March 2005.
310. S. D. Baldzis, S. A. Kolalas and E. Eumeridou, ―The Computational Modern Greek
Morphological Lexicon—An Efficient and Comprehensive System for Morphological
Analysis and Synthesis‖. Literary and Linguistic Computing, vol. 20, Issue 2, pp. 153187, Oxford University Press, Nov. 2005.
311. H. Kornilakis, M. Grigoriadou, E. Galiotou, E. Papakitsos, ―Aligning, Annotating and
Lemmatizing a Corpus for the Validation of Balkan WordNets‖, Proceedings of the
Workshop on Balkan Language Resources and Tools, at the Balkan Conference for
Informatics (BCI), 2003.
312. M. Maragoudakis, K. Kermanidis and N. Fakotakis, ―Towards a Bayesian Stochastic
Part-Of-Speech and Case Tagger of Natural Language Corpora‖, Proceedings of Corpus
Linguistics, pp 486-495, 28 - 31 March, Lancaster University, UK, 2003.
313. S. Baldzis, E. Eumeridou and S. Kolalas, ―A Complete and Comprehensive System for
Modern Greek Language Processing Proposed as a Modern Greek Language Call Method
Developer‖, Literary and Linguistic Computing, vol. 17, Issue 4, pp. 373-400, Oxford
University Press, Nov. 2002.
314. H. Cunningham, D. Maynard, K. Bontcheva, B. Tablan, and Y. Wilks, ―Experience of
using GATE for NLP R&D,‖ Proceedings of the Workshop on Using Toolsets and
Architectures to Build NLP Systems, International Conference on Computational
Linguistics (COLING), Luxembourg, 2000.
315. H. Papageorgiou, P. Prokopidis, V. Giouli and S. Piperidis, ―A Unified POS Tagging
Architecture and its Application to Greek,‖ Proceedings of the International Conference
on Language Resources and Evaluation (LREC), vol. III, pp. 1455–1462, 2000.
316. D. Maynard, H. Cunningham, et al. A Survey of Uses of GATE, Technical Report CS-0006, University of Sheffield, UK, 2000.
Karkaletsis, V., Spyropoulos, C.D., and Petasis, G. "Named Entity Recognition
from Greek texts: the GIE Project". In "Advances in Intelligent Systems:
Concepts, Tools and Applications", ed. S.Tzafestas, Kluwer Academic Publishers,
1999, Part II - Chapter 12, pp. 131-142. (cited by 5)
20
317. Diana Maynard, ―D1.2.2.1.3 Benchmarking of annotation tools‖, 2007
318. Diana Maynard, Valentin Tablan,Kalina Bontcheva, Hamish Cunningham, Yorick
Wilks, ―MUSE: a MUlti-Source Entity recognition system‖, 2003
319. D. Maynard, V. Tablan, C. Ursu, H. Cunningham and Y. Wilks, ―Named Entity
Recognition from Diverse Text Types‖. Proc. of the Recent Advances in Natural
Language Processing 2001 Conference, Tzigov Chark, Bulgaria.
320. Demiros, S. Boutsis, V. Giouli, M. Liakata, H. Papageorgiou, S. Piperidis, ―Named Entity
Recognition in Greek Texts‖, Proc. of the 2nd International Conference on Language
Resources and Evaluation (LREC 2000), Athens, Greece, June 2000, vol. III, pp. 1223–
1228.
321. S. Boutsis, I. Demiros, V. Giouli, M. Liakata, H. Papageorgiou, S. Piperidis, ―A System
for Recognition of Named Entities in Greek‖, In Christodoulakis, D.N. (Ed.), Proceedings
of the 2nd International Conference on Natural Language Processing (NLP 2000), Patra,
Greece. Lecture Notes in Artificial Intelligence, 1835, Springer, 2000, pp. 424-436.
Γημοζιεύζεις ζε Πρακηικά Γιεθνών Σσνεδρίων
G. Sigletos, G. Paliouras, C. D. Spyropoulos, P. Stamatopoulos, ―Stacked
generalization for information extraction,‖ In Proceedings of the European
Conference in Artificial Intelligence (ECAI), pp. 549 – 553, Valencia, Spain,
2004.(cited by 1)
322. Hoojung Chung, Young-In Song, Kyoung-Soo Han, Do-Sang Yoon, Joo-Young Lee,
Hae-Chang Rim, Soo-Hong Kim, Practical QA System in Restricted Domains,
Proceedings of the Workshop on Question Answering in Restricted Domains, in
Conjunction with the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 39-45, Barcelona, July, 2004.
G. Sigletos, G. Paliouras, C. D. Spyropoulos, M. Hatzopoulos. ―Mining Web
sites using wrapper induction, named entities and post-processing,‖ In
Proceedings of the 1st European Web Mining Forum Workshop at the Joint
European Conference on Machine Learning and on Principles and Practices of
Knowledge Discovery in Databases (ECML/PKDD-2003), Cavtat-Dubrovnik,
Croatia, September, 2003. (cited by 1)
323. H. Chung, Y-I Song, K-S Han, D-S Yoon, J-Y Lee, H-C Rim and S-H Kim, ―Practical
QA System in Restricted Domains‖, Proceedings of the Workshop on Question
Answering in Restricted Domains, 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 39-45, Barcelona, July, 2004.
21
G. Sigletos, G. Paliouras, C. D. Spyropoulos, P. Stamatopoulos. ―Meta-learning
beyond classification: A framework for information extraction from the Web,‖ In
Proceedings of the International Workshop on Adaptive Text Extraction and
Mining at the Joint European Conference on Machine Learning andon Principles
and Practices of Knowledge Discovery in Databases (ECML/PKDD-2003),
Cavtat-Dubrovnik, Croatia, September, 2003. (cited by 2)
324. H. Chung, Y-I Song, K-S Han, D-S Yoon, J-Y Lee, H-C Rim and S-H Kim, ―Practical
QA System in Restricted Domains‖, Proceedings of the Workshop on Question
Answering in Restricted Domains, 42nd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 39-45, Barcelona, July, 2004.
325. F. Ciravegna, (LP)2: Rule Induction for Information Extraction Using Linguistic
Constraints, Technical Reprot number CS-03-07, Department of Computer Science,
University of Sheffield, September, 2003.
G. Petasis, V. Karkaletsis, G. Paliouras, I. Androutsopoulos and C. D.
Spyropoulos, ―Ellogon: A New Text Engineering Platform,‖ Proceedings of the
International Conference on Language Resources and Evaluation (LREC), vol. I,
pp. 72-78, Las Palmas, Spain, May, 2002. (cited by 15)
326. MA Finlayson ―Collecting semantics in the wild: The Story Workbench‖, in Proceedings
AAAI Fall Symposium, 2008
327. T Heitz ―Une méthode pour le prétraitement des textes: dépendances entre traitements et
leur intelligibilité‖, PhD Thesis 2008
328. Csaba Dezsenyi, Tadeusz P. Dobrowiecki, Tamas Meszaros ―Adaptive information
extraction from unstructured documents‖, in International Journal of Intelligent
Information and Database Systems, Volume 1, Number 2 / 2007, pp. 156-180.
329. E. Alfonseca, A. Moreno-Sandoval, J. M. Guirao and M. Ruiz-Casado. The wraetlic NLP
suite. In proceedings of the Language Resources and Evaluation Conference, LREC2006, Genoa, Italy.
330. Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Piskorski and Ulrich Schäfer ―SProUT
– A General-Purpose NLP Framework Integrating Finite-State and Unification-Based
Grammar Formalisms‖ in LNCS, Springer, vol. 4002, pp 302-303, 2006.
331. NT Fakultaten ―Integrating Deep and Shallow Natural Language Processing
Components – Representations and Hybrid Architectures‖ PhD Dissertation, 2006.
332. A Mikroyannidis, B Theodoulidis, A Persidis ―PARMENIDES: Towards Business
Intelligence Discovery from Web Data‖, Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence, pp1057-1060, 2006.
333. Hamish Cunningham and Kalina Bontcheva,―Computational Language Systems,
Architectures‖, Elsevier Science, 2006.
334. V. Pekar and R. Evans, ―Automatic Discovery of NLP Resources on the Web‖,
Proceedings of ALLC/ACH, Victoria, Canada, June 2005.
335. K.I. Diamantaras, I. Michailidis, and S. Vasiliadis, ―A Very Fast and Efficient Linear
Classification Algorithm‖, Proceedings of the IEEE Workshop on Machine Learning for
Signal Processing, pp. 93 – 98, Connecticut, USA, 28 – 30 Sept., 2005.
336. Mikroyannidis, A. Mantes, and C. Tsalidis, ―Information Management: The Parmenides
Approach‖, Proceedings of the Text Mining Research, Practice and Opportunities
Workshop, International Conference on Recent Advances in Natural Language
Processing (RANLP), September 24, Borovets, Bulgaria, 2005.
337. E.C. Mavrikas, E. Kavakli, N. Nicoloyannis, ―Ontology-based Narrations from Cultural
Heritage texts‖, In Interdisciplinarity or The Best of Both Worlds, Selected papers from
the 5th International Symposium on Virtual Reality, Archaeology and Cultural Heritage
(VAST), K. Cain, Y. Chrysanthou, F. Niccolucci and N. Silberman (eds.), pp. 35-36,
EPOCH Publication, 2004.
22
338. Piskorski, Jakub, ―Advances in Information Extraction‖, in Knowledge Based
Information Retrieval and Filtering from Internet, 2003, pp 23-52.
339. E. Costa Oliveira, Towards a new authoring environment: overview of some ontologybased systems, Technical Report, Dept. of Information Science, University of Brasilia,
Brazil, 2004.
340. L. Borin, ―What have you done for me lately? The fickle alignment of NLP and CALL‖,
Proceedings of the workshop on NLP in CALL, European Conference on ComputerAssisted Language Learning (EUROCALL), Finland, August 2002.
D.Spiliotopoulos, I.Androutsopoulos and C.D.Spyropoulos ―Human-Robot
Interaction Based on Spoken Natural Language Dialogue‖, In Proceedings of the
European Workshop on Service and Humanoid Robots (ServiceRob ‗2001),
Santorini, Greece, 25-27 June 2001 (cited by 19)
341. Wermter S, Page M, Knowles M, Gallese V, Pulvermüller F, Taylor J. Multimodal
communication in animals, humans and robots: an introduction to perspectives in braininspired informatics. Neural Netw. 2009
342. Andrea Bauer and Barbara Gonsior and Dirk Wollherr and Martin Buss, ―Heuristic Rules
for Human-Robot Interaction Based on Principles from Linguistics - Asking for
Directions‖, Institute of Automatic Control Engineering (LSR), Technische Universit¨at
M¨unchen, D-80290 Munich, Germany, 2009
343. A Drygajlo ―MAN-MACHINE VOICE COMMUNICATION‖, in Traitement de la
parole, Chapter 16, 2008
344. Shuyin Li, ―Multi-modal Interaction Management for a Robot Companion‖, Universität
Bielefeld, 2007
345. DP Benjamin, D Lonsdale, D Lyons, ―A cognitive robotics approach to comprehending
human language and behaviors‖, Proceeding of the ACM/IEEE international conference
on Human-robot interaction, Pages: 185 – 192, Arlington, Virginia, USA, 2007
346. Jensen, B., Tomatis, N., Mayor, L., Drygajlo, A., Siegwart, R.: Robots Meet Humans Interacion in Public Spaces. IEEE Transactions on Industrial Electronics 52(6), 1530–
1546, 2006.
347. P. Provadov, ―Error Handling In Multimodal Voice-Enabled Interfaces Of Tour-Guide
Robots Using Graphical Models‖, 2006
348. Frauke Zeller ―Mensch-Roboter Interaktion:Eine sprachwissenschaftliche Perspektive‖,
Kassel University, 2005
349. P. Kiatisevi, ―A Distributed Architecture for Interactive Robots Based on a Knowledge
Software Platform‖, NII, SOKENDAI, Japan, 2005
350. Toptsis, Ioannis / Haasch, Axel / Hüwel, Sonja / Fritsch, Jannik / Fink, Gernot A.:
"Modality integration and dialog management for a robotic assistant", In
INTERSPEECH-2005, 837-840, 2005
351. Amedeo Cappelli, Emiliano Giovannetti ―L'interazione Uomo-Robot‖, in
―L'INTELLIGENZA ARTIFICIALE‖Anno I, N° 2, pp. 18-36, Maggio 2004
352. Toptsis, S. Li, B. Wrede, and G. A. Fink, ―A multi-modal dialog system for a mobile
robot,‖ in Proc. Int. Conf. on Spoken Language Processing, 2004.
353. S.Huwel and F. Kummert, ―Interpretation of situated human-robot dialogues,‖ in Proc. of
the 7th Annual Colloquium for the UK Special Interest Group for Computational
Linguistics, 2004, pp. 120–125.
354. A.Drygajlo, ―Man-machine voice enabled interfaces,‖ in Intelligent Integrated Media
Communication Techniques, J. F. Tasic, Ed. Boston, MA: Kluwer, 2003, pp. 305–336.
355. Fong, T., Nourbakhsh, I., Dautenhahn, K. ―A survey of socially interactive robots‖.
Robotics and Autonomous Systems 42, pages 143-166, 2003
356. A.Drygajlo, P. Prodanov, G. Ramel, M. Meisser, and R. Siegwart ―On developing voice
enabled interface for interactive tour-guide robots‖, Journal of Advanced Robotics, 2003
357. Prodanov, Pl., Drygajlo, A., Ramel, G., Messier, M., Siegwart, R., ―Voice enabled
interface for interactive tour-guide robots‖. In: Int. Conf. on Intelligent Robots and
Systems, IROS 2002, pp. 1332–1337, Lausanne, Switzerland, September–October, 2002.
23
358. S.S.Ghidary, Y. Nakata, H. Saito, M. Hattori, and T. Takamori, ―Multi- modal interaction
of human and home robot in the context of room map Generation‖, Autonomous Robots,
vol. 13, no. 2, pp. 169–184, 2002.
359. P.R¨oßler. Generierung symbolischer Roboterkommandos aus nat¨urlicher Sprache.
Diplomarbeit, Institut fur Rechnerentwurf und Fehlertoleranz Fakult¨at f¨ur Informatik,
Universit¨at Karlsruhe (TH), 2002. Written in German
G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos
and P. Stamatopoulos. "Stacking Classifiers for Anti-Spam Filtering of E-Mail".
Proceedings of the 6th Conference on Empirical Methods in Natural Language
Processing (EMNLP 2001), pp. 44-50, Carnegie Mellon University, Pittsburgh,
PA, June 2001. (cited by 80)
360. Chen-Huei Choua, Atish P. Sinhab and Huimin Zhao, ―Commercial Internet filters: Perils
and opportunities‖, in Decision Support Systems, Volume 48, Issue 4, March 2010, Pages
521-530
361. Marsono, M.N., El-Kharashi, M.W., Gebali, F.: Targeting spam control on middleboxes:
Spam detection based on layer-3 e-mail content classification. Computer Networks 53(6),
835–848, 2009
362. Rafiqul Islam, Wanlei Zhou, Yang Xiang and Abdun Naser Mahmood, ―Spam filtering
for network traffic security on a multi-core environment‖, in Concurrency and
Computation: Practice and Experience, Volume 21 Issue 10, Pages 1307 – 1320, 2009
363. J Sill, G Takacs, L Mackey, D Lin, ―Feature-Weighted Linear Stacking‖, in
http://arxiv.org/abs/0911.0460 , 04 Nov 2009
364. C Xie, L Ding, X Du, ―Anti-spam Filters Based on Support Vector Machines‖, in
Advances in Computation and Intelligence, pp 349-357, Volume 5821, 2009
365. 张帆, 张俊丽, “统计频率算法在文本信息过滤系统中的应用”, 2009
366. Martin Boldt, Andreas Jacobsson, Niklas Lavesson, Paul Davidsson, "Automated
Spyware Detection Using End User License Agreements," , vol. , no. , pp. 445-452, Apr.
2008
367. M Chang, W Yih, C Meek ―Partitioned logistic regression for spam filtering‖, in
Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, Pages 97-105, 2008
368. A Çıltık, T Güngör ―Time-efficient spam e-mail filtering using n-gram models‖, in
Pattern Recognition Letters, Volume 29, Issue 1, 1 January 2008, Pages 19-33
369. A Orecchioni, N Wiratunga, S Massie, S Craw ―k-NN Aggregation with a Stacked Email
Representation‖, in Proceedings of ECCBR, 2008 – Springer in Advances in Case-Based
Reasoning Volume 5239/2008, pp 415-429
370. Subramanian Appavu alias Balamurugan, Ramasamy Rajaram, "Learning to Classify
Threaten E-mail," ams,pp.522-527, Second Asia International Conference on Modelling
2008
371. Baharim, K.N.; Kamaruddin, M.S.; Faeizah Jusof ―Leveraging Missing Values in Call
Detail Record Using Naïve Bayes for Fraud Analysis‖, Information Networking, 2008.
ICOIN 2008. International Conference on , vol., no., pp.1-5, 23-25 Jan. 2008
372. Ben W. Medlock, ―Investigating classification for natural language processing tasks‖,
Technical Report, June 2008
373. CH Chou, AP Sinha, H Zhao ―A text mining approach to Internet abuse detection‖ In
Information Systems and E-Business Management Journal, Volume 6, Number 4 /
September, 2008, pp 419-439
374. MN Marsono, MW El-Kharashi, F Gebali, ―Targeting spam control on middleboxes:
Spam detection based on layer-3 e-mail content classification‖, Computer Networks,
Volume 53, Issue 6, 23 April 2009, Pages 835-848 2008
375. Gordon V. Cormack (2008) "Email Spam Filtering: A Systematic Review", Foundations
and Trends in Information Retrieval: Vol. 1: No 4, pp 335-455
24
376. A. Jacobsson, ―Privacy and Security in Internet-Based Information Systems‖, Doctoral
Dissertation, School of Engineering, Blekinge Institute of Technology, Ronneby, Sweden,
2008
377. Ali Çıltıka and Tunga Güngör, ―Time-efficient spam e-mail filtering using n-gram
models‖, in Pattern Recognition Letters, vol. 29, Issue 1, Pages 19-33, 1 January 2008.
378. Zhai Weibin, Ye Jinxing, Chen Yu, Xu Rongsheng, ―Design and Implementation of Spam
Mail Analysis System Based on Network Processors‖, In Computer Engineering, Vol.33
No.10 P.92-94, 2007
379. I. Kanaris, K. Kanaris, I. Houvardas and E. Stamatatos ―Words Versus Character NGrams for Anti-Spam Filtering‖, International Journal on Artificial Intelligence Tools,
Vol.16, No 6, pp.1047-1067, 2007.
380. Gordon V. Cormack, Thomas R. Lynam, ―Online supervised spam filter evaluation‖,
ACM Transactions on Information Systems (TOIS), v.25 n.3, p.11-es, July 2007.
381. Xun Yue1, Ajith Abraham, Zhong-Xian Chi, Yan-You Hao and Hongwei Mo, ―Artificial
immune system inspired behavior-based anti-spam filter‖, Journal Soft Computing - A
Fusion of Foundations, Methodologies and Applications, Springer, Volume 11, Number 8
/ June, 2007, pp. 729-740.
382. Chih-Chin Lai, ―An empirical study of three machine learning methods for spam
filtering‖, in Knowledge-Based Systems, Volume 20, Issue 3, April 2007, Pages 249-254
383. I. Koprinska, J. Poon, J. Clark, and J. Chan. Learning to classify e-mail. Information
Sciences, 177(10) : 2167–2187, 2007.
384. JR Bellegarda, ―Latent Semantic Mapping: Principles And Applications‖,Morgan &
Claypool Publishers, 2007.
385. Katakis, G. Tsoumakas and I. Vlahavas, ―Email Mining: Emerging Techniques for Email
Management‖, In A. Vakali & G. Pallis, editors, Web Data Management Practices:
Emerging Techniques and Technologies, Ch. 10, Idea Group Inc., 2007.
386. Marsono, Muhammad Nadzir , ―Towards improving e-mail content classification for
spam control: architecture, abstraction, and strategies‖, University of Victoria, 2007.
387. I Kanaris, K Kanaris, E Stamatatos, ―Spam Detection Using Character N-Grams‖, In
Lecture Notes in Computer Science, Springer, Volume 3955, pp.95-104, 2006.
388. G. Cormack and A. Bratko, ―Batch and Online Spam Filter Comparison‖, CEAS, July
2006, pp. 41-49.
389. Ali Çiltik, ―Time Efficient Spam E-mail Filtering For Turkish‖, Bogaziçi University
2006.
390. Qiang Wang Yi Guan Xiaolong Wang, ―SVM-Based Spam Filter with Active and Online
Learning‖, 2006
391. Shlomo Hershkop, ―Behavior-based Email Analysis with Application to Spam
Detection‖, Columbia University,2006.
392. Thomas R. Lynam, Gordon V. Cormack, ―On-line Supervised Filter Evaluation‖,
University of Waterloo, 2006
393. Thomas R. Lynam, Gordon V. Cormack, David R. Cheriton “On-line spam filter fusion‖,
Annual ACM Conference on Research and Development in Information RetrievalProceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval, Seattle, Washington, USA, Pages: 123 – 130, 2006.
394. A.Bratko, G. V. Cormack, Bogdan Filipic, T. R. Lynam and B. Zupan, ―Spam Filtering
Using Statistical Data Compression Models‖, Journal of machine learning research, 2006,
14(2), pp. 1-38
395. Keno Albrecht ,‖ Mastering Spam: A Multifaceted Approach with the Spamato Spam
Filter System‖, Swiss Federal Institute Of Technology Zurich, 2006.
396. J Alspector, A Kolcz, A Chowdhury, ―Classifier tuning based on data similarities‖, US
Patent 7,089,241, 2006.
397. R Hunt, J Carpinter, ―Current and New Developments in Spam Filtering‖, in: Networks,
2006. ICON '06. 14th IEEE International Conference. Sept. 2006 Volume: 2,pp 1-6.
398. Laurence Likforman-Sulem, Pascal Vaillant and Aliette de Bodard de la Jacopière,
―Automatic name extraction from degraded document images‖, In Journal of Pattern
Analysis & Applications,
Volume 9, Numbers 2-3 / October, 2006, pp.211-227.
399. James Carpintera and Ray Hunt, ―Tightening the net: A review of current and next
generation spam filtering tools‖, in Computers & Security, Volume 25, Issue 8,
November 2006, Pages 566-578.
25
400. Park, Joon S. and Deshpande, Ashutosh (2006) 'Spam Detection: Increasing Accuracy
with A Hybrid Solution', Information Systems Management, 23:1, 57 - 67.
401. SJ Delany, ―Using Case-Based Reasoning for Spam Filtering‖, PhD thesis, March 2006.
402. S. Hershkop, Behavior-based Email Analysis with Application to Spam Detection, PhD
Thesis, Department of Computer Science, University of Columbia, USA, 2006.
403. Carpinter, J.M., 2005. Evaluating ensemble classifiers for spam filtering. Technical
Report, University of Canterbury.
404. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖ , Knowledge-Based Systems 18 (4-5), pp. 187195, 2005.
405. H.-S. Tan and S. Yang, ―Research and Implementation of a New Method of E-Mail
Filtering‖, Microcomputer Applications, vol. 21, no. 4, pp. 15-16, 2005.
406. S. Hershkop and S. J. Stolfo, ―Combining email models for false positive reduction‖,
Proceeding of the 11th ACM SIGKDD international conference on Knowledge Discovery
in Data Mining (KDD), pp. 98-107, 2005.
407. Y. Zhou, M. S. Mulekar and P. Nerellapalli, ―Adaptive Spam Filtering Using Dynamic
Feature Space‖, Proceedings of the 17th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 302-309, 2005.
408. M.-W. Wu, Y. Huang, S.-K. Lu, I.-Y. Chen and S.-Y. Kuo, ―A multi-faceted approach
towards spam-resistible mail‖, Proceesings of the 11th Pacific Rim International
Symposium on Dependable Computing (PRDC), Changsha, China, December 2005.
409. M. Sasaki and H. Shinnou, ―Spam Detection Using Text Clustering‖, Proceedings of the
International Conference on Cyberworlds (CW), pp. 316-319, 2005.
410. M. Chang, and C.K. Poon, ―Catching the picospams‖, Proceedings of the Foundations of
Intelligent Systems, 15th International Symposium (ISMIS), Lecture Notes in Artificial
Intelligence, 3488, pp. 641-649, 2005.
411. Seewald, An Evaluation of Naive Bayes Variants in Content-Based Learning for Spam
Filtering, Technical Report TR-2005-20, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, Austria, 2005.
412. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖, Proceedings of the 24th SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence, (AI),
pp3-16, Springer, 2004.
413. R. Segal, J. Crawford, J. Kephart and B. Leiba, ―SpamGuru: An Enterprise Anti-Spam
Filtering System‖, Proceedings of the First Conference on Email and Anti-Spam (CEAS),
Mountain View, CA, USA, July 2004.
414. W. A. B. S. de Macedo and J. Cesar Nievola, ―Avaliação de Classificadores Anti-spam
Aplicada no Campo de Cabeçalho de E-mail ―From:‖‖, Proceedings of the Conference I
WorkComp Sul, Florianapolis, SC, Brasil, May 2004.
415. Seewald, Combining Bayesian and Rule Score Learning: Automated Tuning for
SpamAssassin, Technical Report TR-2004-11, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, Austria, 2004.
416. T. Fawcett , ―In "vivo" spam filtering: A challenge problem for KKD,‖ SIGKDD
Explorations, v. 5, n. 2, pp.140-148, December 2003.
417. J. Clark, I. Koprinska and J. Poon, ―LINGER – A Smart Personal Assistant for e-mail
Classification‖, Proceedings of the13th International Conference on Artificial Neural
Networks (ICANN), pp.274-277, 2003.
418. J. Clark, I. Koprinska and J. Poon, ―A Neural Network Based Approach to Automated EMail Classification‖, Proceedings of Web Intelligence (WI), pp. 702-705, IEEE, 2003.
419. J.R. Bellegarda, D. Naik and K.E.A. Silverman, ―Automatic junk e-mail filtering based
on latent content‖, Proceedings of the IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), IEEE Press, pp. 465-470, 2003.
420. Kolcz, A. Chowdhury, J. Alspector, ―Data duplication: an imbalance problem?‖
Proceedings of the Workshop on Learning from Imbalanced Datasets II, at the
International Conference on Machine Learning (ICML), Washington DC, 2003.
421. T. Oda and T. White, ―Developing an Immunity to Spam,‖ Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), Chicago, July 2003.
422. Florian Verhein, Judy Kay, and Irena Koprinska and Eric McCreath ―Almost junk:
classifying public announcements for user communities‖, ADCS 2003
26
423. F. Smadja and H. Tumblin, ―Automatic Spam Detection as a Text Classification Task‖
Proceedings of the 2nd Workshop on Operational Text Classification Systems (OTC), at
the ACM SIGIR Conference on R&D in IR (SIGIR), Tampere, Finland, August, 2002
424. B. Massey, M. Thomure, R. Budrevich, S. Long, ―Learning Spam: Simple Techniques
For Freely-Available Software,‖ Proceedings of the Usenix Annual Technical
Conference, Freenix Track, pp. 63-76, San Antonio, Texas, USA, June 2003.
425. K.-M. Schneider. ―A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail
Filtering‖. In Proceedings of the 10th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 03), Budapest, Hungary, 2003.
426. Koprinska, F. Trieu, J. Poon and J. Clark, ―Email Classification by Decision Forests‖,
Proceedings of the Eighth Australasian Document Computing Symposium (ADCS), pp.
41-46, Canberra, Australia, December 2003.
427. F. Verhein, J. Kay, I. Koprinska and E. McCreath, ―Classifying Public Announcements
for User Communities‖, Proceedings of the Eighth Australasian Document Computing
Symposium (ADCS), pp. 15-24, Canberra, Australia, December 2003.
428. B Medlock, A Language Model Approach to Spam Filtering, Technical Report,
Cambridge University Computer Laboratory, 2003.
429. G. Manco, E. Masciari, M. Ruffolo, A. Tagarelli, ―Towards An Adaptive Mail
Classifier,‖, In Workshop su apprendimento automatico: metodi ed applicazioni",
"Tecniche di Intelligenza Artificiale per la ricerca di informazione sul Web" (AIIA),
Siena, Italy, 2002.
430. G. Manco, E. Masciari, A. Tagarelli, ―A Framework for Adaptive Mail Classification‖,
Proceedings of the 14th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Washington, DC, USA, November 2002.
431. J.M. Gomez Hidalgo, ―Evaluating Cost-Sensitive Unsolicited Bulk Email
Categorization,‖ Proceedings of the ACM Symposium on Applied Computing, Spain,
March, 2002.
432. J.M. Gomez Hidalgo E. Puertas Sanz and M. Mana Lopez, ―Evaluating Cost-Sensitive
Unsolicited Bulk Email Categorization,‖ Proceedings of the 6th International Conference
on the Statistical Analysis of Textual Data, France, March, 2002.
433. J.M. Gomez Hidalgo, ―Text Mining and Internet Content Filtering‖, Tutorial in the 12th
European Conference on Machine Learning (ECML) / European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD), 2002.
434. E. Crawford, I. Koprinska, and J. Patrick, ―A Multi-Learner Approach to E-Mail
Classification‖, Proceedings of the 7th Australasian Document Computing Symposium
(ADCS), Sydney, Australia, 2002.
435. H. Avancini, A. Rauber, and F. Sebastiani, ―Organizing Digital Libraries by Automated
Text Categorization‖, Proceedings of the International Conference on Digital Libraries
(ICDL), pp. 919-931, 2004.
436. Y. Lian, E-mail Filtering, MSc Thesis, Department of Computer Science, University of
Sheffield, 2002.
437. Kolcz and J. Alspector, ―SVM-based Filtering of E-mail Spam with Content-specific
Misclassification Costs,‖ Proceedings of the Workshop on Text Mining (TextDM), IEEE
International Conference on Data Mining, 2001.
438. Sachdev. ―Teamed Filters Catch More Spam,‖ Technology Research News, August 22/29
issue, 2001.
439. X Carreras, L Marquez, ―Boosting Trees for AntiSpam Email Filtering‖, Universitat
Politecnica de Catalunya UPC, Book-extended version. September 2001.
G. Petasis, Frantz Vichot, Francis Wolinski, G. Paliouras, V. Karkaletsis, and
C.D. Spyropoulos, ― Using Machine Learning to Maintain Rule-based NamedEntity Recognition and Classification Systems ‖. Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), pp. 426-433,
Toulouse, 2001. (cited by 9)
440. Gu, Baohua ―Recognizing named entities in biomedical texts‖, Thesis (Ph.D.) - School of
Computing Science - Simon Fraser University, 2008
27
441. P Srikanth, KN Murthy ―Named Entity Recognition for Telugu‖, in Proceedings of the
Workshop NER for South and South East Asian Languages, in IJCNLP-08, 2008
442. G. Lucarelli, X.Vasilakos and I. Androutsopoulos ―Named Entity Recognition In Greek
Texts With An Ensemble Of SMVS And Active Learning‖, International Journal on
Artificial Intelligence Tools, vol. 16, No 6, pp-1015-1045, 2007.
443. Nadeau, David, ―Semi-Supervised Named Entity Recognition: Learning to Recognize
100 Entity Types with Little Supervision‖, thesis, 2007
444. Georgios Lucarelli and Ion Androutsopoulos ―A Greek Named-Entity Recognizer That
Uses Support Vector Machines and Active Learning‖,
Springer Berlin / Heidelberg,
In ―Lecture Notes in Computer Science‖, Advances in Artificial Intelligence, Volume
3955, pp 203-213, 2006.
445. I. Michailidis, K. Diamantaras, S. Vasileiadis, Y. Frère ―Greek Named Entity Recognition
using Support Vector Machines, Maximum Entropy and Onetime‖, LREC, 2006
446. D. Nadeau, P. D. Turney and S. Matwin, ―Unsupervised Named-Entity Recognition:
Generating Gazetteers and Resolving Ambiguity‖, Proceedings of the 19th Canadian
Conference on Artificial Intelligence (CAI), pp. 266-277, 2006.
447. C. C. Yang and K. W. Li, ―Automatic construction of English/Chinese parallel corpora‖,
Journal of the American Society for Information Science and Technology, v. 54, n. 8, pp.
730 - 742, 2003.
448. F. Pachet, D. Laigre, ―A Naturalist Approach to Music File Name Analysis,‖ 2nd Annual
International Symposium on Music Information Retrieval 2001.
K.V. Chandrinos, I. Androutsopoulos, G. Paliouras and C.D. Spyropoulos,
"Automatic Web Rating: Filtering Obscene Content on the Web". Proceedings of
the 4th European Conference on Research and Advanced Technology for Digital
Libraries (ECDL), Lecture Notes in Computer Science, n. 1923, pp. 403-406,
Lisbon, Portugal, September 2000. (cited by 9)
449. S.Webb, J. Caverlee, and C. Pu. ―Introducing the webb spam corpus: Using email spam to
identify web spam automatically.‖ In 3rd Conference on Email and AntiSpam (CEAS
2006), July 27-28, Mountain View, California USA, 2006.
450. M. Israël, E. L. van den Broek, P. van der Putten and M. J. den Uyl, ―Visual Alphabets:
Video Classification by End Users‖, In Multimedia Data mining and Knowledge
Discovery, V. A. Petrushin and L. Khan (Eds.), Part III, Chapter 10, pp. 185-206,
Springer-Verlag, 2006.
451. J.M. Gómez Hidalgo, F. Carrero Garcìa and E. Puertas Sanz, ―Named Entity Recognition
for Web Content Filtering‖, Proceedings of the 10th International Conference on
Applications of Natural Language to Information Systems (NLDB), Lecture Notes in
Computer Science, 3513, pp. 286-297, 2005.
452. F. Sebastiani, ―Text Categorization‖, In Text Mining and its Applications to Intelligence,
CRM and Knowledge Management, Alessandro Zanasi (ed.), Chapter 5, WIT Press,
Southampton, UK, 2005.
453. Katakis, G. Tsoumakas and I. Vlahavas, ―On the Utility of Incremental Feature Selection
for the Classification of Textual Data Streams‖, Proceedings of the 10th Panhellenic
Conference on Informatics (PCI), Lecture Notes in Computer Science, no. 3746, pp. 338348, Springer Verlag, 2005.
454. M. Israël, E. L. van den Broek, P. van der Putten and M. J. den Uyl, ―Automating the
construction of scene classifiers for content-based video retrieval‖, Proceedings of the
Workshop on Multimedia Data Mining (MDM) at the 10th ACM SIGKDD Conference
on Knowledge Discovery in Databases (KDD), pp. 38-47, 2004.
455. Manuel J Mana Lopez, ―Automatic Document Generation Summaries to support
information retrieval‖(Generacion automatica de resumenes de texto para el acceso a la
informacion), PhD Thesis, Universidad de Vigo en Ourense, 2003
456. V. Chaoji, S. Dawara, Data Mining: Mining time-series data - filtering junk email, Report
for the STARE project: The Spam Tracking, Anticipation and Retaliation Effort,
Department of Computer Science, Rochester Institute of Technology, USA.
28
457. J.M. Gomez Hidalgo, ―Text Mining and Internet Content Filtering‖, Tutorial in the 12th
European Conference on Machine Learning (ECML) / European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD), 2002.
I.Androutsopoulos, J. Koutsias, K.V. Chandrinos, and C.D. Spyropoulos, "An
Experimental Comparison of Naive Bayesian and Keyword-Based Anti-Spam
Filtering with Encrypted Personal E-mail Messages". Proceedings of the 23rd
ACM SIGIR Conference on R&D in IR (SIGIR), pp. 160-167, Athens, Greece,
July 2000. (cited by 201)
458. Guangchen Ruan and Ying Tan. ―A three-layer back-propagation neural network for
spam detection using artificial immune concentration‖. Soft Computing - A Fusion of
Foundations, Methodologies and Applications. Volume 14, Number 2 / January, 2010.
Pages 139-150
459. Alisson Marques da Silva, Gray Farias Moita and Paulo E. M. Almeida. ―DETECC¸
˜AO DE SPAM UTILIZANDO REDES NEURAIS ARTIFICIAIS SOM‖. Nono
Simpósio de Mecânica Computacional 26 a 28 de maio de 2010
460. Santo, Ana de Barros Espìrito. ―Categorização e análise de dados não estruturados: o caso
de debates parlamentares‖.
ISEGI - Dissertações de Mestrado em Estatìstica e Gestão
da Informação -TEGI0247. 22-Feb-2010
461. Artemy Kolchinsky, Alaa Abi-Haidar, Jasleen Kaur, Ahmed Abdeen Hamed, Luis M.
Rocha, "Classification of Protein-protein Interaction Full-text Documents Using Text and
Citation Network Features," IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 24 May. 2010. IEEE computer Society Digital Library. IEEE Computer
Society
462. Hao Xu and Bo Yu. ―Automatic thesaurus construction for spam filtering using revised
back propagation neural network‖. Expert Systems with Applications. Volume 37, Issue
1, January 2010, Pages 18-23
463. Battista Biggio. ―Adversarial Pattern Classification‖. Ph.D. in Electronic and Computer
Engineering Dept. of Electrical and Electronic Engineering University of Cagliari. March
2010
464. Bing Zhou, Yiyu Yao and Jigang Luo. ―A Three-Way Decision Approach to Email Spam
Filtering‖. Advances in Artificial Intelligence. Volume 6085/2010. Springer Berlin /
Heidelberg. Pages 28-39
465. C Silva, B Ribeiro. ―Inductive Inference for Large Scale Text Classification. Kernel
Approaches and Techniques‖. Springer Berlin / Heidelberg. Vol. 255. 2010
466. Thiago S. Guzella and Walmir M. Caminhas. ―A review of machine learning approaches
to Spam filtering‖. Expert Systems with Applications. Volume 36, Issue 7, September
2009, Pages 10206-10222. doi:10.1016/j.eswa.2009.02.037. Elsevier 2009
467. 惠 孛 吴 跃. ―电子测量与仪器学报‖. JOURNAL OF ELECTRONIC MEASUREMENT
AND INSTRUMENT. Vol. 23 No. 5. 2009 年 5 月.
468. Justin Zhan, B. John Oommen and Johanna Crisostomo. ―Anomaly Detection in Dynamic
Social Systems Using Weak Estimators‖. 2009 International Conference on
Computational Science and Engineering. Vancouver, Canada. vol. 4, pp.18-25
469. Md. Rafiqul Islamn and Wanlei Zhou. ―Minimizing the Limitations of GL Analyser of
Fusion Based Email Classification‖.
Algorithms and Architectures for Parallel
Processing. Springer Berlin / Heidelberg. Volume 5574/2009. Pages 761-774.
470. Petros Belsis, Kostas Fragos, Stefanos Gritzalis and Christos Skourlas. ―Applying
effective feature selection techniques with hierarchical mixtures of experts for spam
classification‖. Journal of Computer Security. IOS Press. Volume 17, Number 3 / 2009.
Pages 239-268.
471. Huang, D.-S.; Jo, K.-H.; Lee, H.-H.; Kang, H.-J.; Bevilacqua, V. (Eds.). ―Emerging
Intelligent Computing Technology and Applications. With Aspects of Artificial
Intelligence‖. 5th International Conference on Intelligent Computing, ICIC 2009 Ulsan,
South Korea, September 16-19, Springer Berlin/Heidelberg. Volume 5755/2009.
29
472. Fernando Bobillo, Umberto Straccia, "Extending Datatype Restrictions in Fuzzy
Description Logics," isda, pp.785-790, 2009 Ninth International Conference on Intelligent
Systems Design and Applications, 2009
473. Md Rafiqul Islam, Wanlei Zhou, Morshed U Chowdhury, "MVGL Analyser for Multiclassifier Based Spam Filtering System," icis, pp.394-399, 2009 Eigth IEEE/ACIS
International Conference on Computer and Information Science (icis 2009), 2009
474. Mag. Andreas Janecek. ―Efficient Feature Reduction and Classification Methods.
Applications in Drug Discovery and Email Categorization‖. Titel der Dissertation.
Universitat Wien-Informatik. Dezember 2009
475. El-Sayed M. El-Alfy and Radwan E. Abdel-Aal. ―Using GMDH-based networks for
improved spam detection and email feature analysis‖. Applied Soft Computing. 2009
Elsevier
476. Ying Tan and Junqi Zhang. ―Magnifier Particle Swarm Optimization‖.
NatureInspired Algorithms for Optimisation. Springer Berlin/Heidelberg. Volume 193/2009.
Pages 279-298.
477. Beatrice Cynthia Dhinakaran, Dhinaharan Nagamalai and Jae-Kwang Lee. ―Bayesian
Approach Based Comment Spam Defending Tool‖. Advances in Information Security
and Assurance. Springer Berlin/Heidelberg. Volume 5576/2009. Pages 578-587.
478. J.T. Goodman, R.L. Rounthwaite, G. J. Hulten and D. Hazeur. ―Intelligent quarantining
for spam prevention‖. Patent No: US 7,543,053 B2, June 2 2009
479. Taeho Jo. ―Profile Based Algorithm to Topic Spotting in Reuter21578‖.
Emerging
Intelligent Computing Technology and Applications. With Aspects of Artificial
Intelligence. Springer Berlin/Heidelberg. Volume 5755/2009. Pages 252-257.
480. Bo Yu and Dong-hua Zhu. ―Combining neural networks and semantic feature space for
email classification‖. Knowledge-Based Systems. Volume 22, Issue 5, July 2009, Pages
376-381.
481. Justin Zhan, B. John Oommen and Johanna Crisostomo. ―Anomaly Detection in Dynamic
Social Systems Using Weak Estimators‖. Proceedings of the 2009 International
Conference on Computational Science and Engineering. IEEE Computer Society
Washington, DC, USA. Volume 04- Pages: 18-25 . 2009
482. Ying Tan and Junqi Zhang. ―Magnifier Particle Swarm Optimization‖. Nature-Inspired
Algorithms for Optimisation. Springer Berlin/Heidelberg. Volume 193/2009. Pages 279298.
483. J.T. Goodman, R.L. Rounthwaite and J.C. Platt. ―Obfuscation of spam filter‖. Patent No:
US 7,519,668 B2
484. Haiyan Wang, Runsheng Zhou, Yi Wang, "An Anti-spam Filtering System Based on the
Naive Bayesian Classifier and Distributed Checksum Clearinghouse," iita, vol. 1, pp.128131, 2009 Third International Symposium on Intelligent Information Technology
Application, 2009
485. Ying Tan, Chao Deng and Guangchen Ruan. ―Concentration based feature construction
approach for spam detection‖. Proceedings of the 2009 international joint conference on
Neural Networks. Atlanta, Georgia, USA. IEEE Press. Pages: 510-515.
486. R.L. Rounthwaite, J.T. Goodman, D. E. Heckerman, J.D. Mehr, N.T. Howell, M.C.
Rupersburg and D.A. Slowson. ―Feedback loop for spam prevention‖. Patent No: US
7,558,832 B2, 2009
487.
吴
宁宁
吴
明光.
―垃圾短信实时监控过滤系统’.《科技通报》2009
年第25卷第3期. Pages 328-331.
488. 惠
孛
吴
跃
.
―基于互信息理论的Anytime分类算法的研究”.《电子测量与仪器学报》2009
年第23卷第3期. Pages 99-104.
489. Chih-Hung Wu. ―Behavior-based spam detection using a hybrid method of rule-based
techniques and neural networks‖. Expert Systems with Applications. Volume 36, Issue 3,
Part 1, April 2009, Pages 4321-4330.
490. Ying Yang and Geoffrey I. Webb. ―Discretization for naive-Bayes learning: managing
discretization bias and variance‖. Machine Learning. Springer Netherlands. Volume 74,
Number 1 / January, 2009. Pages 39-74.
491. Taeho Jo. ―Profile based algorithm to topic spotting in reuter21578‖. Emerging Intelligent
Computing Technology and Applications. With Aspects of Artificial Intelligence. 5th
30
International Conference on Intelligent Computing, ICIC 2009 Ulsan, South Korea,
September 16-19, 2009. Pages 252-257
492. M Chang, W Yih, C Meek ―Partitioned logistic regression for spam filtering‖, in
Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, Pages 97-105, 2008
493. SW McQuiggan, J Goth, E Ha, JP Rowe, JC Lester ―Student Note-Taking in NarrativeCentered Learning Environments: Individual Differences and Learning‖, in Intelligent
Tutoring Systems Volume 5091/2008 , pp 510-519
494. E Medvet ―Techniques for large-scale automatic detection of web site defacements‖, PhD
Thesis, Universit` A Degli Studi Di Trieste 2008
495. Y Cao, W Han, Y Le ―Anti-phishing based on automated individual white-list‖, in
Proceedings of the 4th ACM workshop on Digital identity management, pp 51- 60, 2008
496. DH Shih, HS Chiang, B Lin ―Collaborative spam filtering with heterogeneous agents‖, in
Expert Systems With Applications, Volume 35, Issue 4, November 2008, Pages 15551566
497. T Takashita, T Itokawa, T Kitasuka, M Aritsugi ―A Spam Filtering Method Learning
from Web Browsing Behavior‖, in
Knowledge-Based Intelligent Information and
Engineering Systems, Volume 5178/2009, pp 774-781, 2008
498. ESM El-Alfy, FS Al-Qunaieer ―A fuzzy similarity approach for automated spam
filtering‖, in Computer Systems and Applications, 2008. AICCSA 2008
499. P Belsis, K Fragos, S Gritzalis, C Skourlas ―Applying effective feature selection
techniques with hierarchical mixtures of experts for spam‖, in Journal of Computer
Security, 2008, pp 239-268
500. MP Hayati ―A Framework for Email and Image Spam Detection for Improving Web
Quality‖, Thesis 2008
501. SH Wu, KP Lin, CM Chen, MS Chen ―Asymmetric support vector machines: low falsepositive learning under the user tolerance‖, Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, Pages 749-757, 2008
502. Abi-Haidar and Rocha, 2008 Abi-Haidar, A., & Rocha, L. M. (2008). Adaptive spam
detection inspired by a cross-regulation model of immune dynamics: A study of concept
drift. Lecture Notes in Computer Science, vol 5132, pp 36-47
503. HR Tizhoosh, F Sahba, R Dara ―Poetic Features for Poem Recognition: A Comparative
Study‖, in JOURNAL OF PATTERN RECOGNITION RESEARCH (2008) pp 24-39
504. DL Cook, VK Gurbani, M Daniluk ―Phishwish: a simple and stateless phishing filter‖, in
Security and Communication Networks , Volume 2 Issue 1, Pages 29 - 43 2008
505. CP Wei, HC Chen, TH Cheng ―Effective spam filtering: A single-class learning and
ensemble approach‖, in Decision Support Systems Volume 45, Issue 3, June 2008, Pages
491-503
506. Taeho Jo, Geun-Sik Jo, "List Based Matching Algorithm for Classifying News Articles in
NewsPage.com," iwsca,pp.61-65, 2008 IEEE International Workshop on Semantic
Computing and Applications, 2008
507. F Verhein, J Kay, I Koprinska, E McCreath ―Classifying Public Announcements for User
Communities‖, 2008
508. JT Goodman, RL Rounthwaite, GJ Hulten, W Yih, P It ―Training filters for detecting
spasm based on IP addresses and text-related features‖, US Patent 7,464,264, 2008
509. M Griso ―Tecniche di apprendimento automatico applicate allo spamming‖, Dipartimento
Di Tecnica E Gestione Dei Sistemi Industriali, 2008
510. 累积反馈学习的简单贝叶斯垃圾邮件过滤 张学农,张立成 - 计算机应用与软件,
2008
511. C Villanueva ―Clasificación Automatizada De Texto‖, Thesis 2008
512. F Di Ingegneria, ―Tecniche Di Apprendimento Automatico Applicate Allo Spamming‖,
2008
513. 基于简单贝叶斯的中英文垃圾邮件过滤的比较分析
张学农,张立成
计算机应用与软件, 2008
514. 범주가 할당되지 않은 학습 문서를 이용한, 문서, 범주화 - 2008
515. G. Fumera, I. Pillai and F. Roli. Image spam filtering using textual and visual
Information, MIT Spam Conference 2007,Cambridge, USA, March 2007
31
516. I. Katakis, G. Tsoumakas, & I. Vlahavas. Email mining: Emerging techniques for email
management. In A. Vakali & G. Pallis, editors, Web Data Management Practices:
Emerging Techniquesand Technologies, Ch. 10, Idea Group Inc., 2007.
517. RL Rounthwaite, JT Goodman, DE Heckerman, JD Mehr ―Feedback loop for spam
prevention‖, US Patent No: 7219148, May 2007.
518. Ruan, Guangchen; Tan, Ying, "Intelligent Detection Approaches for Spam," Natural
Computation, 2007. ICNC 2007. Third International Conference on , vol.3, no., pp.672676, 24-27 Aug. 2007
519. Ángela Blanco, Alba Marìa Ricket and Manuel Martìn-Merino, ―Combining SVM
Classifiers for Email Anti-spam Filtering‖, in Lecture Notes in Computer Science,
Springer Berlin, Volume 4507/2007, pp 903-910.
520. S Abu-Nimeh, D Nappa, X Wang, S Nair,―A comparison of machine learning techniques
for phishing detection‖, In Proceedings of the anti-phishing working groups 2nd annual
eCrime researchers summit, Pittsburgh, Pennsylvania, pp: 60 - 69 , 2007.
521. Chih-Chin Lai ―An empirical study of three machine learning methods for spam
filtering‖, Knowledge-Based Systems Vol. 20, Issue 3, April 2007, Pages 249-254.
522. Helmut Berger, Dieter Merkl, Michael Dittenbach, ―A comparison of data preparation
approaches for e-mail categorisation‖ in International Journal of Intelligent Information
and Database Systems, Issue: Volume 1, Number 2 / 2007, pp 91- 121
523. Bickel, S., & Scheffer, T. (2007). Dirichlet-enhanced spam filtering based on biased
samples. Advances in Neural Information Processing Systems.
524. W. N. Gansterer, A. G. K. Janecek, and R. Neumayer. Spam filtering based on latent
semantic indexing. In Proceedings of the Text Mining 2007 Workshop held inconjunction
with the 2007 SIAM International Conference on Data Mining, 2007.
525. Wilfried N. Gansterer, Andreas G.K. Janecek, Peter Lechner, "A Reliable ComponentBased Architecture for E-Mail Filtering," ares, pp. 43-52, The Second International
Conference on Availability, Reliability and Security (ARES'07), 2007.
526. Irena Koprinska, Josiah Poon , James Clark and Jason Chan, ―Learning to classify email‖, Information Sciences, Vol. 177, Issue 10, 15 May 2007, Pages 2167-2187
527. Biggio, Battista Fumera, Giorgio Pillai, Ignazio Roli, Fabio ―Image Spam Filtering
Using Visual Information‖, in: Image Analysis and Processing, 2007. ICIAP 2007. 14th
International Conference (Italy) on Sep 2007, pp. 105-110.
528. Yu-Fen Chiu, Chia-Mei Chen, Bingchiang Jeng, Hsiao-Chung Lin, "An Alliance-Based
Anti-spam Approach," icnc, pp. 203-207, Third International Conference on Natural
Computation (ICNC 2007) Vol IV, 2007.
529. RL Rounthwaite, JT Goodman, DE Heckerman, JC Platt ―Adaptive junk message
filtering system‖, US Patent No: 7249162, 2007.
530. JT Goodman, RL Rounthwaite, D Gwozdz, JD Mehr ―Origination/destination features
and lists for spam prevention‖, US Patent No: 7272853, 2007.
531. L.M. Spracklin, L.V. Saxton, "Filtering Spam Using Kolmogorov Complexity Estimates,"
ainaw, pp. 321-328, 21st International Conference on Advanced Information Networking
and Applications Workshops (AINAW'07), 2007.
532. WN Gansterer, M Ilger ―Analyzing UCE/UBE traffic‖, in Proceedings of the ninth
international conference on Electronic commerce, Minneapolis USA, Session M9: digital
rights and marketing, pp 195 – 204, 2007.
533. LI Xiang-Ying, CHEN Zhong, TANG Li-Yong, LI Xin, ―Method of Spam Filtering
Based on General Suffix Tree Model‖, 2007.
534. ZHANG Wen-liang, HUANG Ya-lou, NI Wei-jian ―Clustering-based feature selection in
text categorization‖, journal of Computer Applications, pp.205-206.2007.
535. ZHANG Wenliang, HUANG Yalou, NI Weijian ―Approach to Feature Selection of
Spam Filtering Based on Contribution Difference‖, in Computer Engineering, pp. 80-82,
2007.
536. ZHANG Ze-Ming, LUO Wen-Jian, WANG Xu-Fa ―Individual Spam Filtering Algorithm
Based on Immune Principles‖, Pattern Recognition and Artificial Intelligence, pp.406414, 2007.
537. Ming, Liu; Yunchun, Li; Wei, Li, "Spam Filtering by Stages," Convergence Information
Technology, 2007. International Conference on , vol., no., pp.2209-2213, 21-23 Nov.
2007.
32
538. Battista Biggio, Giorgio Fumera, Ignazio Pillai, Fabio Roli ―Image Spam Filtering by
Content Obscuring Detection‖, in CEAS 2007 - Fourth Conference on Email and AntiSpam, August 2-3, 2007,Mountain View, California USA, 2007.
539. Wenbin Li, Ning Zhong, Y. Y. Yao, Jiming Liu and Chunnian Liu ―Spam Filtering and
Email-Mediated Applications‖ in LNCS, vol. 484, pp 382-405, 2007.
540. Xin Zhang, Wenyuan Dai, Gui-Rong Xue and Yong Yu ―Adaptive Email Spam Filtering
Based on Information Theory‖, in LNCS, vol. 4831, pp. 159-170, 2007.
541. Li Xin;Zuo RuiXin;Qu WenBin ―Research on content- based anti- spam filtering using
Naive Bayesian‖, in Computer Systems& Applications vol.54, pp48-50, 2006.
542. Zhang Ze-Ming ,Luo Wen-Jian ,Wang Xu-Fa, ―A Multilevel Spam Filtering Algorithm
Based on Artificial Immunity‖ in Acta Electronica Sinica, issue 34, vol9, pp 1616-1620,
2006.
543. Juan Chen and Chuanxiong Guo, ―Online detection and prevention of phishing attacks‖,
in Communications and Networking in China, 2006. ChinaCom '06. First International
Conference, 25-27 Oct. 2006.
544. Zhang Yi, Zhou Jianguo, Yan Puliu ―Research and Implementation of Spam Filtering
System‖, in Computer Engineering, vol. 32, 2006.
545. Bin Wang, Gareth J. F. Jones and Wenfeng Pan, ―Using online linear classifiers to filter
spam emails‖, in Pattern Analysis & Applications, Springer Volume 9, Number 4 /
November, 2006 pp 339-351
546. G. Fumera, I. Pillai and F. Roli. Spam filtering based on the analysis of text information
embedded into images. Journal of Machine Learning Research (special issue on Machine
Learning in Computer Security), 7:2699–2720, 2006.
547. James Carpintera and Ray Hunt, ―Tightening the net: A review of current and next
generation spam filtering tools‖, Computers & Security, Vol. 25, Issue 8, November
2006, Pages 566-578.
548. Park, Joon S. and Deshpande, Ashutosh (2006) 'Spam Detection: Increasing Accuracy
with A Hybrid Solution', Information Systems Management, 23:1, 57 – 67
549. Shlomo Hershkop, ―Behavior-based Email Analysis with Application to Spam
Detection‖, Columbia University, 2006.
550. George B. Bezerra,Tiago V. Barra,Hamilton M. Ferreira,Helder Knidel,Leandro Nunes de
Castro and Fernando J. Von Zuben, ―An Immunological Filter for Spam‖, in Lecture
Notes in Computer Science Springer Berlin, Volume 4163/2006, pp.446-458.
551. Chetan N. Yadati ―Switching Between Email Processing And Other Knowledge Work
Tasks: A Semi Markov Decision Process Approach‖ Msc Thesis, 2006.
552. Sen, S., Geyer, W., Muller, M. J., Moore, M., Brownholtz, B., Wilcox, E., & Millen, D.
R. (2006). FeedMe: A collaborative alert filtering system. Proc. CSCW 2006.
553. J Alspector, A Kolcz, A Chowdhury, ―Classifier tuning based on data similarities‖, US
Patent, No: 7089241, Aug. 2006.
554. Hunt, R.; Carpinter, J., "Current and New Developments in Spam Filtering," Networks,
2006. ICON '06. 14th IEEE International Conference on , vol.2, no., pp.1-6, Sept. 2006.
555. Chih-Hung Wu, Chi-Yuan Yeh, Chih-Chin Lai ―Generating Behavior-based
Classification Rules for Spam Filtering Using Enhanced Induction Trees‖, 2006.
556. Feng Wang, Zhisheng You and Lichun Man ―Immune-Based Peer-to-Peer Model for
Anti-spam‖, Lecture Notes in Computer Science, Springer Berlin, Vol 4115, pp 660-671,
2006.
557. Li, W.B., Zhong, N., Liu, C.N.: Combining multiple email filters based on multivariate
statistical analysis. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS
2006. LNCS (LNAI), vol. 4203, pp. 729–738. Springer, Heidelberg, 2006.
558. Johan Hovold ―Naive Bayes spam filtering using word-position-based attributes and
length-sensitive classification thresholds‖, Proceedings of the 15th NODALIDA
conference, Joensuu 2005 Ling@ JoY 1, 2006.
559. SJ Delany, ―Using Case-Based Reasoning for Spam Filtering‖, PhD thesis, March 2006.
560. Xie Jinjing,Zhang Yibin ―Minimizing Cost Filtering Algorithm for Spam E- mail Based
on Bayesian‖, in Modern Electronic Technique, vol. 24, 2006.
561. ―Study of Using Artificial Neural Network Approach to Filter Spam‖, 2006.
562. LI Xiang-ying,YE Feng ―Method of Spam Filtering Based on Multi-Bayes Algorithms‖,
in Computer Engineering & Applications, 2006, pp. 114-116.
33
563. GENG Huan-Tong, CAI Qing-Sheng ―A Novel Automatic Email Classification Method
Based on Support Vector Machines and Knowledge-based Hybrid Features‖, Computer
Science, 2006 Vol.33 No.6 P.52-54,57.
564. Shilad Sen, Werner Geyer, Michael Muller, Marty Moore, Beth Brownholtz, Eric Wilcox,
David R Millen ―FeedMe: A Collaborative Alert Filtering System‖, CSCW'06, November
4–8, 2006, Banff, Alberta, Canada.
565. Yang Li, Binxing Fang, Li Guo, Shen Wang, "Research of a Novel Anti-Spam Technique
Based on Users‘ Feedback and Improved Naive Bayesian Approach," icns, p. 86,
International conference on Networking and Services (ICNS'06), 2006.
566. Eric McCreath, Judy Kay and Elisabeth Crawford ―IEMS - an approach that combines
hand crafted rules with learnt instance based rules‖in PKDD 2006.
567. Mi-Gyoung Gong, Kyung-Soon Lee ―A Spam Filter System based on Maximum Entropy
Model Using Spamminess Features and URL Features‖ in International Symposium on
Information Technology Convergence, December 2006.
568. Peter J. DePasquale and Jason M. Snyder ―Integration Of A Community-Based WWW
Filter As A Capstone Research Experience For Undergraduate Computer Science
Students‖, CSREA2006.
569. Yang Li, Bin-Xing Fang, Li Guo, "TTSF: A Novel Two-Tier Spam Filter," pdcat, pp.
503-508, Seventh International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT'06), 2006.
570. Pu, C., Webb, S., Kolesnikov, O., Wenke, L., and Lipton, R. Towards the integration of
diverse spam filtering techniques. Proceedings of the IEEE International Conference on
Granular Computing (GrC06), Atlanta, GA, 17-20, 2006
571. Petros Belsis, Kostas Fragos, Stefanos Gritzalis, Christos Skourlas, ―SF-HME system: a
hierarchical mixtures-of-experts classification system for spam‖,Proceedings of the 2006
ACM symposium on Applied computing, Dijon, France, ACM Press, NY, 2006
572. E. Cronin, M. Sherr, and M. Blaze, The Eavesdropper’s Dilemma, tech. report MS-CIS05-24, Univ. of Pennsylvania, 2005
573. Chi-Yuan Yeh, Chili-Hung Wu, Shine-Hwang Doong, ―Effective spam classification
based on meta-heuristics‖, IEEE International Conference on Systems,Man and
Cubernetics, vol.4, p.p.3872-3877, 2005
574. Shlomo Hershkop, Salvatore J. Stolfo, ―Combining email models for false positive
reduction, Proceedings of the 11th ACM SIGKDD international Conference on
Knowledge discover mining, Chicago, Illinois. ACM Press,NY,2005 pp.98-107
575. H Khurana, A Slagell, R Bonilla - SELS: A Secure E-mail List Service Proceedings of
the 2005 ACM symposium on Applied computing, 2005
576. G Mishne, D Carmel, R Lempel - Blocking Blog Spam with Language Model
Disagreement Proceedings of the 1st International Workshop on Adversarial …, 2005
577. CH Wu, SH Doong, CY Yeh - Behavior Based Spam Filtering Using Support Vector
Machine icss2005.
578. X Luo, N Zincir-Heywood, Comparison of a SOM Based Sequence Analysis System and
Naive Bayesian Classifier for Spam Filtering Proceedings of International Joint
Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005
579. Benjamin Kuipers, Alex X. Liu, Aashin Gautam, Mohamed G. Gouda: Zmail: Zero-Sum
Free Market Control of Spam. Fourth International Workshop on Assurance in
Distributed Systems and Networks (ADSN) (ICDCSW'05): 20-26, 2005
580. M Chang, CK Poon - Catching the Picospams, Lecture Notes in Computer Science,
Volume 3488 / 2005, Title: Foundations of Intelligent Systems: 15th International
Symposium, ISMIS 2005, Saratoga Springs, NY, USA, May 25-28, 2005. Proceedings,
Editors: Mohand-Said Hacid, Neil V. Murray, Zbigniew W. Raś, Shusaku Tsumoto ,
ISBN: 3-540-25878-7, Chapter: p. 641-649
581. Raju Shrestha, Yaping Lin: Improved Bayesian Spam Filtering Based on Co-weighted
Multi-area Information, Lecture Notes in Computer Science Volume 3518 / 2005 Title:
Advances in Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference,
PAKDD 2005, Hanoi, Vietnam, May 18-20, 2005. Proceedings Chapter: p. 650-660
Springer-Verlag
582. J. Hovold, ―Naive Bayes Spam Filtering Using Word-Position-Based Attributes‖,
Proceedings of the second Conference on Email and Anti-Spam (CEAS), Stanford
University, July 2005.
34
583. M Healy, SJ Delany, A Zamolotskikh, An Assessment of Case Base Reasoning for Short
Text Message Classification, AICS ‘05: Proceedings of the 16th Irish Conference on
Artificial Intelligence and Cognitive Science, pp. 257-266, 2005
584. GI Webb, JR Boughton (2005), Learning under computational resource constraints,
Submitted for publication
585. P Gburzynski, Drafts, SFM: a Friendly and Reliable Implementation of Mail Channels for
Total Spam Avoidance, 2005
586. N. Kumagai, M Aritsugi, On Applying an Image Processing Technique to Detecting
Spams. ICDE Workshops 2005: 1172
587. A Bratko, B Filipic, Spam Filtering Using Compression Models, Technical Report IJSDP-9227, Department of Intelligent Systems, Jozef Stefan Institute, November 2005.
588. Wang Bin and Pan Wenfeng, ―A Survey of Content-based Anti-spam Email Filtering‖,
Journal of Chinese Information Processing, vol.19, no.5 pp.1-10, 2005.
589. A. Wiehes, ―Comparing anti spam methods,‖ Masters of Science in Information Security,
Department of Computer Science and Media Technology, GjøvikUniversity College,
2005.
590. Taeho Jo and Japkowicz, N. ―Text clustering with NTSO (neural text self organizer)‖,
in: Neural Networks, 2005. IJCNN '05. Proceedings. 2005 IEEE International Joint
Conference on 31 July-4 Aug. 2005, Volume: 1, On page(s): 558- 563 vol. 1.
591. Kim, J. and Kang, S., ―Feature Selection by Fuzzy Inference and Its Application to Spam
– Mail Filtering,‖ LNAI 3801 (2005) 361-366.
592. Yan Zhou; Mulekar, M.S.; Nerellapalli, P., "Adaptive spam filtering using dynamic
feature space," Tools with Artificial Intelligence, 2005. ICTAI 05. 17th IEEE
International Conference on , vol., no., pp. 8 pp.-, 14-16 Nov. 2005.
593. Giuseppe Manco, Ricardo Ortale and Andrea Tagarelli ―The Scent of a Newsgroup 393
Chapter XIX The Scent of a Newsgroup: Providing Personalized Access to Usenet Sites
through Web Mining‖ in Anthony Scime‘s book ―Web Mining: Applications &
Techniques‖, 2005 pp 393-414.
594. Hsueh-Ching Chen ―An Ensemble Approach for Text Categorization with Positive and
Unlabeled Examples‖, Master's Thesis, 2005.
595. Gong Wei, ―Research on the Filter Technology of Junk Email‖, 2005.
596. Antonio Jesús Ortiz Martos, L. Alfonso Ureña López, Marìa Teresa Martìn Valdivia,
Miguel Ángel Garcìa Cumbreras ―Deteccion automatica de Spam utilizando Regresion
Logistica Bayesiana‖, Procesamiento del Lenguaje Natural, núm. 35 (2005), pp. 127-133.
597. Havard Wik Thorkildssen ―SPAM - Different Approaches to Fighting Unsolicited
Commercial Email A survey of spam and spam countermeasures‖, Technical Report,
2005.
598. Mikkel Fischer Christensen and Martin Lobner-Olesen ―Anvendelse af multiple
featureudvaelgelsesmetoder i ensembles.Using Multiple Feature Selection Methods in
Ensembles‖, Technical Report, 2005.
599. P. Gburzynski & Jacek Maitan, Fighting the spam wars: A remailer approach with
restrictive aliasing, ACM Transactions on Internet Technology, Volume 4 , Issue 1,
(February 2004), Pages: 1 – 30
600. Zhou et al. (Eds.): Spam Mail Filtering System Using Semantic Enrichment WISE 2004,
LNCS 3306, pp. 619–628, 2004.
601. L. Zhang, J. Zhu and T. Yao, ―An evaluation of statistical spam filtering techniques‖,
ACM Transactions on Asian Language Information Processing (TALIP), Volume 3, Issue
4, pp. 243 – 269, December 2004.
602. K. Tretyakov, "Machine Learning Techniques in Spam Filtering," Institute of Computer
Science, University of Tartu Data Mining Problem-oriented Seminar, MTAT, vol. 3, pp.
60-79, 2004.
603. Hershkop, S. and Stolfo, S.J. Identifying Spam without Peeking at the Contents. ACM
Crossroads, Volume 11 , Issue 2, pp3-3, 2004.
604. Hyun-Jun Kim, Heung-Nam Kim, Jason J. Jung and Geun-Sik Jo, ―Spam Mail Filtering
System Using Semantic Enrichment‖, in Lecture Notes in Computer Science, Springer
Berlin, Volume 3306/2004, pp. 619-628.
605. Galen A. Grimes, ―Issues with spam‖, in ―Computer Fraud & Security Vol. 2004, Issue 5,
May 2004, Pages 12-16.
35
606. Bryson P. Gordon, Thor Ivar Ekle ―Comprehensive anti-spam system, method, and
computer program product for filtering unwanted e-mail messages‖, United States Patent
6732157, issue date 4 May 2004.
607. Leonardo Bispo de Oliveira ―Um Ambiente Distribuido Para Tratamento e
Armazenamento de E-Mails‖, MSc Thesis, 2004.
608. JO Taeho ―Machine Learning based Approaches to Text Categorization with
Resampling Methods‖, 2004.
609. Pawel Gburzynski, “SFM: A Spam-Free Subscription-Based E-Mail Server”, University of
Alberta, 2004.
610. L Pelletier, J Almhana, V Choulakian - Adaptive Filtering of SPAM Proc. of the Second
Annual Conf. on Communication Networks, 2004
611. I Stuart, SH Cha, C Tappert - A Neural Network Classifier for Junk E-Mail Springer
Page 1. S. Marinai and A. Dengel (Eds.): DAS 2004, LNCS 3163, pp. 442–450,
2004.Springer-Verlag Berlin Heidelberg 2004
612. T Scheffer - Email answering assistance by semi-supervised text classification Intelligent
Data Analysis, 2004 - IOS Press Page 1. Intelligent Data Analysis 8 (2004) 481–493 481
IOS Press
613. S Bickel, T Scheffer - Learning from Message Pairs for Automatic Email Answering,
Lecture Notes in Computer Science Springer-Verlag, Title: Machine Learning: ECML
2004: 15th European Conference on Machine Learning, Pisa, Italy, September 20-24,
2004. Proceedings Editors: Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti,
Dino Pedreschi , Chapter: p. 87-98
614. P. Gburzynski. "Challenge-Response Paradigm in Electronic Mail." Proceedings of
EUROMEDIA'04, Hasselt, Belgium, April 19-21, 2004.
615. H Avancini, A Rauber, F Sebastiani, Organizing Digital Libraries by Automated Text
Categorization, International Conference on Digital Libraries - ICDL-2004. New Delhi,
24-27 February 2004
616. J Moon, T Shon, J Seo, J Kim, J Seo - An Approach for Spam E-mail Detection with
Support Vector Machine and n-Gram Indexing, International Symposium on Computer
and Information Sciences, LECTURE NOTES IN COMPUTER SCIENCE, Springer
2004.
617. Abadi, M., Birrell, A., Burrows, M., Dabek, F., and Wobber, T. 2003a. Bankable postage
for network services. In Asian 2003. Lecture Notes in Computer Science, vol. 2896.
Springer, 72--90.
618. Y. Yang, G.I. Webb, Discretization for naive-Bayes learning: managing discretization
bias and variance, Technical Report 2003-131, School of Computer Science and Software
Engineering, Monash University, 2003.
619. E. McCreath, J. Kay, Iems: Helping Users Manage Email, In P. Brusilowski, A. Corbett,
F. de Rosis, User Modeling 2003 9th Int. Conf. on User Modeling UM2003, Springer
Verlag, LNAI 2702, 2003, pp. 263-272.
620. Kockelkorn, M., Luneburg, A., & Scheffer, T. (2003). Learning to answer emails. Paper
presented at the International Symposium on Intelligent Data Analysis.
621. Kang Hyuk Lee, ―Text Categorization with a Small Number of Labeled Training
Examples‖, thesis, University of Sydney, 2003.
622. Matt Johnson ―Multi-Protocol Content Filtering February Progress Report‖, Technical
Report, 2003.
623. Florian Verhein, Judy Kay, and Irena Koprinska and Eric McCreath ―Almost junk:
classifying public announcements for user communities‖, ADCS 2003
624. JH Chauchat ―Apprentissage automatique et catégorisation de textes multilingues‖ PhD
Thesis , 2003.
625. M Kockelkorn, A Luneburg, T Scheffer - Using Transduction and Multi-view Learning to
Answer Emails, Journal Title: Principles of Data Mining and Knowledge
DiscoveryPKDD 2003: 266-277, Springer
626. Kolesnikov, W Lee, R Lipton, Filtering Spam Using Search Engines, Technical Report,
GIT-CC-03-58, 2003
627. YGJLC Wang, Y Zhong, Online Classifiers for Chinese Text Classification and Filtering,
Proceedings of the International Conference on Natural Language Processing and
Knowledge Engineering, 2003
628. A Westbrook, R Greene - Using Semantic Analysis to Classify Search Engine Spam
36
629. H Pham, Z Jiang - Mail defense against spam via a scheme of distributed merit
accumulation, Presented at the Information Security South Africa (ISSA2003)
Conference, 9 to 11 July, 2003, Sandton, Johannesburg, South Africa.
630. K.-M. Schneider. ―A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail
Filtering‖. In Proceedings of the 10th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 03), pp. 307-314, Budapest, Hungary,
2003.
631. Luis Nogueira and Eugenio Oliveira. A Multi-Agent System for E-Insurance Brokering.
In Agent Technologies, Infrastructures, Tools and Applications for e-Services. Eds.
R.Kowalczyk, R.Muller, H.Tianfield, R.Unland, Lecture Notes in Artificial Intelligence,
n. 2592, pp. 263-282, Springer-Verlag, 2003
632. R Vinot, N Grabar, M Valette - Application d‘algorithmes de classification automatique
pour la détection des contenus racistes Actes de TALN 2003, 2003
633. T Fawcett - In vivo‖ spam filtering: A challenge problem for KDD SIGKDD
Explorations, 2003
634. F Sebastiani - Text Categorization, Text Mining and its Applications. WIT Press,
Southampton, UK, 2003
635. LS Tseng, CH Wu - Detection of Spain e-mails by analyzing the distributing behaviors of
e-mail servers Design and application of hybrid intelligent systems table,2003
636. I Koprinska, F Trieu, J Poon, J Clark - E-mail Classification by Decision Forests Page 1.
Proceedings of the 8th Australasian Document Computing Symposium, Canberra,
Australia, December 15, 2003
637. D Etzold, Improving spam filtering by combining Naive Bayes with simple k-nearest
neighbor searches, 2003
638. JH Wang, LF Chien, Toward Automated E-mail Filtering–An Investigation of
Commercial and Academic Approaches, Session E2, TANET 2003, Taipei, Taiwan, Oct.
29, 2003
639. J Clark, I Koprinska, J Poon, Linger-a smart personal assistant for e-mail classification in
The Proceedings of the 13th International Conference on Artificial Neural Networks
(ICANN'2003), Istanbul, Turkey, June 26-29, pp. 274-277.
640. Tom Fawcett, In ―vivo‖ spam filtering: A challenge problem for KKD, Hewlett­Packard
Laboratories, 1501 Page Mill Road, Palo Alto, CA USA, SIGKDD Explorations, Vol 5,
Issue2, December 2003
641. Aleksander Kolcz, Abdur Chowdhury, Joshua Alspector, ―Data duplication: an imbalance
problem‖ Workshop on Learning from Imbalanced Datasets II, International Conference
on Machine Learning, Washington DC, 2003.
642. Y. Ko, ―Text categorisation Using Unlabeled Data‖, PhD Thesis, Sogang Univ. Seoul
Korea, 2003.
643. Zaffalon, M., Hutter, M. Robust feature selection by mutual information distributions. In:
Darwiche, A., Friedman, N. (Eds), UAI-2002: Proceedings of the 18th Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, pp. 577-584,
2002.
644. M Johnson, Multi-Protocol Content Filtering, 2002
645. C Orasan, R Krishnamurthy - A corpus-based investigation of junk emails Proceedings of
LREC-2002, Las Palmas, Spain, 2002
646. J Dubois - Classification automatique de courrier électronique 2002
647. J Hynek, Document Classification in a Digital Library, University of West Bohemia in
Pilsen Department of Computer Science and Engineering Univerzitni 8 30614 Pilsen
Czech Republic
648. F. Abbattista, M. Degemmis, N. Fanizzi, O. Licchelli, P. Lopes, G. Semeraro, F.
Zambetta, Learning User Profiles for Content-Based Filtering in e-Commerce,
Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence,
Siena, Italy, September 10-13, 2002.
649. F. Sebastiani, ―Machine Learning in Automated Text Categorisation‖, ACM Computing
Surveys, vol 34, No1, pp. 1-47, March 2002.
650. J.M.G. Hidalgo, ―Evaluating Cost-Sensitive Unsolicited Bulk Email Categorization,‖
Proceedings of the ACM Symposium on Applied Computing, pp. 615-620 Spain, March,
2002.
37
651. Gomez Hidalgo, J.M., Puertas Sanz, E., Maρa Lopez, M. Evaluating Cost-Sensitive
Unsolicited Bulk Email Categorization. 6th International Conference on the Statistical
Analysis of Textual Data, Palais du Grand Large, St-Malo / France, March 13-15, 2002.
652. E. Crawford, J. Kay and E. McCreath, "IEMS - The Intelligent Email Sorter",
Proceedings of the Nineteenth International Conference on Machine Learning, pp. 83-90,
Sydney, Australia, 2002.
653. H. Avancini, A. Rauber and F. Sebastiani, Organizing digital libraries by automated text
categorization
(Technical
Report
2002-TR-05,
Instituo
di
Elaborazione
dell‘Informazione, Pisa, 2002).
654. A. Westbrook and R. Greene. Using semantic analysis to classify search engine spam.
Technical report, Stanford University, 2002.
655. Elisabeth Crawford, Judy Kay and Eric McCreath, "Automatic Induction of Rules for email Classification" Proceedings of the Sixth Australasian Document Computing
Symposium (ADCS), Coffs Harbour, Australia, 2001.
656. MER Ruiz - COMBINING MACHINE LEARNING AND HIERARCHICAL
STRUCTURES FOR TEXT CATEGORIZATION, 2001
657. U. Hanani, B. Shapira και P. Shoval, "Information Filtering: Overview of Issues,
Research and Systems". User Modeling and User-Adapted Interaction, 11:203-259, 2001.
658. X. Carreras και L. Marquez, "Boosting Trees for Anti-Spam Filtering. Proceedings of
Recent Advances in Natural Language Processing (RANLP-2001), pp. 58–64, Tzigov
Chark, Bulgaria, 2001.
G. Petasis, A. Cucchiarelli, P. Velardi, G. Paliouras, V. Karkaletsis, and C.D.
Spyropoulos, ―Automatic adaptation of proper noun dictionaries through cooperation of machine learning and probabilistic methods‖. Proc. of the 23rd ACM
SIGIR Conference on R&D in IR (SIGIR), July 2000, Athens, Greece, pp. 128135. (cited by 16)
659. Seco Naveiras, Diego, ―Técnicas de indexación y recuperación de documentos utilizando
referencias geográficas y textuales‖, 2009
660. J. Wang and N. Ge, ―Automatic feature thesaurus enrichment: extracting generic terms
from digital gazetteer‖, Proceedings of the 6th ACM/IEEE-CS Joint Conference on
Digital libraries (ICDL), pp. 326-333, 2006.
661. Feng Chen ―Minimize Test Collection for Geographic Retrieval Evaluation‖, 2006.
662. D. Koning, I.N. Sarkar and T. Moritz, ―TaxonGrab: Extracting Taxonomic Names From
Text‖. Biodiversity Informatics, n.2, pp. 79-82, 2005.
663. B. Martins, M. J. Silva and M. Chaves, ―Challenges and Resources for Evaluating
Geographical IR‖, Proceedings of the Workshop on Geographic Information Retrieval,
ACM International Conference on Information and Knowledge Management (CIKM),
Bremen, Germany, October 2005
664. T. Solorio and A. López López, ―Learning named entity recognition in Portuguese from
Spanish‖, Proceedings of the 6th International Conference on Computational Linguistics
and Intelligent Text Processing (CICLing), Lecture Notes in Computer Science, 3406, pp.
762-768, 2005.
665. P. Li, Y. Guan, X.-L. Wang and J. Sun, ―Automatic and efficient recognition of proper
nouns based on maximum entropy model‖, Proceedings of the International Conference
on Machine Learning and Cybernetics, Vol. 6, pp. 3775- 3780, August 18-21, 2005.
666. Solorio T. ―Improvement of Named Entity Tagging by Machine Learning.‖ Ph.D. thesis,
National Institute of Astrophysics, Optics and Electronics, Puebla, Mexico, September
2005.
667. T. Solorio and A. López López. ―Learning named entity classifiers using support vector
machines‖, Proceedings of the 6th International Conference on Computational Linguistics
and Intelligent Text Processing (CICLing), Lecture Notes in Computer Science, 2945, pp.
158-167, 2004.
668. T. Solorio, Improvement of Named Entity Tagging by Machine Learning, Technical
Report CCC-04-004, National Institute of Astrophysics, Optics and Electronics, Puebla,
Mexico, March 2004.
38
669. T. Solorio and A. López López. ―Adapting a named entity recognition system for Spanish
to Portuguese‖, Proceedings of the IX Iberoamerican Workshops on Artificial
Intelligence: Workshop on Herramientas y Recursos Lingüìsticos para el Español y el
Portugués, pages 292–297, Puebla, Mexico, November 2004.
670. C. C. Yang and K. W. Li, ―Automatic construction of English/Chinese parallel corpora‖,
Journal of the American Society for Information Science and Technology, v. 54, n. 8, pp.
730 - 742, 2003.
671. J-H Kim, I-H Kang and K-S Choi. ―Unsupervised Named Entity Classification Models
and their Ensembles‖, Proceedings of the 19th International Conference on
Computational Linguistics (COLING), 2002.
672. F. Sebastiani ―Machine learning in automated text categorization‖, ACM Computer
Surveys 34(1), pp. 1-47, 2002.
673. AB Jonsdottir, ―Named Entity Recognition for Norwegian‖, Proceedings of the Seventh
ESSLLI Student Session, Malvina Nissim (editor), Chapter 8,, 2002.
674. Jae Ho Kim ―Named Entity Classification using Unsupervised Learning Models and
Their Ensemble‖, Master Thesis, 2001
G.Paliouras, C. Papatheodorou, V. Karkaletsis and C.D. Spyropoulos,
―Clustering the Users of Large Web Sites into Communities,‖ Proc. Intern. Conf.
on Machine Learning, 2000 CICML, pp. 719-726, Stanford California, July 2000.
(cited by 53)
675. Y Miao, B Song, ―Research on mining typical anonymous users' browsing paths based on
Web logs‖, in Jisuanji Yingyong / Journal of Computer Applications. Vol. 29, no. 10, pp.
2774-2777. Oct. 2009
676. 缪勇, 宋斌, “基于 Web 日志的典型匿名用户路径挖掘研究 “, pp 2774-2777,
http://www.cqvip.com/qk/94832x/2009010/31585360.html
677. A Narasimhamurthy, D Greene, N Hurley ―Community Finding in Large Social
Networks Through Problem Decomposition‖, Technical Report UCD-CSI August 2008
678. G Korfiatis ―Modeling Web Navigation Using Grammatical Inference‖ in Applied
Artificial Intelligence (AAI 2008), 2008
679. Web浏览预测的Markov模型综述 林文龙,刘业政,姜元春 - 计算机科学, 2008 万方数据资源系统
680. Web浏览预测的Markov模型综述 林文龙,刘业政,姜元春 - 计算机科学, 2008
681. Song Jiang-Chun and Shen Jun-Yi ―Research on a new clustering algorithm of Web user
communities and Web site's URLs‖, in Control And Decision, 2007 Vol.22 No.3 P.284288.
682. S Kleanthous, S By, V Dimitrova ―A framework to support knowledge sharing and
construction in virtual learning communities‖, Tech. Report, University of Leeds, 2006.
683. Tingshao Zhu , ―Goal-Directed Complete-Web Recommendation‖, PhD Thesis, 2006.
684. T Murata, K Saito ―Extracting Users' Interests from Web Log Data‖, in Proceedings of
the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 343-346,
2006.
685. E. Frias-Martinez; S.Y. Chen; X. Liu, "Survey of Data Mining Approaches to User
Modeling for Adaptive Hypermedia," Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on , vol.36, no.6, pp.734-749, Nov. 2006.
686. Kazuaki Yamada, Kumiyo Nakakoji and Kanji Ueda, ―Data Mining for Analyzing
Histories of Web User Activites‖ Technical Report, 2006.
687. X. Wang, A. Abraham and K. A. Smith, ―Intelligent web traffic mining and analysis‖,
Journal of Network and Computer Applications 28 147–165, 2005.
688. M. D. Dikaiakos, A. Stassopoulou and L. Papageorgiou, ―An investigation of web crawler
behavior: characterization and metrics‖, Computer Communications 28, pp. 880–897,
2005.
689. M. Koutri, N. Avouris, S. Daskalaki, ―A survey on web usage mining techniques for webbased adaptive hypermedia systems‖, In S. Y. Chen and G. D. Magoulas (ed), Adaptable
and Adaptive Hypermedia Systems, pp. 125-149, IRM Press, Hershey, 2005.
39
690. Y.-L. Hou and F. Yuan, ―Data Preparation for Web Log Mining‖, Journal of Hebei
University (Natural Science Edition), vol. 25, no. 2, pp. 202-206, 2005.
691. K. Yamada, K. Nakakoji and K. Ueda, ―Data Mining for Analyzing Histories of Web
User Activites‖, Proceedings of the WI2 Workshop, pp. 59-64, Institute of Electronics,
Information and Communication Engineering, Hiroshima, Japan, September 2005.
692. R. Pampapathi, B. Mirkin and M. Levene, A Review of the Technologies and Methods in
Profiling and Profile Classification, EPALS Project Technical Report, School of
Computer Science, Birkbeck University of London, UK, April 2005.
693. Hou Yarli, Yuan Fang, ―Data Preparation for Web Log Mining‖, 2005
694. Mohammad El-Ramly, Eleni Stroulia, ―Analysis of Web-usage behavior for focused Web
sites: a case study‖, Journal of Software Maintenance and Evolution: Research and
Practice, Volume 16, Issue 1-2 , Pages 129 - 150, Jan 2004.
695. Martha Koutri, Nikolaos Avouris, Sophia Daskalaki, University of Patras, Greece―A
survey on web usage mining techniques for web-based adaptive hypermedia systems‖ S.
Y. Chen and G. D. Magoulas (ed), Adaptable and Adaptive Hypermedia Systems, Idea
Publishing Inc., Hershey, 2004
696. Rangarajan SK, Phoha VV, Balagani KS, Selmic RR, Iyengar SS, ―Adaptive neural
network clustering of web users‖, COMPUTER 37 (4): 34-40 APR 2004.
697. Rangarajan, S. K., Phoba, V. V., Balangani, K., Iyengar, S. S., Selmic, R., ―Web User
Clustering and Its Application to Prefetching Using ART Neural Netwroks‖, IEEE
Computer, April 2004.
698. Yang Liu ―Markov Model-based Methods for Web User Clustering and Surfing
Recommendation‖, MSc Thesis, 2004.
699. Santosh K. Rangarajan, Vir V. Phoha, Kiran S. Balagani, Rastko R.Selmic, S.S. Iyengar,
"Adaptive Neural Network Clustering of Web Users," Computer, vol. 37, no. 4, pp. 3440, Apr., 2004.
700. Jia Li, ―Using Distinct Information Channels for a Hybrid Web Recommender System‖,
MSc, 2004.
701. B Horizonte, ―Uma Metodologia de Caracterizacao de Comportamento de Usuarios de
Servicos Internet‖, MSc dissertation, 2004.
702. Abraham, A., ―Business Intelligence from Web Usage Mining,‖ Journal of Information &
Knowledge Management, Vol. 2, No. 4, pp. 375-390, 2003.
703. M. D. Dikaiakos, A. Stassopoulou and L. Papageorgiou, ―Characterizing Crawler
Behavior from Web Server Access Logs‖, Proceedings of the 4th International conference
on E-Commerce and Web Technologies (EC-Web), Lecture Notes in Computer Science,
2738, pp. 369-378, 2003.
704. Xiaozhe Wang, Damminda Alahakoon, Kate A. Smith, ―Improved Web Searching
through Neural Network Based Index Generation‖, Proceedings of the International
Conference on Computational Science (ICCS), Lecture Notes in Computer Science,
Volume 2659, Pages 151 – 158, Jan 2003.
705. Blanzieri E, Giorgini P. ―Implicit Culture for information agents‖ INTELLIGENT
INFORMATION AGENTS LECTURE NOTES IN ARTIFICIAL INTELLIGENCE
2586: 152-164 2003
706. M Kockelkorn, A Luneburg, T Scheffer. ―Using transduction and multi-view learning to
answer emails.‖ 7th European Conference on Principles and Practice of Knowledge
Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-26, 2003,
Proceedings, pp. 266 - 277
707. Y Yang, GI Webb. ―Discretization for naive-Bayes learning: Managing discretization bias
and variance‖. Technical Report 2003/131, School of Computer Science and Software
Engineering, Monash University,Melbourne, VIC 3800, Australia, 2003.
708. M Abadi, A Birrell, M Burrows, F Dabek, T Wobber. ―Bankable Postage for Network
Services‖. Advances in Computing Science, ASIAN 2003, LNCS 2896, pp. 72–90,
Springer-Verlag, 2003
709. C. Shahabi, F. Banaei-Kashani. ―Efficient and Anonymous Web Usage Mining for Web
Personalization‖, INFORMS Journal on Computing, Special Issue on Data Mining, v. 15,
n.2, pp. 123-147, 2003.
710. M. Weihberg, Personalizacja interfesju w hipermedialnych witrynach wykorzystywanych
w promocji, MSc Thesis, Department of Information Systems, Wroclaw Polytechnic,
Poland, 2003.
40
711. Y. Fu, M.-Y. Shih, M. Creado and C. Jui, ―Reorganizing Web Sites Based on User
Access Patterns" Reorganizing Web Sites Based on User Access Patterns‖, International
Journal of Intelligent Systems in Accounting, Finance and Management, 11(1), 2002.
712. C. Zeng, C. Xing and L. Zhou, ―A Survey of Personalization Technology‖, Journal of
Software, vol. 13, no. 10, pp. 1952-1961, 2002.
713. D. Xing, Q. Song and J. Shen, ―Research on a New Algorithm of Web Session Fuzzy
Clustering‖, Journal of Xi'an Jiaotong Universtity, vol. 36, no. 8, pp. 822-825, 2002.
714. M. Koutri, S. Daskalaki, N. Avouris, ―Adaptive Interaction with Web Sites: an Overview
of Methods and Techniques‖, In Proceedings of the 4th International Workshop on
Computer Science and Information Technologies, Patras, Greece, September 2002
715. C Orasan, R Krishnamurthy. ―A corpus-based investigation of junk emails‖. Proceedings
of International Conference on Language Resources and Evaluation (LREC), Las Palmas,
Spain, 2002
716. J.M.G. Hidalgo, ―Evaluating Cost-Sensitive Unsolicited Bulk Email Categorization,‖
Proceedings of the ACM Symposium on Applied Computing, pp. 615-620 Spain, March,
2002.
717. Gomez Hidalgo, J.M., Puertas Sanz, E., Maρa Lopez, M. Evaluating Cost-Sensitive
Unsolicited Bulk Email Categorization. 6th International Conference on the Statistical
Analysis of Textual Data, Palais du Grand Large, St-Malo / France, March 13-15, 2002.
718. Martha Koutri, Sophia Daskalaki, Nikolaos Avouris, ―Adaptive Interaction with Web
Sites: an Overview of Methods and Techniques‖ In Proceedings of the 4th International
Workshop on Computer Science and Information Technologies, Patras, Greece,
September 2002
719. Yongjian Fu, Ming-Yi Shih, Mario Creado and Chunhua Jui, ―Reorganizing Web Sites
Based on User Access Patterns‖ International Journal of Intelligent Systems in
Accounting, Finance and Management, 11(1), pp. 39-53, 2002.
720. M Dikaiakos, A Stassopoulou, L Papageorgiou. Characterizing Crawler Behavior from
Web Server Access Logs, Technical Report TR-2002-4 Department of Computer Science,
University of Cyprus
721. C. Shahabi and F. Banaei-Kashani. ―A Framework for Efficient and Anonymous Web
Usage Mining Based on Client-Side Tracking‖, WEBKDD 2001 - Mining Web Log Data
Across All Customers Touch Points, Third International Workshop, San Francisco, CA,
USA, August 26, 2001, Revised Papers, Lecture Notes in Computer Science, n. 2356,
Springer-Verlag, 2002.
722. Wojciech Pietkiewicz ―Praca Magisterska‖, 2002
723. Y. Fu, M. Creado, and M. Shih, ―Adaptive Web Sites by Web Usage Mining,‖
International Conference on Internet Computing (IC'2001), Las Vegas, NA, 2001
724. Z. Wang, Collaborative Filtering Using Error-Tolerant Fascicles, MSc Thesis, School of
Computing Science, Simon Fraser University, March 2001.
725. E. Blanzieri, P. Giorgini, P.Massa and S. Recla. ―Data Mining, Decision support and
Meta-Learning: towards an Implicit Culture architecture for KDD.‖ Proceedings of the
Workshop on Positions, Developments and Future Directions in connection with the
Workshop on Integrating Aspects of Data Mining, Decision Support and Meta-Learning,
European Conference in Machine Learning and European Conference (ECML'01) on
Principles and Practice of Knowledge Discovery in Databases (PKDD'01), Freiburg,
Germany, 2001.
726. V Estivill-Castro, J Yang. Non-crisp Clustering by Fast, Convergent, and Robust
Algorithms, Proceedings of the 5th European Conference on Principles of Data Mining
and Knowledge Discovery , pp. 103 - 114, 2001
727. V Estivill-Castro, J Yang. ―Categorizing Visitors Dynamically by Fast and Robust
Clustering of Access Logs,‖ Proceedings of Web Intelligence, Lecture Notes in Computer
Science, v. 2198, pp. 498-507, 2001.
I.Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos
and P. Stamatopoulos. ―Learning to Filter Spam E-Mail: A Comparison of a Naive
Bayesian and a Memory-Based Approach‖. Proceedings of the Workshop
―Machine Learning and Textual Information Access‖, European Conference on
41
Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 1-13,
Lyon, France, 2000. (cited by 198)
728. Chen-Huei Choua, Atish P. Sinha, and Huimin Zhao. ―Commercial Internet filters: Perils
and opportunities‖. Decision Support Systems. Volume 48, Issue 4, March 2010, Pages
521-530
729. Muhammad Usman Rashid and Balakrishna Garapati ―Prevention of Spyware by
Runtime Classification of End User License Agreements‖, Master Thesis, Blekinge
Institute of Technology, 2009
730. J.R. Méndeza, D. Glez-Peñaa, F. Fdez-Riverolaa, F. Dìazb and J.M. Corchado.
―Managing irrelevant knowledge in CBR models for unsolicited e-mail classification‖.
Expert Systems with Applications. Volume 36, Issue 2, Part 1, March 2009, Pages 16011614
731. Arthur Bruce , Marcos Paul, Christie Greg, Bellegarda Jerome R., Silverman Kim E. A.,
Forstall Scott, Tiene Kevin, ―Filtering of data‖, United States Patent 7640305, 12/29/2009
http://www.freepatentsonline.com/7640305.html
732. Begriche, Y. Labiod, H. ―A Prior Distribution for Anti-spam Statistical Bayesian
Model‖, in Proceedings of Network and Service Security, 2009. N2S '09. , pp 1 – 5, 2009
733. Joshua T. Goodman et al ―Intelligent quarantining for spam prevention‖, Patent number:
7543053, 2009
734. Tsan-Ying Yu, Wei-Chih Hsu, "E-mail Spam Filtering Using Support Vector Machines
with Selection of Kernel Function Parameters," icicic, pp.764-767, 2009 Fourth
International Conference on Innovative Computing, Information and Control, 2009
735. Joshua T. Goodman et al, ―Obfuscation of spam filter‖, US Patent No: 7519668, 2009
736. Xavier Ricco, Stéphane Deketelaere, Jo De Lafonteyne, Alexandre Girardi, ―Visual Error
Resolution Strategy for highly-structured text entry using Speech Recognition in FP6ALLADIN project‖, 2009
737. Robert L. Rounthwaite et al, ―Feedback loop for spam prevention‖, US Patent number:
7558832, 7 Jul 2009
738. Matthew Changa and Chung Keung Poon. ―Using phrases as features in email
classification‖. Journal of Systems and Software, Volume 82, Issue 6, June 2009, Pages
1036-1045
739. Alaa El-Halees. ―Filtering Spam E-Mail from Mixed Arabic and English Messages: A
Comparison of Machine Learning Techniques‖. The International Arab Journal of
Information Technology, Vol. 6, No. 1, January 2009, pages 52-89
740. Biju Issac, Wendy Japutra Jap and Jofry Hadi Sutanto. ―Improved Bayesian Anti-Spam
Filter Implementation and Analysis on Independent Spam Corpuses‖. Proceedings of the
2009 International Conference on Computer Engineering and Technology - Volume 02,
Pages: 326-330
741. El-Sayed, M. El-Alfy and Radwan E. Abdel-Aal. ―Using GMDH-based networks for
improved spam detection and email feature analysis‖, in Soft Computing, 2009 Elsevier
742. Bogdan Vrusias and Ian Golledge. ―Online Self-Organised Map Classifiers as Text Filters
for Spam Email Detection‖. Journal of Information Assurance and Security 4 (2009) pp
151-160
743. Gu-Hsin Lai, Chao-Wei Chou, Chia-Mei Chen and Ya-Hua Ou. ―Anti-spam Filter Based
on Data Mining and Statistical Test‖. Computer and Information Science, Springer Berlin
/ Heidelberg. Volume 208, Pages 179-192, 2009
744. Haiyan Wang, Runsheng Zhou and Yi Wang. ―An Anti-spam Filtering System Based on
the Naive Bayesian Classifier and Distributed Checksum Clearinghouse‖. In Third
International Symposium on Intelligent Information Technology Application, NanChang,
China, November 21-November 22, vol. 1, pp.128-131, 2009
745. Amparo Ruiz-Sepúlveda, José L. Triviño-Rodriguez and Rafael Morales-Bueno.
―Computing a Comprehensible Model for Spam Filtering‖. In
Discovery
Science,
Volume 5808/2009, pages 457-464, 2009
746. Enrico Blanzieri and Anton Bryl. ―A survey of learning-based techniques of email spam
filtering‖. In Artificial Intelligence Review, Vol 29, Number 1, pp 63-92, March, 2008,
Springer Date 2009
42
747. Martin Boldt, Andreas Jacobsson, Niklas Lavesson, Paul Davidsson, "Automated
Spyware Detection Using End User License Agreements", IEEE 2 nd Conf. on Information
Security and Assurance, pp. 445-452, Apr. 2008
748. WF Hsiao, TM Chang ―An incremental cluster-based approach to spam filtering‖, Expert
Systems With Applications, 2008
749. M Horie, SW Neville ―Addressing Spam at the Systems-Level Through a Peered Overlay
Network-Based Approach‖, pp 449-453, 2008
750. Subramanian Appavu alias Balamurugan, Ramasamy Rajaram, "Learning to Classify
Threaten E-mail," ams,pp.522-527, 2008 Second Asia International Conference on
Modelling Simulation, 2008
751. C Chen, Y Gong, R Bie, X Gao ―Searching for Interacting Features for Spam Filtering‖, I
Proceedings of the 5th international symposium on Neural Networks - ISNN 2008 –
Springer Volume 5263/2008, pp 491-500
752. El-Alfy, E.-S.M.; Al-Qunaieer, F.S., "A fuzzy similarity approach for automated spam
filtering," Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS
International Conference on , vol., no., pp.544-550, March 31 2008-April 4 2008
753. MP Hayati ―A Framework for Email and Image Spam Detection for Improving Web
Quality‖, Thesis 2008
754. Blanzieri, Enrico and Bryl, Anton (2008) E-Mail Spam Filtering with Local SVM
Classifiers. Technical Report DISI-08-013, Ingegneria e Scienza dell'Informazione,
University of Trento.
755. CH Chou, AP Sinha, H Zhao ―A text mining approach to Internet abuse detection‖ In
Information Systems and E-Business Management Journal, Volume 6, Number 4 /
September, 2008, pp 419-439
756. M. Rafiqul Islam, Wanlei Zhou, Morshed U. Chowdhury, "Email Categorization Using
(2+1)-Tier Classification Algorithms," icis,pp.276-281, Seventh IEEE/ACIS International
Conference on Computer and Information Science (icis 2008), 2008
757. O de Inteligencia Artificial, M Spain ―Evaluating Cost-Sensitive Unsolicited Bulk Email
Categorization‖, 2008
758. Gordon V. Cormack (2008) "Email Spam Filtering: A Systematic Review", Foundations
and Trends in Information Retrieval: Vol. 1: No 4, pp 335-455
759. A. Jacobsson, ―Privacy and Security in Internet-Based Information Systems‖, Doctoral
Dissertation, School of Engineering, Blekinge Institute of Technology, Ronneby, Sweden,
2008
760. JT Goodman, RL Rounthwaite, GJ Hulten, W Yih, P It ―Training filters for detecting
spasm based on IP addresses and text-related features‖, US Patent 7,464,264, 2008
761. 累积反馈学习的简单贝叶斯垃圾邮件过滤 张学农,张立成 - 计算机应用与软件,
2008
762. 基于朴素贝叶斯和支持向量机的自适应垃圾短信过滤系统
金展,范晶,陈峰,徐从富 - 计算机应用, 2008
763. 基于多过滤器集成学习的在线垃圾邮件过滤 刘伍颖,王挺 - 中文信息学报, 2008
764. 基于朴素贝叶斯和支持向量机的自适应垃圾短信过滤系统
金展,范晶,陈峰,徐从富 - 计算机应用, 2008
765. 一种基于主动贝叶斯分类技术的垃圾邮件过滤方法
李笛,张玉红,胡学钢
合肥工业大学学报:自然科学版, 2008
766. 基于简单贝叶斯的中英文垃圾邮件过滤的比较分析
张学农,张立成
计算机应用与软件, 2008
767. F. Fdez-Riverolaa, E.L. Iglesiasa, F. Dìazb, J.R. Méndeza and J.M. Corchado
―SpamHunting: An instance-based reasoning system for spam labelling and filtering‖, in
Decision Support Systems, Vol 43, Issue 3, April 2007, Pages 722-736.
768. Md Rafiqul Islam and Wanlei Zhou ―Architecture of Adaptive Spam Filtering Based on
Machine Learning Algorithms‖ in Lecture Notes in Computer Science Springer, Volume
4494, pp 458-469, 2007.
769. Enrico Blanzieri and Anton Bryl. Highest probability SVM nearest neighbor classifier for
spam filtering. Technical report #DIT-07-007. 2007.
770. Youn S., McLeod D., "Efficient Spam Email Filtering using Adaptive Ontology," itng,
pp. 249-254, International Conference on Information Technology (ITNG'07), 2007.
43
771. I. Koprinska, J. Poon, J. Clark, and J. Chan. Learning to classify e-mail. Information
Sciences, 177(10) : 2167–2187, 2007.
772. Helmut Berger, Dieter Merkl, Michael Dittenbach, ―A comparison of data preparation
approaches for e-mail categorisation‖ in International Journal of Intelligent Information
and Database Systems, Issue: Volume 1, Number 2 / 2007, pp 91- 121.
773. Seongwook Youn, Dennis McLeod ―Spam Email Classification using an Adaptive
Ontology‖, In Journal Of Software, Vol. 2, No. 3, September 2007.
774. J Collier, P White, E Maedge, J Ready, M Olson and S Loughmiller ―Dynamic message
filtering‖, US Patent No 6161130, 2007.
775. Van Zyl, Jacobus ―Fuzzy set covering as a new paradigm for the induction of fuzzy
classification rules‖, PhD Dissertation Mannheim, Universität Mannheim, 2007.
776. RL Rounthwaite, JT Goodman, DE Heckerman, JD Mehr ―Feedback loop for spam
prevention‖, US Patent No: 7219148, May 2007.
777. Jerome R. Bellegarda ―Latent Semantic Mapping: Principles And Applications‖,
Synthesis Lectures on Speech & Audio Processing, Morgan & Claypool Publishers, 2007.
778. M. Dolores del Castillo, Angel Iglesias and J. Ignacio Serrano, ―Detecting Phishing Emails by Heterogeneous Classification‖ in Lecture Notes in Computer Science, Springer,
vol. 4881, pp 206- 305, 2007.
779. Lai, Chih-Chin; Wu, Chih-Hung, "Particle Swarm Optimization-Aided Feature Selection
for Spam Email Classification," Innovative Computing, Information and Control, 2007.
ICICIC '07. Second International Conference on, vol., no., pp.165-165, 5-7 Sept. 2007.
780. M. Dolores del Castillo, Ángel Iglesias and J. Ignacio Serrano, ―An Integrated Approach
to Filtering Phishing E-mails‖, in Lecture Notes in Computer Science, Springer, vol.
4739, pp.321-328, 2007.
781. Gordon V. Cormack, Thomas R. Lynam, ―Online supervised spam filter evaluation‖,
ACM Transactions on Information Systems (TOIS), v.25 n.3, p.11-es, July 2007.
782. Chih-Chin Lai, ―An empirical study of three machine learning methods for spam
filtering‖, in Knowledge-Based Systems, Volume 20, Issue 3, April 2007, Pages 249-254.
783. Ahmed Khorsi ―An Overview of Content-Based Spam Filtering Techniques‖, in
Informatica 31 (2007) 269-277.
784. Blanzieri, Enrico and Bryl, Anton (2007) Evaluation of the Highest Probability SVM
Nearest Neighbor Classifier with Variable Relative Error Cost. Technical Report DIT-07025, Informatica e Telecomunicazioni, University of Trento.
785. Debbie Zhang, Simeon Simoff and John Debenham, ―Message Retrieval and
Classification from Chat Room Servers Using Bayesian Networks‖, in IFIP International
Federation for Information Processing, vol. 228, pp 569-574, 2007.
786. NE Aoki ―Method Apparatus for managing subscription-type messages‖, US Patent No
7224778, May 2007.
787. Walter Daelemans, Jakub Zavrel, Ko van der Sloot ―TiMBL: Tilburg Memory-Based
Learner‖, Technical Report – ILK 07-03, 2007.
788. LiMin Wang, ChunHong Cao, XiongFei Li and HaiJun Li ―Finding the Optimal Feature
Representations for Bayesian Network Learning‖, in Lecture Notes in Computer Science
Springer, vol. 4426, pp965-870, 2007.
789. Marsono, Muhammad Nadzir, ―Towards improving e-mail content classification for spam
control: architecture, abstraction, and strategies‖, University of Victoria, 2007.
790. Tunga Güngör and Ali Çıltık, ―Developing Methods and Heuristics with Low Time
Complexities for Filtering Spam Messages‖, in Lecture Notes in Computer Science
Springer, vol. 4592, pp35-47, 2007.
791. M Garuba, J Li, L Burge, "Comparative Analysis of Email Filtering Technologies," itng,
pp. 785-789, International Conference on Information Technology (ITNG'07), 2007.
792. Chris Fleizach, Geoffrey M. Voelker and Stefan Savage, ―Slicing Spam with Occam‘s
Razor‖, 2007.
793. RL Rounthwaite, JT Goodman, DE Heckerman, JC Platt ―Adaptive junk message
filtering system‖, US Patent No: 7249162, 2007.
794. JT Goodman, RL Rounthwaite, D Gwozdz, JD Mehr ―Origination/destination features
and lists for spam prevention‖, US Patent No: 7272853, 2007.
795. S. J. Delany and D. Bridge. Catching the drift: Using feature-free case-based reasoning
for spam filtering. In Procs. Of the 7th International Conference on Case Based
Reasoning, Belfast, Northern Ireland, 2007.
44
796. Pang, Xiu-Li; Feng, Yu-Qiang; Jiang, Wei, "A Spam Filter approach with the Improved
Machine Learning Technology," Natural Computation, 2007. ICNC 2007. Third
International Conference on , vol.2, no., pp.484-488, 24-27 Aug. 2007
797. Ming, Liu; Yunchun, Li; Wei, Li, "Spam Filtering by Stages," Convergence Information
Technology, 2007. International Conference on, vol., no., pp.2209-2213, 21-23 Nov.
2007.
798. Wong, Tak-Lam; Chow, Kai-On; Wong, Franz, "Incorporting Keyword-Based Filtering
to Document Classification for Email Spamming," Machine Learning and Cybernetics,
2007 International Conference on , vol.7, no., pp.3899-3904, 19-22 Aug. 2007.
799. Lin Chen, Li Bi-cheng, ―Application of categorization based on distance function in spam
filtering‖, in Computer Engineering and Design, vol.28 n.2, pp422-423, 2007.
800. JRFR Mendez, Florentino Fdez-Riverola, Fernando Diaz and Juan M. Corchado
―Sistemas inteligentes para la detección y filtrado de correo spam: una revisión‖, in
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.23 (2004),
pp. 1-4, 2007.
801. Neil Cooke,1 Lee Gillam2 and Ahmet Kondoz1 ―The Best Kept Secrets with Corpus
Linguistics‖ 2007.
802. Islam, M. Rafiqul; Zhou, Wanlei, "Email Categorization Using Multi-stage Classification
Technique," Parallel and Distributed Computing, Applications and Technologies, 2007.
PDCAT '07. Eighth International Conference on , vol., no., pp.51-58, 3-6 Dec. 2007.
803. WANG Qing-Xiang GUANG Kai PAN Jin-Gui ―Classify E-mails by Support Vector
Machine‖, in Computer Science, 2007.
804. Shlomo Hershkop, ―Behavior-based Email Analysis with Application to Spam
Detection‖, Columbia University,2006
805. Thomas R. Lynam, Gordon V. Cormack, ―On-line Supervised Filter Evaluation‖,
University of Waterloo, 2006
806. Vlado Keˇselj, Evangelos Milios, Andrew Tuttle, Singer Wang, Roger Zhang, ―DalTREC
2005 Spam Track: Spam Filtering using N-gram-based Techniques‖, Faculty of
Computer Science, Dalhousie University, Halifax, Canada, February 10, 2006.
807. Ye Wang, Hussein Abdel-Wahab, "A Multilayer Approach of Anomaly Detection for
Email Systems," iscc, pp. 48-53, 11th IEEE Symposium on Computers and
Communications (ISCC'06), 2006.
808. W. Chung, H. Chen, W. Chang and S. Chou, ―Fighting cybercrime: a review and the
Taiwan experience‖, Decision Support Systems, 2006 (in press)
809. C.-C. Yeh and C.-H. Lin, ―Near-Duplicate Mail Detection Based on URL Information for
SPAM Detection‖, Proceedings of the International Conference on Information
Networking (ICOIN), Lecture Notes in Computer Science, Sendai, Japan, January 2006
(to appear)
810. Zamolotskikh, S. J. Delany and P. Cunningham, ―A methodology for comparing
classifiers that allow the control of bias‖, Proceedings of the ACM Symposium on
Applied Computing (SAC), ACM Press, pp. 582-587, 2006.
811. S. Hershkop, Behavior-based Email Analysis with Application to Spam Detection, PhD
Thesis, Department of Computer Science, University of Columbia, USA, 2006.
812. S. J. Delany and P. Cunningham, ECUE: A Spam Filter that Uses Machine Learning to
Track Concept Drift, Technical Report TCD-CS-2006-05, Dept. of Computer Science,
Trinity College Dublin, Ireland, 2006.
813. J. R. Méndez, F. Fdez-Riverola, F. Dìaz, E. L. Iglesias and J. M. Corchado, ―A
Comparative Performance Study of Feature Selection Methods for the Anti-spam
Filtering Domain‖, in Lecture Notes in Computer Science, Springer, Volume 4065/2006,
pp106-120.
814. Youn, S., and McLeod, D. A Comparative Study for Email Classification. Proceedings of
International Joint Conferences on Computer, Information, System Sciences, and
Engineering (CISSE06), Bridgeport, CT, December, 2006.
815. James Carpintera and Ray Hunt, ―Tightening the net: A review of current and next
generation spam filtering tools‖, in Computers & Security, Volume 25, Issue 8,
November 2006, Pages 566-578.
816. George B. Bezerra,Tiago V. Barra, Hamilton M. Ferreira,Helder Knidel,Leandro Nunes
de Castro and Fernando J. Von Zuben, ―An Immunological Filter for Spam‖,in Lecture
Notes in Computer Science Springer Berlin,Volume 4163/2006, pp.446-458.
45
817. Yang Li, Bin-Xing Fang, Li Guo, "TTSF: A Novel Two-Tier Spam Filter," pdcat, pp.
503-508, Seventh International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT'06), 2006
818. Eran Reshef and Eilon Solan ―The Effects of AntiSpam Methods on Spam Mail‖, In 3rd
Conference on Email and Anti-Spam, Mountain View, ca, 2006.
819. Xin Jin, Anbang Xu, Rongfang Bie and Ping Guo ―Machine Learning Techniques and
Chi-Square Feature Selection for Cancer Classification Using SAGE Gene Expression
Profiles‖ Lecture Notes in Computer Science Springer Berlin, Vol. Volume 3916 pp106115, 2006.
820. J Alspector, A Kolcz, A Chowdhury , ―Classifier tuning based on data similarities‖ US
Patent 7089241, 2006.
821. R Hunt, J Carpinter, ―Current and New Developments in Spam Filtering‖, in: Networks,
2006. ICON '06. 14th IEEE International Conference. Sept. 2006 Volume: 2,pp 1-6.
822. Bei Hui, Yue Wu, Lin Ji, Jia Chen, "A NB-based approach to anti-spam application: DLB
Classification Model," skg, p. 78, Second International Conference on Semantics,
Knowledge, and Grid (SKG'06), 2006.
823. Feng Wang, Zhisheng You and Lichun Man ―Immune-Based Peer-to-Peer Model for
Anti-spam‖, Lecture Notes in Computer Science, Springer Berlin, Vol 4115, pp 660-671,
2006.
824. Eric McCreath, Judy Kay and Elisabeth Crawford, ―IEMS - an approach that combines
hand crafted rules with learnt instance based rules‖, 2006
825. Ben Medlock, ―An Adaptive, Semi-Structured Language Model Approach to Spam
Filtering on a New Corpus‖, in Procceedings CEAS 2006 Third Conference on Email
and AntiSpam, July 2728, 2006.
826. SJ Delany, ―Using Case-Based Reasoning for Spam Filtering‖, PhD thesis, March 2006.
827. Yang Li, Binxing Fang, Li Guo, Shen Wang, "Research of a Novel Anti-Spam Technique
Based on Users‘ Feedback and Improved Naive Bayesian Approach," icns, p. 86,
International conference on Networking and Services (ICNS'06), 2006.
828. Hyun-Jun Kim, Jenu Shrestha, Heung-Nam Kim and Geun-Sik Jo, ―User Action Based
Adaptive Learning with Weighted Bayesian Classification for Filtering Spam Mail‖, In
Lecture Notes in Computer Science, book:
AI 2006: Advances in Artificial
Intelligence, Volume 4304/2006, pp 790-798.
829. Bin Wang, Gareth J. F. Jones and Wenfeng Pan, ―Using online linear classifiers to filter
spam emails‖, in Pattern Analysis & Applications, Springer Volume 9, Number 4 /
November, 2006 pp 339-351.
830. LIN Chen, LI Bi-cheng, ―New Effective method for spam filtering‖, in journal of
Computer Applications, vol. 28, n.2, pp1980-1982, 2006.
831. HUI Bei ,WU Yue ,CHEN Jia, ―The Research of NB-based DLB Classification Antispam‖, in Computer Science, vol. 33, n.5, pp.110-112, 2006.
832. Xavier Ricco, Stéphane Deketelaere, Jo De Lafonteyne, Alexandre Girardi ―Visual Error
Resolution Strategy for highly-structured text entry using Speech Recognition in FP6ALLADIN project‖, 2006.
833. XIE Jinjing,ZHANG Yibin ―Minimizing Cost Filtering Algorithm for Spam E- mail
Based on Bayesian‖, in Modern Electronic Technique, 2006.
834. J.R. Bellegarda, ―Latent semantic mapping‖, IEEE Signal Processing Magazine, vol. 22,
no. 5, pp. 70-80, 2005.
835. S. J. Delany, P. Cunningham, and L. Coyle, ―An Assessment of Case-Based Reasoning
for Spam Filtering‖, Artificial Intelligence Review 24, pp. 359-378, 2005.
836. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖ , Knowledge-Based Systems 18 (4-5), pp. 187195, 2005.
837. M.-F. Zhang, Y.-C. Li and W. Li, ―Survey of Application of Bayesian Classifying
Method to Spam Filtering‖, Application Research of Computers, vol. 22 no. 8 pp. 14-19,
2005.
838. C. Zhan, X.-L. Lu, X. Zhou and M.-S. Hou, ―An Improved Bayesian with Application to
Anti-Spam Email‖, Journal of Electronic Science and Technology of China, vol. 3, no. 1,
pp.30-33, 2005.
839. HU Jian, MA Fan-yuan, ―An Anti-spam Email Filtering Method Based on Morphology
Process and Key Words Extraction‖, Journal of Shanghai Jiaotong University, pp. 19631966, 2005.
46
840. C. Zhan, X.-L. Lu and X. Zhou, ―An Anti-Spam E-mail Filtering Method Based on
Bayesian‖, Computer Science, vol. 32, no. 2, pp. 73-75, 2005.
841. M. Sasaki and H. Shinnou, ―Spam Detection Using Text Clustering‖, Proceedings of the
International Conference on Cyberworlds (CW), pp. 316-319, 2005.
842. V. Keselj, E. Milios, A. Tuttle, S. Wang, R. Zhang, ―DalTREC 2005 Spam Track: Spam
Filtering Using N-gram-based Techniques‖, Proceedings of the 14th Text Retrieval
Conference (TREC), National Institute of Standards and Technology (NIST),
Gaithersburg, US November 2005.
843. S.-J. Horng, M.-Y. Su and C.-Y. Wu, ―An e-mail client implementation with spam
filtering and security mechanisms‖, Proceedings of the IEEE International Conference on
Web Services (ICWS), Orlando, USA, July 2005.
844. K.-M. Schneider. ―Techniques for Improving the Performance of Naive Bayes for Text
Classification‖. Proceedings of the 6th International Conference on Computational
Linguistics and Intelligent TextProcessing (CICLing), Lecture Notes in Computer
Science, 3406, pp. 682-693, 2005, Springer-Verlag.
845. Secker, A.A. Freitas and J. Timmis, ―Towards a Danger Theory Inspired Artificial
Immune System for Web Mining‖, In Web Mining: applications and techniques, A.
Scime (Ed.), pp. 145-168. Idea Group, 2005.
846. Z. Lock, Performance and Flexibility of Stereotype-based User Models, PhD Thesis,
Department of Computer Science, University of York, UK, September 2005.
847. E. Reshef and E. Solan, ―Analysis of Do-Not-Spam Registry‖, Discussion Paper 1411,
Center for Mathematical Studies in Economics and Management Science, Northwestern
University, USA, August 2005.
848. E. Reshef and E. Solan, ―The Effect of Filters on Spam Mail‖, Discussion Paper 1402,
Center for Mathematical Studies in Economics and Management Science, Northwestern
University, USA, June 2005.
849. R. Shrestha and Y. Lin, ―Improved Bayesian Spam Filtering Based on Co-weighted
Multi-area Information‖, Proceedings of the 9th Pacific-Asia Conference (PAKDD),
Lecture Notes in Computer Science, 3518, pp. 650-660, 2005, Springer-Verlag.
850. H. Berger and D. Merkl, ―A Comparison of Support Vector Machines and SelfOrganizing Maps for e-Mail Categorization‖, Proceedings of the 4th Australasian Data
Mining Conference (AusDM), Sydney, Australia, December 2005.
851. J.R. Bellegarda, ―Latent Semantic Mapping: Dimensionality Reduction via Globally
Optimal Continuous Parameter Modeling‖, Proceedings of the IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), IEEE Press, pp. 129-134,
2005.
852. H. Berger, M. Koehle and D. Merkl, ―On the Impact of Document Representation on
Classifier Performance in e-Mail Categorization‖, Proceedings of the 4th International
Conference on Information Systems Technology and its Applications (ISTA), pp. 19–30,
Palmerston North, New Zealand, May 2005.
853. M. Chang, and C.K. Poon, ―Catching the picospams‖, Proceedings of the Foundations of
Intelligent Systems, 15th International Symposium (ISMIS), Lecture Notes in Artificial
Intelligence, 3488 pp. 641-649, 2005.
854. L. Xiao and N. Zincir-Heywood, ―Comparison of a SOM based sequence analysis system
and naive Bayesian classifier for spam filtering‖, Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN), vol. 4, pp. 2571 – 2576, 2005.
855. P. Deepak and S. Parameswaran, ―Spam Filtering using Spam Mail Communities‖,
Proceedings of the IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT), pp. 377-383, 2005.
856. D. Madigan, ―Statistics and the War on Spam,‖ In Statistics, A Guide to the Unknown,
4th edition, R. Peck, G. Casella, G. W. Cobb, R. Hoerl, D. Nolan, R. Starbuck, H. Stern
(eds.), Brooks/Cole, 2005.
857. G. Cormack and T. Lynam, ―Spam Corpus Creation for TREC‖, Proceedings of the
second Conference on Email and Anti-Spam (CEAS), Stanford University, July 2005.
858. A. Kinley, ―Acquiring Similarity Cases for Classification Problems‖, Proceedings of the
6th International Conference on Case-Based Reasoning (ICCBR), Lecture Notes in
Artificial Intelligence, n. 3620, pp.327-338, Springer Verlag, 2005.
859. S. Chhabra, Fighting spam, phishing and email fraud, MSc thesis, Dept. of Computer
Science, University of California, Riverside, USA, 2005.
47
860. Wang Bin and Pan Wenfeng, ―A Survey of Content-based Anti-spam Email Filtering‖,
Journal of Chinese Information Processing, vol.19, no.5 pp.1-10, 2005.
861. Lin Chen, Li Bicheng, Song Hui ―A Method for Text Filter Based on PCA and RS‖, in
Control & Automation vol. 21 issue 11, pp 156-158, 2005.
862. Andrew Secker, Alex Freitas and Jon Timmis ―Immune System for Web Mining‖ in
Web Mining: Applications and Techniques, pp145-168, 2005.
863. Jon Kågström , ―Improving Naive Bayesian Spam Filtering‖ MSc Thesis, 2005.
864. M. D. del Castillo and J. I. Serrano, ―An Interactive Hybrid System for Identifying and
Filtering Unsolicited Email‖, Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence (WI), pp. 814-815, 2005.
865. Gulsen Eryigit , A. Cuneyd Tantug ―A Comparison Of Support Vector Machines,
Memory- Based And Naïve Bayes Techniques On Spam Recognition‖ in Procceedings of
the 23rd IASTED 2005, Innsbruck, Austria, pp 457-462, 2005.
866. Ching-Lung Fu, Daniel Silver and James Blustein, ―Chronological Sampling for Email
Filtering‖, in Procceedings UM2005, 2005.
867. Xiao Luo; Zincir-Heywood, N., "Comparison of a SOM based sequence analysis system
and naive Bayesian classifier for spam filtering," Neural Networks, 2005. IJCNN '05.
Proceedings. 2005 IEEE International Joint Conference on , vol.4, no., pp. 2571-2576 vol.
4, 31 July-4 Aug. 2005.
868. José María Gutiérrez, Flavia Maria Santoro and Pedro Isaìas ―Actas Da Conferência
Iadis Ibero-Americana Www/Internet 2005‖ in ciawi05, 2005.
869. Daniel Gayo Avello ―blindLight (Una nueva técnica para procesamiento de texto no
estructurado mediante vectores de n-gramas de longitud variable con aplicación a diversas
tareas de tratamiento de lenguaje natural)‖, PhD Thesis, 2005.
870. ZHANG Ming-feng, LI Yun-chun, LI Wei ―Survey of Application of Bayesian
Classifying Method to Spam Filtering‖, Technical Report, 2005.
871. ―An Anti-Spam E-mail Filtering Method Based on Bayesian‖, in Computer Science,
2005 Vol.32 No.2 P.73-75.
872. Wuying Liu, Ting Wang ―An Ensemble Learning Method of Multi-filter for Spam
Filtering‖, 2005.
873. Sangho Lee ―Spam - Filtering by Identifying Automatically Generated Email Accounts‖,
pp. 378~384, 2005.
874. L. Zhang, J. Zhu and T. Yao, ―An evaluation of statistical spam filtering techniques‖,
ACM Transactions on Asian Language Information Processing (TALIP), Volume 3, Issue
4, pp. 243 – 269, December 2004.
875. H. Berger and D. Merkl, ―A Comparison of Text-Categorization Methods applied to NGram Frequency Statistics‖, Proceedings of the 17th Australian Joint Conference on
Artificial Intelligence (AI), pp. 998–1003, Cairns, Australia, December 2004.
876. P. Ivanov Nakov and P. Markov Dobrikov, ―Non-Parametric Spam Filtering based on
kNN and LSA‖, Proceedings of the 33th National Spring Conference of the Bulgarian
Mathematicians Union, Borovets, Bulgaria, April 2004.
877. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖, Proceedings of the 24th SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence, (AI),
pp3-16, Springer, 2004.
878. S. J. Delany and P. Cunningham, ―An Analysis of Case-base Editing in a Spam Filtering
System‖, Proceedings of Seventh European Conference on Case-Based Reasoning
(ECCBR), Lecture Notes in Artificial Intelligence, n. 3155, pp.128-141, Springer Verlag,
2004.
879. S. J. Delany, P. Cunningham, and L. Coyle, ―An Assessment of Case-Based Reasoning
for Spam Filtering‖, Proceedings of the Fifteenth Irish Conference on Artificial
Intelligence and Cognitive Science (AICS), pp. 9-18, 2004.
880. F. D. Garcia, J.-H. Hoepman, and J. van Nieuwenhuizen. ―Spam Filter Analysis‖.
Proceedings of the IFIP TC11 19th Int. Conf. on Information Security (SEC), August
2004.
881. K.-M. Schneider. ―Learning to Filter Junk E-Mail from Positive and Unlabeled
Examples‖. Proceedings of the First International Joint Conference on Natural Language
Processing (IJCNLP), Lecture Notes in Computer Science, 3248, pp. 426-435, 2004,
Springer-Verlag.
48
882. K.-M. Schneider. ―On Word Frequency Information and Negative Evidence in Naive
Bayes Text Classification‖. Proceedings of the 4th International Conference (EsTAL),
Lecture Notes in Computer Science, 3230, pp. 474-485, 2004, Springer-Verlag.
883. W. Daelemans, J. Zavrel, K. van der Sloot and A. van den Bosch. TiMBL: Tilburg
Memory Based Learner, version 5.1, Reference Guide, ILK Technical Report 04-02,
Induction of Linguistic Knowledge, Computational Linguistics, Tilburg University, 2004.
884. C-L Fu and D. Silver, ―Time-Sensitive Sampling for Spam Filtering‖, Proceedings of the
17th Conference of the Canadian Society for Computational Studies of Intelligence (AI),
Lecture Notes in Computer Science, 3060, pp. 551-553, 2004, Springer-Verlag.
885. Schneider, K.-M. (2004). Learning to filter junk e-mail from positive and unlabeled
examples. In Proceedings of the 1st International Joint Conference on Natural Language
Processing (IJCNLP-04), Sanya City, Hainan Island, China, pages 602–607.
886. Madigan, D. Statistics and the War on Spam, Statistics, A Guide to the Unknown, 2004.
887. J. Moon, T. Shon, J.-T. Seo, J. Kim and J. Seo, An approach for spam e-mail detection
with support vector machine and n-gram indexing. In: C. Aykanat, T. Dayar and İ.
Körpeoğlu, Editors, Proceedings of International Symposium on Computer and
Information Sciences, Springer, Antalya (2004), pp. 351–362.
888. Loughmiller Scott, Olson Mike, Ready Jeff, Maedge Ehren, White Phil, Collier Jason
―Dynamic message filtering‖, US Patent, 2004.
889. Wingyan Chunga, Hsinchun Chenb, Weiping Changc, Shihchieh Chou ―Fighting
cybercrime: a review and the Taiwan experience‖, in Decision Support Systems, 2004.
890. Preslav Ivanov Nakov and Panayot Markov Dobrikov ―Non-Parametric Spam Filtering
based on kNN and LSA‖, Technical Report, 2004.
891. Sophia Katrenko ―Die Erkennung der deutschsprachigen Spam-Emails: Naıve-Bayes vs.
ahnlichkeitsbasiertes Lernen‖, Technical Report, 2004.
892. I. Koprinska, F. Trieu, J. Poon and J. Clark, ―Email Classification by Decision Forests‖,
Proceedings of the Eighth Australasian Document Computing Symposium (ADCS),
Canberra, Australia, December 2003.
893. J. Clark, I. Koprinska and J. Poon, ―A Neural Network Based Approach to Automated EMail Classification‖, Proceedings of Web Intelligence (WI), pp. 702-705, IEEE, 2003.
894. P. Soucy and G. W. Mineau, ―Feature Selection Strategies for Text Categorization‖,
Proceedings of the 16th Conference of the Canadian Society for Computational Studies of
Intelligence (AI), Lecture Notes in Computer Science, 2671, pp. 505-509, 2003, SpringerVerlag.
895. E. McCreath and J. Kay, ―IEMS: Helping Users Manage Email‖, Proceedings of the
Nineteenth International Conference on User Modeling, Lecture Notes in Computer
Science, 2702, pp. 263-272, 2003, Springer-Verlag.
896. A. Kolcz, A. Chowdhury, J. Alspector, ―Data duplication: an imbalance problem?‖
Proceedings of the Workshop on Learning from Imbalanced Datasets II, at the
International Conference on Machine Learning (ICML), Washington DC, 2003.
897. K.-M. Schneider. ―A Comparison of Event Models for Naive Bayes Anti-Spam E-Mail
Filtering‖. In Proceedings of the 10th Conference of the European Chapter of the
Association for Computational Linguistics (EACL 03), Budapest, Hungary, 2003.
898. S. Katrenko, ―Die Erkennung der deutschsprachigen Spam-Emails: Naive-Bayes vs.
ahnlichkeitsbasiertes Lernen‖ Proceedings of GI Workshop ―Lehren - Lernen - Wissen –
Adaptivitaet‖, section ―Maschinelles Lernen, Wissensentdeckung und Data Mining‖
(FGML), Karlsruhe, October 6-8, 2003.
899. P. Cunningham, N. Nowlan, S. J. Delany, M. Haahr, ―A Case-Based Approach to Spam
Filtering that Can Track Concept Drift,‖ Proceedings of the Workshop on Long-Lived
CBR Systems, Case-Based Reasoning Research and Development, 5th International
Conference on Case-Based Reasoning (ICCBR), Trondheim, Norway, June 2003.
900. ZHANG Le and YAO Tian-shun, ―Filtering Junk Mail with A Maximum Entropy
Model‖, Proceedings of 20th International Conference on Computer Processing of
Oriental Languages ICCPOL, pp 446-453, Shen Yang, China, 2003.
901. J.R. Bellegarda, D. Naik and K.E.A. Silverman, ―Automatic junk e-mail filtering based
on latent content‖, Proceedings of the IEEE Workshop on Automatic Speech Recognition
and Understanding (ASRU), IEEE Press, pp. 465-470, 2003.
902. P. Ruch, Applying Natural Language Processing to Information Retrieval in Clinical
Records and Biomedical Texts, PhD Thesis, Department of Computer Science, University
of Geneva, Switzerland, 2003.
49
903. B Medlock, A Language Model Approach to Spam Filtering, Technical Report,
Cambridge University Computer Laboratory, 2003.
904. B. Medlock, A Generative, Adaptive Language Model Approach to Spam Filtering,
MPhil Thesis, Computer Laboratory, University of Cambridge, UK, July, 2003.
905. C. F. Munte, Spam - Zur Problematik und Bekämpfung von unerwünschten Massenmails,
Diplomarbeit, Wirtschaftswissenschaftliche Fakultaet, University of Passau, Germany,
October 2003.
906. F. Dietz, Filtering of unsolicited email messages Using a Bayesian classifier, BSc Thesis,
Department of Mathematics and Computer Science, University of Mannheim, December
2003.
907. F Dietz ―Filtering of unsolicited email messages Using a Bayesian classifier‖ Bachelor
Dissertation, University of Mannheim, 2003.
908. T. Nicholas, ―Using AdaBoost and Decision Stumps to Identify Spam E-mail‖, Stanford
University Course Project (Spring 2002/2003)
909. Patrick Ruch ―Applying Natural Language Processing to Information, Retrieval in
Clinical Records and Biomedical Texts‖ PhD Thesis, 2003.
910. F. Smadja and H. Tumblin, ―Automatic Spam Detection as a Text Classification Task‖
Proceedings of the 2nd Workshop on Operational Text Classification Systems (OTC), at
the ACM SIGIR Conference on R&D in IR (SIGIR), Tampere, Finland, August, 2002.
911. J.M. Gomez Hidalgo, ―Evaluating Cost-Sensitive Unsolicited Bulk Email
Categorization,‖ Proceedings of the ACM Symposium on Applied Computing, Spain,
March, 2002.
912. E. Crawford, J. Kay and E. McCreath, ―IEMS - The Intelligent Email Sorter‖ In
Proceedings of the Nineteenth International Conference on Machine Learning, 2002,
Sydney, Australia.
913. J.M. Gomez Hidalgo E. Puertas Sanz and M. Mana Lopez, ―Evaluating Cost-Sensitive
Unsolicited Bulk Email Categorization,‖ Proceedings of the 6th International Conference
on the Statistical Analysis of Textual Data, France, March, 2002.
914. J.M. Gomez Hidalgo, ―Text Mining and Internet Content Filtering‖, Tutorial in the 12th
European Conference on Machine Learning (ECML) / European Conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD), 2002.
915. Y. Lian, E-mail Filtering, MSc Thesis, Department of Computer Science, University of
Sheffield, 2002.
916. D. Herbers, Collaborative E-Mail Filtering, MSc Thesis, Department of Electrical
Engineering and Computer Science, University of Kansas 2002.
917. T. Gaustad and G. Bouma, ―Accurate Stemming of Dutch for Text Classification‖, In
Language and Computers, Selected Papers from the Twelfth Computational Linguistics in
the Netherlands (CLIN) Meeting. M. Theune, A. Nijholt and H. Hondorp (Eds.), pp. 104117, Rodopi, 2002.
918. Yoram Singer, John Shawe-Taylor ―Deliverable Identication Sheet‖ in IST-2001-25431
KerMIT, September 27, 2002, pp. 2-29.
919. L. Martin Martìn and I. Dotú Rodrìguez, ―Introducción y Evaluación de Heurìsticas en las
Técnicas de Filtrado de Spam Mediante Aprendizaje Automático‖, Primera Conferencia
de Procesamiento del Lenguaje Natural de la Universidad Europea de Madrid, 2001.
920. A. Kolcz and J. Alspector, ―SVM-based Filtering of E-mail Spam with Content-specific
Misclassification Costs,‖ Proceedings of the Workshop on Text Mining (TextDM), IEEE
International Conference on Data Mining, 2001.
921. E. Crawford, J. Kay and E. McCreath, ―Automatic Induction of Rules for e-mail
Classification‖, Proceedings of The Australasian Document Computing Symposium
(ADCS), Australia, December 2001.
922. W. Daelemans, J. Zavrel, K. van der Sloot and A. van den Bosch. TiMBL: Tilburg
Memory Based Learner, version 4.0, Reference Guide, ILK Technical Report 01-04,
Center for Language Studies, Faculty of Arts, Tilburg University, 2001.
923. X. Carreras and L. Marquez, ―Boosting Trees for Anti-Spam Email Filtering,‖
Proceedings of the Conference on Recent Advances in Natural Language Processing
(RANLP), pp.58-64, Bulgaria, 2001.
924. Duhong Chen, Tongjie Chen, and Hua Ming ―Spam Email Filter Using Naïve Bayesian,
Decision Tree, Neural Network, and AdaBoost‖, 2001
925. J.M. Gomez Hidalgo, M. Mana Lopez and E. Puertas Sanz, ―Combining Text and
Heuristics for Cost-Sensitive Spam Filtering,‖ Proceedings of the 4th Conference on
50
Computational Natural Language Learning and of the 2nd Learning Language in Logic
Workshop, pp. 99 – 101, Lisbon, Portugal, 2000.
I.Androutsopoulos, J. Koutsias, K.V. Chandrinos, G. Paliouras, and C.D.
Spyropoulos, "An Evaluation of Naive Bayesian Anti-Spam Filtering".
Proceedings of the Workshop on Machine Learning in the New Information Age,
11th European Conference on Machine Learning (ECML), pp. 9-17, Barcelona,
Spain, 2000. (cited by 285)
926. Sang Min Lee, Dong Seong Kim, Ji Ho Kim, Jong Sou Park, "Spam Detection Using
Feature Selection and Parameters Optimization," cisis, pp.883-888, 2010 International
Conference on Complex, Intelligent and Software Intensive Systems, 2010
927. KC Ying, SW Lin, ZJ Lee, YT Lin , ―An ensemble approach applied to classify spam emails‖, Expert Systems with Applications, Volume 37, Issue 3, 15 March 2010, Pages
2197-2201
928. CM Lorenzetti, RL Cecchini, AG Maguitman, AA Benczúr, ―Métodos para la Selección y
el Ajuste de Caracterısticas en el Problema de la Detección de Spam‖, WICC 2010 - XII
Workshop de Investigadores en Ciencias de la Computación, 2010
929. Farooq Ahmad Mira, Mohamad Tariq Banday, ―Control of spam: a comparative
approach with special reference to India ‖, in Information & Communications
Technology Law, Volume 19, Issue 1 March 2010 , pages 27 - 59
930. Hao Xua and Bo Yu, ―Automatic thesaurus construction for spam filtering using revised
back propagation neural network‖, in Expert Systems with Applications, Volume 37,
Issue 1, January 2010, Pages 18-23
931. Ola Amayri and Nizar Bouguila, ―A study of spam filtering using support vector
machines‖, Artificial Intelligence Review, Volume 34, Number 1, pp 73-108, June, 2010
932. Alaa El-Halees. ―Filtering Spam E-Mail from Mixed Arabic and English Messages: A
Comparison of Machine Learning Techniques‖. The International Arab Journal of
Information Technology, Vol. 6, No. 1, January 2009, pages 52-89
933. Guzella, Thiago S., Caminhas, Walmir M, ―A review of machine learning approaches to
Spam filtering‖, in Expert Systems with Applications. Vol. 36, no. 7, pp. 10206-10222.
Sept. 2009
934. Ioannis Katakis, Grigorios Tsoumakas, Evangelos Banos, Nick Bassiliades and Ioannis
Vlahavas, ―An adaptive personalized news dissemination system‖, in Journal of
Intelligent Information Systems, Volume 32, Number 2, pp 191-212, April, 2009
935. J.R. Méndeza, D. Glez-Peñaa, F. Fdez-Riverolaa, F. Dìazb and J.M. Corchado,
―Managing irrelevant knowledge in CBR models for unsolicited e-mail classification‖, in
Expert Systems with Applications, Volume 36, Issue 2, Part 1, March 2009, Pages 16011614
936. Pera, M.S. & Ng, Y.-K. ―SpamED: A Spam Email Detection Approach Based on Phrase
Similarity‖ in Journal of the American Society for Information Science and Technology
(JASIST), 60(2), 393-409, 2009
937. Marsono, M.N., El-Kharashi, M.W., Gebali, F.: Targeting spam control on middleboxes:
Spam detection based on layer-3 e-mail content classification. Computer Networks 53(6),
835–848, 2009
938. P Taninpong, S Ngamsuriyaroj, ―Incremental Naïve Bayesian Spam Mail Filtering and
Variant Incremental Training‖, Proceedings of the 2009 Eigth IEEE/ACIS International
Conference on Computer and Information Science, pp 383-387, 2009
939. Ruan, Guangchen and Tan, Ying "A three-layer back-propagation neural network for
spam detection using artificial immune concentration" Soft Computing: A Fusion of
Foundations, Methodologies and Applications, 2009
940. Rafiqul Islam, Wanlei Zhou, Yang Xiang and Abdun Naser Mahmood, ―Spam filtering
for network traffic security on a multi-core environment‖, in Concurrency and
Computation: Practice and Experience, Volume 21 Issue 10, Pages 1307 – 1320, 2009
51
941. Clint Burfoot and Timothy Baldwin, ―Automatic satire detection: Are you having a
laugh?‖ In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 161–
164, Suntec, Singapore, August, Association for Computational Linguistics 2009
942. Petros Belsis, Kostas Fragos, Stefanos Gritzalis and Christos Skourlas, ―Applying
effective feature selection techniques with hierarchical mixtures of experts for spam
classification‖, in Journal of Computer Security, Volume 17, Number 3, pp 239-268,
2009
943. Jan Göbel, Thorsten Holz and Philipp Trinius, ―Towards Proactive Spam Filtering
(Extended Abstract)‖, in Detection of Intrusions and Malware, and Vulnerability
Assessment, Volume 5587, pp 38-47, 2009
944. M. Tariq Banday and Jan, Tariq R, ―Effectiveness and Limitations of Statistical Spam
Filters‖, in Proceedings International Conference on ―New Trends in Statistics and
Optimization‖, 2009
945. Fernando Bobillo, Umberto Straccia, "Extending Datatype Restrictions in Fuzzy
Description Logics," isda, pp.785-790, 2009 Ninth International Conference on Intelligent
Systems Design and Applications, 2009
946. Pranil Gupta, Ajay Nagrale and Shambhu Upadhyaya, ―Accelerating Techniques for
Rapid Mitigation of Phishing and Spam Emails‖, in Proceedings of ESCS 2009
947. B Issac, WJ Jap, JH Sutanto, ―Improved Bayesian Anti-Spam Filter Implementation and
Analysis on Independent Spam Corpuses‖, Proceedings of the 2009 International
Conference on Computer Engineering and Technology - Volume 02, pp 326-330, 2009
948. MN Kalochristianakis, M Paraskevas, EA Varvarigos, ―Security Services in the Greek
School Network‖, International Journal of Security and Its Applications, Vol. 3, No. 3,
July, 2009
949. A Selective Learning Model For Spam Filtering, ―A Selective Learning Model For Spam
Filtering‖, in proceedings of SC2009, 2009
950. Yan, Peng | Zheng, Xuefeng | Zhu, Jianyong | Xiao, Yunhong, ―Lazy learner text
categorization algorithm based on embedded feature selection‖, Journal of Systems
Engineering and Electronics. Vol. 20, no. 3, pp. 651-659. 2009
951. Chen, Zhi-Xian ―Survey on spam filtering technology ‖, Jisuanji Yingyong Yanjiu /
Application Research of Computers. Vol. 26, no. 5, pp. 1612-1615. May 2009
952. T Takemura, T Kozu, ―A micro Data Analysis on Individual‘s Deposit- Withdrawal
Behavior‖, in Discussion Papers 2009
953. Phimphaka Taninpong, Sudsanguan Ngamsuriyaroj, "Incremental Adaptive Spam Mail
Filtering Using Naïve Bayesian Classification," snpd, pp.243-248, 2009 10th ACIS
International Conference on Software Engineering, Artificial Intelligences, Networking
and Parallel/Distributed Computing, 2009
954. Phimphaka Taninpong, Sudsanguan Ngamsuriyaroj, "Incremental Naïve Bayesian Spam
Mail Filtering and Variant Incremental Training," icis, pp.383-387, 2009 Eigth
IEEE/ACIS International Conference on Computer and Information Science (icis 2009),
2009
955. Haiyan Wang, Runsheng Zhou, Yi Wang, "An Anti-spam Filtering System Based on the
Naive Bayesian Classifier and Distributed Checksum Clearinghouse," iita, vol. 1, pp.128131, 2009 Third International Symposium on Intelligent Information Technology
Application, 2009
956. Y Tan, C Deng, G Ruan, ―Concentration based feature construction approach for spam
detection‖, in Proceedings of the 2009 international joint conference on Neural Networks,
pp 510-515, 2009
957. Y Tan, J Zhang, ―Magnifier Particle Swarm Optimization‖, in Nature-Inspired
Algorithms for Optimisation, Volume 193, pp 279-298, 2009
958. Zhai, Jun-Chang | Qin, Yu-Ping | Wang, Chun-Li, ― Improved Naive Bayesian spam
filtering algorithm ‖, in Jisuanji Gongcheng yu Yingyong (Computer Engineering and
Applications). Vol. 45, no. 14, pp. 145-148. 11 May 2009
959. Tiago A. Almeida, Akebo Yamakami, Jurandy Almeida, "Evaluation of Approaches for
Dimensionality Reduction Applied with Naive Bayes Anti-Spam Filters," icmla, pp.517522, 2009 International Conference on Machine Learning and Applications, 2009
960. Hui Yin, Fengjuan Cheng, Dexian Zhang, "Using LDA and Ant Colony Algorithm for
Spam Mail Filtering," isise, pp.368-371, 2009 Second International Symposium on
Information Science and Engineering, 2009
52
961. J Wang, K Gao, Y Jiao, G Li, ―Study on Ensemble Classification Methods towards Spam
Filtering‖, Advanced Data Mining and Applications, Volume 5678, pp 314-325, 2009
962. Pablo Daniel Agüero, Jorge Castiñeira Moreira, Monica Liberatori, Juan Carlos
Bonadero, Juan Carlos Tulli, ―Improving The Performance Of Anti-Spam Filters Using
Out-Of-Vocabulary Statistics‖, in Ingeniare. Revista chilena de ingenierìa, vol. 17 Nº 3,
2009, pp. 386-392
963. KSXMK Yilun, J Chen1 Peter, WAOH III, ―Revealing Social Networks of Spammers
Through Spectral Clustering‖, 2009
964. R Mukherjee, KR Seeja, MA Alam, ―An Artificial Immune System for Spam Detection‖,
in book ―Recent Developments in Computing and its Applications‖ editors: M. Afshar
Alam, Tamanna Siddiqui, K.R. Seeja, National Conference on Recent Developments in
Computing and its Applications, NCRDCA'09 August 12-13, 2009
965. Y Tan, J Zhang, ―Magnifier Particle Swarm Optimization‖, in book Nature-Inspired
Algorithms for Optimisation, pp 279-298 2009
966. S Kuldeep, J Audun, M Ferdous ―Spam filter optimality based on signal detection
theory‖, in Proceedings of the 2nd international conference on Security of information
and networks, pp 219-224, 2009
967. Yaakov HaCohen-Kerner, Hananya Beck, Elchai Yehudai, Mordechay Rosenstein, Dror
Mughaz, ―Cuisine: Classification using stylistic feature sets and/or name-based feature
sets‖, in Journal of the American Society for Information Science and Technology, 15322882, 2009
968. 翟军昌,
秦玉平,
王春立,
“改进的朴素贝叶斯垃圾邮件过滤算法”,
计算机工程与应用, pp 145-148页, 2009
969. 陈志贤, “垃圾邮件过滤技术研究综述”, 计算机应用研究, pp 1612-1615页, 2009
970. YUAN Bo/qiu,ZHOU Yi/min,LI Lin.LDA based feature selection for spam
filter.Computer Engineering and Applications,2009,45(25):121/124
971. 翟军昌,
“基于朴素贝叶斯算法的个性化垃圾邮件过滤”,
长春师范学院学报:
自然科学版, pp 17-20, 2009
972. 袁伯秋,
周一民,
李林,
“垃圾邮件处理中
LDA
特征选择方法”,
计算机工程与应用, pp 121-124, 2009
973. 林伟,
柳荣其,
徐熙,
“邮件过滤中一种改进的特征选择方法研究”,
计算机技术与发展, pp 84-87, 2009
974. Marsono, M.N. Watheq El-Kharashi, M. Gebali, F. ―Binary LNS-based na¿ve Bayes
inference engine for spam control: noise analysis and FPGA implementation‖, in
Computers & Digital Techniques, IET, vol. 2, issue 1, pp. 56-62, , Jan 2008.
975. Ioannis Katakis, Grigorios Tsoumakas, Evangelos Banos, Nick Bassiliades and Ioannis
Vlahavas ―An adaptive personalized news dissemination system‖, in Journal of Intelligent
Information Systems, Volume 32, Number 2, pp 191-212, available online 2008.
976. I Cid, LR Janeiro, JR Méndez, D Glez-Peña and F. Fdez-Riverola, ―The Impact of Noise
in Spam Filtering: A Case Study‖, in Lecture Notes in Computer Science, Advances in
Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects, ,
Volume 5077/2008 pp 228-241
977. RM Pampapathi ―Annotated Suffix Trees for Text Modelling and Classification‖, PhD
Thesis 2008
978. Petros Belsis1, Kostas Fragos, Stefanos Gritzalis, Christos Skourlas ―Applying effective
feature selection techniques with hierarchical mixtures of experts for spam classification‖,
in Journal of Computer Security, Volume 16, Number 6 / 2008, pp 761-790
979. NT Anh, TQ Anh, NN Binh ―Vietnamese spam detection based on language
classification‖, in Communications and Electronics, 2008. ICCE 2008, pp74-79
980. G Manco, E Masciari, A Tagarelli ―Mining categories for emails via clustering and
pattern discovery‖, in Journal of Intelligent Information Systems, 2008, Volume 30,
Number 2 / April, 2008 pp 153-181
981. Baharim, K.N. Kamaruddin, M.S. Faeizah Jusof ―Leveraging Missing Values in Call
Detail Record Using Naïve Bayes for Fraud Analysis‖, in: Information Networking, 2008.
ICOIN 2008, pp 1-5
982. MS Pera, YK Ng ―SpamED: A spam E-mail detection approach based on phrase
similarity‖, 2008
53
983. S Abu-Nimeh, D Nappa, X Wang, S Nair ―Bayesian Additive Regression Trees-Based
Spam Detection for Enhanced Email Privacy‖, in: Availability, Reliability and Security,
2008. ARES 08, pp 1044-1051
984. D Colin, C Roucairol, I Tseveendorj ―A Selective Learning Model For Spam Filtering‖,
2008
985. Likarish, P. Eunjin Jung Dunbar, D. Hansen, T.E. Hourcade, J.P.
―B-APT:
Bayesian Anti-Phishing Toolbar‖, in: Communications, 2008. ICC '08., pp1745-1749
986. Blanzieri, Enrico and Bryl, Anton (2008) E-Mail Spam Filtering with Local SVM
Classifiers. Technical Report DISI-08-013, Ingegneria e Scienza dell'Informazione,
University of Trento.
987. Asung Han, Hyun-Jun Kim, Inay Ha, Geun-Sik Jo, "Semantic Analysis of User Behaviors
for Detecting Spam Mail," iwsca, pp.91-95, 2008 IEEE International Workshop on
Semantic Computing and Applications, 2008
988. B Yu, Z Xu ―A comparative study for content-based dynamic spam classification using
four machine learning algorithms‖, in Knowledge-Based Systems Volume 21, Issue 4,
May 2008, Pages 355-362
989. L Gillam, N Cooke ―Intellectual property escaped with the email? Press F1 for help‖, in
Journal of Information Assurance and Security, 2008
990. CP Wei, HC Chen, TH Cheng ―Effective spam filtering: A single-class learning and
ensemble approach‖, in Decision Support Systems Volume 45, Issue 3, June 2008, Pages
491-503
991. Mojdeh, M., and Cormack, G.V. ―A mail client plugin for privacy-preserving spam filter
evaluation‖. In Proceedings of the 5th Conference on Email and Anti-Spam (CEAS 2008)
(2008)
992. Lindelöf, D., Morel, N., 2008. ―Bayesian estimation of visual discomfort‖, Building
Research and Information 36(1): 83-96
993. A. Kołcz1 and A. Chowdhury ―Lexicon randomization for near-duplicate detection with
I-Match‖, in The Journal of Supercomputing, Volume 45, Number 3 / September,
2008 pp255-276
994. Gargiulo, F. Penta, A. Picariello, A. Sansone, C. ―Using Heterogeneous Features for
Anti-spam Filters‖, in: Database and Expert Systems Application, 2008. DEXA '08 pp
670-674
995. S Webb ―Automatic identification and removal of low quality online information‖, PhD
Thesis, Georgia Institute of Technology 17-Nov-2008
996. Wei-Hung Lin ―Information Hiding- Watermark Approach‖, PhD Thesis National
Taiwan University of Science and Tech, 6/3/2008
997. A.G. López-Herrera, E. Herrera-Viedma, F. Herrera ―A Multiobjective Evolutionary
Algorithm for Spam E-mail Filtering‖, in Proceedings of 2008 3rd International
Conference on Intelligent System and Knowledge Engineering, pp366-371, 2008
998. Kassidy Patrick Clark ―A Survey of Content-based Spam Classi¯ers‖, October 24, 2008
999. Ziqiang Wang and Xia Sun ―An Efficient Spam Filtering Algorithm Based on NPE‖, in
Symposium on Knowledge Acquisition and Modeling 2008 IEEE, 2008
1000. JR Méndez, I Cid, D Glez-Peña, M Rocha, and F. Fdez-Riverola ―A Comparative
Impact Study of Attribute Selection Techniques on Naïve Bayes Spam Filters‖, in
Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and
Theoretical Aspects, pp
213-227, 2008
1001. Francesco Gargiulo and Antonio Penta and Antonio Picariello and Carlo Sansone ―A
Behaviour-Knowledge Space Approach for Spam Detection‖, in Proceedings of the
Workshop on Supervised and Unsupervised Ensemble Methods and their Applications, of
the ECAI 2008, pp16- 20
1002. A. C. Cosoi, M. S. Vlad, V. Sgarciu ―On Neural Networks And The Future Of
Spam‖, in CEAI, Vol. 10, No. 2, pp.53-58, 2008
1003. Alexandru Catalin COSOI, ―A False Positive Safe Neural Network The Followers of
the Anatrim Waves‖, thesis 2008
1004. Zhaoyang Qu Bing Ge ―Implementation of mail filtering based on multi-attribute
group decision making‖, in: Audio, Language and Image Processing, 2008. ICALIP 2008,
pp 834-838
1005. Gordon V. Cormack (2008) "Email Spam Filtering: A Systematic Review",
Foundations and Trends in Information Retrieval: Vol. 1: No 4, pp 335-455
54
1006.
基于朴素贝叶斯和支持向量机的自适应垃圾短信过滤系统
金展,范晶,陈峰,徐从富 - 计算机应用, 2008 - 万方数据资源系统
1007.
基于Hash函数和贝叶斯方法的垃圾短信在线过滤系统
范晶,刘菊新,陈峰,徐从富 - 计算机应用, 2008
1008.
协同分类器及其在邮件过滤中的应用
路梅,叶澄清 - 计算机工程与应用, 2008 - cqvip.com
1009.
基于多特征模糊关联的垃圾邮件过滤方法 廖明涛,张德运,侯琳,李金库 微电子学与计算机, 2008
1010.
不完备证据条件下的Bayesian网络参数学习 刘震,周明天 - 计算机科学, 2008
1011.
一种新的垃圾邮件样本采集方法 林加镇,曹玖新,程杰 - Journal Of Southeast
University (Natural Science Edition), 2008 - 万方数据资源系统
1012.
NaiveBayes邮件过滤模型的特征词选取方法研究
王涛,裘国永,何聚厚,张娇艳 - 航空计算技术, 2008
1013.
新的基于最小风险的贝叶斯邮件过滤模型
王涛,裘国永,何聚厚
-
计算机应用研究, 2008 - 万方数据资源系统
1014.
协同分类器及其在邮件过滤中的应用 路梅,叶澄清 - 计算机工程与应用, 2008 -
万方数据资源系统
1015. F. Fdez-Riverolaa, E.L. Iglesiasa, F. Dìazb, J.R. Méndeza and J.M. Corchado,
―SpamHunting: An instance-based reasoning system for spam labelling and filtering‖, In
Decision Support Systems, vol 43, Issue 3, Pages 722-736, April 2007.
1016. X. Yue, A. Abraham and Z.-X. Chi, Artificial immune system inspired behavior
based anti-Spam filter, J. Soft Comput. 11 (8) (2007), pp. C729–C740.
1017. Hassan, Samer; Mihalcea, Rada; Banea, Carmen, "Random-Walk Term Weighting
for Improved Text Classification," Semantic Computing, 2007. ICSC 2007. International
Conference on , vol., no., pp.242-249, 17-19 Sept. 2007.
1018. S Abu-Nimeh, D Nappa, X Wang, S Nair,―A comparison of machine learning
techniques for phishing detection‖, In Proceedings of the anti-phishing working groups
2nd annual eCrime researchers summit, Pittsburgh, Pennsylvania, pp: 60 - 69 , 2007.
1019. Xia, Yun-Qing; Wang, Jian-Xin; Zheng, Fang; Liu, Yi, "A Binarization Approach to
Email Categorization using Binary Decision Tree," Machine Learning and Cybernetics,
2007 International Conference on , vol.6, no., pp.3459-3464, 19-22 Aug. 2007.
1020. Méndez, J.R., Corzo, B., Glez-Peña, D., Fdez-Riverola, F., Dìaz, F.: Analyzing the
Performance of Spam Filtering Methods when Dimensionality of Input Vector Changes.
In: Proc. of the 5th International Conference on Data Mining and Machine Learning. In
Lecture Notes in Computer Science, vol. 4571, pp.364-378, 2007.
1021. GV Cormack, TR Lynam ―Online supervised spam filter evaluation‖, in ACM
Transactions on Information Systems (TOIS) Volume 25 , Issue 3, Jul. 2007.
1022. Chih-Chin Lai, ―An empirical study of three machine learning methods for spam
filtering‖, in Knowledge-Based Systems, Volume 20, Issue 3, April 2007, Pages 249-254.
1023.
Nayantara Mallesh and Matthew Wright ―Countering Statistical Disclosure with
Receiver-Bound Cover Traffic‖, in LNCS, Springer, vol. 4734, pp 547-562, 2007.
1024. Marsono, Muhammad Nadzir , ―Towards improving e-mail content classification for
spam control: architecture, abstraction, and strategies‖, University of Victoria, 2007.
1025.
Peng Liu1 Contact Information, Jian-she Dong2 and Wei Zhao ―A Statistical Spam
Filtering Scheme Based on Grid Platform‖, in Advances in Soft Computing, Springer,
vol. 32, pp 527-534, 2007.
1026. Shlomo Argamon , Casey Whitelaw, Paul Chase, Sobhan Raj Hota, Navendu Garg,
Shlomo Levitan ―Stylistic text classification using functional lexical features‖, in Journal
of the American Society for Information Science and Technology, Volume 58, Issue 6 ,
Pages 802 – 822, 2007.
55
1027. TL Wong, KO Chow, F Wong, ―Incorporting Keyword-Based Filtering to Document
Classification for Email Spamming‖, In ―Machine Learning and Cybernetics, 2007
International Conference‖, 19-22 Aug. 2007, Vol: 7, page(s): 3899-3904.
1028. JRFR Mendez, Florentino Fdez-Riverola, Fernando Diaz and Juan M. Corchado
―Sistemas inteligentes para la detección y filtrado de correo spam: una revisión‖, in
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.23 (2004),
pp. 1-4, 2007.
1029.
Shin Young Rhee, Ara Khil and Myung Won Kim ―A Spam Mail Classification
Using Link Structure Analysis‖, 2007.
1030. Hou Li-Ming, Peng Wei ―An Integrated Spam- Filtering Approach for Internet‖, in
Computer Technology and Development, vol. 17, issue 4, pp 117- 119, 2007.
1031. Liu Zhen, Zhou Ming-Tian ―Spam Filtering Issue: FPD Research between False
Positive and False Negative‖, Technical Report, 2007.
1032. Dong, Jianshe; Yuan, Zhanting; Zhang, Qiuyu; Zheng, Yufeng, "A novel anti-spam
scheme for image-based email," Data, Privacy, and E-Commerce, 2007. ISDPE 2007.
The First International Symposium on , vol., no., pp.520-522, 1-3 Nov. 2007.
1033. Giuseppe Manco, Elio Masciari and Andrea Tagarellib, ―Mining categories for
emails via clustering and pattern discovery‖, in Journal of Intelligent Information
Systems, Springer, 2007.
1034.
Kino H. Coursey ―WAC: Weka and Cyc: Teaching Cyc to Learn through Selfrecursive Data Mining‖, Technical Report, 2007.
1035. Liu, Zhen; Zhou, Ming-Tian, "Spam Filtering Issue: FPD Research between False
Positive and False Negative," Fuzzy Systems and Knowledge Discovery, 2007. FSKD
2007. Fourth International Conference on , vol.1, no., pp.526-534, 24-27 Aug. 2007.
1036.
Xin Zhang, Wenyuan Dai, Gui-Rong Xue and Yong Yu, ―Adaptive Email Spam
Filtering Based on Information Theory‖, in Lecture Notes in Computer Science,
Springer,vol. 4831, pp. 159-170, 2007.
1037.
Tunga Güngör and Ali Çıltık ―Developing Methods and Heuristics with Low Time
Complexities for Filtering Spam Messages‖, in Lecture Notes in Computer Science,
Springer, vol. 4592, pp. 35-47, 2007.
1038.
Chui-Yu Chiu and Yuan-Ting Huang ―Integration of Support Vector Machine with
Naïve Bayesian Classifier for Spam Classification‖ Technical Report, 2007.
1039. Slavisa Sarafijanovic, Luis Hernandez, Raphael Naefen, JeanYves Le Boudec
―AntispamLabTM – A Tool for Realistic Evaluation of Email Spam Filters‖, in
Proceedings of CEAS 2007 Fourth Conference on Email and AntiSpam, August 23, 2007,
Mountain View, California USA.
1040.
Ígor Assis Braga, Marcelo Ladeira ―Um Modelo Adaptativo para a Filtragem de
Spam‖, in ENIA 2007, 2007.
1041.
Shin Young Rhee, Ara Khil, Myung Won Kim ―A Spam Mail Classification Using
Link Structure Analysis‖, 2007.
1042. Xiong Z.-Yang Du Sheng, ―An Improved E-mail classifier based on SVM‖,
Technical Report, 2007
1043. Ali Çıltıka and Tunga Güngör, ―Time-efficient spam e-mail filtering using n-gram
models‖, in Pattern Recognition Letters, vol. 29, Issue 1, 1 January 2008, Pages 19-33
1044. Qiang Wang Yi Guan Xiaolong Wang, ―SVM-Based Spam Filter with Active and
Online Learning‖, 2006
1045. Xun Yue1, Ajith Abraham, Zhong-Xian Chi, Yan-You Hao and Hongwei Mo,
―Artificial immune system inspired behavior-based anti-spam filter‖, Journal Soft
Computing - A Fusion of Foundations, Methodologies and Applications, Springer,
Volume 11, Number 8 / June, 2007, pp. 729-740.
1046.
G. Cormack and A. Bratko, ―Batch and Online Spam Filter Comparison‖, CEAS,
July 2006, pp. 41-49.
1047. Ígor Assis Braga, Marcelo Ladeira, ―Um Modelo Adaptativo para a Filtragem de
Spam‖, Universidade de Brasìlia, 2006.
1048. Shlomo Hershkop, ―Behavior-based Email Analysis with Application to Spam
Detection‖, Columbia University,2006.
1049. Thomas R. Lynam, Gordon V. Cormack, ―On-line Supervised Filter Evaluation‖,
University of Waterloo, 2006
56
1050. Vlado Keˇselj, Evangelos Milios, Andrew Tuttle, Singer Wang, Roger Zhang,
―DalTREC 2005 Spam Track: Spam Filtering using N-gram-based Techniques‖, Faculty
of Computer Science, Dalhousie University, Halifax, Canada, February 10, 2006.
1051. A.Bratko, G. V. Cormack, Bogdan Filipic, T. R. Lynam and B. Zupan, ―Spam
Filtering Using Statistical Data Compression Models‖, Journal of machine learning
research, 2006, 14(2), pp. 1-38
1052. R. M. Pampapathi, B. Mirkin and M. Levene, ―A Suffix Tree Approach to Anti-spam
Email Filtering‖, Machine Learning Journal, v. 65, n. 1, pp. 309-, 2006.
1053. M. van Someren and T. Urbancic, ―Applications of machine learning: matching
problems to tasks and methods‖, The Knowledge Engineering Review, Vol. 20:4, pp.
363–402, 2006.
1054. B. Wang, H.-B. Xu and S. Wang, ―Structure-based bi-layer nBayes filtering model‖,
Journal of Computer Applications, vol. 26, no. 1, pp. 191-194, 2006.
1055. S. Argamon, C. Whitelaw, P. Chase, S. Dwahle, S. R. Hota, N. Garg and S. Levitan.
―Stylistic text Classification using Functional Lexical Features‖, Journal of the American
Society for Information Science and Technology (to appear).
1056. M. Barreno, B. Nelson, R. Sears, A.D. Joseph and J.D. Tygar, ―Can machine learning
be secure?‖, Proceedings of the ACM Symposium on Information, computer and
communications security, ACM Press, pp. 16-25, 2006.
1057. K. Li and Z. Zhong, ―Fast statistical spam filter by approximate classifications‖,
Proceedings of the joint international conference on Measurement and modeling of
computer systems, ACM Press, pp. 347-358, 2006.
1058. A. Kolcz, M. Bond and J. Sargent, ―The challenges of service-side personalized spam
filtering: scalability and beyond‖, Proceedings of the 1st International Conference on
Scalable Information Systems (INFOSCALE), Hong Kong, May 2006.
1059. R. Zakariah and S. Ehsan, ―Detecting Junk Mails by Implementing Statistical
Theory‖, Proceedings of the 20th International Conference on Advanced Information
Networking and Applications (AINA), vol. 2, pp. 272-280, 2006.
1060. S. Hassan and C. Banea, ―Random-Walk Term Weighting for Improved Text
Classification‖, Proceedings of the Workshop on TextGraphs, at the Human Language
Technology Conference - North American chapter of the Association for Computational
Linguistics Annual Meeting (HLT-NAACL), pp. 53–60, 2006.
1061. P. Belsis, K. Fragos, S. Gritzalis and C. Skourlas, ―SF-HME system: a hierarchical
mixtures-of-experts classification system for spam filtering‖, Proceedings of the 2006
ACM Symposium on Applied Computing (SAC), ACM Press, pp. 354-360, 2006.
1062. S. Hershkop, Behavior-based Email Analysis with Application to Spam Detection,
PhD Thesis, Department of Computer Science, University of Columbia, USA, 2006.
1063. A.Bryl, Learning-based Spam Filters: The Influence of the Temporal Distribution of
Training Data, Technical Report DIT-06-030, Department of Information and
Communication Technology, University of Trento, May 2006.
1064. J.J. Amor, G. Robles, J.M. Gonzalez-Barahona, and A. Navarro. Discriminating
Development Activities in Versioning Systems: A Case study, 2006.
1065. Jianshe Dong, Haixia Cao, Peng Liu, Li Ren, "Bayesian Chinese Spam Filter Based
on Crossed N-gram," isda, pp. 103-108, Sixth International Conference on Intelligent
Systems Design and Applications (ISDA'06), 2006.
1066. James Carpintera and Ray Hunt, ―Tightening the net: A review of current and next
generation spam filtering tools‖, in Computers & Security, Volume 25, Issue 8,
November 2006, Pages 566-578.
1067.
Carlos Bustamante, Leonardo Garrido and Rogelio Soto ―Fuzzy Naive Bayesian
Classification in RoboSoccer 3D: A Hybrid Approach to Decision Making‖, in Lecture
Notes in Computer Science, Springer vol. 4434, pp 507-515 , 2006.
1068. Gómez Hidalgo, J., Cajigas Bringas, G., Puertas Sanz, E., and Carrero Garcia, F.
Content based SMS spam filtering. In DocEng '06: Proceedings of the 2006 ACM
Symposium on Document Engineering (New York, NY, USA, 2006), ACM Press, pp.
107--114.
1069. Ioannis Kanaris, Konstantinos Kanaris and Efstathios Stamatatos ―Spam Detection
Using Character N-Grams‖, Lecture Notes in Computer Science Springer, vol.3955, pp.
95-104, 2006.
1070. J Alspector, A Kolcz, A Chowdhury, ―Classifier tuning based on data similarities‖,
US Patent 7,089,241, 2006.
57
1071. Hunt, R.; Carpinter, J., "Current and New Developments in Spam Filtering,"
Networks, 2006. ICON '06. 14th IEEE International Conference on , vol.2, no., pp.1-6,
Sept. 2006.
1072. Adriano Veloso, Wagner Meira Jr., "Lazy Associative Classification for Contentbased Spam Detection," la-web, pp. 154-161, Fourth Latin American Web Congress
(LA-WEB'06), 2006.
1073. Jalel Rejeb, Thuy T. Le, Narinder Anand, "High Speed and Reliable Anti-Spam
Filter," icsea, p. 66, International Conference on Software Engineering Advances
(ICSEA'06), 2006.
1074.
Otávio A. S. Carpinteiro, Isaìas Lima, João M. C. Assis, Antonio C. Zambroni de
Souza, Edmilson M. Moreira and Carlos A. M. Pinheiro ―A Neural Model in Anti-spam
Systems‖, in LNCS Springer, vol. 4132, pp 847- 855, 2006.
1075. Hao Luo, Binxing Fang and Xiaochun Yun, ―A Counting-Based Method for Massive
Spam Mail Classification‖ in LNCS, Springer, vol. 3903, pp 45-46, 2006.
1076.
Keno Albrecht ―Mastering Spam: A Multifaceted Approach with the spamato Spam
Filter System‖, PhD Dissertation, 2006.
1077. SJ Delany, ―Using Case-Based Reasoning for Spam Filtering‖, PhD thesis, March
2006.
1078. Hyun-Jun Kim, Jenu Shrestha, Heung-Nam Kim and Geun-Sik Jo, ―User Action
Based Adaptive Learning with Weighted Bayesian Classification for Filtering Spam
Mail‖, In Lecture Notes in Computer Science, book:
AI 2006: Advances in Artificial
Intelligence, Volume 4304/2006, pp 790-798.
1079. Bin Wang, Gareth J. F. Jones and Wenfeng Pan, ―Using online linear classifiers to
filter spam emails‖, in Pattern Analysis & Applications, Springer Volume 9, Number 4 /
November, 2006 pp 339-351.
1080. Yang Xiang, Wanlei Zhou, "An Intrusion Surveillance System to Detect IRC-based
DDoS Attacks," iccgi, p. 65, International Multi-Conference on Computing in the Global
Information Technology - (ICCGI'06), 2006.
1081. Dimitris Gavrilis, Ioannis G. Tsoulos and Evangelos Dermatas ―Neural Recognition
and Genetic Features Selection for Robust Detection of E-Mail Spam‖ in LNCS,
Springer, vol. 3955, pp 498-501, 2006.
1082. S.Webb, J. Caverlee, and C. Pu. ―Introducing the webb spam corpus: Using email
spam to identify web spam automatically.‖ In 3rd Conference on Email and AntiSpam
(CEAS 2006), July 27-28, Mountain View, California USA, 2006.
1083.
Qiang Wang, Yi Guan, Xiaolong Wang, ―SVM-Based Spam Filter with Active and
Online Learning‖ Technical Report, 2006.
1084. Guoqing Mo, Wei Zhao, Haixia Cao, Jianshe Dong, "Multi-agent Interaction Based
Collaborative P2P System for Fighting Spam," iat, pp. 428-431, IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2006 Main Conference
Proceedings) (IAT'06), 2006.
1085.
LIU Zhen, ZHOU Ming-tian ―Spam filtering algorithm based on supervised
Bayesian parameter estimation‖, in Journal Of Computer Applications, 2006, Vol.26
No.3, p.558-561.
1086.
ZHANG Hai and GUAN Wei-hao and DAI Shao-feng ―Research on Email Filtering
System based on Multilayer Framework‖ in Modern Computer, 2006, No.8, p.19-22.
1087.
Chen Jinchuan, Chen Zhizhang, Jia Hongming, Shen Qi and Yang Wei
―Research and Implementation of Pattern-based Bayesian SPAM Filtering‖, in Computer
Engineering And Applications, 2006, Vol.42 No.6 P.172-175.
1088.
CHENG Bao-guo , FENG Hong-wei ―Design of an Improved Spam Filter Based
on Naive Bayesian Classifier‖, Technical Report, 2006.
1089.
Ki-Jun Son, Soo-Yeoun Lim, Seong-Bae Park and Sang-Jo Lee ―Comparative
Between Naive Bayes Classifier and Cosine Similarity Coefficient in Dynamic Document
Filtering‖, 2006.
1090. Juan Jose Amor Iglesias ―Caracterizacion De La Actividad De Desarrollo En Codigo
Fuente. Caso De Estudio.‖, in Reports On Systems And Communications, Vol.6, No 3,
2006.
1091. M. Hutter and M. Zaffalon, ―Distribution of mutual information from complete and
incomplete data‖, Computational Statistics and Data Analysis 48(3), pp. 633–657, 2005.
1092. S. J. Delany, P. Cunningham, and L. Coyle, ―An Assessment of Case-Based
Reasoning for Spam Filtering‖, Artificial Intelligence Review 24, pp. 359-378, 2005.
58
1093. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖ , Knowledge-Based Systems 18 (4-5), pp. 187195, 2005.
1094. O. Nouali, A. Régnier, P. Blache and S. Rauzy, ―Une approche par apprentissage
basée sur des modèles linguistiques‖, Revue d'Intelligence Artificielle, vol. 19, no. 6, pp.
883-910, 2005.
1095. Wang Bin and Pan Wenfeng, ―A Survey of Content-based Anti-spam Email
Filtering‖, Journal of Chinese Information Processing, vol.19, no.5 pp.1-10, 2005.
1096. M.-F. Zhang, Y.-C. Li and W. Li, ―Survey of Application of Bayesian Classifying
Method to Spam Filtering‖, Application Research of Computers, vol. 22 no. 8 pp. 14-19,
2005.
1097. H.-J. Li, F. Gao, X.-H. Guan, ―A Spam Filtering Method Based on Bayesian Neural
Network‖, Journal of Microelectronics and Computer, vol. 22, no. 4, 2005.
1098. Q. Lin, J. Xu, D. Xu and C. Wang, ―Research on Bayes-Based Spam Filtering‖,
Journal of Nanjing Normal University (Engeineering and Technology), vol. 5, no. 4,
pp.61-64, 2005.
1099. Z. Liu, K. She and M.-T. Zhou, ―Research on Advanced Filtering Algorithm for
Spam Email Based on Bayes Parameter Estimation‖, Computer Science, vol. 32, no. 9,
pp. 55-57, 2005.
1100. J. Hu Jian F.-Y. Ma, ―An Anti-spam Email Filtering Method Based on Morphology
Process and Key Words Extraction‖, Journal of Shanghai Jiaotong University, pp. 19631966, 2005.
1101. X. Yue, Z. Chi, H. Mo and Y. Hao, ―A Spam Acquirement Technology Based on
Immune-Inspired Clustering Algorithm‖, Computer Engineering and Applications, vol.
41, no. 35, pp. 12-14, 2005.
1102. Z. Liu, K. She and M.-T. Zhou, ―Advanced Filtering Technology for Spam E-mail
Based on Multilevel Attributes Set‖, Application Research of Computers, vol. 22, no. 7,
pp. 122-123, 2005.
1103. S. Hershkop and S. J. Stolfo, ―Combining email models for false positive reduction‖,
Proceeding of the 11th ACM SIGKDD international conference on Knowledge Discovery
in Data Mining (KDD), pp. 98-107, 2005.
1104. C.-T. Wu, K.-T. Cheng, Q. Zhu and Y.-L. Wu, ―Using visual features for anti-spam
filtering‖, Proceedings of the IEEE International Conference on Image Processing (ICIP),
vol. 3, pp. 509-512, 2005.
1105. L. Guthrie, W. Liu and Y. Xia, ―Text Classification with Tournament Methods‖,
Proceedings of the 8th International Conference on Text, Speech and Dialogue (TSD),
Lecture Notes in Computer Science, vol. 3658, pp. 77-84, 2005.
1106. M. Lan and W. Zhou, ―Spam Filtering based on Preference Ranking‖, Proceedings of
the 5th International Conference on Computer and Information Technology (CIT), pp.
223-227, 2005.
1107. X. Ricco, S. Deketelaere, J. De Lafonteyne and A. Girardi, ―Visual Error Resolution
Strategy for highly-structured text entry using Speech Recognition in FP6-ALLADIN
project‖, Proceedings of the 10th IFIP TC13 International Conference on HumanComputer Interaction, Rome, Italy, 12-16 September 2005.
1108. L. Lazzari, M. Mari and A. Poggi, ―CAFE - Collaborative Agents for Filtering Emails‖, Proceedings of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise (WETICE), IEEE Computer
Society, pp. 356-361, 2005.
1109. S.-J. Horng, M.-Y. Su and C.-Y. Wu, ―An e-mail client implementation with spam
filtering and security mechanisms‖, Proceedings of the IEEE International Conference on
Web Services (ICWS), Orlando, USA, July 2005.
1110. M.-W. Wu, Y. Huang, S.-K. Lu, I.-Y. Chen and S.-Y. Kuo, ―A multi-faceted
approach towards spam-resistible mail‖, Proceesings of the 11th Pacific Rim International
Symposium on Dependable Computing (PRDC), Changsha, China, December 2005.
1111. M. D. del Castillo and J. I. Serrano, ―An Interactive Hybrid System for Identifying
and Filtering Unsolicited Email‖, Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence (WI), pp. 814-815, 2005.
1112. M. Sasaki and H. Shinnou, ―Spam Detection Using Text Clustering‖, Proceedings of
the International Conference on Cyberworlds (CW), pp. 316-319, 2005.
59
1113. V. Zorkaidis, M. Panayotou and D. Karras, ―Improved Spam e-Mail Filtering Based
on Committee Machines andInformation Theoretic Feature Extraction‖, Proceedings of
the International Joint Conference on Neural Networks, Montreal, Canada, July 2005.
1114. E. Terra, ―Simple Language Models for Spam Detection‖, Proceedings of the Text
Retrieval Conference (TREC), Gaithersburg, USA, November, 2005.
1115. Z. Yang, W. Xu, B. Chen, J. Hu, J. Guo, ―PRIS Kidult Anti-SPAM Solution at the
TREC 2005 Spam Track: Improving the Performance of Naive Bayes for Spam
Detection‖, Proceedings of the 14th Text Retrieval Conference (TREC), National Institute
of Standards and Technology (NIST), Gaithersburg, US November 2005.
1116. V. Keselj, E. Milios, A. Tuttle, S. Wang, R. Zhang, ―DalTREC 2005 Spam Track:
Spam Filtering Using N-gram-based Techniques‖, Proceedings of the 14th Text Retrieval
Conference (TREC), National Institute of Standards and Technology (NIST),
Gaithersburg, US November 2005.
1117. L. Lazzari, M. Mari and A. Poggi, ―A Collaborative and Multi-Agent Approach to Email Filtering,‖ Proceedings of the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT), pp. 238-241, 2005.
1118. P. Haffner, S. Sen, O. Spatscheck and D. Wang, ―ACAS: Automated Construction of
Application Signatures‖, Proceedings of the Workshop on mining network data
(MineNet), ACM SIGCOMM, Philadelphia, PA, USA, August 2005.
1119. S.J. Delany, P. Cunningham and D. Doyle, ―Generating Estimates of Classification
Confidence for a Case-Based Spam Filter‖, Proceedings of the 6th International
Conference on Case-based Reasoning, Lecture Notes in Artificial Intelligence, 3620,
pp170-190, Springer Verlag, 2005.
1120. R. Shrestha and Y. Lin, ―Improved Bayesian Spam Filtering Based on Co-weighted
Multi-area Information‖, Proceedings of the 9th Pacific-Asia Conference (PAKDD),
Lecture Notes in Computer Science, 3518, pp. 650-660, Springer-Verlag, 2005.
1121. S. Dixit, S. Gupta and C. V. Ravishankar, ―LOHIT: An Online Detection & Control
System for Cellular SMS Spam‖, Proceedings of the IASTED International Conference
on Communication, Network and Information Security (CNIS), Phoenix, USA,
November 2005.
1122. P. Deepak and S. Parameswaran, ―Spam Filtering using Spam Mail Communities‖,
Proceedings of the IEEE/IPSJ International Symposium on Applications and the Internet
(SAINT), pp. 377-383, 2005.
1123. R. M. Pampapathi, B. Mirkin and M. Levene, ―A Suffix Tree Approach to Text
Categorisation Applied to Email Filtering‖, Proceedings of the UK Workshop on
Computational Intelligence. (UKCI), pp. 212-219, September 2005.
1124. S. Siersdorfer, Combination Methods for Automatic Document Organization, PhD
Thesis, Dept. of Computer Science, University of Saarland, Germany, 2005.
1125. M. Lan, Algorithms and Applications of Preference Based Ranking for Information
Retrieval, PhD Thesis, School of Information Technology, Deakin University, Australia,
April, 2005.
1126. C.-T. Wu, Embedded-Text Detection and Its Application to Anti-Spam Filtering,
MSc thesis, Dept. of Computer Science, University of California, Santa Barbara, USA,
2005.
1127. S. Chhabra, Fighting spam, phishing and email fraud, MSc thesis, Dept. of Computer
Science, University of California, Riverside, USA, 2005.
1128. A. Abdul-Rahman, A Framework for Decentralised Trust Reasoning, PhD Thesis,
Department of Computer Science, University College London, UK, 2005.
1129. A. Seewald, An Evaluation of Naive Bayes Variants in Content-Based Learning for
Spam Filtering, Technical Report TR-2005-20, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, Austria, 2005.
1130. A. Seewald, A Close Look at Current Approaches in Spam Filtering, Technical
Report TR-2005-04, Österreichisches Forschungsinstitut für Artificial Intelligence, Wien,
Austria, 2005.
1131.
Steve Webb, Subramanyam Chitti, and Calton Pu ―An Experimental Evaluation of
Spam Filter Performance and Robustness Against Attack‖, College of Computing, Tech.
Rep, 2005.
1132. Seewald, A., An Evaluation of Naive Bayes Variants in Content-Based Learning for
Spam Filtering, Technical Report TR-2005-20, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, Austria, 2005.
60
1133.
Delany, Sarah; Cunningham, Pádraig; Coyle, Lorcan ―An Assessment of CaseBased Reasoning for Spam Filtering‖, in Artificial Intelligence Review, Springer,
Volume 24, Numbers 3-4, November 2005 , pp. 359-378(20)
1134.
Wojciech P. Gajewski , ―Adaptive Naïve Bayesian Anti-Spam Engine‖ in
Proceedings of the International Journal of Information Technology Volume 3 Number 3,
2005.
1135. Xiaochun Cheng, Xiaoqi Ma, Long Wang and Shaochun Zhong ―A Mobile Agent
Based Spam Filter System‖, in LNCS, Springer vol. 3801, pp422-427, 2005.
1136. Hsueh-Ching Chen ―An Ensemble Approach for Text Categorization with Positive
and Unlabeled Examples‖, Master's Thesis, 2005.
1137. José María Gutiérrez, Flavia Maria Santoro and Pedro Isaìas ―Actas Da
Conferência Iadis Ibero-Americana Www/Internet 2005‖ in ciawi05, 2005.
1138. Daniel Gayo Avello ―blindLight (Una nueva técnica para procesamiento de texto no
estructurado mediante vectores de n-gramas de longitud variable con aplicación a diversas
tareas de tratamiento de lenguaje natural)‖, PhD Thesis, 2005.
1139.
Antonio Jesús Ortiz Martos, L. Alfonso Ureña López, Marìa Teresa Martìn Valdivia
and Miguel Ángel Garcìa Cumbreras ―Detección automática de Spam utilizando
Regresión Logìstica Bayesiana‖, Procesamiento del Lenguaje Natural, núm. 35 (2005),
pp. 127-133.
1140.
Jon Kågström, ―Improving Naive Bayesian Spam Filtering‖ MSc Thesis, 2005.
1141. M. D. del Castillo, J. I. Serrano, "An Interactive Hybrid System for Identifying and
Filtering Unsolicited Email," wi, pp. 814-815, 2005.
1142. Stefan Siersdorfer, ―Combination Methods for Automatic Document Organization‖,
PhD Thesis, 2005.
1143.
Gulsen Eryigit , A. Cuneyd Tantug ―A Comparison Of Support Vector Machines,
Memory Based And Naïve Bayes Techniques On Spam Recognition‖ in Proceedings of
the 23rd IASTED International Multi Conference on Artificial Intelligence and
Applications, Innsbruck, 2005.
1144. Andreas Kaster ―Automatische Dokumentklassifikation mittels linguistischer und
stilistischer Features‖ Technical Report, 2005.
1145. Jongmyoung Park and Han-joon Kim ―Density Function-based Outlier Detection
Algorithm for Detecting Network‖, pp. 148~150, 2005.
1146. Yue Xun, Chi Zhongxian, Mo Hongwei and Hao Yanyou ―A Spam Acquirement
Technology Based on Immune-Inspired Clustering Algorithm‖, Computer Engineering
And Applications, 2005 Vol.41 No.35 P.12-14.
1147. A. Seewald, Combining Bayesian and Rule Score Learning: Automated Tuning for
SpamAssassin, Technical Report TR-2004-11, Österreichisches Forschungsinstitut für
Artificial Intelligence, Wien, Austria, 2004.
1148. A. Gray and M. Haahr, ―Personalised, Collaborative Spam Filtering‖, Proceedings of
the first Conference on Email and Anti-Spam (CEAS), Mountain View, CA, USA, 2004.
1149. N. E. Eide, A. N. Blaafadt, B. H. Rehn Johansen and F. E. Sandnes, ―DIGIMIMIR: A
Tool for Rapid Situation Analysis of Helpdesk and Support E-mail‖, Proceedings of the
18th Large Installation System Administration Conference (LISA), Atlanta, USA,
November 2004.
1150. L. Ozgur, T. Gungor , F. Gurgen, ―Adaptive anti-spam filtering for agglutinative
languages: a special case for Turkish‖, Pattern Recognition Letters 25, pp. 1819–1831,
2004.
1151. D. Turner and D. Havey, ―Controlling Spam through Lightweight Currency‖.
Proceedings of the Hawaii International Conference on Computer Sciences, Honolulu,
USA, January 2004.
1152. S. J. Delany, P. Cunningham, and L. Coyle, ―An Assessment of Case-Based
Reasoning for Spam Filtering‖, Proceedings of the Fifteenth Irish Conference on
Artificial Intelligence and Cognitive Science (AICS), pp. 9-18, 2004.
1153. L. Zhang, J. Zhu and T. Yao, ―An evaluation of statistical spam filtering techniques‖,
ACM Transactions on Asian Language Information Processing (TALIP), Volume 3, Issue
4, pp. 243 – 269, December 2004.
1154. A. N. Blaafladt, B. H. Rehn Johansen, N. E. Eide and F. E. Sandnes, ―A text-mining
approach to helpdesk and e-mail support‖, Proceedings of the Norwegian Computer
Science Conference, Stavanger, Norway, November, 2004.
61
1155. S. J. Delany, P. Cunningham, A. Tsymbal and L. Coyle, ―A case-based technique for
tracking concept drift in spam filtering‖, Proceedings of the 24th SGAI International
Conference on Innovative Techniques and Applications of Artificial Intelligence, (AI),
pp3-16, Springer, 2004.
1156. F. D. Garcia, J.-H. Hoepman, and J. van Nieuwenhuizen. ―Spam Filter Analysis‖.
Proceedings of the IFIP TC11 19th Int. Conf. on Information Security (SEC), August
2004.
1157. C O‘Brien, C Vogel. ―Comparing SpamAssassin with CBDF Email Filtering‖,
Proceedings of the 7th Annual Computational Linguistics UK (CLUK) Research
Colloquium, Birmingham, UK, 2004.
1158. H. Stern, J. Mason and M. Shepherd, A Linguistics-Based Attack on Personalised
Statistical E-mail Classifiers, Technical Report CS-2004-06, Faculty of Computer
Science, Dalhousie University, Canada, March 2004.
1159. A Lad, J Deoghat, I Allahabad, ―SpamNet – Spam Detection using PCA and Neural
Networks‖, Proceedings of the 7th International Conference on Information Technology
(CIT), Lecture Notes in Computer Science, 3356, pp. 205-213, Springer-Verlag, 2004.
1160. H-J Kim, H-N Kim, J. J. Jung, and G-S Jo, ―Spam Mail Filtering System Using
Semantic Enrichment‖, Proceedings of the 5th International Conference on Web
Information Systems Engineering (WISE), Lecture Notes in Computer Science, 3306, pp.
619-628, Springer-Verlag, 2004.
1161. H-J Kim, H-N Kim, J. J. Jung, and G-S Jo, ―On Enhancing the Performance of Spam
Mail Filtering System Using Semantic Enrichment‖, Proceedings of the 17th Australian
Joint Conference on Artificial Intelligence (AI), Lecture Notes in Computer Science,
3339, pp. 1095-1100, Springer-Verlag, 2004.
1162. G. L. Wittel and S. F. Wu, ―On Attacking Statistical Spam Filters‖, Proceedings of
the first Conference on Email and Anti-Spam (CEAS), Mountain View, CA, USA, 2004.
1163. A. Berendt , A. Hotho , D. Mladenic , M. van Someren , M. Spiliopoulou and G.
Stumme, ―A Roadmap for Web Mining: From Web to Semantic Web‖, In Web Mining:
From Web to Semantic Web, Lecture Notes in Computer Science, 3209, pp. 1-22,
Springer-Verlag, 2004.
1164. Abdulrahman, A.: A framework for decentralized trust reasoning. PhD thesis,
University of London, 2004.
1165. Cormack, G., and Lynam, T. A study of supervised spam detection applied to eight
months of personal email. Technical Report, 2004.
1166.
Andrew Tuttle, Evangelos Milios, Nauzer Kalyaniwalla. ―An Evaluation of
Machine Learning Techniques for Enterprise Spam Filters‖, 2004.
1167. Hershkop, S. and Stolfo, S.J. Identifying Spam without Peeking at the Contents.
ACM Crossroads, Volume 11 , Issue 2, pp3-3, 2004.
1168. O'Brien, C. and C. Vogel ―Exploring the Subject of Email Filtering: Feature
Selection in Statistical Filtering.‖, 2004.
1169. Michalas A. A Bayesian Approach to Filtering E-mail and Search Engine Spare
[EB/OL]. Report for the MSci Degree in Computer Science at University College
London, http://www, spamnemesis, org/report, pdf, 2004.
1170. M Cignini, S Mizzaro, C Tasso, A Virgili ―E-Mail on the Move: Categorization,
Filtering, and Alerting on Mobile Devices with the ifMail Prototype‖, in Mobile and
Ubiquitous Information Access: Mobile Hci 2003 International Workshop Udine, Italy,
2004
1171.
Alex Michalas, ―A Bayesian Approach to Filtering E-mail and Search Engine
Spam‖, Technical Report, 2004.
1172.
Abhimanyu Lad and Manish Saggar ―SpamNET Spam Detection using Neural
Networks and Heuristic Rules‖, Technical Report, 2004.
1173. Goetschi, Remo; SPAM- Filtering using Artificial Neural Networks. – Semester
Thesis; Berne University of Applied Sciences – Computer Science Department, 07/2004.
1174.
A. N. Blaafladt B. H. R. Johansen N. E. Eide F. E. Sandnes ―A text-mining approach
to helpdesk and e-mail support‖, Technical Report, 2004.
1175. T. Fawcett , ―In "vivo" spam filtering: A challenge problem for KKD,‖ SIGKDD
Explorations, v. 5, n. 2, pp.140-148, December 2003.
1176. K. R. Gee, ―Using Latent Semantic Indexing to Filter Spam‖, Proceedings of the
Annual ACM SIGAPP Symposium on Applied Computing, Melbourne, Florida, USA,
March, 2003.
62
1177. J. J. Sudano, ―Equivalence Between Belief Theories and Naive Bayesian Fusion for
Systems with Independent Evidential Data: Part I, The Theory‖, Proceedings of the Sixth
International Conference on Information Fusion (IF), pp. 1126 – 1132, Queensland,
Australia, July, 2003.
1178. C O‘Brien, C Vogel. ―Spam filters: Bayes vs. chi-squared; letters vs. words‖,
Proceedings of the Workshop on Conceptual Information Retrieval and Clustering of
Documents, 1st ACM International Symposium on Information and Communication
Technologies Dublin, Ireland pp. 291-296, 2003.
1179. A. Kolcz, A. Chowdhury, J. Alspector, ―Data duplication: an imbalance problem?‖
Proceedings of the Workshop on Learning from Imbalanced Datasets II, at the
International Conference on Machine Learning (ICML), Washington DC, 2003.
1180. P. Cunningham, N. Nowlan, S. J. Delany, M. Haahr, ―A Case-Based Approach to
Spam Filtering that Can Track Concept Drift,‖ Proceedings of the Workshop on LongLived CBR Systems, Case-Based Reasoning Research and Development, 5th
International Conference on Case-Based Reasoning (ICCBR), Trondheim, Norway, June
2003.
1181. T. Oda and T. White, ―Developing an Immunity to Spam,‖ Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO), Chicago, July 2003.
1182. A. Massey, M. Thomure, R. Budrevich, S. Long, ―Learning Spam: Simple
Techniques For Freely-Available Software,‖ Proceedings of the Usenix Annual Technical
Conference, Freenix Track, pp. 63-76, San Antonio, Texas, USA, June 2003.
1183. M. Cignini , S. Mizzaro, C. Tasso and A. Virgili, ―E-Mail on the Move:
Categorization, Filtering, and Alerting on Mobile Devices with the ifMail Prototype‖,
Proceedings of the International Workshop on Mobile HCI, Lecture Notes in Computer
Science 2954, pp. 107-123, Springer-Verlag, 2003.
1184. M. Cignini , S. Mizzaro and C. Tasso, ―E-mail Categorization, Filtering, and
Alerting on Mobile Devices: The ifMail Prototype and its Experimental Evaluation‖,
Proceedings of the AIIA Conference, Lecture Notes in Computer Science 2829, pp. 523535, Springer-Verlag, 2003.
1185. ZHANG Le and YAO Tian-shun, Filtering junk mail with a maximum entropy
model, in: Proceedings of 20th International Conference on Computer Processing of
Oriental Languages (ICCPOL03), 2003, pp. 446–453.
1186.
Cormac O‘Brien, ―Compiling a Corpus of E-Mail to Evaluate Spam Filters‖, in
Proceedings of ECAI2002. , 2003.
1187. Asher Langton, Bryan Berns and Jiong Fan, ―Spam Detection Methods Using Naive
Bayes Filtering‖, Technical Report, 2003.
1188. Aleksander Kołcz, Abdur Chowdhury and Joshua Alspector, ―Data duplication: an
imbalance problem ?‖, in Proceedings of the Workshop on Learning from Imbalanced
Datasets II, ICML, Washington DC, 2003.
1189. Bart Massey, Mick Thomure, Raya Budrevich and Scott Long, ―Learning Spam:
Simple Techniques For Freely-Available Software‖, in Proceedings of the 2003 Usenix
Annual Technical Conference, 2003.
1190. V. Chaoji, S. Dawara, Data Mining: Mining time-series data - filtering junk email,
Report for the STARE project: The Spam Tracking, Anticipation and Retaliation Effort,
Department of Computer Science, Rochester Institute of Technology, USA, 2002.
1191. F. Smadja and H. Tumblin, ―Automatic Spam Detection as a Text Classification
Task‖ Proceedings of the 2nd Workshop on Operational Text Classification Systems
(OTC), at the ACM SIGIR Conference on R&D in IR (SIGIR), Tampere, Finland,
August, 2002
1192. G. Manco, E. Masciari, M. Ruffolo, A. Tagarelli, ―Towards An Adaptive Mail
Classifier,‖, In Workshop su apprendimento automatico: metodi ed applicazioni",
"Tecniche di Intelligenza Artificiale per la ricerca di informazione sul Web" (AIIA),
Siena, Italy, 2002.
1193. G. Manco, E. Masciari, A. Tagarelli, ―A Framework for Adaptive Mail
Classification‖, Proceedings of the 14th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), Washington, DC, USA, November 2002.
1194. M. Zaffalon and M. Hutter, ―Robust feature selection by mutual information
distributions.‖ In Proceedings of the 18th Conference on Uncertainty in Artificial
Intelligence (UAI). Morgan Kaufmann, San Francisco, pp. 577-584, 2002.
63
1195. J.M. Gomez Hidalgo, ―Evaluating Cost-Sensitive Unsolicited Bulk Email
Categorization,‖ Proceedings of the ACM Symposium on Applied Computing, Spain,
March, 2002.
1196. J.M. Gomez Hidalgo E. Puertas Sanz and M. Mana Lopez, ―Evaluating CostSensitive Unsolicited Bulk Email Categorization,‖ Proceedings of the 6th International
Conference on the Statistical Analysis of Textual Data, France, March, 2002.
1197. Y. Lian, E-mail Filtering, MSc Thesis, Department of Computer Science, University
of Sheffield, 2002.
1198. A. Herbers, Collaborative E-Mail Filtering, MSc Thesis, Department of Electrical
Engineering and Computer Science, University of Kansas 2002.
1199. A. Kolcz and J. Alspector, ―SVM-based Filtering of E-mail Spam with Contentspecific Misclassification Costs,‖ Proceedings of the Workshop on Text Mining
(TextDM), IEEE International Conference on Data Mining, 2001.
G. Paliouras, C. Papatheodorou, V. Karkaletsis, P.Tzitziras and C.D.
Spyropoulos, ―Large-Scale Mining of Usage Data on Web Sites,‖ Proceedings of
the AAAI Spring Symposium on Adaptive User Interfaces, pp.92-97 Stanford,
California, USA, March 2000. (cited by 11)
1200. G. Castellanoa, A.M. Fanellia and M.A. Torsello, ―NEWER: A system for NEurofuzzy WEb Recommendation‖, in Applied Soft Computing, 2010
1201. MMA Al-Kahir, MM Koutb, HM Kelash, E Menofeya, ―Hybrid Approach for
Designing Smart Adaptive Web Sites‖, in JCS&T Vol. 9 No. 2, pp 65- 71, Oct 2009
1202. G. Castellano, A.M. Fanelli, M.A. Torsello ―Computational Intelligence techniques
for Web personalization‖, in Web Intelligence and Agent Systems, Volume 6, Number 3 /
2008, pp 253-272
1203. Elkilany, A.A.A. Petrounias, I. ―biTemporal Session Reconstruction for Visited
Sessions Retrieval‖, in: Information Visualisation, 2008. IV '08, pp 341-346, 2008
1204. G. Castellano, A. M. Fanelli, M. A. Torsello, ―Log Data Preparation For Mining Web
Usage Patterns", IADIS International Conference Applied Computing 2007.
1205. D. Tanasa, ―Contributions to Intersites Logs Preprocessing and Sequential Pattern
Extraction with Low Support‖, PhD Thesis, School of Information and Communication
Science and Technology, University of Nice Sophia Antipolis, France, June 2005.
1206. D. Tanasa, B. Trousse and F. Masseglia. ―Fouille de données appliquées au logs web
: état de l'art sur le Web Usage Mining ‖, Mesures de l'internet, édition Les Canadiens en
Europe, pp. 126-143, 2004.
1207. M. Nadjarbashi-Noghani, and A. A. Ghorbani, ―Improving the referrer-based Web
log session reconstruction‖, Proceedings of the 2nd Annual Conference on
Communication Networks and Services Research, pp. 286-292, IEEE Press, 2004.
1208. R. Kosala and H. Blockeel, ―Web Mining Research: A survey,‖ ACM SIGKDD
Explorations, 2(1), July 2000.
1209. L. Ardissono and P. Torasso, ―Dynamic User Modelling in a Web Store Shell‖.
Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany,
2000.
1210. L. Ardissono and A. Goy, ―Tailoring the Interaction with Users in Web Stores‖. User
Modeling and User-Adapted Interaction, 10(4), pp. 251-303, 2000.
G. Paliouras, V. Karkaletsis, G.Petasis and C.D. Spyropoulos, "Learning
Decision Trees for Named-Entity Recognition and Classification", Proceedings of
the Workshop "Machine Learning for Information Extraction", European
Conference in Artificial Intelligence (ECAI), Berlin, Germany, August 2000.
(cited by 5)
64
1211. Y. Xia, K-F Wong, and W. Gao, ―NIL Is Not Nothing: Recognition of Chinese
Network Informal Language Expressions‖, Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing, Second International Joint Conference on
Natural Language Processing (IJCNLP), Jeju Island, Republic of Korea, October 11-13,
2005.
1212. Y. Xia and K-F Wong, ―Methods and Practice in Chinese Network Informal
Language Processing‖, Proceedings of the 8th Joint Seminar on Computational
Linguistics (JSCL), Nanjing, China, 2005.
1213. T. Bogers. Dutch Named Entity Recognition: Optimizing Features, Algorithms, and
Output. Master's thesis, Tilburg University, September 2004.
1214. H. Isozaki. ―Japanese Named Entity Recognition based on a Simple Rule Generator
and Decision Tree Learning,‖ Proceedings of ACL, pp.306--313, 2001.
1215. A. Cucchiarelli and P. Velardi, ―Unsupervised named entity recognition using
syntactic and semantic contextual evidence,‖ Computational Linguistics, 27 (1), 123-131,
2001.
G. Paliouras, V. Karkaletsis, I. Androutsopoulos, and C.D. Spyropoulos,
"Learning Rules for Large-Vocabulary Word Sense Disambiguation: A
Comparison of Various Classifiers". In Christodoulakis, D.N. (Ed.), Proceedings
of the 2nd International Conference on Natural Language Processing (NLP 2000),
Patra, Greece. Lecture Notes in Artificial Intelligence, 1835, pp. 383-394,
Springer, 2000. (cited by 5)
1216. Aarón Pancardo Rodrìguez, ―La Web como Recurso Lingüìstico para la
Desambiguación Semántica‖, INAOE, 2006
1217. A. Pancardo-Rodrìguez , M. Montes-y-Gómez, L. Villaseñor-Pineda and P. Rosso,
―A Mapping Between Classifiers and Training Conditions for WSD‖, Proceedings of the
6th International Conference, (CICLing), Lecture Notes in Computer Science, vol. 3406,
pp. 246-249, 2005.
1218. E. Gustavii, ―Target Language Preposition Selection – an Experiment with
Transformation-Based Learning and Aligned Bilingual Data‖, Proceedings of the 10th
Conference of the European Association for Machine Translation (EAMT), pp. 112-118,
2005.
1219. L. Specia and M. das Graças Volpe Nunes, ―Desambiguação Lexical Automática de
Sentido: Um Panorama‖, Technical Report, no. NILC-TR-04-08, Série de Relatórios do
Núcleo Interinstitucional de Lingüìstica Computacional, Universidade de São Paulo,
Brasil, August 2004.
1220. P. Osenova, S. Kolkovska, ―Combining the named-entity recognition task and NP
chunking strategy for robust pre-processing‖, Proceedings of the Workshop on Treebanks
and Linguistic Theories (TLT), Sozopol, Bulgaria, 2002.
G. Paliouras, V. Karkaletsis, C. Papatheodorou and C.D. Spyropoulos,
"Exploiting Learning Techniques for the Acquisition of User Stereotypes and
Communities", CISM Courses and Lectures, n. 407, Springer-Verlag, 1999, pp.
169-178 (cited by 32)
1221. R Aler, JM Valls, D Camacho, A López, ―Programming Robosoccer agents by
modeling human behavior‖, Expert Systems with Applications, Volume 36, Issue 2, Part
1, March 2009, Pages 1850-1859
1222. S Kim ―Visualizing Users, User Communities, and Usage Trends in Complex
Information Systems Using Implicit Rating Data‖ Dissertation 2008-04-14
65
1223. Lee, Sunyoung ―Early Prediction of Student Goals and Affect in Narrative-Centered
Learning Environments.‖, Dissertation 2008-08-07
1224. Reinecke, K., Bernstein, A.: Culturally Adaptive Software: Moving Beyond
Internationalization. In: Proceedings of the 12th International Conference on HumanComputer Interaction, Beijing, China, Springer, Heidelberg (2007)
1225. Frias-Martinez E., Chen S., Liu X. (2007). Automatic cognitive style identification of
digital library users for personalization. J. Am. Soc. Inform. Sci. Technol. 58(2): 237–251
1226. D. Godoy and A. Amandi, ―User profiling in personal information agents: a survey‖,
Knowledge Engineering Review, vol. 20, no. 4, pp. 329-361, 2006.
1227. E. Frias-Martinez, G. Magoulas, S. Chen and R. Macredie, Automated user modeling
for personalized digital libraries, International Journal of Information Management 26 (3)
(2006), pp. 234–248.
1228. R. Aler, O. Garcia and J.M. Valls, ―Correcting and improving imitation models of
humans for Robosoccer agents‖, Proceedings of the IEEE Congress on Evolutionary
Computation, vol. 3, pp. 2402-2409, IEEE Press, 2005.
1229. Z. Lock, Performance and Flexibility of Stereotype-based User Models, PhD Thesis,
Department of Computer Science, University of York, UK, September 2005.
1230. R. Pampapathi, B. Mirkin and M. Levene, A Review of the Technologies and
Methods in Profiling and Profile Classification, EPALS Project Technical Report, School
of Computer Science, Birkbeck University of London, UK, April 2005.
1231. Z. Lock and D. Kudenko, ―Performance and Flexibility of Stereotype-based User
Models‖, User Modeling and User-Adapted Interaction, PhD Thesis, Univ. Of N.York,
U.K.2005.
1232. V. Guillet, B. Rumpler, J.-M. Pinon, J.-M. Pierson and R. Laurini, ―User modelling
and exploitation of an adapted system for the pedestrian displacement assistance‖,
Ingénierie des systèmes d'information, vol. 9, no. 2, pp. 107-128, 2004.
1233. N. Ohsugi, A Framework for Software Function Recommendation Based on
Collaborative Filtering, PhD Thesis, Department of Information Systems, Graduate
School of Information Science, Nara Institute of Science and Technology, September
2004.
1234. S. Kim and E. A. Fox, ―Interest-Based User Grouping Model for Collaborative
Filtering in Digital Libraries‖, Proceedings of the 7th International Conference on Asian
Digital Libraries, (ICADL), Lecture Notes in Computer Science, n. 3334, pp. 533-542,
2004.
1235. Victoria Tsiriga, Maria Virvou, ―A Framework for the Initialization of Student
Models in Web-based Intelligent Tutoring Systems‖, User Modeling and User-Adapted
Interaction, 14(4): 289-316, 2004.
1236. J. Fink, User Modeling Servers - Requirements, Design, and Evaluation, PhD Thesis,
Department of Mathematics, University of Duisburg-Essen, July 2003.
1237. L. Nogueira and E. Oliveira, ―Learning Preferences to provide Advice‖, Proceedings
of the International Conference in Concurrent Engineering (CE), Madeira Island, July
2003.
1238. M. Sollenborn, Clustering and Case-Based Reasoning for User Stereotypes,
Technical Report, Department of Computer Science and Engineering, Maelardaren
University, Sweden, November 2003.
1239. L. Nogueira and E. Oliveira, ―Brokering in electronic insurance markets‖,
Proceedings of 3rd International Central and Eastern European Conference on MultiAgent Systems, (CEEMAS), Lecture Notes in Artificial Intelligence, n. 2691, pp. 574583, 2003.
1240. Josef Fink, Alfred Kobsa, ―User Modeling for Personalized City Tours‖, Artificial
Intelligence, Review, v.18 n.1, p.33-74, September 2002
1241. Ingo Schwab and Alfred Kobsa, ―Adaptivity through Unobstrusive Learning‖, KI
2002/3, pp. 5-9, Special Issue on Adaptivity and User Modeling.
1242. Luìs Nogueira, Eugenio Oliveira A Multi-Agent System for E-Insurance Brokering,
Proceedings of the Workshop on Agent Technologies for e-Services (ATES2002).
1243. F. Abbattista, M. Degemmis, N. Fanizzi, O. Licchelli, P. Lopes, G. Semeraro, F.
Zambetta, ―Learning User Profiles for Content-Based Filtering in e-Commerce,‖
Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence,
Siena, Italy, September 10-13, 2002.
66
1244. Schwab, A. Kobsa and I. Koychev, ―Learning User Interests through Positive
Examples Using Content Analysis and Collaborative Filtering‖, Internal Memo, GMD,
St. Augustin, Germany, 2001.
1245. Kobsa, J. Koenemann, and W. Pohl, ―Personalised hypermedia presentation
techniques for improving online customer relationships,‖ Knowledge Engineering
Review, 16 (2), pp. 111-155, 2001.
1246. Kobsa, ―Generic User Modeling Systems,‖ User Modeling and User-Adapted
Interaction, 11, pp. 49-63, 2001.
1247. Ingo Schwab, Alfred Kobsa, Ivan Koychev, ―Learning User Interests through
Positive Examples Using Content Analysis and Collaborative Filtering‖, Internal Memo,
GMD, St. Augustin, Germany, 2001.
1248. Katy Börner, ―Adaptation and Evaluation of 3-Dimensional Collaborative
Information Visualizations,‖ Proceedings of the Workshop on Empirical Evaluations of
Adaptive Systems, International Conference on User Modelling (UM), pp. 33-40, 2001.
1249. L. Ardissono and A. Goy, ―Tailoring the Interaction with Users in Web Stores‖. User
Modeling and User-Adapted Interaction, 10(4), pp. 251-303, 2000.
1250. J. Fink and A. Kobsa, ―A Review and Analysis of Commercial User Modeling
Servers for Personalization on the World Wide Web,‖ User Modeling and User-Adapted
Interaction, 10(2/3), pp. 209-249, 2000.
1251. R. Schafer and M. Bauer, ―Ein intelligenter Ansatz zur Personalisierung von
Webseiten mit Informationsdiensten‖. In Proc. Adaptivitat und Benutzermodellierung in
interaktiven Softwaresystemen (ABIS2000).
1252. M. Spiliopoulou, ―Tutorial: Data Mining for the Web,‖ Lecture Notes for Artificial
Intelligence, n. 1704, pp. 588-589, Springer-Verlag, 1999.
G. Paliouras, C. Papatheodorou, V. Karkaletsis, C.D. Spyropoulos and
P.Tzitziras, "From Web Usage Statistics to Web Usage Analysis", Proceedings of
the IEEE Conference on Systems Man and Cybernetics, October 1999, vol II, pp.
159-164. (cited by 3)
1253. G. M. Nickles, ―Identifying Measures of Student Behavior from Interaction with a
course Management System‖, Journal of Educational Technology Systems, vol. 34, no. 1,
pp. 111-126, 2006.
1254. D. Tanasa, B. Trousse and F. Masseglia. ―Fouille de données appliquées au logs web
: état de l'art sur le Web Usage Mining ‖, Mesures de l'internet, édition Les Canadiens en
Europe, pp. 126-143, 2004.
1255. G. M. Nickles, Work Action Analysis to Structure Planning and Formative
Evaluation of an Engineering Course Using a Course Management System, PhD Thesis,
School of Industrial and Systems Engineering, Georgia Institute of Technology, USA,
December 2004.
G. Paliouras, C. Papatheodorou, V.C. Karkaletsis, P. Tzitziras, and C.D.
Spyropoulos. ―Learning communities of the acai'99 web site visitors‖ In
Proceedings of the ACAl'99 Workshop on Machine learning in user modeling,
pages 65-73, 1999. (cited by 2)
1256. Stephan ten Hagen, Maarten van Someren, and Vera Hollink.
―Exploration/exploitation in adaptive recommender systems‖. In Proceedings of the third
European Symposium on Intelligent Technologies, Hybrid Systems and their
implementation on Smart Adaptive Systems, Oulu, Finland, 2003.
1257. Gerald Benoit, ―Data Mining‖. Annual Review of Information Science and
Technology, vol. 36, pp. 265-310, 2002.
67
G. Paliouras, V. Karkaletsis and C.D. Spyropoulos, "Learning Rules for Large
Vocabulary Word Sense Disambiguation", Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI '99), v. 2, pp. 674-679, August, 1999.
(cited by 5)
1258. V. Lertnatteea and T. Theeramunkong, ―Class normalization in centroid-based text
categorization‖, Information Sciences, vol. 176, no. 12, pp. 1712-1738, 2006.
1259. L. Specia and M. das Graças Volpe Nunes, Desambiguação Lexical Automática de
Sentido: Um Panorama, Technical Report, no. NILC-TR-04-08, Série de Relatórios do
Núcleo Interinstitucional de Lingüìstica Computacional, Universidade de São Paulo,
Brasil, August 2004.
1260. Fabrizio Sebastiani, ―Machine Learning in Automated Text Categorization: a
Bibliography‖ 2004.
1261. R. J. Mooney, ―Machine Learning,‖ Oxford Handbook of Computational Linguistics,
R. Mitkov (ed.), Chapter 20, pp. 376-394, Oxford University Press, 2003.
1262. J-F. de Pasquale, J-G. Meunier, ―Categorisation techniques in computer assisted
reading and analysis of texts (CARAT) in the humanities,‖ Proceedings of the Joint
International Conference of the Association for Computers and the Humanities and the
Association for Literary and Linguistic Computing (ACH-ALLC), New York University,
June, 2001.
G. Petasis, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos, and I.
Androutsopoulos, "Resolving Part-of-Speech Ambiguity in the Greek Language
Using Learning Techniques". Proceedings of the ECCAI Advanced Course on
Artificial Intelligence (ACAI '99), Chania, Greece, July, 1999. (cited by 3)
1263. Harry Kornilakis, Maria Grigoriadou, Eleni Galiotou, Evangelos Papakitsos,
Aligning, Annotating And Lemmatizing A Corpus For The Validation Of Balkan
Wordnets, Workshop on Balkan Language Resources and Tools, 2003
1264. H.Cunningham, D. Maynard, K.Bontcheva, B. Tablan, and Y.Wilks. ―Experience of
using GATE for NLP R&D‖. Workshop: Using Toolsets and Architectures To Build NLP
Systems, 18th International Conference on Computational Linguistics (COLING), 2000.
1265. H. Papageorgiou, P. Prokopidis, V. Giouli, S. Piperidis, ―A Unified POS Tagging
Architecture and its Application to Greek‖, Proc. of the 2nd International Conference on
Language Resources and Evaluation (LREC), vol. III, pp. 1455–1462, Athens, Greece,
June 2000.
Karkaletsis, V., Spyropoulos, C.D., and Petasis, G. "Named Entity Recognition
from Greek texts: the GIE Project". In "Advances in Intelligent Systems:
Concepts, Tools and Applications", ed. S.Tzafestas, Kluwer Academic Publishers,
Part II - Chapter 12, 1999, pp. 131-142. (cited by 3)
1266. D. Maynard, V. Tablan, C. Ursu, H. Cunningham and Y. Wilks, ―Named Entity
Recognition from Diverse Text Types‖. Proc. of the Recent Advances in Natural
Language Processing 2001 Conference, Tzigov Chark, Bulgaria.
1267. Demiros, S. Boutsis, V. Giouli, M. Liakata, H. Papageorgiou, S. Piperidis, ―Named
Entity Recognition in Greek Texts‖, Proc. of the 2nd International Conference on
Language Resources and Evaluation (LREC 2000), Athens, Greece, June 2000, vol. III,
pp. 1223–1228.
68
1268. S. Boutsis, I. Demiros, V. Giouli, M. Liakata, H. Papageorgiou, S. Piperidis, ―A
System for Recognition of Named Entities in Greek‖, In Christodoulakis, D.N. (Ed.),
Proceedings of the 2nd International Conference on Natural Language Processing (NLP
2000), Patra, Greece. Lecture Notes in Artificial Intelligence, 1835, Springer, 2000, pp.
424-436.
Paliouras G., Karkaletsis V., and Spyropoulos C.D., 1998. ―Machine Learning for
Domain-Adaptive Word Sense Disambiguation‖. In Proceedings of the Workshop
on ―Adapting Lexical and Corpus Resources to Sublanguages and Applications‖,
in the First International Conference on Language Resources and Evaluation
(LREC), Granada, Spain, May 26, 1998. (cited by 3)
1269. M. D. Faure, Conception de methode d‘apprentissage symbolique etautomatique pour
l‘acquisition de cadres de sous-categorisation de verbes et de connaissances semantiques
a partir de textes: le systeme Asium, PhD Thesis, Universite de Paris-Sud, December
2000.
1270. F. Vichot, F. Wolinski, H.-C. Ferri, and D. Urbani, ―Feeding a Financial Decision
Support System with Textual Information‖ Journal of Intelligent and Robotic Systems, v.
26, n. 2, pp. 157-166, 1999.
1271. F. Vichot, F. Wolinski, H.-C. Ferri, and D. Urbani, ―Using Information Extraction for
Knowledge Entering‖, In "Advances in Intelligent Systems: Concepts, Tools and
Applications", ed. S.Tzafestas, Kluwer Academic Publishers, Part II - Chapter 17, pp.
191-200, 1999.
Paliouras G., Papatheodorou C., Karkaletsis V., Spyropoulos C.D., and Malaveta
V. ―Learning User Communities for Improving the Services of Information
Providers‖. In Lecture Notes in Computer Science (LNCS), Research and
Advanced Technology for Digital Libraries, no 1513, Springer-Verlag, 1998, pp.
367-383. (cited by 21)
1272. Luis Nogueira and Eugenio Oliveira ―Improving brokering adaptation in dynamic
heterogeneous environments‖, in International Journal of Product Lifecycle Management,
Vol.2, No 2 / 2007, pp.113 – 134.
1273.
Oriana Licchelli and Giovanni Semeraro , ―Student profiles to improve searching in
e-learning systems‖, in International Journal of Continuing Engineering Education and
Life Long Learning, Vol.17, No 4-5,2007pp.392 – 401.
1274. O. Boydell and B. Smyth. Capturing community search expertise for personalized
web search using snippet-indexes. In Proceedings of the 15th ACM International
Conference on Information and Knowledge Management, CIKM 2006, pages 277–286,
Arlington, VA, November 2006.
1275. Oriana Licchelli and Giovanni Semeraro ―e-Learning Systems and Personalized
Digital Libraries‖, CIAH 2005.
1276. F. Esposito, O. Licchelli and G. Semeraro, ―Discovering Student Models in elearning Systems‖, Journal of Universal Computer Science, vol. 10, no. 1, pp. 47-57,
2004.
1277. R. B. Almeida and V. A. F. Almeida, ―A Community-Aware Search Engine,‖
Proceedings of the ACM International Conference WWW, pp. 413- 421, New York,
USA, May 2004.
1278. M. Degemmis, O. Licchelli, P. Lopes and G. Semeraro, ―Learning Usage Patterns for
Personalized Information Access in e-Commerce‖, In User-Centered Interaction
Paradigms for Universal Access in the Information Society, C. Stary and C Stephanidis
(Eds.), Revised Selected Papers from the 8th ERCIM Workshop on User Interfaces for
All , Lecture Notes in Computer Science, 3196, pp. 133-148, 2004.
69
1279. Xing DS, Shen JY, ―Efficient data mining for web navigation patterns‖,
INFORMATION AND SOFTWARE TECHNOLOGY, 46 (1): 55-63 JAN 1 2004.
1280. Nogueira L, Oliveira E. ―Brokering in electronic insurance markets‖, MULTIAGENT SYSTEMS AND APPLICATIONS III, PROCEEDINGS, LECTURE NOTES
IN ARTIFICIAL INTELLIGENCE 2691: 574-583 2003
1281. Luis Nogueira and Eugenio Oliveira. A Multi-Agent System for E-Insurance
Brokering. In Agent Technologies, Infrastructures, Tools and Applications for e-Services.
Eds. R.Kowalczyk, R.Muller, H.Tianfield, R.Unland, LNAI 2592, pp. 263-282, Springer
2003.
1282. Rodrigo B. Almeida, Virg´ýlio A. F. Almeida, ―Design and Evaluation of a Userbased Community Discovery Technique‖ International Conference on Internet
Computing 2003:pp 17-23
1283. R. B. Almeida and V. A. F. Almeida, Local Community Identification through User
Access Patterns, Technical Report (arXiv/cs/0212045), Department of Computer Science,
Universidade Federal de Minas Gerais, Brazil, 2003.
1284. L. Nogueira and E. Oliveira, ―Learning Preferences to provide Advice‖, Proceedings
of the International Conference in Concurrent Engineering (CE), Madeira Island, July
2003.
1285. L. Nogueira, E. Oliveira, ―A Multi-Agent System for E-Insurance Brokering,‖ In
Agent Technologies, Infrastructures, Tools and Applications for e-Services, Lecture
Notes in Artificial Intelligence, v. 2592, pp. 263-282 , Springer-Verlag, 2002.
1286. F. Abbattista, M. Degemmis, O. Licchelli, P. Lops, G. Semeraro and F. Zambetta,
―Improving the usability of an e-commerce web site through personalization‖,
Proceedings of the Workshop on Recommendation and Personalization in E-commerce
(MPEC), 2nd International Conference on Adaptive Hypermedia and Adaptive Web
Based Systems (AH), Malaga, Spain, 2002.
1287. F. Abbattista, M. Degemmis, N. Fanizzi, O. Licchelli, P. Lopes, G. Semeraro, F.
Zambetta, Learning User Profiles for Content-Based Filtering in e-Commerce,
Proceedings of the 8th Congress of the Italian Association for Artificial Intelligence,
Siena, Italy, September 10-13, 2002.
1288. E David, S Kipnis, S Kraus, D Richardson , ―Apparatus and method for agent-based
feedback collection in a data broadcasting network‖, US Patent 6,449,632, 2002, 2002.
1289. Z. Wang, Collaborative Filtering Using Error-Tolerant Fascicles, MSc Thesis, School
of Computing Science, Simon Fraser University, March, 2001.
1290. E. David and S. Kraus, Agents for information broadcasting In: N.R. Jennings and Y.
Lesperance, Editors, Intelligent Agents VI (LNAI Volume 1757), Springer, Berlin,
Germany (2000), pp. 91–105.
1291. M.F. Costabile, F. Esposito, G. Semeraro, N. Fanizzi, ―An adaptive visual
environment for digital libraries‖, International Journal of Digital Libraries (1999) 2: 124143.
1292. Semeraro, G., Costabile, M.F., Esposito, F., Fanizzi, N., Ferilli, S.: Machine Learning
Techniques for Adaptive User Interfaces in a Corporate Digital Library Service. Machine
Learning and Applications. In: Proceedings of the ACAI-99 Workshop on Machine
Learning in User Modeling, Chania, Crete, Greece, pp. 21–29 (1999)
Benaki, E., Karkaletsis, V. and Spyropoulos, C.D. ―Integrating User Modeling
into Information Extraction: the UMIE Prototype‖, in Proceedings of the 6th
International Conference on User Modeling (UM97), CISM No 383, Springer
Wien New York, 1997, pp. 55-58, 1997. (cited by 10)
1293. Hamza Hydri Syed, Periklis Andritsos ―User Preference Modeling - A Survey
Report‖, University of Trento, Italy, August 2007
1294. Hamza H. Syed, Periklis Andritsos ―A Lightweight Tree Structure to Model User
Preferences‖ , University of Trento, Italy, 2007
70
1295. Agnieszka Indyka – Piasecka ―Model Użytkownika W Internetowych Systemach
Wyszukiwania Informacji‖, 2006
1296. T. Poibeau, ―Mixing technologies for Intelligent Information Extraction,‖ in
Proceedings of the workshop on Intelligent Information Integration, 16th International
Joint Conference on Artificial Intelligence, pp. 116–121,1999
1297. W Abramowicz, PJ Kalczynski, K Wecel - Complementing the data warehouse with
information filtered from the web, Data warehousing and web engineering table of
contents, 2002
1298. C Papatheodorou - Machine Learning and Its Applications, 2001, Machine Learning
in User Modeling , Springer Lecture Notes In Artificial Intelligence, 2001
1299. D Bueno, AA David, METIORE: A Personalized Information Retrieval System.User
Modeling, 2001 - Springer Page 1. M. Bauer, PJ Gmytrasiewicz, and J. Vassileva (Eds.):
UM 2001, LNAI 2109, pp. 168–177, 2001.
1300. M.Wallace,I.Maglogiannis, K.Karpouzis, G.Kormentzas, S.Kollias, Intelligent OneStop-Shop Travel Recommendations Using An Adaptive Neural Network And Clustering
Of History, Information Technology & Tourism, Vol. 6 pp. 181–193
1301. Th. Poibeau, ―A corpus-based approach to Information Extraction‖, In Journal of
Applied System Studies, vol. 1 n. 2, 2000.
1302. T Jörding & K. Meissner (1998), Intelligent Multimedia Presentations in the Web:
Fun without Annoyance, in Procceedings of "Seventh International World Wide Web
Conference (WWW7)", Brisbane, Australia, published by Elsevier Science B.V., (pp.
649-650),
long
version
as
internal
report
http://www-mmt.inf.tudresden.de/joerding/Www7/www.html .
Benaki, E., Karkaletsis, V., and Spyropoulos, C.D. ―User Modeling in WWW:
the UMIE Prototype‖, in Proceedings of the Workshop "Adaptive Systems and
User Modeling on the World Wide Web", in the 6th International Conference on
User Modeling, Sardinia, Italy, June 2, 1997, pp. 13-21. (cited by 3)
1303. Agnieszka Indyka – Piasecka ―MODEL UŻYTKOWNIKA W INTERNETOWYCH
SYSTEMACH WYSZUKIWANIA INFORMACJI‖, 2006.
1304. M. Regina, M. Braga C. M. L. Werner, M. Mattoso, ―Using Ontologies for Domain
Information Retrieval‖, Proceedings of DEXA 2000.
1305. A.Sallis, R.Pascoe, ―An Evaluation Methodology for the Analysis of Dialogue
between a Student and an Adaptive Course‖, Proc. of the 7th International Conference on
Computers in Education, Chiba, 1999.
Kokkotos S., Spyropoulos C.D. ―An Architecture for Designing Internationalized
Software‖, in Proceedings of 18th International Workshop on Software
Technology and Engineering Practice (STEP‘97), July 14-18, London, pp.13-21.
(cited by 1)
1306. Stathis,K. and Sergot,M., 1998. ―An abstract framework for globalising interactive
systems‖. In Special Issue of Interacting with Computers: The Interdisciplinary Journal of
Human Computer Interaction, 9 (1998), pp. 401-416.
Spyropoulos C.D., Kokkotos S., Marinagi C. ―Planning and Scheduling Patient
Tests in Hospital Laboratories‖, in Lecture Notes in Artificial Intelligence
(LNAI), Artificial Intelligence in Medicine, no 1211, E. Keravnou, C. Carbay, R.
Band, J. Wyatt (Eds), 1997, pp. 307-318. (cited by 1)
71
1307. Vassilacopoulos G, Paraskevopoulou E, ―A process model basis for evolving hospital
information systems ―, J MED SYST 21 (3): 141-153 JUN 1997
Vouros, G., Karkaletsis, E., and Spyropoulos, C.D., 1997. ― Documentation and
Translation", in ―Software without frontiers‖, ed. By P.A.Hall and R.Hudson,
J.Wileys&Sons, London, 1997 (ISBN 0 471 96974 5), pp. 167-202. (cited by 1)
1308. Day, D.L., 1998. ―Shared values and shared interfaces: The role of culture in the
globalisation of human-computer systems‖. In Special Issue of Interacting with
Computers: The Interdisciplinary Journal of Human Computer Interaction, 9 (1998), pp.
269-274.
Karkaletsis, V., Spyropoulos, C.D., Benaki, E. ―Customising Information
Extraction Templates according to Users Interests‖, in Proceedings of the
Workshop ―Lexically Driven Information Extraction - LDIE‘97‖, Frascatti, Rome,
July 16, 1997, pp 23-37. (cited by 3)
1309. Th. Poibeau, ―A corpus-based approach to Information Extraction‖, In Journal of
Applied System Studies, vol. 1 n. 2,2000
1310. O. Glickman, R.Jones, ―Examine Machine Learning for Adaptable End-to-End
Information Extraction, July 19, 1999, Florida.
1311. T. Poibeau, ―Mixing technologies for Intelligent Information Extraction,‖ in
Proceedings of the workshop on Intelligent Information Integration, 16th International
Joint Conference on Artificial Intelligence, pp. 116–121,1999
Spyropoulos, C.D., and Karkaletsis, V. "On line Generation of Messages: A
Knowledge-based Approach‖, in Proceedings of the ECAI-96 Workshop on
Multilinguality in Software Industry: The AI Contribution (MULSAIC‘96),
Budapest, Hungary, 12 August 1996. (cited by 1)
1312. Bateman, J.A., 1997, ―Enabling technology for multilingual natural language
generation: the KPML development environment‖. In Journal of Natural Language
Engineering 3(1): 15-55.
Kokkotos S., Spyropoulos C.D. ―A Framework for Developing Temporal
Databases‖, Computer Science Lecture Notes Series, Springer-Verlag, no. 856,
1994, pp. 236-245. (cited by 1)
1313. Panayiotopoulos T., Gergatsoulis M. ―Intelligent Information Processing using
TRLi‖, Workshop Proceedings of the Database and Expert Systems Applications
DEXA'95 Conference, London, U.K., Revell N. and Tjoa A.M. (editors), pp. 494-501,
Sept. 1995.
72
Spyropoulos C.D., Kokkotos S. ―Interactive Fuzzy Scheduling Using the Time
Graph System TGS‖, Proceedings of the AAAI SIGMAN Workshop on
Manufacturing Scheduling, IJCAI-89 Conference, Detroit, IL, Aug. 1989. (cited
by 1)
1314. Kempf K., Le Pape C., Smith S.F. Fox. B.R. ―Issues in the Design of AI-Based
Schedulers: A Workshop Report‖, AI Magazine, Vol. 11, No. 5, pp. 37-46, Jan. 1991.
Γημοζιεύζεις ζε Δλληνικά Σσνέδρια
V. Karkaletsis and C.D. Spyropoulos. "Cross-lingual Information Management
from Web pages", Proceedings of the 9th Panhellenic Conference in Informatics
(PCI-2003), Thessaloniki, 21-23 November, 2003(cited by 1)
1315. Paliouras, G. (2005). On the need to bootstrap ontology learning with extraction
grammar learning. In Conceptual Structures: Common Semantics for Sharing Knowledge,
13th International Conference on Conceptual Structures , volume 3596 of Lecture Notes
in Computer Science, pages 119_135. Springer
Androutsopoulos I., Spiliotopoulos D., Stamatakis K., Dimitromanolaki A.,
Karkaletsis V. and Spyropoulos C.D. 2002. Symbolic authoring for multilingual
natural language generation. In Proceedings of the 2nd Hellenic Conference on
Artificial Intelligence (SETN-02), Thessaloniki, Greece (cited by 3)
1316. G Xydas, D Spiliotopoulos, G Kouroupetroglou ―Prosody Prediction from
Linguistically Enriched Documents Based on a Machine Learning Approach‖ , in
Proceedings of the 6th International Conference of Greek Linguistics (6 th
ICGL ) , Rethymno, Greece, September 18-21 2003.
1317. G Xydas, D Spiliotopoulos, G Kouroupetroglou, ―Building Prosodic Structures in a
Concept-to-Speech System‖ , In Workshop on Balkan Language Resources and Tools,
Thessaloniki, Greece, November 21, 2003.
1318. Aurelien MAX, ―De la creation de documents normalices µa la normalisation de
documents en domaine contrain‖, 2003
D. Pierrakos, G. Paliouras, C. Papatheodorou and C.D. Spyropoulos,
―KOINOTITES: A Web Usage Mining Tool for Personalization.‖ Proceedings of
the Panhellenic Conference on Human Computer Interaction (PC-HCI), pp. 231236, Patras, 2001. (cited by 5)
1319. G. Castellanoa, A.M. Fanellia and M.A. Torsello. ―NEWER: A system for NEurofuzzy WEb Recommendation‖. Applied Soft Computing, 2010
1320. Devdutta Bhosale, ―AlcoZone: An Adaptive Hypermedia Based Personalized
Alcohol Education‖, Thesis submitted to the faculty of the Virginia Polytechnic Institute
and State University in partial fulfillment of the requirements for the degree of Master of
Science in Computer Engineering, May 8,2006
1321. P. Germanakos, C. Mourlas, C. Panayiotou and G. Samaras, ―Personalization
Systems and Processes Review based on a Predetermined User Interface
Categorization‖, Proceedings of the 3rd International Congress on Communication and
Reality (CICR), pp. 431-444, 2005.
73
1322. S. W. Schilke, U. Bleimann, S. M. Furnell and A. D. Phippen, ―Multi-dimensional
personalisation for location and interest-based recommendation‖, Internet Research,
Volume 14, Number 5, pp. 379-385, Emerald Group Publishing Limited, 2004.
1323. M. Koutri, S. Daskalaki, ―Improving web site usability through a clustering
approach,‖ Proceedings of the 10th International Human-Computer Interaction
Conference (HCII‘03), vol 1, pp. 788-792, Heraklion, Greece, 2003.
D. Farmakiotou, V. Karkaletsis, G. Samaritakis, G. Petasis, and C.D.
Spyropoulos ―Named Entity Recognition in Greek Web Pages‖, Proceedings
Companion Volume of 2nd Hellenic Conference on AI (SETN-02), I.P. Vlahavas
and C.D. Spyropoulos (eds), pp. 91-102, Thessaloniki, Greece, 2002.(cited by 2)
1324. G. Lucarelli, X.Vasilakos and I. Androutsopoulos ―Named Entity Recognition In
Greek Texts With An Ensemble Of SMVS And Active Learning‖, International Journal
on Artificial Intelligence Tools, vol. 16, No 6, pp-1015-1045, 2007.
1325. Georgios Lucarelli and Ion Androutsopoulos ―A Greek Named-Entity Recognizer
That Uses Support Vector Machines and Active Learning‖,
Springer Berlin /
Heidelberg, In ―Lecture Notes in Computer Science‖, Advances in Artificial Intelligence,
Volume 3955, pp 203-213, 2006.
D. Farmakiotou, V. Karkaletsis, J. Koutsias, G. Sigletos, C.D. Spyropoulos and
P. Stamatopoulos, "Rule-based Named Entity Recognition for Greek Financial
Texts", Proceedings of the Workshop on Computational lexicography and
Multimedia Dictionaries (COMLEX 2000), pp. 75-78, Patras, Greece, September
2000. (cited by 12)
1326. Hongjian Liu, Defeng Guo, Quan Zhou, Kenji Nagamatsu, Qinghua Sun, ―A PreIdentification Method for Chinese Named Entity Recognition‖, Journal of Software, Vol
5, No 1 (2010), 73-80, Jan 2010
1327. Asif Ekbal and Sivaji Bandyopadhyay. ―Named Entity Recognition Using
Appropriate Unlabeled Data, Post-processing and Voting‖. Informatica 34 (2010) 55–76
1328. Uyar, E. (2009). Near-Duplicate News Detection Using Named Entities. Master Thesis,
Computer Engineering Department, Bilkent University. Retrieved June 21, 2009 from
http://www.cs.bilkent.edu.tr/~canf/bilir_web/theses/erkanUyarThesis.pdf
1329. Gersende Georg, Hugo Hernault, Marc Cavazza, Helmut Prendinger and Mitsuru
Ishizuka
. ―From rhetorical structures to document structure: shallow pragmatic
analysis for document engineering‖. Document Engineering. Proceedings of the 9th ACM
symposium on Document engineering. Munich, Germany. Pages: 185-192, 2009
1330. Sim~oes, G., Galhardas, H., & Coheur, L. (2009). Information extraction tasks: a
survey (INESC{ID technical report No. 37/2009). Lisbon, Portugal.
1331. Georgios Lucarelli and Ion Androutsopoulos ―A Greek Named-Entity Recognizer
That Uses Support Vector Machines and Active Learning‖,
Springer Berlin /
Heidelberg, In ―Lecture Notes in Computer Science‖, Advances in Artificial Intelligence,
Volume 3955, pp 203-213, 2006.
1332.
Gulila Altenbek , ―Rule-based Person Name Recognition for Xinjiang Minority
Languages.‖, Journal of Chinese Language and Computing 15 (4) pp 219-226 , 2005
1333. Gulila Adongbieke, ―Rule-based Person-name Recognition for Uighur Texts‖, In
ICCC 2005
1334.
Andrew Smith, Trevor Cohn, and Miles Osborne. 2005. Logarithmic opinion pools
for conditional random _elds. In Proceedings of ACL 2005.
1335. Indra Budi, Stéphane Bressan, Gatot Wahyudi, Zainal A. Hasibuan, Bobby Nazief:
―Named Entity Recognition for the Indonesian Language: Combining Contextual,
Morphological and Part-of- Speech Features into a Knowledge Engineering Approach‖.
Discovery Science 2005.
1336. Petya Osenova and Sia Kolkovska, ―Combining the named-entity recognition task
and NP chunking strategy for robust pre-processing‖ In: Proc. of The First Workshop on
74
Treebanks and Linguistic Theories (TLT2002), 20th and 21st September 2002, Sozopol,
Bulgaria. pages 167-182.
1337. Dalianis and E. Astrom, ―SweNam - A Swedish Named Entity Recogniser - Its
construction, training and evaluation‖, TRITA-NA-P0113, IPLab-189, July 2001
(http://www.nada.kth.se/~hercules/papers/SweNam.pdf).
A2. EDUCATIONAL CITATIONS
I. Androutsopoulos, J. Koutsias, K.V. Chandrinos, G. Paliouras, and C.D. Spyropoulos, "An
Evaluation of Naive Bayesian Anti-Spam Filtering". Proceedings of the Workshop
on Machine Learning in the New Information Age, 11th European Conference on
Machine Learning (ECML), pp. 9-17, Barcelona, Spain, 2000. [15 Citations]
1. I. Schuyt, Evolutionary Spam Filter, Project Report for the course project (CPSC503),
Υπεύθσνος Καθηγηηής: J. Denzinger, Department of Computer Science, University of
Calgary, Canada, 2005.
2. : R. Goetschi, SPAM-Filtering using Artificial Neural Networks, Semester Thesis,
Υπεύθσνος Καθηγηηής: Β. Anrig, Department of Computer Science, Berne University of
Applied Sciences, Switzerland, July 2004.
3. : D. C. Trudgian. SpamKANN: A k-Nearest Neighbour Spam Filter. Indiviudual Project
Report for COM3401, Department of Computer Science, University of Exeter, UK, 2004.
4. : M. Fernal, Mailsahv: Email Statistical Algorithmic Hybrid Virus Filter, Project report for
the course Information Systems Security (CSC574), Υπεύθσνος Καθηγηηής: Τ. Yu,
Department of Computer Science, North Carolina State University, USA, 2005.
5. Φρήζη από ηοσς καθ. I. Korpinska & J. Patrick ζηο μάθημα Knowledge Discovery and
Data Mining (COMP5318), School of Information Technologies, University of Sydney,
2004.
6. : T. Stone. Parameterization of naive bayes for spam filters, Masters comprehensive exam,
Department of Computer Science, University of Colorado at Boulder, USA, 2003.
7. Φρήζη από ηοσς καθ. G. Klinker & S. Kramer ζηο μάθημα Machine Learning, Institute
fuer Informatik, TU Muenchen, Germany, 2003.
8. : T. Chen, D. Chen and H. Ming, Spam Email Filtering, Project report for the course
Principles of Artificial Intelligence (ComS572), Instructor: Dimitris Margaritis,
Department of Computer Science, Iowa State University, USA, 2003.
9. M. Ghosh and J. J. Guernsey, Exploration of Neuro-Fuzzy Spam Filtering based on Naive
Bayesian Filters, Project report for the course Knowledge Based Systems (EECS 6360),
Instructor: Devinder Kaur, Electrical Engineering and Computer Science Department,
University of Toledo, USA, 2003.
10.: A. Bratko, Hierarhično razvrščanje elektronske pošte z metodami strojnega učenja, BSc
Thesis, Υπεύθσνος καθηγηηής: B. Zupan, Faculty of Computer and Information Science,
University of Ljubljana, 2003.
11.: R. Drewes, An artificial neural network spam classifier, Project report for the course on
Artificial Intelligence (CS676) , University of Nevada at Rino, USA (2002).
12.: N. Street, F. Menczer, P. Srinivasan and S. Bradshaw ITR: PREJEC T -- Peer-based
Rejection of Email Junk via Ensemble Classification Techniques, NSF Project Proposal
(2003).
13.: H. Stern. Optimizing Naive Bayesian Networks for Spam Detection, Project report for the
course on Natural Language Processing (CSCI 6509), Dalhousie University, Halifax, NS,
Canada, 2002.
14.: Q. Shen, Fuzzy-rough anti-spam Filtering, Postgrad dissertation proposal, Department of
Artificial Intelligence, University of Edinburgh (2002).
75
15.: S. Crosby and S. Byrd, Email Classification through Graph Analysis, Project report for
the Course Computer Systems Security (COMP527), Department of Computer Science,
Rice University, USA, 2002.
I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos and P.
Stamatopoulos. ―Learning to Filter Spam E-Mail: A Comparison of a Naive
Bayesian and a Memory-Based Approach‖. Proceedings of the Workshop “Machine
Learning and Textual Information Access”, European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD), pp. 1-13, Lyon, France, 2000.
[14 ]
16.: M. Fischer Christensen and M. Lobner-Olesen, Using Multiple Feature Selection
Methods in Ensembles, Project Report, Supervisor: Ole Fogh, IT University of
Copenhagen, Denmark, September 2005.
17.: Jennifer Lee, SPAM Filter, Assignment for the course on Advanced Artificial
Intelligence Concepts (15-780), Computer Science Department, Carnegie Mellon
University, USA (2004).
18.: K. Tretyakov, Machine Learning Techniques in Spam Filtering, Data Mining Problemoriented Seminar, MTAT.03.177, pp. 60-79, Institute of Computer Science, University of
Tartu, Estonia, May 2004.
19.: Eric Stiles, Ba.S.E. Filter, Project report for the course on Knowledge Based Systems
(CSCI8050), Computer Science Department, The University of Georgia, USA (2003).
20.: T. Chen, D. Chen and H. Ming, Spam Email Filtering, Project report for the course
Principles of Artificial Intelligence (ComS572), Instructor: Dimitris Margaritis,
Department of Computer Science, Iowa State University, USA, 2003.
21.: N. Tyrone, Using AdaBoost and Decision Stumps to Identify Spam E-mail, Course report
Inteligencia Artificial (MC906), Υπεύθσνος μαθήμαηος: Jacques Wainer, 2003.
22. Used in the course: Machine Learning and Knowledge Discovery (CS674), Department of
Computer Science & Engineering, Indian Institute of Technology Kanpur (2003).
23.: A. S. Menz, An Analysis of Methods in Feature Selection and Classification Algorithms
for Spam Detection, Project Report for the Machine Learning Course (CS573), Department
of Computer Science, Iowa State University, 2002.
24.: H. Stern. Optimizing Naive Bayesian Networks for Spam Detection, Project report for the
course on Natural Language Processing (CSCI 6509), Dalhousie University, Halifax, NS,
Canada, 2002.
25.: F. Trepanier, Learning to Filter Spam E-Mail, Presentation for Data mining and Machine
Learning seminar course (CS760), Department of Electrical & Electronic Engineering, The
University of Auckland, New Zealand (2002).
26. Paper translated by Benjamin Becquet and Gaelle Loosli in French and used in their
course work Filtre de mails: Comparaison entre le classifieur de Bayes naοf et le
classifieur knn, for the course: UV Reseaux de Neurones, Reseaux Bayesiens et
Applications. Instructor: Philippe Leray, Department of Information Systems Engineering,
INSA Rouen.
27.Part of the paper translated in Slovenian and used in the postgraduate course ―Machine
Learning‖ (2001) Instructor: Igor Kononenko, School of Computer Science and
Information Systems, Univ. of Ljubljana, Slovenia.
28.: M. DeSouza, J. Fitzgerald, C. Kemp, G. Truong, A Decision Tree based Spam Filtering
Agent, Project Report for the course Knowledge representation and reasoning, Department
of Computer Science, University of Melbourne, 2001.
29.: P. Leray, Seminar Reseaux de neurones, Reseaux Bayesiens et Applications Le Projet
ASI4 le forum MATLAB, Department of Information Systems Engineering, INSA Rouen.
G. Paliouras, C. Papatheodorou, V. Karkaletsis and C.D. Spyropoulos, ―Clustering the
Users of Large Web Sites into Communities,‖ Proceedings of the International
Conference on Machine Learning (ICML), pp. 719-726, Stanford, California, 2000. [5
Citations ]
76
30. Used by the teaching Group of: Web Usage Mining Journal Club, Computing Science
Department, University of Alberta, Canada.
31.: Tingshao Zhu, Web Usage Mining for Internet Recommendation, Proposal for Ph.D
Candidacy Examination, Computing Science Department, University of Alberta, Canada.
32.Paper translation in Finish and used in a serious of seminars entitled ―Mining knowledge
from data‖ (2002) Instructor: Hannu Toivonen, Dept. of Informatics, Univ. of Helsinki,
Finland.
33. Used in the course ―Knowledge Mining from the Wel‖ (ECT 584 / CSC 594, 2002)
Instructor: Bamshad Mobasher, Dept. of Computer, Telecommunication and Information
Systems, Univ. of De Paul, USA
34. Used by the research candidate Gabriela Tissiani, PhD Student in Engenharia de Sistemas
na area de Midia, UFSC - Federal University of Santa Catarina - Florianopolis, SC, Brazil.
Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos and P.
Stamatopoulos, ―A Memory-Based Approach to Anti-Spam Filtering for Mailing
Lists,‖ Information Retrieval, v. 6, n. 1, pp. 49-73, 2003. [4 Citations ]
35.Ph.D. research proposal entitled: ―Evolving by Forgetting: Adaptive Text Classification‖,
επιβλέπονηες N. Wiratunga, I. Koychev, D. Harper, School of Computing, Robert Gordon
University, Aberdeen, UK, 2004.
36.: D. C. Trudgian. SpamKANN: A k-Nearest Neighbour Spam Filter. Indiviudual Project
Report for COM3401, Department of Computer Science, University of Exeter, UK, 2004.
37.: T. Stone. Parameterization of naive bayes for spam filters. Masters comprehensive exam,
Department of Computer Science, University of Colorado at Boulder, USA, 2003.
38.: A. Bratko, Hierarhično razvrščanje elektronske pošte z metodami strojnega učenja, BSc
Thesis, Υπεύθσνος καθηγηηής: B. Zupan, Faculty of Computer and Information Science,
University of Ljubljana, 2003.
G. Paliouras, V. Karkaletsis, C. Papatheodorou and C.D. Spyropoulos, ―Exploiting Learning
Techniques for the Acquisition of User Stereotypes and Communities,‖
Proceedings of the International Conference on User Modelling (UM), CISM Courses
and Lectures, n. 407, pp. 169-178, Springer-Verlag, 1999. [2 Citations ]
39.Used n a course work by Amelie Cordier, DEA, DISIC, INSA, Lyon, France (2003).
40.Used by the teaching Group of: Web Usage Mining Journal Club, Computing Science
Department, University of Alberta, Canada.
G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos and P.
Stamatopoulos, ―Stacking classifiers for anti-spam filtering of e-mail.‖ Proceedings
of the International Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 44-50, Carnegie Mellon University, 2001. [2 Citations ]
41.: M. Fischer Christensen and M. Lobner-Olesen, Using Multiple Feature Selection
Methods in Ensembles, Project Report, Supervisor: Ole Fogh, IT University of
Copenhagen, Denmark, September 2005.
42.: T. Sorvik, Improving Spam Filtering by Training on Artificially Generated Text, Project
Report for MS051 (Machine Learning and Data Mining), Supervisor: Tim Kovacs,
Department of Computer Science, University of Bristol, UK, May 2004.
. D. Pierrakos, G. Paliouras, C. Papatheodorou and C.D. Spyropoulos, ―Web Usage Mining
as a tool for personalization: a survey,‖ User Modeling and User-Adapted
Interaction, v. 13, n. 4, pp. 311-372, November 2003. [1 Citation ]
43. Used in the course Adaptive Web-based Information Systems ηοσ K. Meissner, Fakultaet
Informatik, Technische Universitaet Dresden, Germany, 2004.
G. Paliouras, V. Karkaletsis, I. Androutsopoulos, and C.D. Spyropoulos, "Learning Rules
for Large-Vocabulary Word Sense Disambiguation: A Comparison of Various
77
Classifiers". Proceedings of the International Conference on Natural Language
Processing (NLP), Lecture Notes in Artificial Intelligence, n. 1835, pp. 383-394,
Springer, 2000. [1 Citation ]
44.:Y. Chen The Comparative Analysis about the classification algorithms and the data sets,
Project report for the MSc course on Machine Learning, Department of Computer Science,
University of Huston, 2002.
G. Paliouras, V. Karkaletsis and C.D. Spyropoulos, ―Learning Rules for Large Vocabulary
Word Sense Disambiguation,‖ Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI '99), v. 2, pp. 674-679, 1999. [1 Citation ]
45.Αναθορά: C. Demwell, Human Information Access with Fuzzy Searching, Fuzzybase
Directed Study, Communication Networks Laboratory, School of Engineering Science,
Simon Fraser University, 2001.
G. Paliouras, C. Papatheodorou, V. Karkaletsis, C.D. Spyropoulos and V. Malaveta,
―Learning User Communities for Improving the Services of Information Providers,‖
Proceedings of the European Conference on Research and Advanced Technology for Digital
Libraries (ECDL), Lecture Notes in Computer Science, n. 1513, pp. 367-384, SpringerVerlag, 1998. [1 Citation ]
46. Used by the teaching Group of: Web Usage Mining Journal Club, Computing Science
Department, University of Alberta, Canada.
G. Paliouras, V. Karkaletsis and C.D. Spyropoulos (editors), Machine Learning and
Applications. Lecture Notes in Computer Science, n. 2049, Springer-Verlag, 2001. [1
Citation ]
47. Used in the course CSI 873: Computational Learning and Discovery ηοσ R. Michalski,
Machine Learning Institute, George Mason University, USA, 2004.
78

Similar documents