A Survey of Hammett Substituent Constants and Resonance and
Transcription
A Survey of Hammett Substituent Constants and Resonance and
Chem. Rev. 1BBl. 97, 165-195 165 A Survey of Hammett Substituent Constants and Resonance and Field Parameters CORWIN HANSCH,*,+A. LEO,+ and R. W. TAFT* Depertment of Chemistry, Pomona Coikge, Ciaremnt, C a i i b i a 9 171 I and Department of Chemistry, Universky of California, I d n e , Imine, California 927 17 Received August 9, 1990 (Revised Menuscript Received December 17, 1990) Contents I. Introduction A. Fleld/Inductlve Parameters Resonance Effect Parameters C. R+ and R- Values D. Resonance Effect a, Values from NMR Chemlcal Shifts of Para-Substituted Fluorobenzenes Relatlve to Their Meta Isomers as Internal References E. Calculated 6, and upValues and Shortcomings I I. Discussion I I I. References B. 165 166 177 187 188 190 191 192 I . Intralucton The Hammett equation (and its extended forms) has been one of the most widely used means for the study and interpretation of organic reactions and their mechanisms. Although the Hammett methodology has been criticized by theoreticians because of its empirical foundation, it is astonishing that u constants, obtained simply from the ionization of organic acids in solution, can frequently predict successfully equilibrium and rate constants for a variety of families of reactions in solution. Almost every kind of organic reaction has been treated via the Hammett equation, or its extended form. The literature is so voluminous and extensive that there is no complete review of all that has been accomplished. Hammett's success in treating the electronic effect of substituents on the rates and equilibria of organic reactions1P2led Taft to apply the same principles to steric and inductive and resonance effects? Then, more recently, octanol/ water partition coefficients (P)have been used for rationalizing the hydrophobic effects of organic compounds interacting with biological systems? The use of log P (for whole molecules) or n (for substituents), when combined with electronic and steric parameters, has opened up whole new regions of biochemical and pharmacological reactions to study by the techniques of physical organic chemistry.sf3 The combination of electronic, steric, hydrophobic, hydrophilic, and hydrogen-bonding7 parameters has been used to derive quantitative structure-activity relationships (QSAR) for a host of interactions of organic compounds with living systems or parts thereof. The binding of organic compounds to proteins,8 their interaction with enzymess and with cellsloJ1and tiasues,12 their inhibition of organelles,l' and as antimalarial^'^ + Pomona College. California Irvine. t University of 0009-2665f9 110791-0165$09.50/0 and antitumor agents,loJ4their action as hypnoticslSJ6 and anesthetics,17as well as their use in pesticide design,'* in toxicology,1s in mutagenicitym and carcinogenicity21studies, their fate in metaboli~m,2~!~~ in environmental ~ystems,2~ and their behavior in chromatographic system^^^*^^ have all been treated via QSAR. The explosive growth of correlation analysis of biological processes via substituent constants has somewhat changed the focus in the development of u constants. Until the 1960's the use of substituent constants was almost entirely in the hands of physical organic chemists who generally worked with "well-behaved" substituents to analyze highly refined data from reactions in homogeneous solution. Their goal was to obtain very precise correlations and understanding for clearly defined but limited organic reactions. Applications of QSAR to biological systems, drugs, pesticides, toxicology, etc. brought under consideration much wider structural variations (including less well-behaved substituents) and activity data (dependent variables) of much lower quality. Noise in the biological data in the range of 20 to 100%was common so that small errors in u and n,became less significant for this work. Researchers in these fields required parameters for a much wider variety of structure and were willing to accept a lower precision if necessary. This shift in emphasis led Hansch and Leo to compile and publish in 1979,a truly comprehensive data base of substituent constant^.^ During the following nine years many new substituent constants have been published, so that in this report we have been able to list both u, and a values for 530 different substituents (Table I). With t\e use of values derived from F NMR shifts of meta- and para-substituted fluorobenzenes, the number is increased to over 660,including many substituents containing metallic atoms and highly interactive neutral and charged substituents. Exner2 has also compiled an extensive list of u constants including examples where only ,a or up is known, and he has attempted to evaluate their reliability. We have attempted to list all examples where both u, and u have been reported and where more than one set of values exist we have selected the set which in our judgement is the most reliable. In some instances of very doubtful reliability we have placed the values in parentheses. The values of u were defined by Hammett from the ionization constants of benzoic acids as follows ax = log Kx - log KH (1) where KH is the ionization constant for benzoic acid in water at 25 "C and K x is the corresponding constant for a meta- or para-substituted benzoic acid. Some of the benzoic acids are so insoluble in water that mixed solvents such as 50/50 water/ethanol must be used. These secondary values have been linearly related to 0 1991 American Chemical Society Hansch et aI. 166 Chemical Reviews. 1991. Vol. 91. No. 2 C W i n Hansch in 1944 received his Ph.D. from New York Unlversity in the field of synthetic organic chemistry. studying under Professor H. G. Lindwall. After a brief postdoctoral period with Professor H. R. Snyder at the University of Illinois. he joined the du Pont Co. and worked first on the Manhattan project at the University of Chicago and Richiand. WA. and then at the experimental station in Wilmington. LE. In 1946 he joined the Chemishy Department at Pomona College. where he has remained except for two sabbatical leaves, one in Professor Prelog's laboratory in Zurich and the other in Professor Huisgen's laboratory in Munich. His main interests in research have been the high-temperature dehydrocyclization reaction and the correlation of chemical structure with biological activity. . / .. / iB ,--, Albert Leo was born 1925 in Winfield. I L and educated in soultmrn California. He spent two years in the U.S. Army Infantry. serving in the ET0 from 1944 to 1945. He received his B.S. in Chemistry from Pomona College (1948; Phi Beta Kappa, Magna Cum La&) and M.S. and Ph.D. in Physical Organic Chemistry from the University of Chicago, studying reaction kinetics under Prof. Frank Westheimr. After 15 years in industrial research and development in the area of food chemistry, he returned to Pomona College to iniliite and direct the Medchem Project under the leadership of his former professor, Dr. Corwin Hansch. The Project provides software and databases useful in the design of bioactiie chemicals and is distributed world wide. His study of partiiion coefficients as a measure of hydrophobicity resuned in a 1971 paper in Chemical Reviews which has become a "Citation Classic". Or. Leo was given an "Excellence in Science" award by Sigma Xi in 1980 and was chairman of the Gordon Conference on QSAR in Biology in 1981. the water system by an appropriate scaling factor, p. u values have been obtained also from various organic reactions (rates or equilibria) or from F NMR substituent chemical shifts. All of these methods have been examined in this report. However, in using the values in Table I for developing QSAR, care must be taken to see that the quality of the independent u constant is commensurate with that of the data being correlated. One of the early postulates of the so-called "English School of Chemists" was that the electronic effects of Robert W. Tafl is a Professor of Chemistry at the Unlvenlly of Californie, Irvine. Born in Lawrence, KS. Tafl recelved a B.S. in chemistry from the University of Kansas and a Ph.D. from the Ohio State Universky where he waked with Melvin Newman. Following a postdoctoral year wim Louis Hammen at Columbia U n k s i t y . Taft spent 15 years at the Pennsylvania State University. He has been at the University of California. lwine since it began in 1965. Current interests involve extensive studies of the effects of molecular structure on gas-phase proton-transfer equilibria, using ion cyclotron resonance spectroscopy. This w a k also includes binding studies in the gas phase with a variety of univalent cations. Additional interests include studies of structural and solvent effects on hydrogen-bond acidities and basicities and their applications to treatments of solute partitioning between bilayers and biological activities. substituents are composed of two main parts: a field/inductive component and a resonance component.27 Following Hammett's success in placing the discussion in numerical terms with u constants, efforts were undertaken to factor u into its component parts. Although progress has been made in showing for distant substituents that the field effect is predominate,%there remain questions to be answered" as to the magnitude of the contribution of the inductive effect. In this report, reference to either uI, uF. uL, or F,all of which, for present purposes, we show may be taken as essentially equivalent, (cf. Table 11) assumes the operation of the combined effects. Wider agreement has been accorded the efforts to split the electronic effect of a substituent into field/ inductive (or)and resonance (uR) components: up = uI + uR or up- uI = uR or up - uR = uI (2) These efforts have been reviewed by Charton.% A. Fleld/Inductlve Parameters There is general agreement that the ionization of bicyclooctane carboxylic acids31 (I) provides an unambiguous system for defining a field/inductive parameter because, in this rigid system, X is held firmly in place and there is little possibility for resonance or polarization interaction between X and the carboxyl functions of COOH and COO-. It seems safe to assume, thereCOOH I fore, that the only ways X can influence the ionization of the carboxyl group are through space (the predom- Hammen Substltuent Constants Chemlcal Revlews, 19Q1,VoI. 91, No. 2 187 inate field effect) and though the intervening u bonds (inductive). Roberts and Morelandgl used 50% ethanol as the solvent for these rather insoluble acids and defined the electronic parameter as d = log Kx - log KH (3) Taftg2utilized a correlation between d and his generalized polar parameter (a*)to obtain additional values of d (called uI) and then calculated UR via eq 2. Swain and Lupton% used d to define F as a basis for separating the resonance and field inductive effects according to eq 4. The coefficients a, b, and t are evalF = d = au, + bo, + t (4) uated via the least squares method. The intercept t, which is close to zero, can be regarded as an error term. In Swain and Lupton's derivations of F they did not attempt to place their F and R values on the same scale as Hammett constants obtained from the ionization of benzoic acids in water at 25 "C. Hansch et al. accomplished thisa by scaling as follows: F = d/1.65 using the results of Stock et al.3599son the bicyclooctane carboxylic acids. F = d/1.65 = 1 . 3 6 9 ~ 0.373~7, ~ - 0.009 ( 5 ) n = 14, r = 0.992, s = 0.042 To evaluate R, Swain and Lupton made the assumptions up=arF+R (6) and the further assumption that for N+(CH3)3,R = 0. Following this procedure and substituting in eq 6 the values for N+(CH& of F = 0.89 and up = 0.82, CY was found to be 0.921. F and R were then calculated for about 200 substituents. Since, as noted before: the CY factor does not differ much from 1,little if anything is lost by using Taft's eq 2 to calculate R = UR rather than eq 6. Therefore we have recalculated F and R along the lines used by ChartonZsto obtain his uL and UD parameters using the data in Table I. In an extensive analysis C W n a has concluded that the scaling factor of 1.65 used in eq 5 would be better replaced by 1.56. Accordingly, we have evaluated uI, as did Charton, from: uI = ApKa/1.56, using pK, values for the 4-X-bicyclooctane carboxylic acid (Table 11, third column). Another excellent system for establishing (TIvalues is that of the quinuclidines, 11, studied by Grob and S~hlageter.~' In this case, the ionization of the pro- 9 X I1 tonated amine is used to obtain q,which has an advantage in that it is significantly more sensitive to X than is the carboxylate group of I. Using substituents for which 01 can be calculated from ionization constants (entries 1-12, Table 11),we have derived eq 7. There aI(Stock) = 0.191 (iO.O15)uI(Grob) - 0.037 (h0.031) (7) n = 14, r = 0.992, s = 0.029 are only three substituents whose uI values were determined in the carboxylate system by both Holtz and Stock and by Roberta and Moreland. In eq 7, uI(Stock) refers to the scaled values from the carboxylate parent (Roberts and Moreland data included) while q(Grob) values are from unscaled quinuclidine data (Table 11, fourth column). These results in Table 11allow the rederivation of eq 5 on the basis of an extended set of uI values. The F = UI = 1.297 (*O.147)am - 0.385 (fO.089)~~ + ? 0.033 (i0.026) (8) n = 38, r = 0.968, s = 0.046 parameters of eq 8 are only slightly different from those of eq 5 despite the inclusion of 24 more data points, the new normalization factor of 1.56, and dropping the assumption that R for N+(CH3)3is zero. Note that the quality of fit in eq 8 is the same as eq 5 in terms of the standard deviation. Three substituents in Table I1 for which UI could not be derived from Grob and Schlageter's data have not been used to derive eq 8: CH20S02C&14-4-Me,CH(OHI2,and CO;. For the first two, up and ,a have not been reported, and hence F can not be calculated via eq 8. The value of F for the C02group obtained from eq 7 is out of line with that calculated from eq 8. For charged substituents this is not an uncommon result since the simple Hammett equation is poorly applicable.% Comparison of F values of some common substituents calculated by eq 5 and eq 8 is made in Table 111. All of the F values in Table I have been calculated by using eq 8. That is, we have not listed in Table I any of the experimentally based values of Table 11. This seemed to be a more consistent way of presenting the results for correlation analysis although some may prefer to use the values in Tables I1 and IV insofar as possible. Ideally, one would like to obtain all values of a1 from experimentally determined pKa values of structures like I or I1 where R = 0. This is not feasible because of the great difficulty of synthesizing the necessary structures. Even though the various approaches of evaluating the field inductive parameter from ,u and up have been criticized by some authors,m1 we believe that for many applications the results are precise enough. This conclusion is supported by comparisons of u values in Tables I, 11, and IV. Table 11gives ~TF(uI) values obtained for many typical substituents by eight different methods. There are no large differences in the uI scale of fieldlinductive effects for common dipolar substituents, X, as obtained by eqs 5 and 6 (columns 3 and 4, respectively), or, as first obtained by Taft,32 from the relationship: uI = d = 0.45u*c~~x.Furthermore, there are relatively minor differences between any of these uI values and the UF values given recently by Taft and Topsomm (column 2) or F values (column 7). The individual UF parameters were obtained by averaging values of determinations by numerous and have been confirmedg0by gas-phase proton-transfer equilibria, which are much more discriminating than most solution equilibria. Charton's reviewH includes numerous examples of solution equilibria for which field/inductive effects are strongly predominant and for which there are both greater sensitivities and varieties of substituents than for the bicyclooctane carboxylic acid pK, values. Hanech et ai. 168 Chemical RevRws, 1991, Vol. 91, No. 2 TABLE I. Ha”ett and Modified Swain-Lupton Conc~tPnts~~~ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. substituent BFZ Br GeBr, SiBr, c1 HgCl SOZCl sc1 IC12 P(0)ClZ PC12 P(S)ClZ GeCl, Sic& F HgF SOF SOzF IF2 POFZ PFZ GeF, SF3 SiF, IF4 PF4 SF6 I IO 1% NO NO2 ON02 N=N+ N=N+(BF,)NNO; N3 0- sozso< S- As03HH NHNOz OH S(0)OH P03HOP03HSH NHZ NHOH SOZNHZ PO(OH)z PHZ B(OH)aGeH, NHS+ NHNHZ SiH, CBr, CClFz 5-chloro-1-tetrazolyl COCl N=CClZ CCl, OCCl, COF OCF,O CF3 HgCF3 HgSCFS I=NSOZCF, N=NCF3 OCF, SOCF, SeOCF3 0, 0.32 0.39 0.66 0.48 0.37 0.33 1.20 0.44 1.10 0.78 0.54 0.70 0.71 0.48 0.34 0.34 0.74 0.80 0.85 0.81 0.49 0.85 0.70 0.54 1.07 0.63 0.61 0.35 0.58 0.68 0.62 0.71 0.55 1.76 1.65 0.00 0.37 -0.47 -0.02 0.30 -0.36 0.00 0.00 0.91 0.12 -0.04 0.20 0.29 0.25 -0.01 -0.16 -0.04 0.53 0.36 0.06 -0.48 0.00 0.86 -0.02 0.05 0.28 0.42 0.60 0.51 0.21 0.40 0.43 0.55 0.36 0.43 0.29 0.39 1.30 0.56 0.38 0.63 0.81 U” Fb 0.48 0.23 0.73 0.57 0.23 0.35 1.11 0.48 1.11 0.90 0.61 0.80 0.79 0.56 0.06 0.33 0.83 0.91 0.83 0.89 0.59 0.97 0.80 0.69 1.15 0.80 0.68 0.18 0.62 0.78 0.91 0.78 0.70 1.91 1.79 -0.43 0.08 (-0.81) -0.05 0.35 -1.21 -0.02 0.00 0.57 -0.37 -0.07 0.26 0.00 0.15 0.12 -0.66 -0.34 0.60 0.42 0.05 -0.44 0.01 0.60 -0.55 0.10 0.29 0.46 0.61 0.61 0.13 0.46 0.35 0.70 0.36 0.54 0.32 0.42 1.35 0.68 0.35 0.69 0.26 0.45 0.61 0.44 0.42 0.33 1.16 0.42 1.03 0.70 0.50 0.63 0.65 0.44 0.45 0.35 0.67 0.72 0.82 0.74 0.44 0.76 0.63 0.47 0.98 0.54 0.56 0.42 0.55 0.61 0.49 0.65 0.48 1.58 1.48 0.20 0.48 -0.26 0.03 0.29 0.03 0.04 0.03 0.99 0.33 0.01 0.19 0.41 0.30 -0.03 0.08 0.11 0.49 0.34 0.09 -0.42 0.03 0.92 0.22 0.06 0.28 0.40 0.58 0.46 0.26 0.38 0.46 0.48 0.36 0.38 0.29 0.38 1.20 0.50 0.39 0.58 0.76 0.83 R‘ 0.22 -0.22 0.12 0.13 -0.19 0.02 (-0.05) 0.06 0.08 0.20 0.11 0.17 0.14 0.12 -0.39 -0.02 0.16 0.19 0.01 0.15 0.15 0.21 0.17 0.22 0.17 0.26 0.12 -0.24 0.07 0.17 0.42 0.13 0.22 0.33 0.31 -0.63 -0.40 (-0.55) -0.08 0.06 -1.24 -0.06 0.00 -0.42 -0.70 -0.08 0.07 -0.41 -0.15 0.15 -0.74 -0.45 0.11 0.08 -0.04 -0.02 -0.02 -0.32 -0.77 0.04 0.01 0.06 0.03 0.15 -0.13 0.09 -0.11 0.22 0.00 0.16 0.03 0.04 0.15 0.18 -0.04 0.11 0.07 ref(s) 109 183 139 139 183 74 134 74 110 74 164 74 139 139 183 74 74 142 110 164 109 139 110 164 110 110 179 183 63 170 107 183 74 182 88 112 130 181 135 81 74,97 74,87 - 112 183 74 183 74 183 170 183 87 170 74 74 90 74,280 181 87 110 165 74 165 164 165 170 74 110 153 183 74 74 63 74 145 163 74 Hammett Substttuent Constants Chemical Revbws. 1991. Vol. 91, No. 2 168 TABLE I (Continued) substituent 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107 108. 109. 110. 111. 112. 113. 114. 115. 116. SOzCF3 SeOzCF3 OS02CF3 SCFS SeCF3 HgCN CN NC CN(BBr3) CN(BC13) CN(BFd N=C=O OCN SOpCN N=C=S SCN SeCN N=NCN N(O)=NCN C(N02)3 5-azido-1-tetrazolvl SOCHP, SOzCHF2 SCHF2 S(0)(=NH)CFS NHS02CFS CHI2 NHCN 1-(1tr)-tetrazolyl 5-(1H)-tetrazolyl 5-hydroxy-1-tetrazolyl 5-mercapto-1-tetrazolyl N=N S'I Fb R' 0.83 1.08 0.56 0.40 0.44 0.28 0.56 0.48 0.61 0.95 0.72 0.27 0.67 1.10 0.48 0.51 0.61 0.71 0.78 0.72 0.54 -0.10 0.31 0.31 0.38 0.29 0.31 0.54 0.75 0.33 0.72 0.44 0.26 0.21 0.52 0.64 0.39 0.45 0.30 0.96 1.21 0.53 0.50 0.45 0.34 0.66 0.49 0.48 0.86 0.66 0.19 0.54 1.26 0.38 0.52 0.66 1.03 0.89 0.82 0.54 0.00 0.32 0.32 0.26 0.32 0.18 0.58 0.86 0.37 0.84 0.39 0.26 0.06 0.50 0.56 0.33 0.45 0.19 0.74 0.97 0.56 0.36 0.43 0.27 0.51 0.47 0.64 (0.93) (0.71) 0.31 0.69 0.97 0.51 0.49 0.57 0.56 0.70 0.65 0.53 -0.10 0.31 0.31 0.43 0.29 0.37 0.51 0.67 0.32 0.64 0.45 0.27 0.28 0.52 0.65 0.41 0.44 0.35 0.22 0.24 -0.03 0.14 0.02 0.08 0.15 0.02 -0.16 (-0.05) (-0.05) -0).12 -0.15 0.29 -0.13 0.03 0.09 0.47 0.19 0.17 0.01 0.10 0.01 0.01 -0.17 0.03 -0.19 0.07 0.19 0.05 0.20 -0.06 -0.01 -0.22 -0.02 -0.09 -0.08 -0.01 -0.16 refM 70 74 118 178 167 74 183 74 164 164 164 165 74 74 156 85, 183 173,87 72 281 74,190 165 183 74 74 74 110 146 140 146 170 62 74 74 158 165 166 165 165 158 0.35 0.37 0.12 0.11 0.25 0.12 0.20 0.23 0.10 0.19 0.28 0.25 0.22 -0.15 0.59 -0.16 -0.07 0.15 0.31 0.29 0.43 -0.10 -0.03 0.49 0.22 0.12 0.00 0.52 0.21 0.44 0.50 0.60 0.43 0.42 0.45 0.14 0.12 0.08 0.11 0.02 0.20 0.11 0.00 0.36 0.30 0.10 -0.15 0.63 -0.16 -0.17 0.17 0.39 0.23 0.10 -0.57 -0.24 0.61 0.16 -0.27 0.00 0.49 0.17 0.45 0.54 0.72 0.54 0.33 0.34 0.14 0.13 0.33 0.15 0.29 0.25 0.12 0.28 0.26 0.24 0.28 -0.10 0.56 -0.11 0.01 0.16 0.29 0.32 (0.55) 0.12 0.09 0.43 0.26 0.29 0.03 0.52 0.24 0.43 0.47 0.53 0.38 0.09 0.11 0.00 -0.01 -0.25 -0.04 -0.27 -0.05 -0.01 -0.28 0.10 0.06 -0.18 -0.05 0.07 -0.05 -0.18 0.01 0.10 -0.09 (-0.45) -0.69 -0.33 0.18 -0.10 -0.56 -0.03 -0!03 -0.07 0.02 0.07 0.19 0.16 87, 174 183 170 170 74 110 74 74 170 156 87, 187 283 129 116 281 188 183 170 74 74 164 89 156 112 158 183 133 183 74 74 74 183 74 a, U" -HN)=N 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. CHO COOH CH,Br CH2Cl OCH2Cl CHzF OCH2F SCHqF CH2f NHCHO CONH, CSNH2CH=NOH-t 3,4-N=CHNHN(O)=NCONHZ OCH20Me CHzSOzR SiMeC1, SiMeF, HgMe NHCHzSOB NHCONH2 N(Me)N02 NHCSNHz OMe CH2OH SOMe S(0Me) OS(-O)CH3 S(0)OMe SOIMe SS0,Me Hansch et al. 170 Chemlcel Revie~8.lQQ1,Val. 01, NO. 2 TABLE I (Continued) 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. substituent OS02Me SMe SSMe SeMe NHMe SC0CFS OCOCFa N(CF,)C=O(F) CFZOCFZCFzCF3 OCFZCF, SOZCF2CF3 SCFZCF, N(CF3)z S(CF,)=NSOZCFS SO(CFS)=NSOzCF, N(SOzCF& p(cF3)2 P(CN)z C 4 H OCFzCHFCl NHCOCFS CH=NSOzCF3 OCFZCHFZ SCFzCHFz I [-N&&-ii N-N 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. urn UP Fb 0.39 0.15 0.22 0.10 -0.21 -0.03 0.20 0.59 0.58 0.50 0.63 0.48 0.56 0.50 0.81 0.47 0.48 0.92 0.44 0.40 1.18 1.23 0.61 0.60 0.82 0.21 0.35 0.30 0.76 0.34 0.38 0.63 0.36 0.00 0.13 0.00 -0.70 -0.11 0.03 0.53 0.57 0.52 0.80 0.46 0.46 0.50 0.81 0.52 0.28 1.08 0.48 0.53 1.28 1.40 0.83 0.69 0.90 0.23 0.28 0.12 1.00 0.25 0.47 0.64 0.40 0.23 0.27 0.16 0.03 0.04 0.28 0.59 0.57 0.48 0.54 0.48 0.58 0.49 0.77 0.44 0.55 0.81 0.42 (0.35) 1.07 0.26 0.31 0.28 0.12 0.25 0.29 0.12 0.16 0.32 0.07 0.12 0.06 0.17 0.46 0.39 0.54 0.05 0.21 0.38 0.39 0.39 0.37 0.04 0.26 0.26 -0.07 -0.06 0.09 -0.02 0.21 0.35 0.37 0.06 0.24 0.30 0.45 0.19 0.24 0.26 0.09 0.24 0.31 0.15 0.18 0.26 -0.16 0.14 -0.04 -0.03 0.44 0.40 0.61 0.03 -0.09 0.50 0.44 0.31 0.45 0.01 0.20 0.21 -0.22 -0.10 0.12 -0.17 0.00 0.36 0.30 0.07 0.12 0.34 0.40 -0.12 -0.15 0.16 -0.24 0.30 0.34 0.30 0.15 0.27 0.29 0.13 0.17 0.35 0.19 0.14 0.13 0.27 0.46 0.39 0.50 0.09 0.34 0.33 0.37 0.42 0.34 0.08 0.29 0.29 0.03 -0.01 0.10 0.07 0.31 0.35 0.40 0.08 0.30 0.29 0.46 -0.08 0.00 0.26 0.26 1.09 0.50 0.55 0.75 0.22 0.38 0.38 0.63 0.38 0.35 0.60 RC -0.04 -0.23 -0.14 -0.16 -0.73 -0.15 -0.25 -0.06 0.00 0.04 0.26 -0.02 -0.12 0.01 0.04 0.08 -0.27 0.27 0.06 0.18 0.21 0.31 0.33 0.14 0.15 0.01 -0.10 -0.26 0.37 -0.13 0.12 0.04 ref(a) 156 183 74 183 164 74 156 88 109 74 110 74 74 109 153 172 74 76 76 145 62 62 103 109 74 171 146 156 63 178 178 165 kn SCdH SCH=CHCl SeCH4HCl CHZCF, CHZSOCF, CHzSOzCF3 CHzSCF3 CHZCN CHdHNOz-t CHoCOC CHQSCN CH&H~ NHCOCHzCl N(Me)S02CF3 HgOCOCH, C(Me)(NO& oxiranyl OCHdH2 COMe SCOMe OCOMe COOMe 2-thiacyclopropyl SCH=CHZ SeCH=CH, 1-aziridinyl' 2-aziridinyl N-methyl-3-oxaziridinyl NHCOOMe NHCOMe CONHMe CH=NOMe CHZCONHZ NHCSMe CSNHMe CH=NNHCSNH, OCHzCHzOEt CH=NNHCONHNH2 0CH2CH3 -0.12 -0.07 0.22 0.10 -0.11 -0.10 -0.04 -0.06 -0.03 0.02 0.02 0.01 (-0.09) -0.35 0.00 -0.17 -0.30 -0.02 0.01 0.11 -0.06 -0.43 0.17 0.07 -0.11 0.11 -0.07 -0.09 -0.08 -0.25 -0.09 0.02 -0.24 9.31 -0.01 0.10 -0.01 -0.18 0.05 -0.06 -0.04 -0.15 -0.10 -0.50 74 105 105 109 162 162 162 170 184 88 74 85 156 74 74 74 74 96 183 183 183 175 74 99, 105 105 74 74 74 68 183 154 93 74 154 154 93 74 183 93 183 Hammett Substituent Constants Chemical Revlews, 1991, Vol. 91, No. 2 171 TABLE I (Continued) 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 296. 297. 298. substituent CH(0H)Me CH.OMe SO2& SEt P(C1)NMe2 CHaSC(NHz)z* SiCIMez SiFMez NHEt N(Me)2 N(Me)SO2Me SO2NMeZ N(S0zMe)2 SN(Me12 N=NNMe2 N(Me)N+=(Me)NP(0)Mez PO(OMe)2 PMez S+Mez S+(Me)&osyl CHZCH2NHS+ SiH(MeL CF=CF~F~-~ CH=CHCF,-~ CH=CHS02CF3 CH=CHCN CdMe N(Me)COCF3 CH-CHCHO cyclopropyl C(Me)=CHz CH=CHMe-t COEt COOEt CH20COMe CH2CH2COOH SCHZCHICH2 SeCH2CH=CH2 CH2CH2CHzN(Me)COMe CH2NHCOMe NHCOOEt C(N03Me2 OCH2CH2CH20isopropyl CH2CH&HS N+(Me)4HN(Me)NHCONHEt NHCSNHEt OCHMe2 OCHZCH2CH3 CH2CH(OH)Me C(OOH)Me2 SCHMe2 CHzNMez " UP 0.08 0.08 0.66 0.18 0.38 0.13 0.16 0.12 -0.24 -0.16 0.21 0.51 0.47 0.12 -0.05 1.17 0.43 0.42 0.03 1.00 1.06 0.23 0.01 0.25 0.14 -0.02 0.49 0.20 0.41 0.39 0.29 0.44 0.37 0.92 0.92 0.45 0.48 0.46 0.29 0.44 0.53 0.16 0.24 0.31 0.24 0.21 0.41 0.24 -0.07 0.09 0.02 -0.11 0.56 0.09 0.38 0.37 0.04 -0.03 0.19 0.21 -0.26 0.31 0.05 0.11 0.18 0.00 -0.04 -0.06 1.11 0.04 0.30 0.10 0.10 -0.12 0.06 0.23 0.00 -0.07 0.01 0.77 0.03 0.56 0.15 0.21 0.17 -0.61 -0.83 0.24 0.65 0.49 0.09 -0.03 1.17 0.50 0.53 0.06 0.90 0.96 0.17 0.04 0.33 0.15 0.02 0.43 0.19 0.51 0.46 0.23 0.48 0.53 1.09 1.10 0.48 0.51 0.48 0.30 0.44 0.52 0.17 0.27 Fb RC ref(s) 0.16 0.13 0.59 0.26 0.31 0.14 0.16 0.12 -0.04 0.15 0.21 0.44 0.45 0.15 -0.02 1.10 0.40 0.37 0.05 0.98 1.04 0.27 0.03 0.23 0.16 0.00 0.50 0.22 0.37 0.36 0.32 0.42 (0.31) 0.81 0.80 0.43 0.46 0.45 0.29 0.43 0.52 0.18 0.24 0.22 0.28 0.29 0.41 0.29 0.02 0.13 0.09 4.23 -0.12 0.18 4.23 0.25 0.01 0.05 0.04 -0.57 -0.98 0.03 0.21 0.04 -0.06 -0.01 0.07 0.10 0.16 0.01 -0.08 -0.08 -0.10 0.01 0.10 -0.01 0.02 -0.07 -0.03 0.14 0.10 -0.09 0.06 0.22 0.28 0.30 0.05 0.03 0.03 0.01 0.01 0.00 0.01 0.03 0.33 -0.11 -0.26 -0.02 -0.16 -0.23 -0.08 -0.18 -0.08 0.13 -0.50 0.14 0.11 -0.02 -0.09 -0.11 -0.14 74 85 74 174, 183 164 128 74 74 87,187 185, 183 81,74 74 74 74 72 116 74 152 69 183 88 74 74 147 117 80 147 147 163 109 109 85 172 76 76 76 76 76 172 74 74 165 165 74 155 85 74 155 177 85 85 74 74 105 74 183 74 188 105 105 87 74 85 157, 156 74,190 74 85,183 85,87 116 154 154 183 183 74,102 92 74 74 ~~ 0.55 0.17 0.03 0.39 0.13 -0.21 0.05 -0.09 -0.14 0.64 -0.25 0.48 0.45 0.05 -0.07 0.12 0.12 -0.26 0.26 -0.05 -0.15 0.20 0.00 -0.15 -0.13 1.11 -0.26 0.07 (-0.45) -0.25 -0.17 -0.14 0.07 0.01 -0.06 0.51 0.25 0.34 0.34 0.07 0.02 0.23 0.26 -0.20 0.34 0.12 0.23 0.19 0.03 0.04 0.01 1.05 0.19 0.40 0.34 0.26 -0.06 0.17 0.30 0.03 -0.06 -0.08 -0.17 -0.38 0.01 -0.03 -0.19 -0.14 0.06 -0.45 -0.33 (-0.79) -0.51 4.11 -0.31 -0.23 -0.02 172 chemical Reviews, Hansch et ai. IQQI, voi. 91,NO. 2 TABLE I (Continued) substituent 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321. 322. 323. 324. 325. 326. 327. -6 Um U" Fb R' 0.00 0.88 0.40 0.04 0.13 0.04 0.09 0.74 -0.04 0.00 0.50 0.00 0.12 0.86 0.38 1.28 0.48 0.63 0.55 0.47 0.96 0.51 0.51 0.49 0.97 0.36 0.66 0.15 0.33 0.00 0.82 0.43 -0.02 -0.27 0.10 0.13 0.73 -0.07 0.00 0.65 0.01 0.12 0.85 0.49 1.34 0.53 0.79 0.55 0.52 1.13 0.58 0.53 0.54 0.96 0.37 0.84 0.00 0.27 0.03 0.86 0.39 0.09 0.31 0.05 0.10 0.71 0.01 0.03 0.43 0.03 0.14 0.82 0.34 1.18 0.45 0.55 0.53 0.44 0.84 0.47 0.49 0.46 0.92 0.36 0.57 0.23 0.36 -0.03 -0.04 0.04 -0.11 -0.58 0.05 0.03 0.02 -0.08 -0.03 0.22 -0.02 -0.02 0.03 0.15 0.16 0.08 0.24 0.02 0.08 0.29 0.11 0.04 0.08 0.04 0.01 0.27 -0.23 -0.09 0.47 0.28 0.04 0.60 0.30 0.23 0.28 0.06 0.09 0.03 0.06 0.06 0.47 0.34 0.21 0.85 0.35 -0.05 0.38 -0.48 0.11 -0.10 -0.08 -0.07 -0.08 0.10 -0.16 -0.03 0.22 0.57 0.52 -0.34 -0.23 0.37 (0.16) 0.55 0.10 0.39 0.40 0.24 -0.04 -0.16 0.30 0.46 0.48 0.04 0.57 0.63 0.53 0.39 0.02 0.05 -0.02 0.04 0.03 0.37 0.31 -0.01 0.88 0.33 -0.14 0.47 -0.48 -0.10 -0.20 -0.12 -0.12 -0.16 -0.32 -0.17 -0.04 0.00 0.44 0.44 -0.51 -0.72 0.47 0.74 0.60 0.13 0.46 0.44 0.14 -0.05 -0.21 0.40 0.47 0.21 0.07 0.59 0.18 0.13 0.25 0.10 0.13 0.08 0.10 0.10 0.50 0.36 0.31 0.80 0.36 0.02 0.35 -0.40 0.21 -0.02 -0.02 -0.01 -0.01 0.29 -0.11 0.01 0.32 0.60 0.54 -0.21 0.01 0.33 (-0.05) 0.52 0.11 0.36 0.38 0.29 0.00 -0.09 0.27 -0.01 0.27 -0.03 -0.02 0.45 0.40 0.14 -0.08 -0.08 -0.10 -0.06 -0.07 -0.13 -0.05 -0.32 0.08 -0.03 -0.16 0.12 -0.08 -0.31 -0.18 -0.10 ref64 74 183 74 74 74 74 74 123, 122 183 74, 183 111 67 67 111 111 110 109 110 76 172 76 76 74 76 165 109 93 94,95 108 0 328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 338. 339. 340. 341. 342. 343. 344. 345. 346. 347. 348. 349. 350. 351. 352. 353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368. 369. 370. 3-chloro-l-pyrroline-2,5-dione 3-pyridazinyl 4-p yrimidiiyl 2-pyrimidinyl 5-pyrimidinyl 2-fury1 2-thienyl 3-thienyl 2-selenienyl 2-tellurienyl 1-pyrryl l-pyrroline-2,5-dione CH=CHCOMe I(OCOMe)z N(COMe)z cyclobutyl COCHMe, -0.11 +.15 -0.61 -0.06 -0.05 -0.32 -0.16 -0.10 -0.30 -0.73 0.14 (0.79) 0.08 0.02 0.10 0.06 -0.15 -0.05 -0.12 0.13 108 61 183 74 277 277 277 114 159 159 84 84 93 108 155 110 74 85 74,119 87 156 183 74,87 176,87 174, 87 183 74,102 74 77 77 77 87,85 113,82 79 72 143 124 79 74 74 74 183 78 Hammett Substltuent Constants Chemical Reviews, 1991, Vol. 91, No. 2 179 TABLE I (Continued) 371. 372. 373. 374. 375. 376. 377. 378. 379. 380. 381. 382. 383. 384. 385. 386. 387. 388. 389. 390. 391. 392. 393. 394. 395. 396. 397. 398. 399. 400. 401. 402. 403. 404. 405. 406. 407. 408. 409. 410. 411. 412. 413. 414. 415. 416. 417. 418. 419. 420. 421. 422. 423. 424. 425. 426. 427. 428. 429. 430. 431. 432. 433. 434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447. substituent P(N(Me)& 2-(methyi&bonyl)carboran-l-yl 24 (carbonyloxy)methyl]carboran-1-vl CH2-1-(1,2-(BH),,-C2Me) C(CN)=C(CN), 245-cvanofurvl) 2-(5-f&mylfu&l) 2-pyridyl 3-pyridyl 4-pyridyl 2-(4,6-dimethyl-s-triazinyl) 1-cyclopentenyl CH=CHCOOEt cyclopentyl COC(Me), NHCOZ(CHZ),CH, C(Et)(Me), CH,C(Me)3 (CHZ)~CH~ O(CH~)~CHB CH2PO(OEt)2 CH2CH2N(Me)3+ CH2CH2Si(Me), Si(Me)20Si(Me)3 CnCls ” ” OCBHS SOC~HS 245-acetvlfurvl) 2-(6-metiylp&onyl) so2 6 5 OSOpCeH5 SCnHs SC6HS NHCsH6 N HC~H~ HNSO2C6H5 SOzNHCsH5 245-ethylfuryl) 1-(2,5-dimethylpyrryl) I-cyclohexenyl cyclohexyl N(C3H7)z (CH2)4NMe2 PO(isopropyl)2 P(isopropyl)2 P(0)(OPd2 urn UP 0.18 0.40 0.70 0.10 0.77 0.25 0.22 0.33 0.23 0.27 0.25 -0.06 0.19 -0.05 0.27 0.06 -0.06 -0.05 -0.08 0.10 0.12 0.16 -0.16 0.00 0.25 0.26 0.95 0.66 0.28 -0.53 -0.14 0.26 0.09 0.15 0.15 0.15 0.15 0.12 -0.08 0.13 0.14 0.21 0.25 0.32 0.58 0.49 0.06 0.69 0.32 0.25 0.50 0.24 0.38 0.62 0.36 0.23 -0.02 0.16 0.56 0.09 0.49 0.25 0.63 0.74 0.11 0.98 0.10 -0.05 0.17 0.25 0.44 0.39 -0.05 0.03 -0.14 0.32 -0.05 -0.18 -0.17 -0.15 (-0.34) 0.06 0.13 -0.17 -0.01 0.24 0.27 1.10 0.56 0.18 -0.68 -0.44 0.30 0.08 0.12 0.10 0.12 0.10 0.06 -0.10 0.06 0.10 0.20 0.26 0.24 0.60 0.51 -0.01 0.79 0.39 -0.03 0.44 0.08 0.43 0.68 0.33 0.07 -0.56 0.01 0.65 -0.13 0.38 -0.08 -0.15 -0.93 -0.16 0.41 0.06 0.50 0.00 -0.01 0.08 0.98 0.00 1.37 -0.04 0.33 0.29 -0.10 -0.05 -0.26 -0.08 0.37 0.02 0.38 0.00 0.06 0.02 0.99 0.00 1.24 -0.04 0.30 0.27 F* R’ 0.17 0.31 0.66 0.12 0.65 0.32 0.34 0.40 0.24 0.21 0.21 -0.03 0.27 0.02 0.26 0.13 0.03 0.03 -0.01 0.29 0.17 0.19 0.08 0.32 0.08 -0.01 0.33 -0.22 -0.39 -0.23 0.01 0.23 0.18 -0.02 -0.24 -0.16 0.06 -0.18 -0.21 -0.14 -0.14 (-0.63) -0.11 -0.11 0.04 0.27 0.27 0.84 0.67 0.33 -0.39 0.02 0.26 0.12 0.18 0.19 0.18 0.19 0.17 -0.03 0.18 0.18 0.23 0.26 0.36 0.55 0.47 0.12 0.62 0.30 0.37 0.51 0.31 0.36 0.58 0.37 0.30 0.22 0.24 0.51 0.20 0.52 -0.07 0.03 0.06 -0.01 0.36 0.04 0.33 0.03 0.12 0.03 0.94 0.03 1.11 0.00 0.30 0.27 -0.06 -0.06 -0.05 -0.03 0.00 0.26 -0.11 -0.15 -0.29 -0.46 0.04 -0.04 -0.06 -0.09 -0.06 -0.09 -0.11 -0.07 -0.12 -0.08 -0.03 0.00 -0.12 0.05 0.04 -0.13 0.17 0.09 -0.40 -0.07 -0.23 0.07 0.10 -0.04 -0.23 -0.78 -0.23 0.14 -0.33 -0.14 -0.01 -0.18 -0.99 -0.15 0.05 0.02 0.17 -0.03 -0.13 0.05 0.04 -0.03 0.26 -0.04 0.04 0.02 ref(s) 164 111 111 67 74, 165 94,95 94,95 93 71 71 121 127 155 85 74,119 126 85 85 174 183 85 74,189 74, 132 160 151 151 64 64 64 150 150 170 161 85 85 85 85 85 106 85 85 85 85 85 85 74 183 281 175 183,87 85 94,95 115 85 156 85 173,85 156 74 94,95 93 127 85 113 74 79 69 152 74,183 74 74 78 74, 183 63 74 138 138 174 Chemical Revbws. 1991, Vol. 91, No. 2 Hans& et el. TABLE I (Continued) 448. 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. 460. 461. 462. 463. 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475. 476. 477. 478. 479. 480. 481. 482. 483. 484. 485. 486. 487. 488. 489. 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500. 501. 502. 503. 504. 505. 506. 507. 508. 509. substituent COCeHb OCOCeH, COOCeH, N=CHC6H5 CH=NC6H, NHCOCeH5 CONHCeH, CaH,-4-Me CH2Fe(COj2(;-C,H,) CH=NNHCOCsH, NdHC6H4-4-OMe NHCOC6H4-4-OMe SCH=NS02C6H4-4-Me CaHc4-Et nm UP F* RC 0.34 0.21 0.37 -0.08 0.35 0.02 0.23 0.06 -0.08 0.27 0.05 0.00 0.06 0.15 -0.07 -0.07 -0.02 0.34 0.14 0.39 0.03 -0.26 0.39 -0.07 0.09 0.65 0.07 -0.07 0.29 0.04 0.65 0.62 0.31 0.35 0.41 0.01 0.29 0.34 0.48 0.41 0.15 -0.21 0.18 0.08 -0.09 -0.15 0.29 0.05 0.07 -0.12 0.19 0.17 0.14 0.03 0.54 0.67 0.00 0.38 0.11 0.29 0.20 0.37 0.43 0.13 0.44 -0.55 0.42 -0.19 0.41 -0.03 -0.09 0.31 -0.08 -0.03 0.07 0.16 -0.20 -0.16 -0.01 0.39 0.16 0.51 -0.07 -0.49 0.51 -0.54 0.12 -0.13 0.10 -0.69 0.09 -0.32 0.24 -0.15 -0.05 0.05 -0.21 -0.08 -0.01 -0.01 -0.22 -0.16 -0.02 0.53 0.19 0.47 0.24 0.38 0.31 0.26 0.34 0.14 0.33 0.13 0.17 0.12 -0.04 0.26 0.13 0.05 0.08 0.17 0.02 0.00 0.01 0.32 0.15 0.34 0.10 -0.11 0.34 0.15 0.17 0.61 0.13 -0.01 0.38 0.06 0.61 0.61 0.28 0.30 0.35 -0.01 0.36 0.34 0.48 0.41 0.21 -0.07 0.25 0.13 -0.08 -0.09 0.30 -0.01 0.12 -0.07 0.23 0.22 0.18 0.04 0.49 0.62 0.12 0.32 0.10 0.23 0.20 0.37 -0.10 -0.13 -0.09 0.05 0.15 0.10 -0.34 0.21 0.09 0.24 0.04 0.01 -0.06 0.70 -0.02 -0.12 0.08 0.07 0.70 0.58 0.41 0.49 0.57 0.15 0.14 0.35 0.45 0.40 0.05 -0.45 0.05 0.01 -0.01 -0.18 0.29 0.29 0.01 -0.13 0.13 0.09 0.09 0.09 0.64 0.72 -0.22 0.01 0.01 0.17 -0.17 -0.38 0.17 -0.69 -0.23 0.09 -0.15 -0.11 -0.30 0.01 0.09 -0.03 0.13 0.19 0.22 0.16 -0.22 0.01 -0.03 -0.01 -0.16 -0.38 -0.20 -0.12 0.07 -0.09 -0.01 0.30 +ll -0.06 ref(e) 180 156 128 156 136,137 156 74, 175 85 170 156 85 74, 175 128,282 128, 282 85 85 160 109 170 74 186 150 93 156 156 74 85 74 133 74 205 73 79 152 85 69 104 115 115 115 155 150 155 85 160 141 100 101 85 149 65 65 66 125 81 164 168,169 144 144 144 122, 123 61 510. 0.38 0.38 0.38 0.00 61 511. 0.17 0.21 0.17 0.04 138 Hammeti Substituent Constants Chemical Revlews, 1991, Vol. 91, No. 2 175 TABLE I (Continued) UP Fb R’ -0.03 0.12 -0.05 0.07 0.01 0.16 -0.06 -0.09 74,102 66 0.13 0.14 0.09 1.13 0.10 0.36 0.17 0.20 1.09 1.13 0.05 0.65 -0.33 -0.03 (0.53) -0.01 0.34 0.30 0.01 0.30 1.18 0.13 0.56 0.30 0.23 1.11 1.18 0.08 0.70 -0.77 0.10 (0.27) 0.02 0.33 0.09 0.21 0.21 -0.20 0.27 0.14 0.02 0.28 0.16 0.03 0.09 1.14 0.01 0.09 -0.67 0.14 (-0.35) 0.01 -0.02 91 85 91 91 74 175 91 91 91 91 98 61 83 132 164 131 73 substituent 512. 513. ‘Jm CH(CsHdz 514. 515. 516. 517. 518. 519. 520. 521. 522. 523. 524. 525. 526. 527. 528. 529. 530. 0.03 1.04 0.11 0.28 0.14 0.20 1.02 1.04 0.07 0.61 -0.10 -0.04 (0.62) 0.01 0.35 Values in parentheses are suspected of being inaccurate. Calculated from eq 8. Calculated from eq 2. molecular formula. C.H..: other elements in ahhabetical order. ~~~ ref(@) Substituents are arranged by ~~ TABLE 11. S u b s t h . ~ e n tField/Inductive Parameters for Primary Dipolar Substituents Obtained from Various Sources 61 0.456 CHiX substituent X Taft” 0.63 0.00 -0.05 -0.05 0.27 0.23 0.38 0.31 0.47 0.45 0.59 -0.07 0.17 a1 TZb 0.65 0.00 0.00 0.00 0.30 0.25 (0.28) 0.24 (0.31) 0.45 0.45 0.60 0.00 0.00 0.14 Grobbd Charton’ Taylo# Fr 0.68 O.00b” -0.01 -0.01 0.05 0.26b9‘ O.3Ob 0.63 0.00 -0.02 0.67 0.00 -0.01 -0.01 0.11 0.24 0.30 0.40 0.30 0.47 0.47 0.57 0.01 -0.01 0.11 0.16 0.23 0.17 0.20 0.17 0.22 0.11 0.10 0.29 0.12 0.30 0.64 0.00 0.01 -0.03 0.65 0.00 0.01 0.00 0.03 0.33 0.29 0.37 0.34 0.42 0.45 0.51 0.04 -0.02 0.13 0.07 0.64 0.00 -0.01 0.06 0.13 0.13 0.14 0.12 0.23 0.23 0.26 0.13 0.13 0.22 0.12 0.33 0.31 0.26 0.08 -0.03 0.15 0.31 0.23 0.42 0.23 0.53 0.74 0.45 0.42 0.07 0.29b” 0.47b 0.45b9c 0.54‘ 0.23 0.06 0.10 0.27 0.10 0.10 0.28 0.25 0.59 0.50 0.38 0.23 0.10 0.26 (0.30) 0.28 0.14 (0.19) 0.12 0.10 (0.19) 0.25 0.59 (0.65) 0.84 0.44 {hR) (F T& Stock’ 0.26 0.09 0.31 0.29 0.44 0.47 0.55 -0.05 -0.07 0.09 0.13 0.21 0.15 0.16 0.16 0.20 0.07 0.08 0.28 0.15 0.29 0.30 0.15 0.12 0.15 0.27 0.26 0.37 0.28 0.58 0.46 0.41 0.28 0.17 0.13 0.17 0.28 0.38 0.30 0.59 0.71 0.54 0.40 0.29 0.31 0.63 0.26 0.30 0.26 0.14 0.27 0.30 0.42 0.19 0.43 0.49 (0.53) 0.09 0.09 (0.15) 0.14 0.25 0.29 0.23 0.09 (0.17) 0.34 0.34 0.24 0.61 0.83 (0.57) (0.47) ‘Reference 32. bReference 30. cCalculated as ApKJ1.56. ApK, values from refs 35 and 36. dCalculat.ed from eq 8. *Reference 45. ’Calculated as 0.0415 ApK, for XHN=C(NH&+. Reference 41. ‘From Table I. hCalculated from the meta-substituted fluorobenzene F NMR shift (relative to fluorobenzene). Reference 43 using eq 10. Values in parentheses are thought to involve magnetic or other complications. Hensch et el. 176 Chemical Revlews, 1991, Vd. 91, No. 2 TABLE 111. Comparison of F Values Calculated via Eq 5 and 8 1. F 2. Br 3. CF3 4. C 4 H 5. CONHI 6. NO2 7. NHg 8. NHCONH2 9. O H 10. OCH3 11. S02NH2 12. SCH, 13. C N 14. CH2CBHb 15. OCOCH, Fcalcd via ea 5 Fcalcd via ea 8 lea 5 - ea 81 0.43 0.44 0.38 0.19 0.24 0.67 0.02 0.04 0.29 0.26 0.41 0.20 0.51 -0.08 0.41 0.45 0.45 0.38 0.22 0.26 0.65 0.09 0.09 0.33 0.29 0.49 0.23 0.51 -0.04 0.42 0.02 0.01 0.00 0.03 0.02 0.02 0.06 0.05 0.04 0.03 0.08 0.03 0.00 0.04 0.01 In a different approach to evaluating q, Charton elected to use ionization constants of substituted acetic acids (XCH2COOH)as a basis for its definition.29 As he notes, this does not constitute a method beyond reproach, but it does allow the definition of aIfor 294 substituents whose pK,'s have been measured. A limitation of this method is that of the 294 substituents, only 125 have known values of up so that only 125 uR values can be estimated via eq 2. Despite the quite different methods used to obtain secondary aIvalues by Charton and the method of obtaining F values via eq 7, there is generally satisfactory agreement between the two types of field/inductive constants as shown by the comparison of the fifth and seventh columns of Table I1 or by eq 9. Equation 9 F = 0.888 (fO.OM)q(Charton) + 0.017 (h0.017) (9) n = 129, r = 0.944, s = 0.067 is based on 129 substituents common to both data sets. Bear in mind that not only are the two approaches for obtaining inductive constants grossly different, but also the individual values come from a variety of different laboratories and hence, have different degrees of reliability. Given these conditions, one could hardly expect a better correlation. Table VI11 contains uI from the acetic acid system by Charton for substituents not contained in Table I. A recent report by Taylor and Waita of substituent effects baaed on ApK, for N-substituted guanidinium ions, H20 at 25 OC, is of particular importance with respect to biologically important Substituents. For 15 common substituents with known OF values,3o q = 0.0415ApKa,r = 0.996,s = 0.03. Values of uI calculated from this equation are given in the sixth column of Table 11. The very great sensitivity of these particular aqueous solution proton transfer equilibria is shown by the very small (0.0415) coefficient to their ApK,. This value is even smaller than the coefficient obtained in the gas phase for the relative acidities of nine 4-substituted bicyclooctane carboxylic acidsm (for these, uF = 0.1O6ApKa). The eighth column of Table I1 lists CTFvalues calculated from the meta substituent F NMR shielding effect, SEXfor meta-substituted fluorobenzene, in dilute hydrocarbon solvents."g A correlation obtained herein for 33 substituents with well-established UF values30 (C(CFJ3, C(CN13, CH2C1, CH2CF3, CH20Me, CH,, CH802CF3, CHC12, CHF2, CF3, CH=CH2, C&5, C02R, COMe, COCsHs, CHO, COCFs, COCN, NHP, NO;, NO, OMe, OC6H5iC1, Br, Si(Me)i, SCH,, SCF3, SF5, S02Me,S02CF3)is c& QF = 0.16 + 0.137(-j;-') (10) n = 33, r = 0.990,s = 0.034 Equation 10 has been utilized to obtain CF values listed in Tables I1 and IV. For ease of determination, the F NMR measurement is a method of choice for estimation of the aF value of a new substituent. There is adequate signal-to-noise ratio in this method, a great breadth is allowed in the permissible substituent structural variation, preparation is relatively simple, and there is essentially no dependence upon nonspecific solvent dielectric constant variation.@ Nevertheless, the F NMR method has given UF values for some substituents which appear .toinvolve some relatively small specific magnetic contributions (usually less than 0.10 unit of UF) that are not observed in proton-transfer equilibria or other reactions. (Examples are the substituents CN, C--=CH, F, and t-C4H9 and others given in parentheses in the last column of Table 11). However, variations in ~JF values due to substituent H-bonding solvation assisted field effects42 are well established and predictable.* A few typical examples are given in Table I1 of enhanced uF values resulting from the hydrogen-bond acceptor substituent interacting with the HBD solvent water (cf. uF values given in parentheses in the second column of Table II). Another solvent effect on field/inductive parameters involves the fall-off factor for transmission of dipolar effects in a homologous straight chain. For gas-phase equilibria, the factor is 1/1.95 per methylene carbon,3o but in certain solution equilibria the attenuation factor has been thought to be as large as 1/2.8 per methylene. For CH2X type substituents in Table 11,the uF values are generally larger than the corresponding F values. In spite of these and other complications, the uF values from the F NMR method are in generally satisfactory agreement with F values obtained from eq 8. There are 146 substituents common to Tables I and IV. These 146 sets of F and aF(F NMR) are collected in Table IV. Only 10 substituents have laF - 9differences of 0.20 or greater. Excluding these substituents S02C1, CN-BC13, HgMe, SnMe3, N(CF3),, +P(CH3)3,OCF,, CF(CF3I2,C(CF3)3and P+Me(C6H5)2 the standard deviation for equality between corresponding F and uF(F NMR) values (for a range of -0.12 to 1.15 in the latter), is only 0.076. Correlation by least-squares gives eq 11. F = 0.924 ( f 0 . 0 2 3 ) ~-~0.006 ( f O . l l ) (11) n = 136, r = 0.960, s = 0.067 These results further support the conclusion that field/inductive parameters can, with care, be obtained reliably from a number of useful sources. It is clearly of interest to confirm this kind of agreement for many additional substituents present in one, but not the other, of Tables I and IV. We have commenced a literature search for a more complete tabulation of substituent F NMR chemical shifts for Chemical Revlews, W S l , Vol. 91, Hemmett Substituent Constants I meta- and para-substituted fluorobenzenes. The results of this search and of experimental determinations of additional substituents shifts will be reported subsequently. - 10.0 - 8.0 B. Resonance Effect Parameters Taft used eq 2 to obtain uR values. To evaluate R, Swain and L ~ p t o nmade ~ ~ the assumption that eq 6 applies in the following form up = aF + R or R = u p - aF (12) and that for N+(CH3)3,R = 0. By using eq 12 and the values of F = 0.89 and up = 0.82, a was found to be 0.921. By using this value for a,F and R were then calculated for about 200 substituents.34 Since, as noted before: a does not differ much from 1, little, if anything, is lost by using Taft's eq 2 to calculate R (= u - F) rather than eq 12. Therefore, we have recalculatec! F (using eq 8) and R (using eq 2). The values of R given in Table I generally compare well with Charton's uD as shown in eqs 13 and 14. R = 0.864 (&0.066)~,- 0.004 (i0.018) 12.0 (13) 0 5 - 6.0- 1 I I I I I I No. 2 177 I 1 m-and p- S u b r l i l u i n l r (unconjugoladl 0 Conjugatad p-Subrliluanl ( p i donor 1 4.0- - - - -2.0 - 4.0 f o r UnconJuqol*d Subrlilu*nlr 8AGiOql* 0.03 + ( 0 . 0 8 5 7 )(-8AGig,) - -6.0 R 0.975 I '009 -8.0 -0.75 -0.50 -0.25 - - 0.00 0.25 0.50 0.75 1.00 -8AG;bq), k c a l l m o l , Figure 1. Meta- and para-substituted benzoic acid acidities gas phase vs aqueous. n = 117, r = 0.923, s = 0.085 R = 0.877 (&0.050)~,- 0.002 (k0.013) (14) n = 105, r = 0.959, s = 0.057 Equation 13 is based on all 117 substituents common to both data sets, and for eq 14, the 12 most poorly fit data points were dropped. The slopes and intercepts of eqs 13 and 14 are essentially identical. However, eq 14 is a sharper correlation. Current expertise accepts the need for special parameterization for instances where strong resonance interaction occurs between reaction center and substituent. Two types of parameters u- and u+ (R- and R+) are widely used for such situations; however, Swain et al.4' argue that this is unnecessary and have derived a set of optimized F and R from 14 selected reactions for all electronic substituent effects. Equations 15 and 16 compare these values of F and R based in part on reactions where n-donor and a-acceptor substituents are conjugated with the reaction centers. Fs,,.~e 1.63 (fO.ll)FTableI + 0.45 (i.033) (15) n = 43, r = 0.978, s = 0.163 = 3.44 ( * O . ~ ~ ) R T-~0.44 ~ , ~(f1.0) I (16) n = 43, r = 0.947, s = 0.455 The correlation between the two field/inductive parameters is fair, although the standard deviation is 3 times greater than that for either eqs 9 or 11, which apply to about 3 times as many substituents. Swain's values were optimized for all of his selected reaction series including those involving through resonance effects that have been normally correlated by a+ and 6.Also included were charged substituents (CO,, S(MeI2+,P03H-, SO3-, N2+, and N(Me)3+)which often correlate poorly when included in sets of neutral sub- stituents.3 Thus, Swain has viewed the situation from the worst possible position so that it is perhaps surprising that the correlation is as good as it is. Still, we do not recommend using thFe normalized values since it is clear from many, many, examples that ;a and up+ not only give better correlations, but they often afford insight into the reaction mechanism which is lost when the normalized Swain constants are used. Gas-phase proton-transfer equilibria for a variety of reaction series have been recently reported.30 The very large accompanying substituent effects have been examined for rigid substituents at a fixed carbon position in saturated and unsaturated chains or cycles.& The series includes substituent effects at tetrahedral, trigonal, planar, or linear carbon positions. Linear free energy relationships of good precision were found to be much less common than in solution. However, UF and uR values with proper application give generally very good correlations of the substituent fieldlinductive and resonance effects (substituent polarizability effects were also found to be generally important in the gas In many series, it was found necessary to treat n-electron donor and acceptor substituents by using separate reaction constants, p i and p t in accord with ideas of Yukawa and T s ~ n o A. ~number ~ of gasphase equilibria have p R and pF reaction constants of opposite signsm Such reactions illustrate that although u values are not applicable, the UF and UR values are. Sertain reaction rate series in solution that involve conjugating para substituents have also been shown to follow this same kind of behavior.s0 The relative gas-phase acidities of meta- and parasubstituted benzoic acids provide important evidence that while aqueous solution solvent effects lead to significantly enhanced negative u values for strong T donor substituents, the major features of u, and up constants do involve inherent electronic effects. Figure 1 shows a plot of -6AG ) [= 2.303RT log (K/K,,),] vs -6AGo,,) (= 1.364qnq))o!r meta- and para-substituted Hansch et al. 178 Chemlcal Revlews, 1991, Vol. 91, No. 2 TABLE IV. uF,ug, cum,and cup Constants from F NMR Chemical Shifts of Meta- and Para-Subrtituted Fluorobeneener substituent, Y solvent -SKY -SPY QP QR Cum CUP 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. CH&3nMeS CHzGeMe3 CH&3iMe3 CH3 CHzMe CHzNHz CHzCOMe CHzNMez CHzSMe CHzOMe CHZOH CH2CN CHZCF:, CH&CFs CHzCl CH2F CHBr CHzS02CF3 CHZSOCF3 CH2SO2CF3 C’C6HIZ C-C6H12 C-C6HlZ c-C6H1Z c-CBHIZ c-CeH12 C6H6 C6H6 C6H6 C13CF C-C6HIZ c-C6H1Z Cl&F C13CF ClaCF C13CF Cl&F C6H6 CCl, CCl, 21. 22. 23. 24. 25. 26. 27. CCl, CH2Clz ClSCF Cl&F Cl3CF Cl&F Cl3CF 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. CCl, C-C6H12 C-CSHlZ Cl&F Cl&F ClSCF n-C7H16 ClaCF C-C6H12 Cl&F Carbon Subetituenta 1. CHzX 7.75 0.85 7.05 0.90 7.00 1.10 5.40 1.20 5.05 0.75 3.75 0.58 3.22 0.36 3.09 0.79 2.95 0.37 2.41 0.53 2.15 0.18 1.07 -1.20 0.92 -0.43 0.73 -0.92 0.50 -0.53 0.25 -0.28 0.22 -0.50 -0.07 -0.67 -0.81 -1.28 -1.35 -2.14 0.04 0.04 0.01 -0.01 0.06 0.08 0.11 0.05 0.11 0.09 0.13 0.32 0.22 0.29 0.23 0.20 0.23 0.25 0.33 0.46 -0.23 -0.20 -0.19 -0.13 -0.13 -0.09 -0.08 -0.06 -0.07 -0.05 -0.05 -0.06 -0.03 -0.03 -0.02 0.00 -0.01 0.00 0.00 -0.01 -0.11 2. CHXz 7.47 0.84 2.83 0.20 1.38 0.50 -2.43 -2.53 -2.21 -1.51 -3.14 -1.48 -2.30 -3.29 0.04 0.13 0.09 0.51 0.37 0.36 0.61 -0.22 -0.07 -0.01 0.02 0.03 0.06 -0.02 -0.10 0.06 0.05 0.47 0.34 0.34 0.55 -0.24 0.01 0.03 0.48 0.35 0.37 0.53 3. 6.93 5.55 5.40 0.62 -2.21 -2.31 -3.44 -3.99 -5.05 -6.02 -0.30 0.50 1.20 0.41 -1.26 -1.51 -3.32 -2.90 -2.18 -5.75 (0.20) (0.09) 0.01 0.10 0.33 0.37 0.61 0.56 0.46 0.95 (-0.23) (-0.16) -0.13 0.01 0.04 0.03 0.01 0.04 0.09 0.02 (0.05) (-0.02) -0.11 0.07 0.30 0.34 0.56 0.52 0.45 0.90 (-0.09) -0.09 -0.12 -0.11 -0.04 0.00 0.03 -0.02 0.04 0.03 0.07 0.25 0.16 0.23 0.18 0.16 0.18 0.21 0.28 0.41 -0.350 -0.22 -0.28 -0.19 -0.13 -0.06 -0.02 -0.06 -0.01 -0.01 0.03 0.21 0.14 0.21 0.16 0.15 0.17 0.20 0.28 0.40 cx3 (-0.13) -0.19 0.06 0.32 0.35 0.56 0.55 0.50 0.91 A 38. 39. cc1, 5.11 3.26 1.18 0.75 0.00 0.06 -0.12 -0.07 -0.09 -0.17 CCl, -0.01 -0.06 40. CCl, 1.80 0.10 0.15 -0.13 0.10 0.07 41. CCl, 1.43 0.11 0.17 -0.02 0.12 0.10 42. 43. 44. 45. 46. ClSCH CH2Clz CH2Clz Cl3CF Cl&F 5. 6.12 1.31 -2.16 -2.37 -2.50 1.63 0.05 -3.88 -1.88 -1.88 -0.07 0.09 0.69 0.42 0.42 -0.14 -0.01 -0.04 0.02 0.03 -0.17 0.05 0.62 0.38 0.39 -0.26 0.03 0.59 0.39 0.40 47. 48. 49. ClsCF Cl3CF Cl&F -4.14 -4.39 -4.84 2.93 -2.09 -2.60 0.56 0.45 0.52 0.05 0.07 0.07 0.53 0.43 0.50 0.56 0.47 0.54 50. Cl&F -5.58 -2.30 0.47 0.10 0.47 0.52 6. CXYZ 2.75 0.07 0.15 -0.07 0.08 0.03 0.08 0.07 0.19 -0.02 -0.01 0.05 0.03 0.03 0.17 0.01 0.01 0.19 51. 52. 53. 54. C(Me)HOH C-CeH12 CHzClz c-c6HlZ ClSCF 7. 1.67 1.45 -1.69 cx,z c=c 0.60 0.63 -0.25 Chemlcal Reviews, 1991, Vol. 91, No. 2 179 Hammett Substituent Constants TABLE IV (Continued) 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. substituent, Y CH-CHCFq-t CHCHCN-t " CH4HNO2-t CH=CHSOZCF:,-t CHEC(CN)Z C(CN)e(CN), c6H6 c6c16 C6F6 N-C -C // -Sf? -SKY UF UR -2.73 -4.58 -5.80 -8.97 -10.93 -13.19 3.00 -0.83 -1.70 -5.23 -0.80 -1.28 -1.13 -1.59 -2.27 -4.12 0.15 -1.19 -1.15 -0.01 0.27 0.33 0.31 0.38 0.47 0.72 0.14 0.32 0.32 0.16 0.06 0.10 0.14 0.22 0.25 0.26 -0.08 0.01 0.03 0.16 Cum 0.26 0.33 0.33 0.44 0.54 0.79 0.06 0.28 0.29 0.20 0.28 0.38 0.41 0.56 0.68 0.94 0.01 0.28 0.30 0.28 -0.11 -0.78 -2.06 0.05 -1.56 0.17 0.27 0.44 (0.15) 0.37 0.02 0.01 0.01 (0.08) 0.14 0.14 0.23 0.40 0.15 0.39 0.14 0.23 0.40 0.19 0.47 (0.54) 1.17 (0.18) 0.43 (0.57) 1.30 (0.68) 1.56 -0.25 -0.68 -0.81 -0.91 -0.94 -1.05 -1.30 -1.41 -0.65 -1.63 -1.38 -2.15 -2.10 -2.62 -3.33 -2.88 -3.81 0.23 0.19 0.25 0.27 0.28 0.29 0.30 0.34 0.35 0.25 0.38 0.35 0.45 0.45 0.52 0.62 0.55 0.68 0.12 0.16 0.16 0.15 0.15 0.16 0.16 0.16 0.18 0.20 0.20 0.23 0.26 0.26 0.27 0.31 0.42 0.50 0.24 0.22 0.28 0.30 0.31 0.32 0.33 0.37 0.39 0.30 0.43 0.41 0.52 0.52 0.60 0.71 0.70 0.86 0.31 0.31 0.37 0.38 0.39 0.41 0.42 0.46 0.49 0.41 0.54 CHzClz CHpCl2 10. -4.25 -5.75 -6.10 -5.72 -5.90 -6.13 -6.47 -6.68 -7.55 -7.45 -8.30 -9.15 -11.15 -11.20 -12.00 -14.13 -17.62 -21.20 CHZC12 CHzClz CHzClz CHzCl2 11. C(C,H,)=X 1.67 0.60 -2.51 -0.36 -5.93 -0.20 -6.69 -0.81 0.08 0.21 0.19 0.27 -0.02 0.07 0.17 0.17 0.03 0.20 0.23 0.31 0.01 0.23 0.32 0.40 CHzClz CH2ClZ CHzClz CHzClz Boron Substituents 1. BXZ 1.72 1.87 -2.24 1.10 -10.04 -0.54 -11.86 -0.24 -0.10 0.01 0.23 0.19 0.01 0.07 0.28 0.34 -0.13 0.01 0.32 0.31 -0.14 0.04 0.48 0.50 CHzCl2 CHzClz 2. BXzZ 3.91 2.33 3.54 2.21 3.08 2.05 -0.16 -0.14 -0.12 -0.04 -0.03 -0.02 -0.21 -0.19 -0.16 -0.25 -0.22 -0.19 CH2Clz CHzClz CHzCl2 CH2C12 CHZC12 CHzClz CHzClz CHzClz 2.59 2.23 1.87 1.72 1.64 1.44 0.86 0.02 -0.11 -0.01 -0.14 -0.10 -0.01 0.01 -0.01 0.01 0.04 0.01 0.03 -0.13 -0.13 -0.02 0.10 -0.17 0.00 0.04 -0.17 -0.14 -0.14 -0.04 -0.11 -0.18 -0.02 0.04 solvent CLCF Cl&F C6H6 CC14 CBH6 CaH6 c-CsHl2 C13CF ClSCF cc1, P "N CUP 'N=C: Me CC14 65. 66. 67. 68. 69. 70. 71. C-C6H12 c-C6H1Z c-CsHl2 CCl, CN CNBCl:, C%H12 CHzCl2 MeCN c-C6H1Z 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. c-C6H12 CBH6 C6H6 CeH6 CCl, C6H6 CBH6 c-C6H12 MeOH c-CBHl2 c-C6H12 c-C6H1Z c-C6H12 c-C6H12 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. BCl1-HMPA BCIZ-OP(C~H& !a /=6 \-I 8. C& -0.34 -0.46 -2.14 -2.35 -6.25 9. C=N -8.80 -2.80 -22.57 -7.40 cox -0.50 0.54 0.67 0.67 0.75 0.89 0.94 1.15 BCip= c 101. 102. 103. 104. 105. 106. 107. 108. 1.99 1.86 1.97 1.01 1.69 2.37 1.03 0.75 -0.11 0.02 -0.07 -0.17 0.02 0.06 Hansch et al. 180 Chemical Reviews, 1991, Vol. 91, NO. 2 TABLE IV (Continued) substituent, 109. Y solvent (MeOCHh -SEY 3. Other -1.27 QF 0.52 QR CQm CQP 0.09 0.06 0.08 0.11 Nitrogen Substituents C-C6HlZ MeOH CCl, C13CF MeOH 1. NHX 14.40 12.25 9.15 7.01 5.15 0.50 -0.05 -1.10 -2.06 -1.35 0.09 0.17 0.31 0.44 0.34 -0.48 -0.42 -0.35 -0.30 -0.21 -0.18 -0.07 0.10 0.25 0.20 -0.720 -0.5P -0.26" 113. 114. NHZ NHNHz NHC6H5 NHCN NHCOMe 115. N(COF)CF3 Cl&F 2. NXZ -3.40 -3.36 0.62 0.01 0.57 0.57 116. 117. NMez C-C6HlZ -4 -0.08 0.10 (0.17) 0.15 -0.56 n-C7H16 3. NX, 15.90 8.52 -0.28 -0.14 -0.02 -0.420 -0.320 Cl&F Cl3CF C13CF 0.64 -3.19 -3.22 -5.75 -2.86 -3.49 0.94 0.55 0.64 -0.21 0.02 0.01 0.78 0.51 0.59 0.66 0.52 0.59 CHZC12 MeOH -0.10 -1.03 -2.78 -4.03 0.54 0.71 -0.08 -0.09 0.45 0.61 0.40 0.56 5. N=Z 15.45 3.15 3.11 2.27 1.77 -0.53 -1.61 2.02 -1.42 -1.92 -0.66 -1.91 -2.35 -3.28 -0.12 0.35 0.42 0.25 0.42 0.48 0.61 -0.46 -0.14 -0.16 -0.08 -0.11 -0.05 -0.04 -0.37 0.24 0.30 0.17 0.32 0.41 0.54 0.86" 0.15 0.20 0.12 0.25 0.37 0.51 -3.10 -3.21 -3.63 -0.70 -2.76 -3.44 0.25 0.54 0.63 0.08 0.00 0.02 0.25 0.49 0.59 0.28 0.49 0.60 -2.25 -3.50 -1.80 0.47 0.64 0.41 0.11 0.16 0.25 0.47 0.66 0.48 0.53 0.75 0.62 0.61 0.60 0.61 0.61 0.61 0.61 0.21 0.21 0.20 0.20 0.20 0.20 0.66 0.65 0.65 0.65 0.65 0.65 0.78 0.77 0.77 0.77 0.77 0.77 -1.90 -2.07 -1.95 -2.28 -2.38 -2.94 -1.33 -2.62 -2.95 -5.12 -3.35 -3.04 -3.98 0.32 0.30 0.42 0.44 0.43 0.47 0.49 0.56 0.34 0.52 0.56 0.86 0.62 0.58 0.71 -0.43 -0.43 -0.40 -0.31 -0.32 -0.31 -0.30 -0.30 -0.19 -0.23 -0.23 -0.25 -0.18 -0.15 -0.38O 0.4P 0.230 -0.09 -0.11' -0.04O -0.01" 0.06' 0.09 0.22 0.26 0.54 0.37 0.37 -0.18 0.07 0.05 0.18 0.25 0.23 0.27 0.30 0.37 0.20 0.36 0.40 0.68 0.48 0.46 0.57 -3.2 0.60 -0.06 0.52 0.48 110. 111. 112. 118. 119. 120. -0.06" -0.04' 4. NXzZ 121. 122. NMez-BC13 N+Me20- 123. 124. 125. 126. 127. 128. 129. Cl3CH C13CF C13CF C13CF Cl&F CCl, C6H6 130. 131. 132. C-CBHlZ C13CF 133. 134. 135. Cl&F c-C6HlZ C-C6H1Z -5.99 -9.01 -10.50 136. 137. 138. 139. 140. 141. Cl&F C&CF Cl&F C13CF Cl3CF Cl3CF 6. NnPnFZn.1 -10.6 -3.3 -10.4 -3.2 -10.2 -3.3 -10.1 -3.3 -10.0 -3.3 -10.0 -3.3 C6H6 Oxygen Substituents 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. OH OMe O(CHd2Br OCH=CHZ OCBH6 OCHzCl OCH=CHBr OCsCH OCOMe OCHFz OCHClp OCN OCF3 OCC13 OCOCF, O(Me)BC13 CCl, C-C6H12 Cl3CF Cl&F C-C6H12 CCl, Cl&F Cl3CF C-C6H12 CCl, CCl, Cl&F C-C6H12 CCl, C-C6H1? 1. Y 11.40 11.58 9.86 7.55 7.45 7.36 6.64 5.99 4.55 4.32 3.98 2.46 2.25 1.65 1.58 2. CH& -1.5 oxz -1.20 -1.05 0.46 Hammetl Substituent Constants Chemical Reviews, lQQl, Vol. 91, No. 2 181 TABLE IV (Continued) -SIy op =R cum CUP -3.03 -2.00 -2.43 -2.30 (0.57) 0.43 0.49 0.47 (-0.33) -0.16 -0.16 -0.12 (0.36) 0.31 0.36 0.36 (0.04') 0.21 0.27 0.29 -7.2 1.15 0.01 1.09 1.10 2.23 2.20 2.32 -0.15 -0.14 -0.16 0.00 0.00 -0.01 -0.18 -0.17 -0.20 -0.20 -0.19 -0.22 Magnesium Substituents 5.61 3.72 EhO 5.39 3.71 EhO -0.35 -0.35 -0.05 9.04 -0.40 -0.40 -0.45 -0.43 1.97 0.82 0.72 0.16 0.06 -0.11 0.05 0.06 0.14 0.15 0.04 0.05 0.06 0.07 0.10 -0.12 0.04 0.05 0.13 0.16 -0.11 0.06 0.08 0.17 0.21 0.90 -0.01 0.86 -2.10 -2.14 -2.34 0.04 0.04 0.16 0.04 0.45 0.45 0.48 0.01 0.05 0.08 0.11 0.16 0.17 0.21 0.01 0.03 0.16 0.06 0.48 0.48 0.53 0.00 0.05 0.20 0.11 0.57 0.58 0.65 180. 181. 182. 183. Other Group Substituents C-CSH12 0.55 0.70 0.20 0.65 c-C6H12 0.20 0.40 c-C6H12 -1.72 C-C~HIZ -2.32 0.06 0.07 0.10 0.39 0.01 0.02 0.02 0.03 0.03 0.04 0.07 0.36 0.02 0.04 0.07 0.37 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. Phosphorus Substituents 1. PX, c-C6H12 2.33 C-C6HIZ 1.40 C-C~HI~ -0.13 C-CsHlz -0.85 -1.94 C-C&i, C1,CF -3.99 C1,CF -7.42 Cl&F -8.30 C13CF -8.82 CCl, -9.33 0.63 0.05 -0.30 -1.24 -0.03 -2.29 -2.65 -2.11 -3.12 -4.65 0.07 0.15 0.20 0.33 0.16 0.47 0.52 0.45 0.59 0.80 -0.04 -0.03 0.01 0.02 0.06 0.06 0.14 0.18 0.17 0.14 0.01 0.10 0.16 0.29 0.15 0.45 0.54 0.49 0.62 0.81 -0.02 0.07 0.16 0.30 0.17 0.48 0.61 0.59 0.71 0.89 194. 195. 196. 197. 2. PXZZ DMSO -4.86 CCl, -5.01 CHzCl2 -6.78 CH2Clz -8.69 -1.47 -1.56 -2.47 -4.02 0.36 0.37 0.50 0.71 0.10 0.10 0.13 0.14 0.36 0.37 0.51 0.72 0.41 0.42 0.58 0.80 3. PXI C13CF -12.09 HCC1, -5.00 -2.62 -2.07 0.52 0.44 0.28 0.09 0.60 0.43 0.76 0.48 Sulfur Substituents 1. sx C-CSH12 4.40 c-C6H12 3.50 ClSCF 2.96 Cl&F 2.18 Cl&F 1.21 Cl&F 1.17 Cl&F 1.14 CHzC12 0.99 C13CF 0.53 Cl&F -1.19 -3.90 C13CF -0.30 -0.78 -0.30 -1.68 -0.91 -0.48 -1.17 -0.97 -1.93 -0.92 -2.47 0.20 0.27 0.20 0.39 0.28 0.22 0.32 0.29 0.42 0.29 0.50 -0.15 -0.13 -0.10 -0.12 -0.06 -0.04 -0.06 -0.05 -0.06 0.02 0.05 0.09 0.17 0.11 0.29 0.21 0.16 0.25 0.22 0.34 0.26 0.47 -0.01 substituent, Y 158. 159. 160. 161. F c1 Br I 162. IC12 166. 167. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 2. XYZ -7.1 Silicon Substituents 1. SiXzZ DCCl3 0.84 C-C&,, -0.73 -1.16 C-CsHlz C-C&12 -2.06 -3.09 C-CsHlz 168. 169. 170. 171. 172. 198. 199. CC14 Gold(1) Substituents C6H6 2.59 C6H6 2.66 CsH6 3.23 163. 164. 165. 173. 174. 175. 176. 177. 178. 179. solvent -SKY Halogen Substituents 1. Y 6.72 C-C6H12 C-C6H12 3.10 C-CBHIZ 2.53 C-C6HIP 1.63 Si(NMez), SiMe, SiH, Si(OEt), SiBr, Sic& SiF, PF. SMe SH SEt SC=CH SCH4H2 SNMez S(0Me) SC6H5 S(SC&F(sW)) SCOMe SCN 2. Six, c-CsH12 0.99 C-CgH12 -0.50 C-C6H12 -2.56 C-CsHlz -2.57 C-C6H12 -7.46 C-C~HIZ -7.85 CCl, -9.57 0.90 0.08 0.04 0.21 0.17 0.13 0.21 0.19 0.30 0.26 0.50 182 Chemical Reviews, 1991, Vol. 91, Hensch et al. No. 2 TABLE IV (Continued) -SKY -STY CF aR &CF Cl3CF ClSCF -4.20 -4.45 -4.47 -2.36 -3.00 -2.23 0.48 0.57 0.47 0.06 0.04 0.07 0.54 0.45 0.49 0.66 0.49 S(Me)BC13 CHpClz 2. sxz -7.42 -4.50 0.78 0.09 0.76 0.82 SONMez SO(0Me) SOCFB SOCl SOF Cl&F Cl&F Cl&F ClSCF ClSCF 3. sox -2.40 -5.22 -7.98 -8.64 -9.06 -1.53 -2.56 -4.22 -4.24 -4.06 0.37 0.51 0.74 0.74 0.72 0.03 0.34 0.35 0.08 0.50 0.54 0.12 0.13 0.15 0.74 0.74 0.73 0.81 0.82 0.82 ClaCF 4. sx, -9.51 -3.67 0.66 0.17 0.69 0.78 c-C6H1Z 5. SX& -5.33 -3.14 0.59 0.07 0.57 0.61 6. SOzX -5.98 -6.00 -7.23 -8.10 -8.00 -11.90 -12.20 -13.82 -15.37 -2.36 -2.50 -3.14 -2.90 -3.30 -5.10 -4.68 -4.86 -6.05 0.48 0.48 0.52 0.59 0.58 0.62 0.89 0.85 0.89 1.05 0.54 0.59 0.56 0.61 0.86 0.80 0.83 0.99 0.11 0.11 0.12 0.16 0.14 0.20 0.22 0.26 0.27 0.31 -0.10 -0.25 -0.27 -1.32 -1.53 -1.75 -2.08 0.12 0.17 0.19 0.20 0.34 0.37 0.40 0.44 0.01 0.02 0.02 0.02 0.01 0.03 0.03 0.03 0.14 0.16 0.17 0.30 0.34 0.37 0.41 Platinum(I1) Substituents 1. Pt(PEt&X 11.7 4.26 10.9 3.72 10.8 3.44 10.4 3.37 10.2 2.50 10.0 2.34 9.70 2.00 9.11 2.53 11.6 3.55 11.4 3.55 9.75 3.37 9.48 2.85 -0.43 -0.35 -0.31 -0.30 -0.18 -0.16 -0.11 -0.19 -0.33 -0.33 -0.30 -0.23 -0.24 -0.24 -0.24 -0.33 -0.26 -0.26 -0.26 -0.22 -0.27 -0.26 -0.21 -0.22 -0.57 -0.49 -0.45 -0.48 -0.33 -0.31 -0.27 -0.33 -0.48 -0.48 -0.43 -0.36 0.83" -0,750 -0.72" -0.860 -0.29 -0.23 -0.29 -0.24 -0.23 -0.23 -0.24 -0.51 -0.82" -0.890 substituent, Y 211. 212. 213. SCFS SCOCF. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. SF6 SOzNMez SOzNHz S02CBH6 SOzOEt SOzMe SOZCl SOzF SOZCFS SOzCN solvent ClsCF MeOH CC14 C-C6HIZ CC14 c-CeH12 c-CsH1z c-CBHlZ Cl&H 0.50 Cam 0.46 CUP 0.66 0.66 0.67 0.70 1.01 0.97 1.05 1.21 Mercury Substituents 231. 232. 233. 234. 235. 236. 237. 238. HgMe H&H6 H&6H4F(p) HgC&F(m) HgOH HgCCl, HgOCOMe HgBr c-C6H12 c-C6H12 C-CBHlZ 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. C-C6H12 c-CBHIZ C-CSHlZ C-C6H1Z c-c6HIZ MezCO MezCO MezCO MezCO HgX 0.24 -0.37 -0.56 -0.72 -1.11 -2.30 -2.32 -2.78 2. Other Transition-Metal Substituents CHzClz 12.35 3.71 -0.35 CHzClz 11.75 4.89 -0.51 CHzClz 10.92 2.37 -0.17 CHzClz 9.97 2.63 -0.20 CHZC12 9.78 2.86 -0.23 CHZC12 9.48 2.49 -0.18 CHzCl2 9.26 2.08 -0.13 CHZClz 9.20 2.32 -0.16 CHzClp 9.01 2.02 -0.12 0.14 c-C6H1Z 7.25 0.14 7.14 2.30 -0.16 CeH6 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. CHBClz CHzClz CHZClp CHZClz CHZClz CHzClz CHzClz CHzClz 9-XanthYl' Onium Ion Substituents CH& -7.92 -2.91 CHzClz -20.8 -3.00 CFSCOOH -23.1 -7.0 CFSCOOH -32.9 -6.84 CHSOH -3.28 -6.08 CHSOH -10.3 -4.3 CHaOH -11.9 -5.1 CHSOH -12.83 -5.94 0.56 0.57 1.12 1.10 0.99 0.75 0.86 0.97 0.09 -0.64 -0.23 -0.23 -0.23 -0.15 -0.34 -0.34 -0.37 -0.32 -0.28 -0.30 -0.26 -0.01 -0.26 0.15 0.51 0.46 0.74 -0.08 0.18 0.20 0.20 0.58 0.76 1.26 1.38 0.89 0.78 0.89 1.00 0.08 0.14 0.16 0.17 0.30 0.35 0.38 0.42 -0.62" -0.w -0.55' -0.570 -0.78 -0.77' -0.57 -0.51 -0.w -0.61' -0.62" -0.57O -0,540 -0.550 -0.51O -0.24O -0.36 0.66 1.06 1.54 1.82 0.84 0.88 1.01 1.12 Hammelt Substttuent Constants Chemical Reviews, 1991, Vol. 91, No. 2 163 TABLE IV (Continued) 270. 271. 272. substituent, Y solvent -SfiY -STY OF UR Cum CUP S(Me)z+ S(Et)z+ As(Ph)a+ CHsOH CHSOH CHSOH -10.58 -11.96 -10.9 -6.19 -6.5 -6.5 1.01 1.05 i.05 0.13 0.16 0.13 1.01 1.06 1.05 1.09 1.16 1.13 "Calculated by using the enhanced OR value obtained from eq 18. *From a collection of values of F NMR substituent chemical shifta by R. W. Taft no longer kept current after ca. 1973. Both published and unpublished results are included. Results in C-C&*, CCl,, CHZClz, CH,OH, and CF&OzH are generally from work of Taft and co-workers, refs 43 and 55, or below. Exceptions in c-C& and CHzClzare principally the results with transition-metal substituents from Parshall, G. W. J. Am. Chem. SOC.1966,88, 704, and from Stewart, R. P.; Treichel, P. M. J. Am. Chem. SOC.1970,92,2710. Results in Cl&F generally are from W. A. Sheppard and co-workers (below). Many of the shifts in various solvents are summarized in Van Wazer, J. R.; Dungan, C. H. Compilation of Reported P9NMR Chemical Shifts. 1951Mid-1967; Wiley-Interscience: New York, 1970; New York, pp 3889-4223. Positive values of -6BY and -spiy denote upfield shifta (shielding) in ppm for meta and para substituted fluorobenzenes, respectively, relative to internal fluorobenzene in 0.10 (or less) M solutions. Some additional references are as follows: (1) Eaton, D. R.; Sheppard, W. A. J. Am. Chem. SOC.1963,85, 1310. (2) Maciel, G. E. J. Am. Chem. SOC. 1964,86,1269. (3) Taft, R. W.; Carter, J. W. J. Am. Chem. SOC.1964,86,4199. (4) Sheppard, W. A. J. Am. Chem. SOC.1965,87,2410. 1965,87, 2489. (6) Taft, R. W.; Klingensmith, G. B.; Ehrenson, S. J. Am. Chem. SOC. (5) Taft, R. W.; McKeever, L. D. J. Am. Chem. SOC. 1965,87,3620. (7) Fawcett, F. S.; Sheppard, W. A. J. Am. Chem. SOC.1965,87,4341. ( 8 ) Taft, R. W.; Rakskys, J. W. J. Am. Chem. SOC. 1965,87,4387. (9) h e y , B. G.; Taft, R. W. J. Am. Chem. SOC.1966,88,3058. (10) Pews, R. G.; Tsuno, Y.; Taft, R. W. J. Am. Chem. SOC. 1967,89,2391. (11) Giam, C. S.; Taft, R. W. J. Am. Chem. SOC.1967,89,2397. (12) Cairncross, A.; Sheppard, W. A. J. Am. Chem. SOC.1968, 90,2168. (13) Rakskys, J. W.; Taft, R. W.; Sheppard, W. A. J. Am. Chem. SOC.1968,90,5236. (14) Kitching, W.; Adcock, W.; Hegarty, B. F. A u t . J . Chem. 1968,21,2411. (15) Uschold, R. E.; Taft, R. W. Org. Magn. Res. 1969, I , 375. (16) Timberlake, J. W.; Thompson, J. A.; Taft, R. W. J. Am. Chem. SOC.1971,93,274. (17) Sheppard, W. A.; Taft, R. W. J. Am. Chem. SOC.1972,94,1919. (18) Brownlee, R. T. C.; Dayal, S. K.; Lyle, J. L.; Taft, R. W. J. Am. Chem. SOC.1972,94,7208. creases. Hydrogen bonding by water to the carbonyl oxygen of the un-ionized benzoic acids (in the high dielectric constant of water) accounts for the enhanced negative up, values probably through transquinoidal resonance of III. The high dielectric constant of water, 20 m.m-dlCFj ' X e y - O - * HOH OH I5 I11 P H > IO I a- D (3 2 5 o para iubilituenl mela aubatituant A ellimoled para benzoic acid acidiliei C I 0 I 5 I IO -8AG90,,kcallmol Figure 2. Enhanced resonance effects of para-r acceptor substituents in the gas phaee aciditiea of phenols relative to benzoic acids. benzoic The closed circle points are for un'conjugated meta- and para-substituents and these points give -6AGOk) = -0.03 + ll.l(-6AGo(ad) (17) n = 14, r = 0.974, s = 1.0 kcal/mol (or 0.09 in u, or UJ The open circle points are for conjugated para T electron donor substituents which all deviate in the direction of enhanced resonance effects in water. The enhancements are most notable for p-F, p-OMe, and p-NH2, Le., they tend to increase as r-donation in- together with its ability to strongly solvate by hydrogen bonding the COO-and OH centers of both the ionized and neutral forms of benzoic acids, contributes to the 11-fold reduction of substituent effects in water vs the gas-phase as indicated by eq 17. Several additional kinds of evidence support these conclusions. Figure 2 shows the gas-phase relative acidities, -6AGOo of meta- and para-substituted phenols plotted against the corresponding gas-phase relative acidities of meta- and para-substituted benzoic acids. Para 7-electron acceptor (+R) substituents show large, but variable, acidity enhancements in the phenol series (up type behavior) compared to the approximately linear Hammett relationship followed satisfactorily by all of the other substituents. The failure of Figure 2 to display enhanced resonance effects for para .rr-electron donor (-R) substituents for the gas-phase benzoic acids indicates the absence of transquinoidal resonance when there is no aqueous medium present. This is also indicated by the relative acidities of metaand para-substituted benzoic acids in ion-pair formation with 1,&diphenylguanidine in very dilute benzene solution.s2 A Hammett plot of this series gives a satisfactory linear relationship, except for the para -R substituents. These show significantly smaller acid weakening effects than expected from the aqueous um and up constants (cf. Table IX). Finally, the F NMR substituent chemical shifts of meta- and para-substituted fluorobenzenes show that -uR values (Table IV) are significantly less than the corresponding (aqueous benzoic acid) -R values (Table I) for the strong a-donor substituents. A final point that corroborates the interpretation of Figure 1, is that the R values in Table I for -R para substituents are roughly correlated with the gas-phase Hansch et al. 184 Chemical Reviews, 1991, V d . 91, No. 2 TABLE V. Resonance Parameters R+ and Rsubstituent 1. BClz 2. Br 3. SiBr3 4. c1 5. P(O)Cl, 6. PC1; 7. P(S)CIz 8. GeCl, 9. SiCl, 10. F 11. SOZF 12. SF, 13. I 14. NO 15. NO2 16. N+=N 17. N3 18. 019. so, 20. PO,21. so,22. s23. H 24. 25. OH 26. SH 27. As(O)(OH)z 28. B(0H)z 29. NHZ 30. SOzNHz 31. PH2 32. NH3+ 33. SiHS 34. 5-chloro-1-tetrazolyl 35. COCl 36. CFS 37. N=NCF* 38. OCF, 39. S=O(CF3) 40. SO2(CF3) 41. OSOzCF3 42. SCF3 43. SeCF, 44. CN 45. N=C=O 46. N=C=S 47. SC=N 48. N=N-C=N 49. co, 50. COOR 51. OCHFZ 52. SOCHFz 53. SO2CHFz 54. 1-tetrazolyl 55. CHO 56. COOH 57. CHzBr 58. CHZC1 59. SOZCHzF 60.CONH2 61.OCH1062. CH3 63. SiClz(CHS) 64. SiF2(CH3) 65. OCH, 66. CHaOH 67. S=O(CH,) 68. S=O(OCHd 69. S02CHB 70. OSO&HS 71. SCHS 72. NHCH, 73. NHC(iH2)=NH2+ 74. C=O(CFS) 75. CF&F, 76. OCFZCF, 77. N(CF3)z 0.86 0.15 0.41 0.11 0.38 0.62 0.33 0.57 0.57 -0.07 ref 267 194 245 194 208 208 208 249 249 194 0.14 194 0.79 194 -2.30 218 -2.62 0.00 269 UP+ -0.92 -0.03 194 269 0.38 -1.30 267 194 0.06 253 0.14 231 0.79 0.61 0.74 236 194 72 0.66 -0.19 194 236 1.03 -0.02 0.48 72 194 194 0.73 0.42 0.02 -0.01 236 194 243 194 -0.68 -0.31 0.08 0.23 -0.78 -0.04 254 194 245 245 194 243 0.16 -0.60 -1.81 241 194 269 0.85 236 "' UP- ref F R+ R 0.25 206 251 -0.03 1.54 0.86 0.27 1.63 1.27 3.43 0.11 -0.82 0.08 -0.16 0.58 198 109 179 251 197 87 182 130 88 235 202 239 -0.30 -0.03 -0.31 -0.32 0.12 -0.30 -0.08 0.13 -0.52 -0.20 0.19 0.45 0.44 0.42 0.70 0.50 0.63 0.65 0.44 0.45 0.72 0.56 0.42 0.49 0.65 1.58 0.48 -0.26 0.03 0.00 0.46 -0.37 244 251 0.97 244 -0.15 0.94 195 196 -0.56 74 0.70 1.24 0.65 165 250 178 0.27 1.05 1.63 0.49 0.64 0.53 1.00 145 221 221 221 145 221 196 0.34 0.59 238 251 0.31 0.64 0.11 0.93 1.44 0.57 1.03 0.77 200 87 221 221 221 165 200 206 1.17 0.61 221 206 -0.17 204 -0.26 0.08 0.73 0.89 1.13 198 200 222 235 278 0.06 214 0.32 1.09 0.69 0.28 0.53 247 266 165 178 145 0.29 0.03 0.00 0.04 0.33 0.30 0.04 -0.03 0.08 0.49 0.09 0.92 0.06 0.58 0.46 0.38 0.50 0.39 0.58 0.74 0.56 0.36 0.43 0.51 0.31 0.51 0.36 0.56 -0.10 0.34 0.37 0.51 0.67 0.52 0.33 0.34 0.14 0.13 0.26 -0.11 0.01 0.29 0.32 0.29 0.03 0.52 0.24 0.53 0.40 0.23 -0.03 0.54 0.44 0.55 0.35 -0.28 0.14 -2.04 -0.23 -0.48 0.82 0.30 -0.15 1.14 0.62 1.85 -0.37 -0.56 0.05 0.29 -2.56 0.00 -1.25 -0.33 0.00 0.42 -0.70 0.93 0.41 -1.38 -0.23 0.45 -0.03 -1.48 0.08 0.33 0.23 0.24 0.15 -0.50 0.12 0.78 0.27 -0.12 0.47 0.89 -0.07 0.28 0.10 0.49 -0.17 0.23 0.47 0.08 0.14 0.40 0.08 -0.12 -0.14 0.41 0.30 -0.26 0.42 0.77 0.05 0.70 0.43 0.35 -0.57 -0.32 421 -0.18 -0.09 -1.07 -0.07 -0.24 -0.83 -1.78 0.31 -0.55 0.05 0.21 0.65 0.60 -0.17 0.55 0.25 -0.27 0.18 Hammett Substituent Constants Chemical Reviews, 1991, Vol. 91, No. 2 185 TABLE V (Continued) substituent 78. C d H 79. OCFzCFzH 80. SCFzCFZH 81. CHCN 82. CHZCFS 83. CHzCN 84. CH=CHN02-t 85. CHZCO; 86. CH=CH, 87. COCHS 88. SC=O(CHB) 89. OCOCHs 90.COOCH, 91. CHZCOOH 92. NHCOCHs 93. CHZCH, 94.OCHzCH3 95. CH,OCHs 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 110. 111. CF(CF3)z 112. SOZ(CFz)2CF, 113. SOzCF(CF3)z 114. S(CF2)zCFs 115. SCF(CF3)Z 116. COH(CF& 117. CH=CHCF,-t 118. CHeCHCFs-c 119. CH=CHS02CF3 120. CH=CHCOOH 121. cyclopropyl 122. CHoCH=CH, 123. CH;COCH3 124. COOEt 125. CHZCOOCHB 126. CHZCHZCHZ127. CON(CH& 128. CH(CH8)z 129. CHzCH2CHs 130. OCH(CH3)z 131. OCHZCH2CHs 132. N+(CHS)s 133. Si(CH,&OCH3 134. SiCHS(OCH3)2 135. Si(OCH3)3 136. P+(CH& 137. Si(CH3, 138. Sn'(CH& 139. C(CF3)s 140. (CFz)&FS 141. SO,C(CF& 142. SC(CF& 143. CH=C(CN), . .144. 2-fury1 145. 2-thienyl 146. 3-thienyl 147. 2-selenieyl 148. 2-tellurienyl 149. CH=CH-CH=CH150. CH-CHCOCH3 151. cyclobutyl 152. CH,COOEt 153. CH;CHzCH&H2154. C(CH& 0.18 ref 171 -4.67 271 0.16 243 -0.53 -0.16 271 248 UP+ -0.19 0.49 -0.01 -0.60 -0.30 -0.81 -0.05 265 194 243 194 194 256 243 0.02 0.17 -1.70 0.86 -0.46 245 245 194 275 72 -0.04 209 279 243 194 -0.41 226 -0.28 -0.29 -0.85 -0.83 0.41 -0.02 0.01 0.13 194 225 254 256 194 245 245 245 0.02 -0.12 194 216 0.82 -0.39 -0.43 -0.38 228 228 -0.14 0.39 -0.29 -0.16 -0.41 -0.26 194 261 127 194 226 194 241 228 R+ R -0.04 0.31 -0.17 0.26 ref 223 178 178 0.14 0.11 0.88 -0.16 109 263 193 88 0.15 0.17 0.36 200 195 0.75 0.05 -0.46 -0.19 -0.28 74 263 251 251 251 0.13 0.33 0.37 0.42 0.34 -0.29 0.84 0.46 0.31 0.00 0.26 0.13 -0.91 -0.30 -1.07 -0.18 -0.15 251 0.16 0.17 0.15 0.44 -0.03 0.40 0.05 -0.14 0.00 -1.85 0.42 -0.43 UP- -0.12 0.99 195 215 0.74 0.22 0.62 0.83 258 224 224 207 249 -0.41 -0.22 0.03 0.48 F 0.22 0.38 0.35 0.53 0.21 0.61 0.32 0.52 0.85 0.65 0.68 1.75 1.76 0.65 0.69 0.48 0.34 0.29 0.83 0.62 -0.09 -0.18 242 210 240 221 172 70 70 70 70 172 165 165 221 188 204 201 0.75 0.07 251 88 0.70 -0.16 -0.06 266 251 251 0.77 206 0.95 258 0.98 0.03 0.23 0.50 -0.01 -0.01 -0.06 0.52 0.51 0.09 -0.61 0.15 0.41 -0.77 -0.19 -0.54 -0.27 0.55 0.34 0.17 -0.15 -0.07 0.09 0.02 0.36 0.31 0.81 0.80 0.43 0.46 0.29 0.24 0.18 0.22 0.29 0.37 0.94 0.96 0.22 0.23 0.19 0.10 0.11 0.61 0.02 -0.06 -0.43 -0.16 -0.11 -0.12 0.34 0.14 0.41 0.04 0.01 0.34 0.26 0.86 0.09 0.05 0.10 0.36 0.01 0.34 0.29 0.44 0.84 0.47 0.57 0.10 0.13 0.08 0.10 0.10 0.19 0.31 -0.32 -0.30 -1.19 -1.09 -0.45 -0.11 -0.04 0.03 -0.20 -0.07 -0.09 0.59 0.01 -0.46 0.71 0.73 1.81 0.79 1.20 0.21 0.19 0.13 0.22 0.25 0.12 120 172 70 70 165 228 159 159 84 84 197 -0.07 204 0.02 -0.33 0.08 -0.31 -0.13 206 -0.40 -0.09 -0.01 -0.17 0.25 -0.49 -0.56 -0.46 0.42 0.29 0.97 0.32 0.63 0.11 0.06 0.05 0.12 0.15 -0.07 -0.09 -0.04 166 Chemlcal Revlews, 1991, Vol. 91, No. 2 Hansch et al. TABLE V (Continued) substituent 155. CH2CH(CH3)2 156. (CHg)SCH, 157. As(Et)i 158. N(E&159. CHZGe(CH3), 160. CHgN+(CH& 161. CH&h(CHg)S 162. CHfin(CH3, 163. C(CN)=C(CN)2 164. 2-pyridyl 165. 3-pyridyl 166. 4-pyridyl 167. cyclopentyl 168. CHzCH=C(CH,)z 169. CH&(CH& 170. (CH1)dCHa 171. CHzCH2N+(CH3)3 172. CHzCHfii(CH3), 173. Si(CH3)zSi(CH3)3 174. CeF6 175. C6H4-4-Br 176. CeH4-3-CI 177. CaH4-4-CI 178. CeH4-4-NO2 179. SCeH&NOz 180. SO&H4-3-NOz 181. SOzCeH4-4-NO2 182. 2-benzotriazolyl 183. CeH, 184. N=NCeH6 185. OC&6 186. SOCeH, 187. SO&& 188. SO@C& 189. SC& 190. SeCaHI 191. NHC& 192. NHSOzCeH6 193. SOzCeH4-4’-NH2 194. cyclohexyl 195. CHzCH2CH2Nt(CH,)3 196. UP+ ref -0.29 225 -2.07 -0.61 231 262 -0.62 -0.92 229 229 -0.30 -0.26 -0.31 -0.23 0.23 -0.18 -0.15 -0.19 0.04 -0.17 127 279 270 246 255 226 226 226 260 225 -0.01 -0.01 0.32 0.01 0.57 -0.22 88 132 0.38 0.00 1.70 0.55 0.58 0.81 -0.18 165 266 266 266 204 0.65 0.40 0.24 0.21 0.02 -0.19 0.09 -0.16 0.02 0.43 0.03 201 88 132 246 257 212 0.31 -0.55 -0.47 -1.40 -0.98 225 268 194 269 0.18 0.13 -0.29 -0.29 127 1.33 -0.14 0.09 213 204 88 0.17 0.04 237 249 194 225 194 0.56 1.04 1.06 0.57 0.02 0.45 -0.10 0.76 1.21 1.11 0.51 -0.07 -0.60 -0.28 -0.03 -1.00 -0.28 0.08 236 272 194 225 192 192 225 273 -1.00 -0.38 141 270 0.52 0.70 208 208 -0.19 -0.04 -0.15 -1.65 0.12 -0.21 264 276 249 232 237 264 Topsom (6. extended Table X). On the basis of the para substituents, NMe2, N= P(C&Ia)3,OCH3,OCHICH2, O c a 5 , F, c-C3H5,C1, Br, CH=CH2, CH3, c & j , CH20CH3, C(OCH&, CH2F, C6C16and H, eq 18 is obtained Q+values of Taft and ref 251 251 219 251 UP- 212 212 217 213 220 212 212 212 266 213 233 212 212 212 -0.18 -0.19 -0.50 F 0.01 -0.12 0.08 -0.43 0.68 0.65 0.83 234 234 74 0.22 0.54 199 199 -0.09 212 212 259 212 0.30 0.13 -0.12 1.00 0.70 -0.03 -0.14 0.29 0.68 0.26 0.73 -0.77 0.29 205 61 141 252 219 211 R+ R -0.28 -2.08 0.00 -0.11 -0.24 -0.44 -0.62 0.19 -0.22 -0.32 1.05 0.15 0.34 0.60 -0.20 -0.09 -0.01 0.19 -0.11 -0.22 0.32 0.20 0.19 0.18 0.26 0.36 -0.09 0.47 0.12 0.30 0.37 0.51 0.56 0.37 0.30 -0.18 -0.10 -0.05 0.38 -0.34 -0.37 -0.22 -0.53 -0.30 -0.49 -0.87 -0.85 0.05 0.20 0.10 -0.10 0.15 -0.47 0.25 0.65 -1.48 -0.12 0.03 0.24 -1.43 -1.22 -0.32 0.03 0.12 0.03 -0.32 -0.17 0.30 0.27 0.31 0.26 0.14 0.33 0.13 0.17 0.15 0.10 -0.01 0.06 0.61 -0.03 0.14 0.20 -0.33 0.38 0.38 0.52 0.08 0.21 -0.73 -0.45 -0.18 -1.10 -0.27 0.02 -0.26 0.15 0.03 -0.11 0.39 -0.09 -0.07 0.04 0.32 -0.91 -0.31 230 0.10 0.60 230 0.23 -0.01 0.11 0.20 -0.10 -0.04 0.01 -0.18 -0.15 -0.35 -1.55 0.16 -0.22 227 132 0.11 -0.17 0.20 0.06 -0.07 0.25 0.36 0.16 0.50 -0.67 0.33 R = 1.41 (f0.06)~R’ + 0.00 (fO.O1) (18) n = 17,r = 0.989,s = 0.04 In obtaining eq 18 we have excluded the -R substituents that are hydrogen-bond donors to water: OH, Chemical Revlews, 1991, Vol. 91, No. 2 187 H a m t l Substltuent Constants TABLE VI. Selected Substituents Having Extreme Values of F and R substituent F (F I&) 1.58 1.20 1.18 1.11 1.09 NgNOo 1.04 1.03 0.99 0.98 0.98 0.97 0.94 0.92 0.86 0.84 0.82 0.74 0.69 0.65 1.05 0.86 1.15 substituent BCL C(CN)==C(CN)2 CH4HSOzCF3 N+=N COCN SO&N 1.10 0.99 0.94 0.95 9.99 0.83 0.86 so$ SO2CHs COCHS PF2 CN 0.62 -0.42 -0.43 -0.35 -0.21 -0.20 -0.11 -0.10 -0.10 -0.12 -0.09 -0.07 0.01 0.02 OCHB OCH2CH4HZ NHOH 0.74 0.47 0.42 0.37 0.46 ' 0.25 SH, NHCOCH3, "H2 NHC& , and NH2. Further, the UR+ values for N=P(C&I&, OCH<H2, C(OCH&, and C6H6 have been taken as equal to the uR values obtained from F NMR substituent chemical shifts of meta- and para-substituted fluorobenzenes (Table IV). C. R+ and R' Values One of the shortcomingsof the Hammett constant up, which was recognized early,Mis that correlations obtained with it were poor when the substituents were conjugated with the reaction center. The first case where this problem arose was with phenols and anilinium ions where a lone pair of electrons on the 0-or NH2 group could be delocalized into substituents such as p-NO2 and p-CN. This problem was solved by defining a new constant u; obtained from the phenol or aniline data. Later H. C. BrownMand his colleagues developed up+ constants for substituents conjugated with a reaction center which could effectively delocalize a poeitive change. T h e OCH3group in the nitration of anisole is a typical example. The up+ constants can be used in eq 2 to define R and R+ which are regarded as resonance constants.' In Table V we have assembled all of the up- and up+ values which we could find and, using the appropriate F values we have by eq 12 calculated R+ and R. In a number of examples up+ and up- have been listed but no F values are yet available for calculating the R resonance constants. There are R 0.33 0.33 0.33 0.29 0.26 0.28 0.27 0.26 0.22 0.24 0.23 0.22 0.22 0.19 0.19 0.17 0.15 0.16 0.17 0.13 -1.24 -0.98 -0.79 -0.78 -0.74 -0.69 -0.67 -0.57 -0.56 -0.50 -0.45 -0.43 -0.40 -0.39 (F ?hR) 0.34 0.26 0.22 0.31 0.27 0.28 0.25 0.28 0.27 0.26 0.20 0.21 0.22 0.16 0.18 0.17 0.16 -0.56 -0.35 -0.48 -0.46 -0.43 -0.31 -0.33 0.29 113 R+ and 143 R- values in Table V. In their studies on factoring u into F and R, Swain and Lupton argued that a single R value should suffice for all kinds of resonance effects. However, we have never accepted this point of view: nor have prominent workers in this field. In Table V are considered the R+ and R- substituent parameters that are made available from the nP+ and up values, respectively, through eq 2. Compared to the corresponding values of R, (Table I) the R+ values for r-electron donor substituents are significantly enhanced. The enhancements involve changes in electron demand that are produced by solvated r-electron deficient reaction centers, as well as by solvation of certain substituents. Nonetheless, a fairly reasonable correlation is found between corresponding R+ and R values for the r-electron donor substituents. ?r-donors: R+ = 1.90 (10.26)R - 0.07 (*0.11) (19) n = 29, r = 0.945, s = 0.170 In contrast, R+ values for the r-electron acceptor substituents in these same reaction series remain nearly equal to their corresponding R values (eq 20). R+ = 1.16 (A0.45)R - 0.01 (*0.07) r-acceptors: (20) n = 16, r = 0.829, s = 0.060 188 Chemlcal Reviews, 1991, Vol. 91, No. 2 TABLE VII. Values of uI for Various Heterocycles Obtained from the DK.of guanidine^^^ substituent 01 1. pyrimidin-2-yl 0.23 2. phimidin-4-yl 0.26 3. 1,2,4-triazin-6-yl 0.37 4. 2-fury1 0.17 5. 3-fury1 0.10 6. 2-thienyl 0.19 0.10 7. 3-thienyl 0.17 8. pyrrol-2-yl 9. indol-3-yl 0.01 10. 1-phenylpyrazol-3-yl 0.21 11. oxazol-2-yl 0.38 12.imidazol-2-yl 0.27 13. 1-methylimidazol-2-y1 0.26 0.08 14. imidazol-4(5)-yl 15. 1,2,4-oxadiazol-5-yl 0.49 0.41 16. 1,2,4-thiadiazol-S-y1 17. 2H-1,2,3-triazol-2-y1 0.41 18.pyridin-2-yl 0.18 19. 6-methylpyridin-2-yl 0.17 0.17 20. quinolin-6-yl 21. pyrazin-2-yl 0.25 22. 6-methylpyrazin-2-yl 0.24 23. 5,6-dimethylpyrazin-2-yl 0.23 24. quinoxazin-2-yl 0.27 25.4,6-dimethylpyrimidin-2-~1 0.21 26. 4-phenylpyrimidin-2-yl 0.21 27. 4-methylquinazolin-2-yl 0.22 28. 2-methylpyrimidin-4-yl 0.25 29. 2-phenylpyrimidin-4-yl 0.28 30. pyridazin-3-yl 0.26 31. 3-methyl-l,2,4-triazin-6-yl 0.36 32. 3-phenyl-l,2,4-triazin-6-yl 0.40 33. 4-methyloxazol-2-yl 0.37 34.4,5-dimethyloxazol-2-yl 0.35 35. benzoxazol-2-yl 0.41 36. thiazol-2-yl 0.34 37. 4-methylthiazol-2-yl 0.32 38. 4,5-dimethylthiazol-2-yl 0.31 39. benzothiazol-2-yl 0.37 40. 4-methylimidazol-2-y1 0.26 41. 1-methylimidazol-2-y1 0.26 42. benzimidazol-2-yl 0.32 43. 1-phenylpyrazol-3-yl 0.21 44. 3-methyl-l,2,4-oxadiazol-5-yl 0.48 45.3-methyl-l,2,4-thiadiazol-5-yl 0.40 46.2H-1,2,3-triazol-2-y1 0.41 47. tetrazol-5-yl 0.49 48. 3,4-dihydro-4-oxopyrimidin-2-yl 0.41 49. 3,4-dihydro-4-oxoquinazolin-2-yl 0.40 50. 1,6-dihydro-6-oxopyridazin-3-yl 0.27 51. 1,6-dihydro-l-methyl-6-oxopyridazin-3-yl 0.28 52. 4,5-dihydro-4-oxothiazol-2-yl 0.46 (S02N(CH3)zand CHO with deviations of 0.19 and 0.29, respectively, have been excluded). The results of eqs 19 and 20 show that a different resonance effect reaction constant is required for ?r-donorsand ?r-acceptors. The poor precision of eq 20 reflects uncertainties in the reliability of R+ values for ?r-electron acceptors in reaction series with *-electron deficient centers. In gasphase proton-transfer equilibria that involve strongly *-electron deficient centers, resonance effects for x acceptors are found to be very small (uR+ for these substituents can reliably be taken as zero).30 Comparing corresponding R- and R values for T electron acceptor substituents in reactions with T electron-rich centers shows that there are generally signifcant enhancements only for the former. Equation 21 gives the relatively crude correlation of the R values with correspondingR values (Table I). A major cause Hansch et el. ?r-donors: R- = 1.93 (h0.59)R + 0.19 (fO.ll) (21) n = 34, r = 0.758, s = 0.173 for the poor precision of eq 21 is that new solvation sites are created for certain substituents (most important for oxy-anionic substituents) as the result of strong conjugation with electron-rich reaction centers (the SSAR effects).46 This solvation effect is known to be even more important in the solvent dimethyl sulfoxide than in aqueous solvents.4sdte With r-electron donor Substituents, no useful general correlation is found between R (Table V, reactions with ?r-electron-rich centers) and corresponding R values (Table I). For some, the expected ?r-electronsaturation effects are observed IR-I values are significantlysmaller than the corresponding IRI values (this is true for N(CH3)2, NH2, I, c-C3H6CH3, CzHs, and SC6Hs). For others, IR-I = IRI (as for OC2Hs, OCH3, OC6H5, OH SCH3,C1, Br, C6Hs,and i-C3H7). Apparent anomalies are that IR-I values are significantly larger than corresponding values for NHCOCH3,F, CH$i(CHd3, and CHzC6Hs. Again it appears that R values for ?r-donor substituents (just as for R+ values for ?r-acceptorsubstituents) are questionable. These anomalies are probably largely artifacts resulting from the restrictions of the Hammett single parameter treatment. D. Resonance Effect gRValues from NMR Chemical Shlfts of Para-Substltuted Fluorobenzenes Relative to Thelr Meta Isomers as Internal References These chemical shifts (in parts/million) were shown to be very sensitive measures of para-substituent ?relectron donor acceptor interactions.66Dilutions of 0.05 to a few tenths molar solutions of the two isomers in solvents, such as CC14, FCC13, cyclohexane, benzene, methanol, and others, have been obtained for an extensive number of substituents. Table IV presents a representative summary of F NMR shifts in the indicated solvent relative to internal fluorobenzene for both para (-JP;') and meta isomers. Positive values denote upfield shifts (increased shieldin ) relative to = -JE$, fluorobenzene. The difference, -Jgy + permits a cancellation of the substituent field/inductive giving essentially the ure resonance effect. A correlation of values of -JE.' with corresponding values of OR- from Taft and TopsomWfor the following 18 n-acceptor or inactive substituents, H, C(CF3)3,C(CN)3, C(CU3, Si(CH313, SFS, CF3, SCF3, SOZCH~, SO&jHs, COzCzHs, SiC13,COCH3, COCsHs, NOz, NO, COC1, and COCF, gives eq 22. (-Je') e OR- = -0.0280 (fo.OOl)(-~~~ ) + 0.01 (fo.01) (22) n = 18,r = 0.982,s = 0.02 For the following ?r-donor (-R) substituents eq 23 is obtained for H and N(CH3I2,NH2, OCH3,OH, OC6Hs, F, C1, Br, CH3,CH2NHz,CHz0CH3,CHzCF3,CHzC1, and CH2F. Chemical Reviews, 1991, Vol. 91, No. 2 189 Hammett Substituent Constants TABLE VIII. Values of ul for Substituents Not Listed in Table I Derived from Ionization Constants of Acetic Acidsn substituent substituent 01 Substituent Ul UI 105. O P [ N ( C ~ H S ) ~ I ~ 0.10 -0.01 53. CHZCOOC2Hb 0.15 -0.03 54. (CHo)*CONHo 0.04 106.OP(CBH.&H, 0.27 -0.03 0.14 107.OP(c&)C4Hg 0.27 55. -0.04 0.08 108. OP(C~HS)CH~CH(CH& 0.26 56. 0.14 109. OP(OC6Hs)2 0.36 0.14 57. 0.04 0.35 58. 110. SCONH2 0.33 0.05 59. 0.07 111. SCSCH, 0.45 0.05 0.05 60. 8.C H k ( C H 3 ) 2 112. SC(O)N(CH& 0.31 0.02 0.07 61. 9. CH=CHC2H, 113. SC(S)N(CHJZ 0.36 0.02 62. 10. CHoCH=CHCHe 0.03 114. SC(S)OC2H6 0.42 0.02 11. CH;CH2CH=CH2 0.02 63. 115. SC(S)SC,Hs 0.46 - 0.39 64. 12. C*C*CHS 0.08 116. SCSH, 0.25 0.05 65. 13. CH2CHZCH2CdH 0.11 117. SCH&H&H=CH2 0.26 0.00 66. 14. CH&H=C(CH& 0.09 118. SCHzCOOC2HK 0.28 0.07 67. 15. CH(CH&Hs 0.03 119. SC4Hg 0.26 0.05 68. 16. C(CH&C6Hs 0.04 120. SCH(CH,)C2Hs 0.25 0.01 69. -0.04 121. S(CH,),CH%H, 0.26 17. (CHI)SCBHS 0.14 70. 18. 1-naphthyl -0.07 122. SCH@H3)COOCiHS 0.26 0.13 71. 19. 2-naphthyl -0.12 123. SCsHll 0.26 0.00 72. 0.28 124. S-c-CnHii 0.32 20. (CHz)&Hs _73. 21. methyl-1-naphthyl 0.08 125. sc6H;~ 0.39 0.25 74. 0.26 22. CH%C12 0.18 0.23 126. SC(CHJ2COOC2HS 75. N(CH3)d(gSCH3 0.44 0.55 0.26 127. SCH,CaHK 23. C(Cl)=CH2 0.18 24. CH=CHCl-c 0.39 76. N(NO&H2CH2N(NOz)CH3 128. SCH;CH~C~HS 0.25 0.17 0.27 77. NHC(S)N(CH& 129. SC(C6Hs)s 25. CH=CHCl-t 0.12 0.23 0.14 78. NHP(O)(OCiHs), 0.27 130. SCnHL-4’-OMe 26. CH2CC13 131. SO;C3H, 0.28 0.19 27. CH(Br)CHB 79. NHCH2C,Hs- - 0.57 0.23 0.15 28. CH(C1)CHa 80.N(C&)COCHS 132. SOZCH(CH& 0.57 0.27 0.05 81. N(l-naphthyl)COCHn 0.50 133. SOCaHA-4’-OMe 29. CHiCHiBr 0.29 0.07 30. CH;CH;CI 82. N(2-n&hthyl)COCH, 0.61 0.15 0.05 31. CH&H=CC12 83. N(CH&H6 0.71 0.16 0.07 84. ONHi 0.01 32. CHzCH2CClS 0.30 0.02 85. O N 4 ( C H & 33. CHzCHzCH2Br 137. CH;CH2S03-0.03 0.44 0.02 138. CH=CHCH,COO0.02 34. CH2CHzCHzCl 86. OCON(CH8)z 0.47 0.15 35. CH2CHZCH2CFS 87. OCSN(CHJ2 139. 3,4-diphenylkrazolium-2-thiyl 0.57 0.28 0.20 36. CH2ONOg 88.OCH(CH,)CHZCH, 140. P+(CdHg)3 0.60 0.27 37. CHQCH-OH 89. 0-c-CKH. 0.06 141. P’(C6Hs)s 0.75 0.31 38. CH;CH;OCH, 0.00 90.O-c-C;Hil 142. 2,3,5,6-F,-C6H 0.33 39. CH&H(OH)CH(CH.& -0.02 91. OSO2C6H,-4’-CH3 0.58 143. SeC& 0.26 0.22 40. CH(OH)C6Hs 0.10 92. OCHZ-C-C~H~~ 144. Se-c-CsHll 0.40 0.28 0.23 41. CHzOS02C6H4-4’-Me 93. bicyclo[4.4.0]decycloxy 145. CH=CHCH2COOH 0.13 0.47 0.12 94. OC6H4-4’-NO2 42. CH2SH 146. C6H3-3,4-methylenedioxy 0.12 0.22 0.43 95. OCH~C~HS 147. 3-indolyl 0.01 43. CH2SeCN 0.39 0.12 96. OCaHr4’-OCHn 44. CHSSCHS 148. 2-pyridylmethyl 0.10 0.31 0.07 45. CH2NHCONHZ 149. 2-pyrrolyl 0.17 0.16 46. CH2N(NO2)CH3 0.30 150. 3-pyrazolylmethyl 0.09 47. CH2CH2CN 0.09 0.26 151. 4-thiazolylmethyl 0.11 0.30 48. CHzCOOCHs 0.19 100.0P(C~H&H3 152. 4(5)-imidazolyl 0.12 0.32 49. CHpCH2CONHz 0.05 101. OP(OCH&HI, 153. 2-furylmethyl 0.05 50. CH2CHzNHCONH2 0.03 ~O~.OP(C~HS)C~H~ 0.28 154. 2-thienylmethyl 0.06 51. CH2N(O)(CH& 0.23 0.30 103.OP(CsHs)OC2H5 155. 4(5)-imidazolylmethyl 0.08 52. CH2CH2C02CH3 0.07 0.27 104. OP(OC4HB)C,HB = -0.0359 (kO.O04)(-J:i ) + 0.02 (fo.02) (23) n = 15,r = 0.978, s = 0.94 The coefficient to -sg: in eq 23 is 1.29 times greater than that for eq 22. That is, a-donor substituents are less sensitive than the a-acceptor substituents. This result is rational since the F detector atom is a r-donor to the benzene ring, giving enhanced donor-acceptor resonance effects, but reduced donoldonor resonance effects. In Table IV are given the UR values calculated from 270 -Jg$ values by using eqs 22 and 23. In Table IX these UR values are compared with the corresponding R values for 147 substituents common to Tables I and IV. Excluding the 11strongest -R substituents which have enhanced R values (as discussed above) and the SOzC1, HgMe, CH=CHN02-t, P(CH& P(CH&+, CH=CHCN, C(CF3)3,S(CH&+, and CNBC13substituents for which the IR - cRI exceeds 0.20, eq 24 for R vs uR(F NMR) is obtained. R = 0.953 ( * 0 . 0 5 0 ) ~ ( FNMR) + 0.006 (f0.01) (24) n = 125, r = 0.865, s = 0.068 For the 11 strong a-donor substituents, F, OH, NH2, NHNHz, OCH, OCH=CH2, NHCOCH3, N(CH3)2, OCGH6,NHC6H6,N=P(C6H&, and H, eq 25 is obtained. R = 1.68 (f0.23)u~(FNMR) + 0.04 (*0.09) (25) n = 12, r = 0.920, s = 0.13 The generality of eqs 24 and 25, indicates that the F NMR shift method can be utilized not only for obtaining reasonably reliable UF (or F) and UR (or R) values but also for calculation of Hammett u, and up values. Hansch et al. 190 Chemical Revlews, 1991, Vol. 91, No. 2 TABLE IX. Substituent Parameters for the Gas-Phase Proton-Transfer Equilibria and Appropriate Condensed-Phase Processes and Media' substituent u* OF UR+ UR1. NEt, -0.56 0.10 -0.68 (-0.27) -0.44 2. NMe2 0.10 -0.64 -0.26 0.12 (-0.58) -0.27 3. NHMe -0.30 0.14 -0.52 -0.16 4. NH2 -0.28 -0.26 0.25 -0.46 -0.27 5. OPr 0.25 -0.45 -0.27 -0.23 6. OEt -0.42 -0.27 -0.17 0.25 7. OMe -0.28 -0.03 0.30 -0.38 0.38 -0.32 -0.38 0.24 -0.27 -0.74 -0.27 0.25 11. SMe -0.68 0.28 -0.25 -0.55 12. SH 0.34 -0.10 0.03 13. SCsHs -0.88 -0.25 0.44 -0.25 0.13 14. F 0.10 -0.22 0.22 -0.81 15. CeHb 0.45 -0.17 -0.12 -0.43 16. C1 -0.15 0.45 17. Br -0.59 -0.10 -0.16 -0.50 18. CH=CH, 0.06 (0.16) -0.08 19. Me 0.03 -0.35 0.00 -0.07 -0.49 20. Et 0.02 0.00 -0.07 -0.54 21. Pr 0.02 0.00 -0.07 0.01 -0.62 22. i-Pr 0.00 -0.15 -0.62 23. c-Pr 0.00 -0.07 -0.57 24. Bu 0.02 0.00 -0.07 -0.61 25. i-Bu 0.02 0.00 -0.07 -0.68 26. S-BU 0.01 0.00 -0.75 27. t-Bu -0.06 0.00 0.00 -0.07 -0.58 28. Pent 0.00 0.02 -0.67 29. neo-Pent 0.02 0.00 -0.07 30. t-Pent -0.82 0.00 -0.06 0.00 -0.76 31. C-CeH,, 0.00 -0.06 0.01 32. 1-adamantyl -0.95 0.00 0.00 -0.06 -0.59 -0.07 0.02 33. Oct 0.00 34. C W H -0.60 0.23 (0.00) (0.00) 0.12 -0.47 -0.07 0.02 35. (CH2)2F -0.55 0.12 -0.07 0.02 36. (CH2)2CF, -0.57 0.12 -0.07 0.02 37. (CH2)zCl -0.52 0.07 -0.07 0.02 38. (CH2)20Me -0.65 0.03 -0.07 0.02 39. (CH2)2C&s -0.70 0.05 -0.05 0.02 40. CH2CeH6 -0.14 -0.42 0.02 41. CH20Me -0.06 -0.57 0.02 -0.07 0.03 42. CH&H=CH, 0.12 -0.61 0.02 43. CH2CeCH -0.07 -0.45 0.02 44. CHgCHF2 -0.06 0.18 -0.54 0.02 -0.05 0.23 45. CHzCl 0.22 -0.30 0.02 46. CHsF -0.03 -0.65 0.02 47. CH2CC13 -0.05 0.23 -0.04 -0.46 0.02 48. CH2CF3 0.23 -0.27 0.04 49. CHFp 0.36 0.00 -0.57 0.01 0.44 0.00 50. CH(CF8)z -0.62 0.02 51. CHClp 0.36 0.00 -0.68 52. C(CF& 0.61 0.00 0.00 53. H 0.00 0.00 0.00 0.00 0.00 -0.72 -0.02 54. &Me3 0.06 0.44 55. CC13 -0.70 0.00 0.02 -0.48 0.59 56. SF6 0.00 0.01 0.44 -0.25 57. CF3 0.00 0.07 -0.65 0.08 0.00 0.40 58. SOCH, -0.83 0.09 59. soceH6 0.00 0.41 -0.64 0.10 0.00 0.48 60. SCF3 -0.46 0.10 0.60 61. CN (0.00) 62. S02Me -0.62 0.12 0.59 0.00 -0.59 0.19 0.00 63. CONMe2 64. SO2CeH6 -0.80 0.00 0.14 0.63 65. COIMe -0.49 0.00 0.16 0.24 -0.34 0.00 66. CO2H 0.16 0.28 -0.55 0.17 0.26 67. COMe (0.00) -0.75 0.00 68. COCsH6 0.18 0.28 69. NO2 0.00 -0.26 0.18 0.65 -0.46 70. CHO 0.19 0.31 (0.00) -0.58 0.84 0.00 0.21 71. SO2CFS 72. NO 0.41 -0.25 0.26 (0.00) 73. COCF, -0.51 0.50 0.00 0.26 74. COCN -0.60 0.66 0.00 0.28 OFrom reference 30 and Taft, R. W.,Koppel, I. A., Topsom, R. D., Anvia, F.J. Am. Chem. SOC.1990,112, 2047. TABLE X. Solvent Effects: u, and u Values in Gas Phase and Benaene and Aqueous Solutions from Values of log (K/K,) for Meta-and Para-Substituted Benzoic Acids benzene aqueous gas phase' solutionb solutionc substituent u,,, u. u,,, un a,,, u. 1. NH2 -0.10 -0.17 -0.16 -0.39 -0.16 -0.66 2. OCH3 0.03 -0.05 0.06 -0.16 0.12 -0.27 3. F 0.25 0.19 0.33 0.17 0.34 0.06 4. c1 0.31 0.29 0.38 0.27 0.37 0.23 5. CH3 -0.05 -0.07 -0.06 4.11 -0.07 -0.17 6. H 0.00 0.00 0.00 0.00 0.00 0.00 7. CF3 0.49 0.51 0.43 0.54 8. CO2CHa 0.43 0.37 0.45 9. CHSCO 0.37 0.38 0.50 10. HCO 0.47 0.35 0.42 11. CN 0.68 0.72 0.63 0.61 0.56 0.66 12. NO2 0.72 0.78 0.75 0.74 0.71 0.78 a u = log (K/KJ/ll.l; ref 30 and 51. bFor ion-pair formation with 1,3-diphenylguanidine,benzene (very high dilution) 25 OC, u = log (K/K,)/B.O& ref 52. CFromTable I. These calculated values (cumand cup) are given 'm Table IV and discussed in the next section. The nearly unit coefficient to uR(F NMR) in eq 24 compared to the significantly greater than unit coefficient for the strong -R substituents in eq 25 provides further confirmation of the enhanced resonance effects of substituents of this kind in the aqueous acidities of para-substituted benzoic acids. It should also be noted that the coefficient of uR(FNMR) in eq 25 (1.68f 0.23) is the same within the confidence limits of the estimates as that for uR+ values in eq 18 (1.41 f 0.06). The near equality of R and the corresponding uR(F NMR) values shown by eq 24 includes 24 substituents for which R and UR values are both zero within fO.06. These are the a-neutral substituents for which up z u, g UF g F to very good precision and are as follows: 5-chloro-tetrazolyl,C6FB,C6C15,CH=CHCF3 (cis and trans), NC-, N(COF)2,HgOCOCH,, P(CH3)2,SiHMe2, Si[N(CH3)2]3, SOCH,, CHX2,CH2X (where X = NMe2, OH, F, C1, Br, CF,, SCF,, SOCF,, S02R,and S02CF3), CH2X (where X = F, C1, Br, CN, and SCF,), and CX3 (where X = OCH,, CN, C1, Br, and SCF,). Many other structurally similar substituents that exert little or no resonance effects can be found in Tables I and IV for substituents that are not common to both of these tables. Among commonly used substituents, NO2is generally regarded to be strong, both in its field/inductive and a-electron acceptor resonance effects. The results of this survey confirm that NO2 is moderately strong in its field/inductive effects, but there are a number of substituents that are significantly stronger. The nitro substituent is actually only a moderately strong aelectron acceptor. A significant part of the acceptor affects of NO2 even in u - t e reactivities has been shown to be a solvation eff&t.%d In Table VI are listed selected sets of F,UF (F NMR) or R and UR (F NMR) values from Table I and IV for substituents that are more extreme in their effects than the NO2substituent. E. Calculated 0, and oPValues and Shortcomlngs From the 139 substituents common to Tables I and IV, eqs 26 and 27 have been derived. The calculated Hammett SubstRuent Constants values (cumand cup) given in Table IV are quite reasonable and suggest that this method can be used to obtain u values for substituents unstable in aqueous solution or other solutions. For individual substituents, values of corresponding u and cu may be compared by reference to both Tables I and IV. In the case of eq CC, = 0.971 (k0.05)~F(F NMR) + 0.473 (k0.07)U~(FNMR) - 0.036 (k0.02) (26) n = 135, r = 0.972, s = 0.064 cup = 0.985 (&0.03)~(FNMR) + 1.058 (k0.03)U~(F NMR) - 0.047 (kO.01) (27) n = 130, r = 0.984, s = 0.066 26, four data points (S02C1, CN*BC13,HgMe, and SnMez) were badly fit and hence not used in its derivation. Nine poorly fit data points were excluded in the derivation of eq 27 (NO, CN-BC13,OCOMe, S(Me),+, CH=CHCN, P(NMe2I2,NHC6H5). The standard deviations for eqs 26 and 27 are surprisingly good considering that the u, and up values have been obtained by a variety of means in a number of different laboratories. Clearly it is a satisfaction that u constants obtained by the various methods discussed above are in such good general agreement. In making the first large compilation of u constants, it was noted that there was a high degree of collinearity between u, and up:% By using the present much expanded set of substituents, the collinearity is even more evident as eq 28 shows. up = 1.19 ( k 0 . 0 4 ) ~ ~0.08 (k0.02) (28) n = 530, r = 0.941, s = 0.137, F1,5n = 4095 The resonance and inductive parameters F and R, however, are not highly collinear and can be used as independent variables. F = 0.41 (k0.10)R + 0.34 (k0.02) (29) n = 529, r = 0.336, s = 0.257, F,,,, = 66.9 The collinearity of eq 28 is a result of the large number of substituents which show very little resonance interaction. Of the 529 substituents in Table I, 287 have R values between +0.12 and -0.12. That is, they have very little resonance interaction so that ,a and up are almost identical. By comparing only the 38 substituents upon which eq 8 rests, eq 30 is obtained. up = 1.46 ( k 0 . 2 7 ) ~ ~0.20 (*0.08) (30) n = 38, r = 0.879, s = 0.176 Although the collinearity in eq 30 is much lower than that of eq 28, it is still high and brings out a shortcoming of the Hammett u constant: one should draw no firm conclusions about the relative importance of resonance or inductive effects from unfactored u constants. I I . Dkcussbn Table I, with over 500 Substituents having both u, and up values is impressive testimony to the enormous Chemical Revlews, 1991, Vol. 91, No. 2 191 effort which has contributed so much to our understanding of organic reaction mechanisms, both in simple physical organic chemical systems and in biological systems. In the past two decades there have been increasing efforts to factor u into its inductive and resonance components, a field which Charton has reviewedeB Of these factoring methods, the one proposed by Charton and that of Swain and Lupton offer large data sets for use in correlation analysis. Even though there has been criticism of the exactness of this method, we believe that for many purposes, and especially for biological structure-activity studies, these constants are valuable. This belief is reinforced by eqs 9-11 all of which show that the agreement between the Swain and Lupton's modified F and Chartons's uI is good despite the fact that they are derived from completely different systems. The relationship between modified R and UD shown by eqs 10 and 11 gives us confidence that R will also be valuable in correlation analysis. However, one must be aware that not all of the values in Table I are of equal quality. One should check the original sources when working with unusual substituents. One of the features of Table I is that it provides substituents with a wide range of electronic effects as illustrated in Table VI. The NO2 group is usually thought of as having nearly maximal electron-withdrawing power, but there are many substituents with higher F values in Table I. Furthermore, there are substituents with R values 3-6 times the value of 0.13 for NO2. Many of these substituents with extreme electronic effects have received almost no attention in QSAR studies, but we believe some of them would be well worth the trouble to synthesize and investigate. Yagupol'skii in particular has designed a most interesting variety of new substituents with unusual electronic properties.6s In Table VII, uI values for a wide variety of heterocyclic substituents obtained from guanidines by Taylor and Wait'" have been listed. In Table VIII, uI values for substituents not in Table I derived from substituted acetic acids by Charton are given. For many purposes, these could be used along with values from Tables I or IV. In recent years, considerable interest has developed in the ionization of compounds in the gas phase. Comparison of the gas-phase ionization constants with those obtained in solution clearly brings out the effect of the solvent. Figure 1 compares the substituent effects on the ionization of benzoic acids in water and in the gas phase. Although the substituent effect is very much larger in the gas phase, the correlation between the two types of ionization constants is surprisingly good, except for the conjugated electron-releasing Substituents, 4NH2, 4-OCH8, 4-CH3, and 4-F. Table X gives comparisons of u, and up values from benzoic acids obtained in the gas phase and in benzene solution with the corresponding aqueous solution values of Table I. A point which has generated heated discussions is the assumption of Swain and Lupton that R for N+(CHq)2 could be assumed to be zero. It is noteworthy that in Table I where the calculations do not include this assumption, we find R for this group to be -0.04 which for most purposes could be called zero. The value of uR(F NMR) of Table IV is -0.08 and Charton has reported a OD value of -0.11. Hansch et el. 182 Chemlcal Revlews, 1991, Vol. 91, No. 2 It has been advocated by a number of workers in the field that Swain’s original F and R parameters be dropped. We have delineated the principle basis for this criticism as being the inadequate treatment of r-electron-donor/-acceptorinteractions. With proper consideration of this matter we have demonstrated that at a level of precision useful for present purposes, field/inductive substituent parameters, F, (as herein modified) are in general not significantly different from corresponding q, uF, and cq, values. For QSAR requiring greater precision, additional modifications of field/inductive parameters due to substituent solvation and solvent effects, such as for the fall-off factor of dipolar effects, need to be considered. Corresponding resonance (r-electron delocalization) effect parameters, R, and corresponding uR and uD may also not differ significantly if they are based upon similar electron demands for the rate or equilibrium processes. However, care must be taken that proper recognition be accorded to the conditions of both r-electron-donor/ acceptor interactions and of substituent solvation effects. Many practical problems limit the use of carboxylic acid acidities in establishing new electronic parameters: difficult synthesis of exotic structures and low sensitivity of substituent effeds coupled with low solubility making pK, measurements difficult. We have included in this review an analysis of the newer methods which can supplant this “classic”procedure for determination of these constants. It is shown that there is a remarkable consistency at several levels of precision between the results obtained with these methods using proper aaaum tions. The interested reader is directed also to the C1 NMR substituent chemical shift methods given in references.67-6B P Acknowledgments. Supported by NSF Grants DMB-851818169 (C.H.) and GHE-8718790 (R.W.T.). I I I . RetercMces Denny, W. A.; Cain, B. F.; Atwell, G. J.; Hansch, C.; Panthananickal, A.; Leo, A. J. Med. Chem. 1982,25, 276. Hansch, C.; Steward, A. R.; Anderson, S. M.; Bentley, D. J. Med. Chem. 1968,11, 1. Kamlet, M. J.; Doherty, R. M.; Abraham, M. H.; Taft, R. W. uant. Struct. Act. Relat. 1988, 7, 71. ansch, C.; Vittoria, A.; Silipo, C.; Jow, P. Y. C. J. Med. Chem. 1975,18, 546. Kakkis, E.; Palmire, V. C., Jr.; Stron , C. D.; Bertach, W.; Hansch, C.; Schirmer, U. J. Agric. Foofi Chem. 1984,32,133. Hansch, C.; Bjarkroth, J. P.; Leo, A. J. Pharm. Sci. 1987, 76, 8 662. (20) Cimpadre, R. L. L.; Debnath, A. K.; Shusterman, A.; Hansch, C. Enuiron. Mol. Mutagen. 1990, 15, 44. (21) Hansch, C.; Fujita, T. J. Am. Chem. SOC.1964, 86, 1616. (22) Hansch, C. Drug Metab. Rev. 1972, I, 1. (23) Sinclair, J.; Cornell, N. W.; Zaitlin, L.; Hansch, C. Biochem. Pharmacol. 1986,35, 707. (24) Structure-Actcuzty Correlation as a Predictive Tool in Tox- icology; Goldberg, L., Ed.; Hemisphere Publishing Corp.: Washington, DC, 1983. (25) Hammers, W. E.; M e w , G. J.; De Ligny, C. L. J. Chromatog. 1982. 247. 1. (26) K d e C M.-J.; Abraham, M. H.; Carr, P. W.; Doherty, R. M.; Taft, R. W. J. Chem. Soc., Perkin Trans. 2 1988, 2087. (27) Ingold, C. K. Structure and Mechanism in Organic Chem- istry, 2nd ed.: Cornel1 University Press: Ithica. New York. ~ 1969; uantitative Structure-Activity Relationshi s of Drugs; ‘%dim. J. - - G.; Ed., Academic Press, New York: 1983. r----7 (7) C6m are with Abraham et al.: Abraham, M. H.; Grellier, P. (8) (9) (10) (11) (12) (13) L.; €&or, D. V.; Taft, R. W.; Morris, J. J.; Taylor, P. J.; Laurence, C.; Berthelot, M.; Doherty, R. M.; Kamlet, M. J.; Abboud, J. L. M.; Sraidi, K.; Guiheneuf, G. J. Am. Chem. SOC.1988,110,8534. Helmer, F.; Kiehe, K.; Hansch, C. Biochemistry 1988,7,2858. Hansch, C.; Klein, T. E. Acc. Chem. Res. 1986, 19, 392. Selaseie, C. D.; Strong, C. D.; Hansch, C.; Delcamp, T. J.; Freisheim, J. H.; Khwaja, T.A. Cancer Res. 1986, 46, 744. Hansch. C.; Kim, D.: Leo,A.: Novellino, E.; SiliDo. C.:’ Vittoria, A; CRC CAtical Reo. Toxicol. 1989, 19, 185.. Abraham, M.H.; Kamlet, M. J.; Taft, R. W.; Weathersby, P. K. J. Am. Chem. SOC. 1988,106,6797. Kim, K.H.; Hansch, C.; Fukun a, J. Y.; Steller, E. E.;Jow, P. Y.C.; Craig, P. N.; Page, J. Y M e d . Chem. 1979,22,366. ~~~~ . 6. 1. (31) Roberta,J. D.; Moreland, W. T., Jr. J. Am. Chem. SOC.1953, 75, 2167. (32) (a) Taft, R. W. In Steric E/ ects in Organic Chemistry; Newman, M. S., Ed.; Wile an Sons: New York, 1956; p 595 (Table V). (b) Taft, R. Lewis, I. C. J. Am. Chem. SOC. 1958,80,2436. (33) Swain, C. G.; Lupton, E. C., Jr. J. Am. Chem. SOC.1968,90, 4328. (34) Hansch, C.; Leo, A.; Unger, S. H.; Kim, K. H.; Nikaitani, D.; Lien, E. J. J. Med. Chem. 1973,16, 1207. (35) Holtz, H. D.; Stock, L. M. J. Am. Chem. SOC. 1964,86,5188. (36) Baker, F. W.; Parish, R. C.; Stock, L. M. J. Am. Chem. SOC. 1967,89, 5677. eter, M. G. Helu. Chim. Acta 1976,59,264. (37) Grob, C. A.; Sc (38) Hoefna el, A. J.; oefnagel, M. A.; Wepster, B. M. J. Am. Chem. 8oc. 1978,43,4720. (39) Reynolds, W. F.; Topsom, R. D. J. Org. Chem. 1984,49,1989. (40) Hoefnagel, A. J.; Oosterbeek, W.; Wepster, B. M. J. Org. Chem. 1984,49, 1993. (41) Charton, M. J. Or Chem. 1984,49,1997. (42) Taft, R. W. Prog. Shys. Org.Chem. 1983,14,247. (43) Taft, R. W.; Price, E.; Fox, I. R.; Lewis, I. C.; Andersen, K. K.; Davis, G. T. J. Am. Chem. SOC.1963,85,709. (44) Laurence, C.; Berthelot, M.; Lucon, M.; Helbert, M.; Morris, D. G.; Gal, J.-F. J. Chem. Soc., Perkin Trans 2, 1984, 705. (45) Taylor, P. J.; Wait, A. R. J. Chem. SOC.,Perkin Trans. 2 1986,1765. (46) For evidence and discussions of the effects of substituent solvation on various u values the reader is referred to refs 43, 44, and the following: (a) ‘faage era, M.; Summerhays, K. $.; d 5 D.; Hehre, W. J.; Topsom, R. D.; F r m , A.; Radom, L.; Taft, R. W. J. Org. Chem. 1981,46,891. (b) Fujio, M.; McIver, R. T., Jr.; Taft, R. W. J. Am. Chem. SOC.1981,103,4017. (c) Taft, R. W.; Abboud, J.-L. M.; Kamlet, M. J.; Abraham, M. H. J. S o h . Chem. 1985, 14, 160. (d) Mishima, M.; McIver, R. T., Jr.; Taft, R.W.; Bordwell, F. G.; Olmstead, W. N. J. Am. Chem. SOC.1984,106,2717. (e) Taft, R. W.; Bordwell, F. G. Acc. Chem. Res. 1988,21,463. (fj Jinfeng, C.; Topsom, R. D. J. Mol. Struct. (Theochem.) 1989,188,45; 1990,204, 408. 1978. . (28) ReynoPds, W. F. Pro Ph s Or Chem. 1983,14, 165. (29) Charton, M. Prog. P i s. &g. Ctem. 1981,13, 119. (30) Taft, R. W.; Topsom, D. Prog. Phys. Org. Chem. 1987,16, (1) LeMer, J. E.; Grunwald, E. Rates and Equilibria of Organic Reactions; John Wiley: New York, 1963. (2) Chapman, N. B.; Shorter, J. Correlation Analysis in Chemistry; Plenum Press: New York, 1978. (3) Unger,S.H.; Hamch C. Phys. Org. Chem. 1976,12,91. (4) H-+, C.; eo, A. Aubstttuents Constants for Correlation Analysur tn Chemurtry and Biology; Wiley-Interscience: New York, 1979. (5) Martin, Y. C. Quantitative Drug Design; Dekker: New York, 78. OF” aoa. (47) Swain, C. G.; Unger, S. H.; Rosenquist, N. R.; Swain, M. S. J. Am. Chem. SOC.1983,105,492. (48) Taft, R. W.; Abboud, J. L. M.; Anvia, F.; Berthelot, M.; Fujio, M.; Gal, J.-F.; Headley, A. D.; Henderson, W. G.; Kop el I.; €$an, J. H.; Mishima, M.; Taagepera, M.; Ueji, S. Am. hem. SOC.1988, 110, 1797. (49) (a) Yukawa, Y.; Tsuno, Y . Bull. Chem. SOC.J n. 1959, 32, 971. (b) Yukawa, Y.; Tsuno, Y.; Sawada, M. Bulf Chem. SOC. f: Jan. - r .. 1900. - _ _ 39.2274. __, _, -. (50) (a) Ravenscroft, M. D.; Zollin er, H. Helu. Chim. Acta 1988, 71,507. (b) Ravenscroft, M. Skrabal, P.; Weiss, B.; Zollin er, H. Helv. Chim. Acta 1988, 71, 515. (c) Zollinger, H. J. rg. Chem. 1990,55, 3846. (51) McMahon, T. B.; Kebarle, P. J. Am. Chem. SOC.1977, 99, b.; 8 2999 (52) by& M. M.; Hetzer, H. B. J . Res. Natl. Bur. Standards 1958, 60, 569. (53) Hammett, L. P. J. Am. Chem. SOC.1937,59, 96. Hammett Substituent Constants Chemkal Reviews, 1991, Vd. 91, Brown, H. C.; Okamoto, Y. J. Am. Chem. Soc. 1958 80,4979. Taft, R. W.; Price, E.; Fox, I. R.;Lewis, I. C.; Anderaen, K. K.; Davis, G. T. J. Am. Chem. SOC.1963,85,3146. Yagupol'skii, L. M. J. Fluorine Chem. 1987,36, 1. Bromilow, J.; Brownlee, R. T. C.; Lopez, V. 0.;Taft, R.W. J. Org. Chem. 1979,44,4766. (58) Adcock, W.; Khor, T.4. J. Am. Chem. SOC.1978,100,7799. (59) Reynolds, W. F.; Gomes, A.; Maron, A.; MacIntyre, D. W.; Tanin, A,; Hamer, G. K.; Peat, I. R. Can. J. Chem. 1983,61, 2376. Stock, L. M.; Brown, H. C. Adu. Phys. Org. Chem. 1963, 1, 35. Mamaev, V. P.; Shkurko, 0. P.; Baram, S. G. Adu. Heteroc cl. 1987, 42, 1. Jondratenko, N. V.; Po v, V. I.; Ftadchenko, 0. A; Ignat'ev, N. V.; Y Pl'skii, L. Zh. Org. Khim. l986,22,1542EE. Yagu I?%, L. M.; Po v, V. I.; Pavlenko, N. V.; Maletina, I. I.; Eronova, A. A.; 8&ilova, R.Y.; Orda, V. V. Zh. Org. Khim. 1986,22, 1947EE. Yagu ol'skii, L. M.; Pavlenko, N. V.; I at'ev, N. V.; MatyuscEecheva, G. I.; Semenii, V. Y. Zh. O r h . Khim. 1984,54, e 307P.P. _ 9 I I-. Gavrilov, V. I.; Khuenutdiiova, F. M. Zh. Obsh. Khim. 1987, 57.295EE. ,Gavrilov, V. I.; Khusnutdiiova, F. M. Zh. Obsh. Khim. 1982, 52, 528EE. Zakharkin, L. I.; Kalinin, V. N.; Snyakin, A. P. Zh. Obsh. Khim. l970,40,2411EE. Trub, E. P.; Boitsov, E. N.; Tsigin, B. M. Zh. Org. Khim. 1983.19.78EE. Tsvetkov, E. N.; Malakhova, I. G.; Kabachnik, M. I. Zh. Obsh. Khim. l981,51,598EE. Kondratenko, N. V.; Kolomeitsev, A. A,; Popov, V. I., 11'chenko, A. Y.; Korzhenevskaya, N. G.;.Pir 0, M. D.; Titov, E. V.; Yagupol'skii, L. M. Zh. Obsh. Khim. f983,53,2254EE. (71) Shkurko, 0. P.; Baram, S. G.; Mamaev, V. P. Khim. Geterotsikl. Soedin. 1983. 66. _._ _. _ (72) Kazits a, L. A.; Ustynyuk, Y. A.; Gurman, V. S.; Pergushov, V. I.; G z d n e v a , V. N. Dokl. Akad. Nauk SSSR 1977,233, ~~~ nr omm ILOYY. (73) . . Claramunt. R. M.:. Elguero. " . J. Coll. Czech. Chem. Commun. 1981,46,5&. (74) Perrin, D. D.; Dempse B.; Serjeant, E. P. pKa Prediction for Organic Acids and h s e s , Chapman Hall: London, 1981; Appendix. (75) Zuman, P. Coll. Czech. Chem. Commun. 1962,27,2035. (76) Kondratenko, N. V.; Popov, V. I.; Kolomeitsev,A. A.; Saenko, E. P.; Prezhdo, V. V.; Lutakii, A. E.; Yagupol'skii, L. M. Zh. Or . Khim. 1980,16, 1049EE. (77) Ge fond, A. S.; Galyametdinov, Y. G.; Ermilova, I. P.; Chernakal'skii, B. D. Zh. Obsh. Khim. l980,50,447EE. (78) Tsvetkov, E. N.; Malakhova, I. G.; Kabachnik, M. I. Zh. Obsh. Khim. 1978,48, 1125EE. (79) Tsvetkov, E. N.; Malakhova, I. G.; Kabachnik, M. I. Zh. Obsh..Khim. l978,48,1125EE. (80) Kalinin, V. N.; Kobel'kova, N. I.; Zakharkin, L. I. J. Organomet. Chem. 1979,172, 391. (81) Palm, V. A. Tartu State University, USSR,Private Communication. (82) Herkatroeter, W. G. J. Am. Chem. SOC.1973,95,8686. (83) Kukar, V. P.; Zhmurova, I. N.; Yurchenko, R. I. Zh. Obsh. Khim. 1972,42, 268EE. (84) Frin elli, F.; Serena, B.; Taticchi, A. J. Chem. SOC.,Perk. 2 1- -9-g-, . 971. - .-. Charton, M. Pro , Ph s. Org. Chem. 1981,13,119. Charton, M. J. drg. &em. 1965, 30, 552. Jaff6, H. H. Chem. Rev. 1953,53,191. Hoefnagel, A. J.; Hoefnagel, M. A.; Wepster, B. M. J. Org. Chem. 1978,43, 4720. Kurono, Y.; Ikeda, K.; Uekama, K. Chem. Phurm. Bull. 1975, 23, 340. Fischer, F. C.; Havinga, E. Red. Trau. Chim. Pa$-Bas 1974, 93, 21. Schiemenz, G. P. Angew. Chem., Znt. Ed. Engl. 1968,7,544; 545. (92) Ogata, Y: Haba, M. J. Or Chem. 1973,38,2779. Jow, P. Y. C.; Leo, A.; Steller, (93) Hansch, 6.; Rockwell, S. E. E. J. Med. Chem. 1977,20; 304. Fiaera, L.; Lesko, J.; Kovac, J.; Hrabovsky, J.; Sura, J. Coll. Czech. Chem. Commun. 1977,42,105. Fisera, L.; Sura, J.; Kovac, J.; Lucky, M. Coll. Czech. Chem. Commun. 1974,39, 1711. Kashik, T. V.; W o l o v a , G. V.; Ste anova, 2. V.; Keiko, V. V. Zh. Org. Khim. 1977,13, 1104Elf Kargin, Y. M.; Kondranina, V. 2.; Kataeva, L. M.; Sorokina, L. A.; Yanilkin, V. V.; Khysaenov, N. M. Zh. Obsh. Khim. 1977,47,61lEE. (98) Benkeser, R.A.; DeBoer, C. E.; Robineon, R. E.; Sauve, D. M. J. Am. Chem. SOC.1956, 78,682. (99) Voronkov, M. G.; Kashik, T. V.; Ponomareva, S. M.; Abra- f %:; No. 2 19s mova, N. D. Dokl. Akad. Nauk SSSR 1976,222,311EE. Little, W. F.; Berry, R. A.; Kannan, P. J. Am. Chem. SOC. 1962,84,2525. Bitterwolf, T. E.; Lin A. C. J. Organomet. 1977,141,355. Zuman, P. Coll. Czecff:Chem. Commun. 1962,27,2035. Yagu l'skii, L. M.; Gandel'sman, L. 2.; Nazaretyan, V. P. Zh. Khim. 1974, IO, 901EE. Van Meum, F.; Baas, J. M.; Bekkum, H. J. Organomet. 1977, 129, 347. Kargin, Y. M: Podkovyrina, T. A.; Chmutova, G. A.; Mannafov, T. G. z'h. Obsh. Khim. 1976,46, 2357EE. Meyer, L. H.; Gutowsky, H.S. J. Ph 8. Chem. 1963,57,481. Belyaev, E. Y.; Tovbis, M. S.; Subocf~,G. A. Zh. Org. Khim. 1976,12, 1790EE. Romanenko, V. D.; Kalibabchuk, N. N.; Rositekii, A. A.; Zalesskaya, V. G.; Didkovskii, V. E.; Ikaanova, S. V. Khim. Geterotiskl. Soedin. 1976 906. She pard, W. A.; Sharts, d. Organic Fluorine Chemistry; W. A. Ifenjamin: New York, 1969; 348. Yagupol'skii, L. M.; Il'chenko, Y.; Kondratenko, N. V. Rues. Chem. Rev. 1974,43,32EE. Zakharkin, L. I.; Kalinin, V. N.; Snyakin, A. P. Zh. Obsh. Khim. 1971,41, 1309EE. Thomas, A.; Tomasik, P. Bull. Acad. Pol. Sci. 1975,23,65. Price, C. C.; Belanger, W. J. J. Am. Chem. SOC.1954, 76, 2682. Fringuelli, F.; Marino, G.; Taticchi, A. J. Chem. SOC.1971 B, 2304. Tolmachev, A. I.; Bela a, 2. N.; S ova, G. P.; Shulezhko, L. M.; Sheinker, Y. N. Zx. Obsh. K g m . 1973, 43, 633EE. Rudaya, L. I.; Kvitko, I. Y.; Porai-Koshita, B. A. Zh. Org. Khim. 1972,8, 11EE. Zakharkin, L. I.; Kalinin, V. N. Zh. Obsh. Khim. 1973, 43, 853EE. Yagupol'skii, L. M.; Nazaretyan, V. P. Zh. Org. Khim. 1971, 7, 1016EE. Bowden, K: Shaw, M. J. J. Chem. SOC.1971 B,161. Yagu l'skii, L. M.; Kondratenko, N. V.; Del agina, N. I.; D a t E , B. L.; Knunyants, I. L. Zh. Org. K l i m . 1973, 9, 6&EE Nyquist, H. L.; Wolfe, B. J. Org. Chem. 1974,39, 2591. Prikoszovich, W.; Shindlbauer, H. Chem. Ber. 1969, 102, 2922. Shindlbauer, H.; Prikoszovich, W. Chem. Ber. 1969, 102, $. x. 2914. -ova, 1. G.; Tsvetkov, E. N.; Lobanov, D. I.; Kabachnik, M. I. Zh. Obsh. Khim. 1971,41, 2837EE. Tavetkov, E. N.; Lobanov, D. I.; Kamai, G. K.; Chadaeva, N. A.; Kabachnik, M. I. Zh. Obsh. Khim. 1969, 39, 2608EE. Brock, F. H. J. Org. Chem. 1959,24, 1802. Hahn, R. C.; Corbin, T. F.; Shechter, H. J. Am. Chem. SOC. 1968,90,3404. Exner, 0.;Bocek, K. Coll. Czech. Chem. Commun. 1973,38, Fin &khi, P. La Ricerca Sci. 1958,28, 2526. Smith, P. A. S.; Hall, J. H.; Kan, R. 0. J. Am. Chem. SOC. 1962., 84. --.485. --Benkeser, R. A.; Gosnell, R. B. J. Org. Chem. 1957,22,327. Chem shev, E. A.; Tolstikova, N. G. Zzu. Akad. Nauk 1961, 419EJ Zuman, P. Substituent Effect in Organic Polarography; Plenum P r m : New York, 1967; p 76. Bray P. J.; Barnes, R. G. J. Chem. Phys. 1957,27,551. Lindber B. J. Acta Chem. Scand. 1970,24, 2852. Weiss, Engewald, W.; Muller, H. Tetrahedron 1966,22, 825. Ryan, J. J.; Humffray, A. A. J. Chem. SOC.1966 B , 842. Bystrov, V. F.; Belaya, 2. N.; Gruz, B. E.; S ova, G. P.; Tolmachey, A. I.; Shulezhko, L. M.; Yagupol'sG, L. M. Zh. Obsh. Khim. 1968.38.963EE. Kondratenko, N. V.; S' ov&G. P.; Popov, V. I.; Sheinker, Y. N.; Yagu ol'skii, L. J Z h . Obsh. Khim. 1971,41, 2075EE. Sedova, I!. N.; Gandel'sman, L. 2.; Alekseeva, L. A.; Yagupol'skii, L. M. Zh. Obsh. Khim. 1969.39, 2011EE. Nesme anov, A. N.; Perevalova, E. G;; Gubin, S. P.; Grandberg, $. I.; Kozlovsky, A. G. Tetrahedron Lett. 1966, 22, 2381. Kalfue, K.; Vecera, M.; Exner, 0. Coll. Czech. Chem. Comnun. 1970,35,1195. Freedman, L. D.; Jaff6, H.H.J. Am. Chem. SOC.1955, 77, 8: 920. Tsvetkov, E. N.; Lobanov, D. I.; Makhamatkhanov, M. M.; Kabachnik, M. I. Tetrahedron 1969,25, 5623. Fawcett, F. S.; Sheppard, W . A. J. Am. Chem. SOC.1965,87, 4341. Van Poucke. R.:Pollet.. R.: . De Cat. A. Bull. SOC.Chim. Bel. 1966, 75,573. ' Zakharkin, L. I.; Kalinin, V. N.; Shepilov, I. P. Dokl. Akad. Nauk 1967,174,484EE. Kucsman, A.; Ruff, F.; Solyom, S.; Szirtes, T. Acta Chim. Hensch et ai. 184 Chemical Reviews, 1991, Vd. 91, No. 2 Acad. Sci. Hung. 1968,57,205. Alper, H.; Keung, E. C. H.; Partis, R. A. J. Org. Chem. 1971, 36,1352. Johnson, M. D.; Winterton, N. J. Chem. SOC.1970A, 507. Sheppard, W. A. J. Am. Chem. SOC.1970,92,6419. Tsvetkov, E. N.; Lobanov, D. I.; Izoeenkova, L. A.; Kabachnik, M. I. Zh. Obsh. Khim. I969,39,2126EE. l'skii L M * Y pol'skaya, L. N. Dokl. Akad. Nauk i%"l960, Nishiguchi, T.; Iwakura 'Y. J. Org. Chem. 1970, 35, 1591. Ellam, G. B.; Johnson 6, D. J. Or , Chem. 1971,36,2284. Lakomy, J. boll. Czech. 8hem. Commun. 1970,35, h e r , 0.; iG, 1"l LIJIL. Hall, H. K., Jr. J. Am. Chem. SOC.1966, 78,2570. Kauer, J. C.; Sheppard W. A. J. Or Chem. 1967,32,3580. Frineuelli. F.: Manno., 6.: . Taticchi. J. Chem. SOC.1970 B, 1595: Plzak, Z.; Mares, F.; Hetfle' ,J.; Schraml, J.; Pa uskova, Z.; Bazant, V.; Rochow, E. G.; $hvalmky, V. Coll. g e c h . Chem. Commun. 1971,36, 3115. Berliner, E.; Liu, L. H. J. Am. Chem. SOC.1963, 75, 2417. Orda, V. V.; Yagu l'skii, L.M.; Bystrov, V. F.; Stepanyants, A. U. Zh. Obsh. &m. l966,35,1631EE. Bystrov, V. F.; Yagu l'skii, L. M: Stepanyants, A. U.; Fialkov, Y. A. Dokl. A c d . Nauk SSdR. 1963,153,1019EE. Hogben, M. G.; Graham, W. A. G. J. Am. Chem. SOC.1969, 91, 283. Sheppard, W. A. Trans. N.Y. Acad. Sci. 1967,29,700. Kanmarek, J.; Smagowaki, H.; Gnonka, Z. J. Chem. SOC., Perkin Trans. 2 1979,1670. Boloshchuk V. G.; Y pol'skii, L. M.; S ova, G. P.; Bystrov, V. F. .&h. Obsh.%m. 1967, 37, 105EE. Tsvetkov, E. N.; Lobanov, D. 1.; Kabachnik, M. I. Teor. Eksp. Khim. 1966,2,458. Tsvetkov, E. N.; Lobanov, D. I.; Kabachnik, M. 1. Teor. Eksp. Khim. 1965, 1, 729. Exner,0. Coll. Czech. Chem. Commun. 1966,31,65. Landgrebe, J. A.; Rynbrandt, R. H. J. Org. Chem. 1966,31, 2585. Sheppard W. A. J. Am. Chem. SOC.1965,87,2410. J. Org. Chem. 1966,30,557. Charton, Charton, M. J. Or . Chem. 1966,30,552. Little, W. F.; Reilfey, C. N.; Johnson, J. D.; Lynn, K. N.; Sanders, A. P. J. Am. Chem. SOC.1964,86,1376 and 1382. Charton, M. J. Chem. SOC.1964,85,1205. Sme'kal, J.; Jonas, J.; Farkas, J. Coll. Czech. Chem. C o n " . 196a 29,2950 Sheppard, W.'A. J. Am. Chem. SOC.1963,85,1314. Sheppard, W. A. J. Am. Chem. SOC.1962,84,3072. White, W. N.; Schlitt, R.; Gwynn, D. J. Org. Chem. 1961,26, , f I k. 3613. Hke,J. J. Am. Chem. SOC.1960,82,4877. Lewis, E. S.; Johnson, M. D. J. Am. Chem. SOC.1969,81, 2070. McDaniel, D. H.; Brown, H. C. J. Org. Chem. 1968,23,420. Stewart, R.; Walker, L. G. Can. J. Chem. 1967, 35, 1561. Bordwell, F. G.; Boutan, P. J. J. Am. Chem. SOC.1966, 78, 854. Kochi, J. K.; Hammond, G. S. J. Am. Chem. SOC.1963, 75, 3452. Charton, M. J. Org. Chem. 1963,28,3121. Hammett. L. P. Phvsical Organic Chemistry: - . McGraw-Hill: New York, 1940; p-188. Smith, J. H.; Men er, F. M. J. Org. Chem. 1969,34, 77. Hine, J.; Bailey, C., Jr. J. Org. Chem. 1961, 26, 2098. Jaff6, H. H. Chem. Reo. 1963,53, 191. Kochi, J. K.: Hammond, G. S. J. Am. Chem. SOC.1953, 75, 3452. Stewart, R.; Walker, L. G. Can. J. Chem. 1967, 35, 1561. Brown, H. C.; Okamoto,Y. J. Am. Chem. Soc. 1968,80,4979. Bordwell, F. G.; Bouton, P. J. J. Am. Chem. SOC.1966, 78, d' . A.M. ' &kier. H.:Wittwer. C . Helu. Chim. Acta 1956. 39. 347. :. A. J. Chem. SOC.1 bble, M. T.; Raynham, J. G. J. Am. Chem. SOC.1969, ! H. H.; Freedman, L. D.: Doak, G. 0. J. Am. Chem. SOC. ig: 76, 2209. Kaplan, L. A.; Pickard, H. B. J. Org. Chem. 1970,35,2044. Shabarov,Y. 5.;Surikova, T. P.; Levma, R. Y., Zh. Org. Khrm. 1968,4, 1131EE. Kucaman! A.; Ruff, F.; Solyom, S.; Szirtes, T. Acta Chim. Acad. Scr. Hung. 1968,57,205. Cohen. L. A.: Jones. W. M. J. Am. Chem. Soc'. 1963.85.3397: 3402. (207) Wehry, E. L. J. Am. Chem. SOC.1967,89,41. (208) Retcofsky, H. L.; Griffin, C. E. Tetrahedron Lett. 1966,18, 1975. (209) Jones, L. B.; Jones V. K. Tetrahedron Lett. 1966,14,1493. (210) Hawthome, M. F.; berry, T. E.; Wegner, P. A. J. Am. Chem. SOC. 1966,87,4746. (211) Monagle J. J Me enhauser, J. V.; Jones, D. A., Jr. J. Org. Chem. l h 7 , 3 2 , 2 y 7 (212) Litvinenko, L. M. Zz;. Acad. Nauk SSSR 1962,1653EE. (213) Szmant, H. H.; Suld,G. J. Am. Chem. SOC.1966, 78,3400. (214) Bordwell, F. G.; Cooper, G. D. J. Am. Chem. SOC.1962, 74, 1058. (215) Eliel, E. L.; Nelson, K. W. J. Or Chem. 1955, 20, 1657. (216) Buchman. 0.: Groeiean. M.: Nasietki. J. Helu. Chim. Acta 1964,47, 2039. ' (217) Meyers, C. Y.; Cremonini, B.; Maioli, L. J. Am. Chem. SOC. 1964,86, 2944. (218) Hoefnagel, A. J.; Wepeter, B. M. J. Am. Chem. SOC.1973,95, 5357. (219) Giyfond, A. S.; Gavrilov, V. I.; Mironova, V. G.; Chernokal'skii, B. D. Zh. Obsh. Khim. 1972,42, 2454EE. (220) Cepciansky,I.; Majer, J. Coll. Chem. Czech. Commun. 1969, 34, 72. (221) Titov, E. V.; Korzhenewka a, N. G.; Kapkan, L. M.; Sedova, L. N.; Gandel'sman, L. Z. Fialkov, Y. A.; Yagupol'skii, L. M. Zh. Or Khim. 1971, 7, 2651EE. (222) Bordwell, G.; Boutan, P. J. J. Am. Chem. SOC.1957, 79, n, n 1; k. I l l . (223) Eabom, C.; Thompeon, A. R.; Walton, D. R. M. J. Chem. SOC. 1969 B. 859. .- - -, - - -. (224) Tsvetkov, E. N.; Makhamatkhanov, M. M.; Lobanov, D. I.; Kabachnik, M. I. Zh. Obsh. Khim. 1972,42, 761EE. (225) Sharnin, G. P.; Falyakhov, I. F. Zh. Org. Khim. 1973, 9, nrrnn IOLWW. (226) Baker, R.; Eaborn, C.; Taylor, R. J. Chem. SOC.,Perkin Trans. 2 1972.97. - - ... -. .(227) Zhmurova, I. N:;-Kukhar, V. P.; Tukhar, A. A,; Zolotareva, L. A. Zh. Obsh. Khim. 1973,43,79EE. (228) Fringuelli,F.; Marino, G.; Taticchi, A. J. Chem. SOC.1971 B, 2302; 2304. (229) Hartman, G. D.; Traylor, T. G. J. Am. Chem. SOC.1975,97, 6147. (230) &hiemem, G. P. Angew. Chem.,Znt.Ed. Engl. 1966,5,731. (231) Antonova, G. S.; Ramsh, S. M.; Ginak, A. I.; Sochilin, E. G. Zh. Org. Khim. 1976,11, 1991EE. (232) Zhmurova, I. N.; Yurchenko, R. I.; Yurchenko, V. G.; Tukhar, A. A. Zh. Obsh. Khim. 1973,43, 1028EE. (233) Dell'Erba, C.; Guareschi, A.; Spinelli, D. J. Heterocycl. Chem. 1967., 4. 438. (234) DGmis, J.; Karvas, M.; Manasek, Z. Coll. Czech. Chem. Commun. 1973,38,215. (235) Lindbe , B. J. Arkio. Kemi. 1970,32,317. (236) Nelson%. L.; Levy, G. C.; Cargioli, J. D. J. Am. Chem. SOC. 1972,94,3089. (237) Rakita, P. E.; Worsham, L. S. J. Organomet. Chem. 1977, 137. 145. Kristian P.; Antos, K.; Vlachova, D.; Zahradnik, R. Coll. Czech. dhem. Commun. 1963,28,1651. Zollinger, H.; Buchler, W.; Wittwer, C. Helu. Chim. Acta 1963,36,1711. Ohto, Y.; Hashida, Y.; Sekiguchi, S.; Mataui, K. Bull. Chem. SOC.J n. 1974, 47, 1301. Corne&, A.; Lambert, S.; Laszlo, P. J. Org. Chem. 1977,42, - I - - - I 381. (242) %-harkin, L. I.; Kalinin, V. N.; Snyakin, A. P. Zh. Obsh. Khim. 1971,41, 1521EE. (243) . . Cornish. A. J.: Eaborn. C. J. Chem. SOC..Perkin Trans. 2 1975,874. ' (244) Nuallain, C. 0.;Cinneide, S. 0. J. Znorg. Nucl. Chem. 1973, 35. 2871. --,- .-. Mares, F.; Plzak, 2.; Hetflejs, J.; Chvalovsky, V. Coll. Czech. Chem. Commun. 1971,36, 2957. Sakurai, H.; De chi, S.; Yamagata, M.; Morimoto, S.; Kira, M.;Kumada, #J. Organomet. Chem. 1969,18, 285. Koike, H. Nip on Kagaku Zasshi 1962,83,917. Peters, E. N. {olym. Lett. 1975, 13, 479. Kuznetaov, V. A.; Egorochkin, A. N.; Skobeleva, S. E.; Razuvaev, G. A,; Pritula, N. A.; Zueva, G. Y . Zh. Obsh. Khim. 1976,45,2396EE. Zuhr, H. Ber. Bunsengel, 1964,68,169. Zeng, G.-Z. Acta Chem. Sin. 1966,32, 107. Korolev, B. A.; Khardin, A. P.; Radchenko, S. S.; Novakov, I. A.; Orlinson, B. S. Zh. Org. Khim. 1978, 14, 1524EE. Parr, W. J. E. J. Chem. SOC.,Farad. Trans. 2 1978, 933. Brown, H. C.; Rao, C. G.; Ravindranathan, M. J. Am. Chem. SOC. 1978. 100. - ... -. .- , .., 7946. . - - -. Taylor R. J. Chem. SOC.,Perkin Tram. 2 1973, 253. Seshadri, K. V.; Ganesan, R. Tetrahedron 1972, 28, 3827. Rodionov, P. P.; Kollegov, V. F.; Lelkin, K. P. Acad. Sci. SSSR 1979,20, 1327. &hiemem, G. P. Angew. Chem., Znt. Ed. Engl. 1966,5129. Hammett Substituent Constants (259) Veechambre, H.; Kergomard, A. Mem. Present SOC.Chem. 1966.338. , (260) Korbkaae, T. A.; Cerfontain, H.;Gall, J. M. J . Chem. S O ~ . , Perkin Tram. 2 1978,445. (261) Sal+bol, N. 0.;Po lis, Y. Y.; Liepin’sh, E. E. 2%. Org. Khrm. 1980.16.12GE. (262) Davis, D. D: J.’Or anomet. Chem. 1981,206,21. (263) Rackham, D. M.; davies, G. L. 0. Anal. Lett. 1980,13,447. (264) Aneell, H. V.; Taylor, R J . Chem. Soc., Perkin Tram.2 1978, 751. (265) Taylor, R. J . Chem. SOC.,Perkin Trans. 2 1978, 755. (266) Bradamante, S.; Pagani, G . A. J . Org. Chem. 1980,45,114. (267) Ramsey, B. G.; Lon uir,.K. J . Org. Chem. 1980,45,1322. (268) Ashkinadze, L. D.; g h t e m , L. M.;Golovchenko, L. G.;Pachevakaya, V. M.; Kravtsov, D. N. Zzo. Akad. Nauk. SSSR. l981,3,397EE. (269) Eptein, L. M.; Ashkinadze, L. D.; Shubina, E. S.; Kravtaov, D. N.;Kazita a L.A. J . Organomet. Chem. 1982,228 53. (270) Archer, W. ~ & s e a i n i , M. A.; Taylor, R. J . Chem. hoc., , Perkin Tram. 2 1982,181. (271) Binev, I. G.;Kuzmanova, R. B.; Kaneti, J.; Juchnovski, I. N. Chemical Revlews, 1991, Vd. 91, No. 2 191 J . Chem. SOC.,Perkin Trans. 2 1982,1533. (272) Azzaro, M.; Gal, J. F.;Geribaldi, S.; Loupy, A. J . Org. Chem. 1982,47,4981. (273) Brough, L. F.; West, R. J. Organomet. Chem. 1982,229,113. (274) Dewar, M. J. S.; Grisdale, P. J. J. Am. Chem. SOC.1962,84, 3546. (275) Hayashi, T.; Shibata, R. Bull. Chem. SOC.Jpn. 1961,34,1116. (276) Egorochkin, A. N.; Razuvaev, G. A. Russ. Chem. Reo. 1987, 56,846EE. (277) Shkuzko 0. P.; Mamaev, V. P. Zh. Org. Khim. 1979,15,1557. (278) Bordwed, F. G.; Andemn, H. M. J. Am. Chem. SOC.19S3,75, 6019. (279) Jones, L. B.; Foster,J. P. J. Or . Chem. 1970,35, 1777. (280) Vo-Kim-Yen; Papouskova, 2.;lchraml, J.; Chvalovaky, V. Coll. Czech. Chem. Commun. 1973,38,3167. (281) Calvino, R.; Fruttero, R.; Garrone, A.; Gasco, A. Quant. Struct.-Act. Relat. 1988, 7, 26. (282) Exner, 0.;Jonas, J. Coll. Czech. Chem. Commun. 1962,27, nnnn LLJO. (283) Waisser, K.; Machacek, M.; Lebvoua, J.; Hrbata, J.; Draata, J. Coll. Czech. Chem. Commun. 1988,53, 2957.
Similar documents
2.73 MB - Microdata Library
1. A person who lives in Karachi and comes home for two months in the year is not a member of the household a. A person who studies in Karachi is a member of the household b. A person who works in ...
More information