Low energy electron scattering data for chemical plasma treatment

Transcription

Low energy electron scattering data for chemical plasma treatment
IAEA
ITAMP
July 7-9 2014
Joint Workshop with IAEA on
Uncertainty Assessment for
Atomic and Molecular Data
Cambridge
Low energy electron scattering data for
chemical plasma treatment of
biomass
by
UNICAMP
Marco A. P. Lima
Unicamp
1
MAPLima
IAEA
ITAMP
Motivation I: large scale use of ethanol in engines
July 7-9 2014
Cambridge
Ethanol
3500
Gasoline
Flex fuel
Total
Corrosion
3000
Combustion
Optimization
(in thousand units)
2500
2000
Flex
Engines
1500
1000
Proálcool
500
UNICAMP
0
1975
1980
1985
1990
1995
2000
2005
Brazilian Sales of light fleet Vehicles (1975-2010)
2
MAPLima
2010
IAEA
ITAMP
July 7-9 2014
Cambridge
Ethanol as Fuel: Plasma Ignition for Vehicle Engines
Theoretical suppor t for an
application project working on:
UNICAMP
•  Investigation of processes occurring
during the ignition of plasma and its
consequences in post-discharge for an
internal combustion engine;
3
MAPLima
•  The proper parameters to be applied
in cars that operate on "poor mixtures"
reducing pollutants released into the
atmosphere, especially considering the
spark plug discharge.
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
4
MAPLima
NSF/CNPq project (experiments from Morty Khakoo’s group)
IAEA
ITAMP
July 7-9 2014
Cambridge
UNICAMP
Electron scattering of slow electrons by 1pentanol (a drop in fuel)
5
MAPLima
NSF/CNPq project (experiments from Morty Khakoo’s group)
IAEA
ITAMP
July 7-9 2014
Motivation II: large scale production of ethanol
UNICAMP
Cambridge
6
MAPLima
A sugarcane industry of Sugar/Ethanol/Bioeletricity
IAEA
ITAMP
July 7-9 2014
Motivation II: large scale production of ethanol
UNICAMP
Cambridge
7
MAPLima
Biomass: a source of energy and carbon
IAEA
ITAMP
July 7-9 2014
Motivation II: large scale production of ethanol
UNICAMP
Cambridge
8
MAPLima
Biomass: a source of energy and carbon
IAEA
ITAMP
July 7-9 2014
Motivation II: large scale production of ethanol
UNICAMP
Cambridge
9
MAPLima
First generation ethanol: crushing the cane for the juice
IAEA
ITAMP
July 7-9 2014
Cambridge
Motivation II: large scale production of ethanol
Bagasse piles
at the mill.
2nd generation
ethanol?
Other high value
bioproducts?
UNICAMP
!
!
10
MAPLima
Biomass: a source of energy and carbon
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
11
MAPLima
Biomass is Made Up with Fermentable Sugars
IAEA
ITAMP
July 7-9 2014
Cambridge
Lignocellulose is Resistant to Hydrolysis
UNICAMP
Pretreatment: bio- and physicalchemical processes to expose the
cellulose fibers
12
MAPLima
Dielectric Barrier Discharge (DBD):
electron flux on substrate ~108 cm–2 s–1
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
13
MAPLima
Sugarcane Bagasse Plasma
Pretreatment
•  ~ 25 g of dry sugarcane bagasse (50% moisture) – milled at 500µm
•  Gas flow Mixture: 95% Ar (1.9 SLM) and 5% O2 (0.1 SML)
•  Δttreatment = 3h
IAEA
ITAMP
July 7-9 2014
Cambridge
Biomass Chemical Analysis
Lignin concentration (%) of raw bagasse and samples related to
plasma torch treatment and washing procedure by water and
NaOH 1% solution at room temperature.
UNICAMP
Samples
Soluble Lignin Insoluble Lignin
(%)
(%)
Total of
Lignin
remaining
(%)
raw bagasse
1.58 ±0.01
20.3 ± 0.1
21.9 ± 0.1
Washed by H2O
2.4 ± 0.9
21.4 ± 0.9
23.8 ± 0.9
Washed by
NaOH 1%
1.3 ± 0.9
12.6 ± 0.9
13.9 ± 0.9
About 40% of original lignin was removed!!!
14
MAPLima
Jayr Amorim, Carlos Oliveira, Jorge A. Souza-Correa, Marco A. Ridenti
Plasma Process. Polym. 2013, DOI: 10.1002/ppap.201200158
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
15
MAPLima
Electron-Induced Damage to Biomolecules
Science, 287 1658 (2000)
Sanche, Nature 461, 358 (2009)
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
16
MAPLima
Two slits interference
To see this animations, visit: http://www.embd.be/quantummechanics/
IAEA
ITAMP
Scattering theory
July 7-9 2014
Cambridge
Schrödinger equation
Theoretical background
HΨk!
(±)
m
!
!
( r1 , " , rN+1 ) = EΨk!
(±)
m
!
!
( r1 , " , rN+1 )
Asymptotic condition
Ψk!
(±)
i
± ik f rN+1
open
!
!
!
! rN+1 →∞
e
( r1 ,", rN+1 ) → Sk! + ∑ f iB→f (k i , k f )Φ f
i
rN +1
f
S k! = Φ ie
! !
ik i • rN +1
UNICAMP
i
17
MAPLima
Differential cross section
dσ
dΩ
i→ f
! !
kf L ! ! 2
(k i , k f ) =
f i→ f (k i , k f )
ki
IAEA
ITAMP
Scattering theory
July 7-9 2014
Cambridge
Schrödinger differential equation
HΨk!
Theoretical background
m
(±)
(±)
= [H N + TN +1 + V ]Ψk!
m
= EΨk!
(±)
m
Lippmann-Schwinger integral equation
Ψk!
(±)
m
(±)
= Sk! + G o VΨk!
m
Sk! = Φ me
(±)
m
! !
ik m • rN +1
UNICAMP
m
18
MAPLima
Free-particle Green's function
Go
(±)
(Source of uncertainty – controllable)
1
=
= lim
E − TN +1 − H N ± iε ε→0
∑
∫
m
! !
3 | Φ m k 〉〈 kΦ m |
∫ d k k2 k2
m
− ± iε
2
2
IAEA
ITAMP
Schwinger Variational Principle
July 7-9 2014
(L^2 expansion: source of uncertainty – controllable)
Cambridge
The Schwinger Variational method serves to get a scattering amplitude free
of first order errors for a scattering process that respect the equations
8
(+)
>
f
=
hS
|V
|
k
,k
k
>
f
i
f
ki i
>
>
>
>
<
(±)
A(±) | k i = V |Sk i and fkf ,ki = h (kf ) |V |Ski i
and A(±) = V
>
>
>
>
>
>
:
( )
(+)
fkf ,ki = h kf |A(+) | ki i
(±)
V G0 V
The bilinear form of the variational principle for the scattering amplitude is
[fkf ,ki ] = hSkf |V |
(+)
ki i
+h
( )
kf |V
|Ski i
UNICAMP
independent variations with respect to
19
MAPLima
lead to
A(±) |
(
V |Ski i
hSkf |V
(±)
k i
(+)
ki i
( )
(+)
kf |A
A(+) |
h
h
(
h
( )
(+)
|
kf |A
( )
kf |
where arbitrary and
V |Ski i A(+) |
( )
hSkf |V h kf |A(+) |
= 0 ) A(+) |
= 0 ) A( ) |
(+)
ki i = V |Ski i
( )
kf i = V |Skf i
= V |Sk i must be equivalent to H|
proper boundary conditions
(+)
ki i
(±)
k i
= E|
(+)
ki i = 0
(+)
ki i = 0
†
with A(+) = A(
(±)
k i
with
)
IAEA
ITAMP
July 7-9 2014
Cambridge
Schwinger Multichannel Method for electron scattering
A (+)
In this formalism the operator
K. Takatsuka and V. McKoy,
Phys. Rev. A 24, 2473 (1981)
A
(+)
was redefined as:
1
1 ⎡
N +1
⎤
(+)
= (PV + VP) − VG P V +
Ĥ
−
(
Ĥ
P
+
P
Ĥ
)
⎥
2
N + 1 ⎢⎣
2
⎦
P≡
where
open
∑| Φ 〉〈 Φ
ℓ =1
ℓ
ℓ
|
and
Ĥ = E − H
(Channel coupling: source of uncertainty – uncontrollable)
All electrons are identical. So, an expansion of the scattering wave function must
be done in a basis {χµ} of anti-symmetric functions (Slater determinants):
!
| Ψ 〉 = ∑ a (k m ) | χµ 〉 where {| χ µ 〉} = {aN+1 | Φ i 〉⊗ | ϕ j 〉}
UNICAMP
!( ± )
km
20
MAPLima
( ±)
µ
µ
(N+1wave-function expansion: source of uncertainty – controllable)
The final form of the scattering amplitude is equal to the one of the
Schwinger Variational principle
f
! !
k i ,k f
with
1
! | V | χ 〉 (d -1 )
!
=−
〈
S
∑
m
mn 〈 χ n | V | S k i 〉
kf
2π mn
! !
!
!
i
K
•r
dmn = 〈χm | A ( + ) | χn 〉 and SK! ≡ Φ i (r1 ,..., rN ) e i N+1
i
IAEA
ITAMP
Coupling level
July 7-9 2014
Cambridge
R. F. da Costa, F. J. da Paixão and M. A. P. Lima,
J. Phys. B 38, 4363 (2005)
Elastic scattering with and without polarization effects
❶ Open channel Projector has only one state
P =| Φ o 〉〈Φ o |
Φo is molecular target ground
state obtained in Hartree-Fock
approximation
(Target description: source of uncertainty – program limitation)
❷ Configuration space is made of
UNICAMP
(N+1wave-function expansion: source of uncertainty – controllable)
⎧aN+1 | Φ o 〉⊗ | ϕi 〉
| χµ 〉 = ⎨
⎩aN+1 | Φ j 〉⊗ | ϕk 〉, j ≥ 2
Φj , j ≥ 2 are virtual states
21
MAPLima
obtained from single excitations
of the molecular target
Doublet states made of
products of target triplet
and singlet states by ϕk
ϕi are one-particle wave functions
(square integrable molecular
orbitals) used in description of
the continuum
IAEA
ITAMP
Coupling level
July 7-9 2014
Cambridge
R. F. da Costa, F. J. da Paixão and M. A. P. Lima,
J. Phys. B 38, 4363 (2005)
Inelastic scattering with and without polarization
❶ Open channel projector contains channels of our
choice (truncation means approximation)
open
P = ∑| Φ ℓ 〉〈Φ ℓ |
ℓ
| Φℓ 〉
are molecular target
states obtained with single
configuration interaction
UNICAMP
❷ Again the configuration space is made of
⎧aN+1 | Φ o 〉⊗ | ϕi 〉
| χµ 〉 = ⎨
⎩aN+1 | Φ j 〉⊗ | ϕk 〉, j ≥ 2
Doublet states made of
products of target triplet
and singlet states by ϕk
Polarization effects are included with j greater than the number of open
channels
22
MAPLima
IAEA
ITAMP
Electron scattering by large molecules
July 7-9 2014
Cambridge
UNICAMP
M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima
Phys. Rev. A 47, 1111 (1993)
Pseudopotential formalism
23
MAPLima
(source of uncertainty – optional for light molecules)
[D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)]
❶
The pseudo-state energy is equal to the real eigenvalue for a
given configuration;
❷
The pseudopotential is equal to the real potential beyond a certain
core radius rc, and it is soft at the origin;
❸
The normalized pseudo wave function is equal to the real one beyond
the core radius rc and it is soft and without nodes
❹
The integrals from 0 to r of the real and pseudo functions agree
for r > rc for each valence state:
1 ⎡
⎤
2 d d
− ⎢(rΨ)
ln Ψ ⎥ =
2 ⎣
dE dr
⎦ r >rc
∫
0
“Norm Conservation”
r >rc
Ψ 2r 2dr
IAEA
ITAMP
July 7-9 2014
Cambridge
Theoretical co-authors
Eliane M. de Oliveira (posdoc)
Alexandra Natalense
Marco A. P. Lima
Sergio d’A. Sanchez
Márcio H. F. Bettega
Romarly F. da Costa
UNICAMP
Márcio T. do N. Varella (coordinator)
24
MAPLima
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
25
MAPLima
Shape resonances are related to angular momentum traps
Low energy elastic electron scattering from pirrole
IAEA
ITAMP
July 7-9 2014
Cambridge
π* (A2)
• 
There are π* (ring)
and σ* (N–H) shape
resonances in pyrrole.
Nice prototype!
l=2
σ*anion
e capture
π*anion
–
π* (B2)
E
→
Pyrrole
σ* (A1)
S0
UNICAMP
R
26
MAPLima
→
de Oliveira EM, Lima MAP, Bettega MHF, Sanchez SD, da Costa RF, and Varella MTD,
J. Chem. Phys. 132, 204301 (2010)
IAEA
ITAMP
Lignin Subunits
July 7-9 2014
Cambridge
Phenol
Guaiacol
MetOH
MetOH
PropenylOH
PropenylOH
UNICAMP
PropenylOH
Syringol
27
MAPLima
p-coumaryl alcohol
coniferyl alcohol
sinapyl alcohol
IAEA
ITAMP
July 7-9 2014
Cambridge
SEP
SEP
SE
SE
UNICAMP
SE
28
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
Phenol: Calculations, ET spectra and DEA
data indicate H elimination from π*/σ*
coupling.
π* (LUMO+1)
σ* (LUMO+2)
σ* (LUMO+2)
π* (LUMO+1)
σ* (LUMO+3)
UNICAMP
π* (LUMO)
29
MAPLima
Guaiacol: Methoxilation is
expected to give rise to other
dissociation channels. H
elimination should be also
observed.
IAEA
ITAMP
July 7-9 2014
Cambridge
Low-energy electron scattering by cellulose and
Hemicellulose components
UNICAMP
Phys. Chem. Chem. Phys. 15, 1682 (2013).
30
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
Theoretical team on electron-scattering of
microsolvated molecules
Sylvio Canuto (microsolvation)
Kaline Coutinho (microsolvation)
Márcio T. do N. Varella
UNICAMP
Eliane M. de Oliveira (scattering of solvated phenol)
Marco A. P. Lima
31
MAPLima
Thiago C. Freitas (his Ph.D. Thesis)
Márcio H. F. Bettega (coordinator)
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
32
MAPLima
Electron Collisions with the CH2O-H2O complex
PHYSICAL REVIEW A 80, 062710 (2009)
IAEA
ITAMP
July 7-9 2014
Cambridge
Electron collisions with the HCOOH…(H2O)n complexes (n=1, 2) in liquid
phase: The influence of microsolvation on the π* resonance of formic acid
UNICAMP
THE JOURNAL OF CHEMICAL PHYSICS 138, 174307 (2013)
33
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
Electron Collisions with Phenol…H2O
UNICAMP
(proton acceptor)
34
MAPLima
(proton donor)
We have studied the microsolvation of
Phenol using 4 complexes.
•  In Complex A, the water molecule is
a proton acceptor.
•  In the Complex B, the water is a
proton donor.
•  Complexes C and D have both
situations (one water molecule as
acceptor and the other as proton
donor).
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
35
MAPLima
Electron Collisions with Phenol…(H2O)n: n=1,2
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
36
MAPLima
Electron Collisions with Phenol…H2O
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
37
MAPLima
Electron Collisions with Phenol…H2O
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
38
MAPLima
Electron Collisions with Phenol…H2O
IAEA
ITAMP
July 7-9 2014
Cambridge
Electron Collisions with Phenol…(H2O)n: search for
microsolvation signatures in the DCS
UNICAMP
Phenol…(H2O)n
Phenol + n (H2O)
Averaged DCS
39
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
Electron Collisions with Phenol…(H2O)n: search for
microsolvation signatures in the DCS
UNICAMP
Phenol…(H2O)n
Phenol + n (H2O)
Averaged DCS
40
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
Electron Collisions with Phenol…(H2O)n: search for
microsolvation signatures in the DCS
UNICAMP
Phenol…(H2O)n
Phenol + n (H2O)
Averaged DCS
41
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
UNICAMP
ELECTRONIC EXCITATION
42
MAPLima
IAEA
ITAMP
July 7-9 2014
Cambridge
Theoretical co-authors
Eliane M. de Oliveira (posdoc)
Marco A. P. Lima
Márcio H. F. Bettega
UNICAMP
Márcio T. do N. Varella
43
MAPLima
Romarly F. da Costa (coordinator)
IAEA
ITAMP
Electronic excitation of H2 by electron impact
July 7-9 2014
Cambridge
15
Seção de Choque Diferencial (10 cm /sr)
3
-18
c
Πu
-18
80
Resultados atuais
Lima et al. (1988)
Branchett et al. (1990)
Machado et al. (2001)
Khakoo and Trajmar (1986)
60
19.37 eV
13.12 eV
40
20
16.80 eV
0
10
15
20
25
H2
2
H2
2
R. F. da Costa, F. J. da Paixão and M. A. P. Lima,
J. Phys. B 38, 4363 (2005)
Seção de Choque Diferencial (10 cm /sr)
100
12
3
c
Resultados atuais
SMC (2-canais)
Wrkich et al. (2002)
9
6
3
0
0
30
30
44
MAPLima
Seção de Choque Diferencial (10 cm /sr)
UNICAMP
9
Resultados atuais
Lima et al. (1988)
Parker et al. (1991)
Branchett et al. (1991)
Khakoo and Trajmar (1986)
Wrkich et al. (2002)
3
0
30
60
90
120
Ângulo de Espalhamento (graus)
120
150
150
180
H2
2
Πu , 20 eV
6
0
90
6
-18
-18
2
Seção de Choque Diferencial (10 cm /sr)
H2
3
c
60
Ângulo de Espalhamento (graus)
Energia de Impacto do Elétron Incidente (eV)
12
Πu , 17.5 eV
180
c
3
Πu , 30 eV
Resultados atuais
Lima et al.
Parker et al.
Machado et al.
Khakoo et al.
Wrkich et al.
3
0
0
30
60
90
120
Ângulo de Espalhamento (graus)
150
180
IAEA
ITAMP
Electronic transition X 1Σg → A
July 7-9 2014
Cambridge
5
(b) 12.5 eV
2
2
Integral Cross Section (10 cm )
(a)
40
-18
Present results
Gillan et al. (1996)
Trajmar et al. (1983)
Campbell et al. (2001)
Johnson et al. (2005)
-18
R.F. da Costa and M. A. P. Lima,
Phys. Rev. A 75, 022705 (2007)
Σ +u of N2 by electron impact
Differential Cross Section (10 cm /sr)
50
3
30
20
10
0
5
10
15
20
25
30
Present results
Cartwright et al. (1977)
Khakoo et al. (2005)
4
3
2
1
0
0
30
MAPLima
2
0
30
60
120
150
180
150
180
6
(d) 17.5 eV
2
-18
Present results
Gillan et al. (1996)
Carwright et al. (1977)
Zetner and Trajmar (1987)
Brunger and Teubner (2001)
Khakoo et al. (2005)
-18
UNICAMP
45
Differential Cross Section (10 cm /sr)
(c) 15 eV
2
Differential Cross Section (10 cm /sr)
6
0
90
Scattering Angles (degrees)
Electron Impact Energy (eV)
4
60
90
120
Scattering Angles (degrees)
150
180
Present results
Cartwright et al. (1977)
Brunger and Teubner (2001)
Khakoo et al. (2005)
4
2
0
0
30
60
90
120
Scattering Angles (degrees)
IAEA
ITAMP
Electronic transition X 1Σg → a’
July 7-9 2014
Cambridge
of N2 by electron impact
3
1
(b) 12.5 eV
2
-18
Present results
Trajmar et al. (1983)
Campbell et al. (2001)
Johnson et al. (2005)
-18
R.F. da Costa and M. A. P. Lima,
Phys. Rev. A 75, 022705 (2007)
Σ −u
Differential Cross Section (10 cm /sr)
(a)
2
Integral Cross Section (10 cm )
20
1
10
0
5
10
15
20
25
30
0.1
Present results
Khakoo et al. (2005)
2
0.01
1E-3
1
1E-4
MAPLima
-1
0
30
-18
0.1
0.01
1E-3
2
0
30
60
90
120
150
180
0
0
30
60
90
120
Scattering Angles (degrees)
60
4
90
120
150
180
90
120
150
180
10
(d) 17.5 eV
2
1
Differential Cross Section (10 cm /sr)
-18
2
Differential Cross Section (10 cm /sr)
UNICAMP
46
4
60
Scattering Angles (degrees)
6
Present results
Cartwright et al. (1977)
Brunger and Teubner (1990)
Khakoo et al. (2005)
30
0
Electron Impact Energy (eV)
(c) 15 eV
0
150
180
1
3
Present results
Cartwright et al. (1977)
Brunger and Teubner (1990)
Khakoo et al. (2005)
2
0.1
0.01
1E-3
0
30
60
90
120
150
180
1
0
-1
0
30
60
90
120
Scattering Angles (degrees)
150
180
IAEA
ITAMP
July 7-9 2014
R. F. da Costa, M. H. F. Bettega, and M. A. P. Lima,
Phys. Rev. A 77, 042723 (2008).
Cambridge
Electronic excitation of ã 3B1u state of C2H4 by electron impact
UNICAMP
Color lines are
Close-coupling
Calculations
and
bullets are
M. Allan´s
data
47
MAPLima
IAEA
ITAMP
Surprisingly, at higher energies the agreement is not good!!
July 7-9 2014
Cambridge
C2H4
30.0 eV : inelastic 1st Triplet
1
Differential Cross Section (10
UNICAMP
-16
2
cm /sr)
Brunger
ci22ch2
0,1
0,01
0,001
0
48
MAPLima
30
60
90
120
Scattering Angle (degrees)
150
180
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
49
MAPLima
Multichannel effects on the e--C2H4 scattering
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
50
MAPLima
Multichannel effects on the elastic process of e--C2H4 scattering
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
51
MAPLima
Multichannel effects on the elastic process of e--C2H4 scattering
IAEA
ITAMP
July 7-9 2014
Multichannel effects on the elastic process of e--C2H4 scattering
Cambridge
C2H4
20 eV : elastic 1 --> 1
100
Differential Cross Section (10
UNICAMP
-16
2
cm /sr)
Khakoo
Buckman
Tanaka
ci22-ch1
ci22-ch2
ci22-ch17
ci22-ch45
10
1
0,1
0
52
MAPLima
30
60
90
120
Scattering Angle (degrees)
150
180
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
53
MAPLima
Multichannel effects on the elastic process of e--C2H4 scattering
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
54
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
55
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
56
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
57
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
58
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
59
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
60
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
61
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
62
MAPLima
Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by
electron impact
IAEA
ITAMP
Back to Phenol
July 7-9 2014
Cambridge
MAPLima
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
! ! !"#$!%&'(
!!!!!
!!!!!!!!
!!!!!!!!
!
!"#$!%&'!()*+'*,-!'.!-)/!%012033
!"#$!%$425$6123
!!!!!!!!
!!!!!!!!
!!!!!!!!
!"#$!%$425$6073
!
! ")!%*!%!(
!$89!'.!-)/!%01123
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!
%
!"#$%
!!!!!!!!
!
63
!!!!!!!!
!
$
!"#
%!
UNICAMP
!"#$%&'()*+(,-. '/ 0$12
%!!
"!
#!
$!
%&!
)*+,,-./0123014-256-17
%'!
%(!
IAEA
ITAMP
Back to Phenol
July 7-9 2014
Cambridge
$
!"#
MAPLima
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
! ! !"#$!%&'(
!!!!!
!!!!!!!!
!!!!!!!!
!
!"#$!%&'!()*+'*,-!'.!-)/!%012033
!"#$!%$425$6123
!!!!!!!!
!!!!!!!!
!!!!!!!!
!"#$!%$425$6773
!
! ")!%*!%!(
!$89!'.!-)/!%01123
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!
!
%
!"#$%
!!!!!!!!
!
64
!!!!!!!!
%!
UNICAMP
!"#$%&'()*+(,-. '/ 0$12
%!!
"!
#!
$!
%&!
)*+,,-./0123014-256-17
%'!
%(!
IAEA
ITAMP
Back to Phenol
July 7-9 2014
Cambridge
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
! ! !"#$!%&'(
!!!!!
!!!!!!!!
!!!!!!!!
!
!"#$!%&'!()*+'*,-!'.!-)/!%012033
!"#$!%$425$6123
!!!!!!!!
!!!!!!!!
!!!!!!!!
!"#$!%$425$6773
!
! ")!%*!%!(
!$89!'.!-)/!%01123
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
%!
!
!
$
!"#
!"#$%&'()*+(,-. '/ 0$12
%!!
%
!"#$%
UNICAMP
!!!!!!!!
!
"!
#!
$!
%&!
)*+,,-./0123014-256-17
65
MAPLima
%'!
%(!
IAEA
ITAMP
Back to Phenol
July 7-9 2014
Cambridge
%"
$"
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
#"
!
$
!"#
UNICAMP
!"#$%&'()*+,(-./ '0 1
!
! "#$!%&'(
!!!!!!!!
!!!!!!!!
!!!!!!!!
!"#$!%&'!()*+'*,-!'.!-)/!%012033
!"#$!%$425$6123
!"#$!%$425$6773
!!!!!!!!
!!!!!!!!
!!!!!!!!
!
! ")!%*!%!(
!$89!'.!-)/!%01123
!"
"
!"
#"
$"
%"
()*+,-./01234.5167
66
MAPLima
&"
'"
IAEA
ITAMP
July 7-9 2014
UNICAMP
Cambridge
67
MAPLima
Back to Phenol
(very fresh data from Michael Brunger/Cristina Lopes collaboration)
IAEA
ITAMP
July 7-9 2014
Cambridge
Thank you very much for your
attention
UNICAMP
A copy of this presentation is at
http://www.ifi.unicamp.br/~maplima/maplima-IFGW.pdf
68
MAPLima

Similar documents

“ κ

“ κ THPT Ving Tau THPT Nguyen Huc THPT Ving Tau THPT Ving Tau THPT Ving Tau THPT VIng Tau THPT Ving Tau THPT Ving Tau THPT VIng Tau THPT Ving Tau THPT Ving Tau THPT Ving Tau THPT Ving Tau THPT Ving Tau...

More information

SUNBELT SWiM SPAS

SUNBELT SWiM SPAS S u n b e lt S w i m S pa s Swimming, water jogging, aqua aerobics and resistance exercises are all great cardiovascular workouts, and they’re about as low-impact as you will find. Combine these fi...

More information

Polyatomic Molecular Orbital Theory

Polyatomic Molecular Orbital Theory Filling the resulting MO’s of homonuclear diatomic molecules with electrons leads to the following results:

More information