Low energy electron scattering data for chemical plasma treatment
Transcription
Low energy electron scattering data for chemical plasma treatment
IAEA ITAMP July 7-9 2014 Joint Workshop with IAEA on Uncertainty Assessment for Atomic and Molecular Data Cambridge Low energy electron scattering data for chemical plasma treatment of biomass by UNICAMP Marco A. P. Lima Unicamp 1 MAPLima IAEA ITAMP Motivation I: large scale use of ethanol in engines July 7-9 2014 Cambridge Ethanol 3500 Gasoline Flex fuel Total Corrosion 3000 Combustion Optimization (in thousand units) 2500 2000 Flex Engines 1500 1000 Proálcool 500 UNICAMP 0 1975 1980 1985 1990 1995 2000 2005 Brazilian Sales of light fleet Vehicles (1975-2010) 2 MAPLima 2010 IAEA ITAMP July 7-9 2014 Cambridge Ethanol as Fuel: Plasma Ignition for Vehicle Engines Theoretical suppor t for an application project working on: UNICAMP • Investigation of processes occurring during the ignition of plasma and its consequences in post-discharge for an internal combustion engine; 3 MAPLima • The proper parameters to be applied in cars that operate on "poor mixtures" reducing pollutants released into the atmosphere, especially considering the spark plug discharge. IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 4 MAPLima NSF/CNPq project (experiments from Morty Khakoo’s group) IAEA ITAMP July 7-9 2014 Cambridge UNICAMP Electron scattering of slow electrons by 1pentanol (a drop in fuel) 5 MAPLima NSF/CNPq project (experiments from Morty Khakoo’s group) IAEA ITAMP July 7-9 2014 Motivation II: large scale production of ethanol UNICAMP Cambridge 6 MAPLima A sugarcane industry of Sugar/Ethanol/Bioeletricity IAEA ITAMP July 7-9 2014 Motivation II: large scale production of ethanol UNICAMP Cambridge 7 MAPLima Biomass: a source of energy and carbon IAEA ITAMP July 7-9 2014 Motivation II: large scale production of ethanol UNICAMP Cambridge 8 MAPLima Biomass: a source of energy and carbon IAEA ITAMP July 7-9 2014 Motivation II: large scale production of ethanol UNICAMP Cambridge 9 MAPLima First generation ethanol: crushing the cane for the juice IAEA ITAMP July 7-9 2014 Cambridge Motivation II: large scale production of ethanol Bagasse piles at the mill. 2nd generation ethanol? Other high value bioproducts? UNICAMP ! ! 10 MAPLima Biomass: a source of energy and carbon IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 11 MAPLima Biomass is Made Up with Fermentable Sugars IAEA ITAMP July 7-9 2014 Cambridge Lignocellulose is Resistant to Hydrolysis UNICAMP Pretreatment: bio- and physicalchemical processes to expose the cellulose fibers 12 MAPLima Dielectric Barrier Discharge (DBD): electron flux on substrate ~108 cm–2 s–1 IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 13 MAPLima Sugarcane Bagasse Plasma Pretreatment • ~ 25 g of dry sugarcane bagasse (50% moisture) – milled at 500µm • Gas flow Mixture: 95% Ar (1.9 SLM) and 5% O2 (0.1 SML) • Δttreatment = 3h IAEA ITAMP July 7-9 2014 Cambridge Biomass Chemical Analysis Lignin concentration (%) of raw bagasse and samples related to plasma torch treatment and washing procedure by water and NaOH 1% solution at room temperature. UNICAMP Samples Soluble Lignin Insoluble Lignin (%) (%) Total of Lignin remaining (%) raw bagasse 1.58 ±0.01 20.3 ± 0.1 21.9 ± 0.1 Washed by H2O 2.4 ± 0.9 21.4 ± 0.9 23.8 ± 0.9 Washed by NaOH 1% 1.3 ± 0.9 12.6 ± 0.9 13.9 ± 0.9 About 40% of original lignin was removed!!! 14 MAPLima Jayr Amorim, Carlos Oliveira, Jorge A. Souza-Correa, Marco A. Ridenti Plasma Process. Polym. 2013, DOI: 10.1002/ppap.201200158 IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 15 MAPLima Electron-Induced Damage to Biomolecules Science, 287 1658 (2000) Sanche, Nature 461, 358 (2009) IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 16 MAPLima Two slits interference To see this animations, visit: http://www.embd.be/quantummechanics/ IAEA ITAMP Scattering theory July 7-9 2014 Cambridge Schrödinger equation Theoretical background HΨk! (±) m ! ! ( r1 , " , rN+1 ) = EΨk! (±) m ! ! ( r1 , " , rN+1 ) Asymptotic condition Ψk! (±) i ± ik f rN+1 open ! ! ! ! rN+1 →∞ e ( r1 ,", rN+1 ) → Sk! + ∑ f iB→f (k i , k f )Φ f i rN +1 f S k! = Φ ie ! ! ik i • rN +1 UNICAMP i 17 MAPLima Differential cross section dσ dΩ i→ f ! ! kf L ! ! 2 (k i , k f ) = f i→ f (k i , k f ) ki IAEA ITAMP Scattering theory July 7-9 2014 Cambridge Schrödinger differential equation HΨk! Theoretical background m (±) (±) = [H N + TN +1 + V ]Ψk! m = EΨk! (±) m Lippmann-Schwinger integral equation Ψk! (±) m (±) = Sk! + G o VΨk! m Sk! = Φ me (±) m ! ! ik m • rN +1 UNICAMP m 18 MAPLima Free-particle Green's function Go (±) (Source of uncertainty – controllable) 1 = = lim E − TN +1 − H N ± iε ε→0 ∑ ∫ m ! ! 3 | Φ m k 〉〈 kΦ m | ∫ d k k2 k2 m − ± iε 2 2 IAEA ITAMP Schwinger Variational Principle July 7-9 2014 (L^2 expansion: source of uncertainty – controllable) Cambridge The Schwinger Variational method serves to get a scattering amplitude free of first order errors for a scattering process that respect the equations 8 (+) > f = hS |V | k ,k k > f i f ki i > > > > < (±) A(±) | k i = V |Sk i and fkf ,ki = h (kf ) |V |Ski i and A(±) = V > > > > > > : ( ) (+) fkf ,ki = h kf |A(+) | ki i (±) V G0 V The bilinear form of the variational principle for the scattering amplitude is [fkf ,ki ] = hSkf |V | (+) ki i +h ( ) kf |V |Ski i UNICAMP independent variations with respect to 19 MAPLima lead to A(±) | ( V |Ski i hSkf |V (±) k i (+) ki i ( ) (+) kf |A A(+) | h h ( h ( ) (+) | kf |A ( ) kf | where arbitrary and V |Ski i A(+) | ( ) hSkf |V h kf |A(+) | = 0 ) A(+) | = 0 ) A( ) | (+) ki i = V |Ski i ( ) kf i = V |Skf i = V |Sk i must be equivalent to H| proper boundary conditions (+) ki i (±) k i = E| (+) ki i = 0 (+) ki i = 0 † with A(+) = A( (±) k i with ) IAEA ITAMP July 7-9 2014 Cambridge Schwinger Multichannel Method for electron scattering A (+) In this formalism the operator K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2473 (1981) A (+) was redefined as: 1 1 ⎡ N +1 ⎤ (+) = (PV + VP) − VG P V + Ĥ − ( Ĥ P + P Ĥ ) ⎥ 2 N + 1 ⎢⎣ 2 ⎦ P≡ where open ∑| Φ 〉〈 Φ ℓ =1 ℓ ℓ | and Ĥ = E − H (Channel coupling: source of uncertainty – uncontrollable) All electrons are identical. So, an expansion of the scattering wave function must be done in a basis {χµ} of anti-symmetric functions (Slater determinants): ! | Ψ 〉 = ∑ a (k m ) | χµ 〉 where {| χ µ 〉} = {aN+1 | Φ i 〉⊗ | ϕ j 〉} UNICAMP !( ± ) km 20 MAPLima ( ±) µ µ (N+1wave-function expansion: source of uncertainty – controllable) The final form of the scattering amplitude is equal to the one of the Schwinger Variational principle f ! ! k i ,k f with 1 ! | V | χ 〉 (d -1 ) ! =− 〈 S ∑ m mn 〈 χ n | V | S k i 〉 kf 2π mn ! ! ! ! i K •r dmn = 〈χm | A ( + ) | χn 〉 and SK! ≡ Φ i (r1 ,..., rN ) e i N+1 i IAEA ITAMP Coupling level July 7-9 2014 Cambridge R. F. da Costa, F. J. da Paixão and M. A. P. Lima, J. Phys. B 38, 4363 (2005) Elastic scattering with and without polarization effects ❶ Open channel Projector has only one state P =| Φ o 〉〈Φ o | Φo is molecular target ground state obtained in Hartree-Fock approximation (Target description: source of uncertainty – program limitation) ❷ Configuration space is made of UNICAMP (N+1wave-function expansion: source of uncertainty – controllable) ⎧aN+1 | Φ o 〉⊗ | ϕi 〉 | χµ 〉 = ⎨ ⎩aN+1 | Φ j 〉⊗ | ϕk 〉, j ≥ 2 Φj , j ≥ 2 are virtual states 21 MAPLima obtained from single excitations of the molecular target Doublet states made of products of target triplet and singlet states by ϕk ϕi are one-particle wave functions (square integrable molecular orbitals) used in description of the continuum IAEA ITAMP Coupling level July 7-9 2014 Cambridge R. F. da Costa, F. J. da Paixão and M. A. P. Lima, J. Phys. B 38, 4363 (2005) Inelastic scattering with and without polarization ❶ Open channel projector contains channels of our choice (truncation means approximation) open P = ∑| Φ ℓ 〉〈Φ ℓ | ℓ | Φℓ 〉 are molecular target states obtained with single configuration interaction UNICAMP ❷ Again the configuration space is made of ⎧aN+1 | Φ o 〉⊗ | ϕi 〉 | χµ 〉 = ⎨ ⎩aN+1 | Φ j 〉⊗ | ϕk 〉, j ≥ 2 Doublet states made of products of target triplet and singlet states by ϕk Polarization effects are included with j greater than the number of open channels 22 MAPLima IAEA ITAMP Electron scattering by large molecules July 7-9 2014 Cambridge UNICAMP M. H. F. Bettega, L. G. Ferreira, and M. A. P. Lima Phys. Rev. A 47, 1111 (1993) Pseudopotential formalism 23 MAPLima (source of uncertainty – optional for light molecules) [D. R. Hamann, M. Schlüter and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)] ❶ The pseudo-state energy is equal to the real eigenvalue for a given configuration; ❷ The pseudopotential is equal to the real potential beyond a certain core radius rc, and it is soft at the origin; ❸ The normalized pseudo wave function is equal to the real one beyond the core radius rc and it is soft and without nodes ❹ The integrals from 0 to r of the real and pseudo functions agree for r > rc for each valence state: 1 ⎡ ⎤ 2 d d − ⎢(rΨ) ln Ψ ⎥ = 2 ⎣ dE dr ⎦ r >rc ∫ 0 “Norm Conservation” r >rc Ψ 2r 2dr IAEA ITAMP July 7-9 2014 Cambridge Theoretical co-authors Eliane M. de Oliveira (posdoc) Alexandra Natalense Marco A. P. Lima Sergio d’A. Sanchez Márcio H. F. Bettega Romarly F. da Costa UNICAMP Márcio T. do N. Varella (coordinator) 24 MAPLima IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 25 MAPLima Shape resonances are related to angular momentum traps Low energy elastic electron scattering from pirrole IAEA ITAMP July 7-9 2014 Cambridge π* (A2) • There are π* (ring) and σ* (N–H) shape resonances in pyrrole. Nice prototype! l=2 σ*anion e capture π*anion – π* (B2) E → Pyrrole σ* (A1) S0 UNICAMP R 26 MAPLima → de Oliveira EM, Lima MAP, Bettega MHF, Sanchez SD, da Costa RF, and Varella MTD, J. Chem. Phys. 132, 204301 (2010) IAEA ITAMP Lignin Subunits July 7-9 2014 Cambridge Phenol Guaiacol MetOH MetOH PropenylOH PropenylOH UNICAMP PropenylOH Syringol 27 MAPLima p-coumaryl alcohol coniferyl alcohol sinapyl alcohol IAEA ITAMP July 7-9 2014 Cambridge SEP SEP SE SE UNICAMP SE 28 MAPLima IAEA ITAMP July 7-9 2014 Cambridge Phenol: Calculations, ET spectra and DEA data indicate H elimination from π*/σ* coupling. π* (LUMO+1) σ* (LUMO+2) σ* (LUMO+2) π* (LUMO+1) σ* (LUMO+3) UNICAMP π* (LUMO) 29 MAPLima Guaiacol: Methoxilation is expected to give rise to other dissociation channels. H elimination should be also observed. IAEA ITAMP July 7-9 2014 Cambridge Low-energy electron scattering by cellulose and Hemicellulose components UNICAMP Phys. Chem. Chem. Phys. 15, 1682 (2013). 30 MAPLima IAEA ITAMP July 7-9 2014 Cambridge Theoretical team on electron-scattering of microsolvated molecules Sylvio Canuto (microsolvation) Kaline Coutinho (microsolvation) Márcio T. do N. Varella UNICAMP Eliane M. de Oliveira (scattering of solvated phenol) Marco A. P. Lima 31 MAPLima Thiago C. Freitas (his Ph.D. Thesis) Márcio H. F. Bettega (coordinator) IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 32 MAPLima Electron Collisions with the CH2O-H2O complex PHYSICAL REVIEW A 80, 062710 (2009) IAEA ITAMP July 7-9 2014 Cambridge Electron collisions with the HCOOH…(H2O)n complexes (n=1, 2) in liquid phase: The influence of microsolvation on the π* resonance of formic acid UNICAMP THE JOURNAL OF CHEMICAL PHYSICS 138, 174307 (2013) 33 MAPLima IAEA ITAMP July 7-9 2014 Cambridge Electron Collisions with Phenol…H2O UNICAMP (proton acceptor) 34 MAPLima (proton donor) We have studied the microsolvation of Phenol using 4 complexes. • In Complex A, the water molecule is a proton acceptor. • In the Complex B, the water is a proton donor. • Complexes C and D have both situations (one water molecule as acceptor and the other as proton donor). IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 35 MAPLima Electron Collisions with Phenol…(H2O)n: n=1,2 IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 36 MAPLima Electron Collisions with Phenol…H2O IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 37 MAPLima Electron Collisions with Phenol…H2O IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 38 MAPLima Electron Collisions with Phenol…H2O IAEA ITAMP July 7-9 2014 Cambridge Electron Collisions with Phenol…(H2O)n: search for microsolvation signatures in the DCS UNICAMP Phenol…(H2O)n Phenol + n (H2O) Averaged DCS 39 MAPLima IAEA ITAMP July 7-9 2014 Cambridge Electron Collisions with Phenol…(H2O)n: search for microsolvation signatures in the DCS UNICAMP Phenol…(H2O)n Phenol + n (H2O) Averaged DCS 40 MAPLima IAEA ITAMP July 7-9 2014 Cambridge Electron Collisions with Phenol…(H2O)n: search for microsolvation signatures in the DCS UNICAMP Phenol…(H2O)n Phenol + n (H2O) Averaged DCS 41 MAPLima IAEA ITAMP July 7-9 2014 Cambridge UNICAMP ELECTRONIC EXCITATION 42 MAPLima IAEA ITAMP July 7-9 2014 Cambridge Theoretical co-authors Eliane M. de Oliveira (posdoc) Marco A. P. Lima Márcio H. F. Bettega UNICAMP Márcio T. do N. Varella 43 MAPLima Romarly F. da Costa (coordinator) IAEA ITAMP Electronic excitation of H2 by electron impact July 7-9 2014 Cambridge 15 Seção de Choque Diferencial (10 cm /sr) 3 -18 c Πu -18 80 Resultados atuais Lima et al. (1988) Branchett et al. (1990) Machado et al. (2001) Khakoo and Trajmar (1986) 60 19.37 eV 13.12 eV 40 20 16.80 eV 0 10 15 20 25 H2 2 H2 2 R. F. da Costa, F. J. da Paixão and M. A. P. Lima, J. Phys. B 38, 4363 (2005) Seção de Choque Diferencial (10 cm /sr) 100 12 3 c Resultados atuais SMC (2-canais) Wrkich et al. (2002) 9 6 3 0 0 30 30 44 MAPLima Seção de Choque Diferencial (10 cm /sr) UNICAMP 9 Resultados atuais Lima et al. (1988) Parker et al. (1991) Branchett et al. (1991) Khakoo and Trajmar (1986) Wrkich et al. (2002) 3 0 30 60 90 120 Ângulo de Espalhamento (graus) 120 150 150 180 H2 2 Πu , 20 eV 6 0 90 6 -18 -18 2 Seção de Choque Diferencial (10 cm /sr) H2 3 c 60 Ângulo de Espalhamento (graus) Energia de Impacto do Elétron Incidente (eV) 12 Πu , 17.5 eV 180 c 3 Πu , 30 eV Resultados atuais Lima et al. Parker et al. Machado et al. Khakoo et al. Wrkich et al. 3 0 0 30 60 90 120 Ângulo de Espalhamento (graus) 150 180 IAEA ITAMP Electronic transition X 1Σg → A July 7-9 2014 Cambridge 5 (b) 12.5 eV 2 2 Integral Cross Section (10 cm ) (a) 40 -18 Present results Gillan et al. (1996) Trajmar et al. (1983) Campbell et al. (2001) Johnson et al. (2005) -18 R.F. da Costa and M. A. P. Lima, Phys. Rev. A 75, 022705 (2007) Σ +u of N2 by electron impact Differential Cross Section (10 cm /sr) 50 3 30 20 10 0 5 10 15 20 25 30 Present results Cartwright et al. (1977) Khakoo et al. (2005) 4 3 2 1 0 0 30 MAPLima 2 0 30 60 120 150 180 150 180 6 (d) 17.5 eV 2 -18 Present results Gillan et al. (1996) Carwright et al. (1977) Zetner and Trajmar (1987) Brunger and Teubner (2001) Khakoo et al. (2005) -18 UNICAMP 45 Differential Cross Section (10 cm /sr) (c) 15 eV 2 Differential Cross Section (10 cm /sr) 6 0 90 Scattering Angles (degrees) Electron Impact Energy (eV) 4 60 90 120 Scattering Angles (degrees) 150 180 Present results Cartwright et al. (1977) Brunger and Teubner (2001) Khakoo et al. (2005) 4 2 0 0 30 60 90 120 Scattering Angles (degrees) IAEA ITAMP Electronic transition X 1Σg → a’ July 7-9 2014 Cambridge of N2 by electron impact 3 1 (b) 12.5 eV 2 -18 Present results Trajmar et al. (1983) Campbell et al. (2001) Johnson et al. (2005) -18 R.F. da Costa and M. A. P. Lima, Phys. Rev. A 75, 022705 (2007) Σ −u Differential Cross Section (10 cm /sr) (a) 2 Integral Cross Section (10 cm ) 20 1 10 0 5 10 15 20 25 30 0.1 Present results Khakoo et al. (2005) 2 0.01 1E-3 1 1E-4 MAPLima -1 0 30 -18 0.1 0.01 1E-3 2 0 30 60 90 120 150 180 0 0 30 60 90 120 Scattering Angles (degrees) 60 4 90 120 150 180 90 120 150 180 10 (d) 17.5 eV 2 1 Differential Cross Section (10 cm /sr) -18 2 Differential Cross Section (10 cm /sr) UNICAMP 46 4 60 Scattering Angles (degrees) 6 Present results Cartwright et al. (1977) Brunger and Teubner (1990) Khakoo et al. (2005) 30 0 Electron Impact Energy (eV) (c) 15 eV 0 150 180 1 3 Present results Cartwright et al. (1977) Brunger and Teubner (1990) Khakoo et al. (2005) 2 0.1 0.01 1E-3 0 30 60 90 120 150 180 1 0 -1 0 30 60 90 120 Scattering Angles (degrees) 150 180 IAEA ITAMP July 7-9 2014 R. F. da Costa, M. H. F. Bettega, and M. A. P. Lima, Phys. Rev. A 77, 042723 (2008). Cambridge Electronic excitation of ã 3B1u state of C2H4 by electron impact UNICAMP Color lines are Close-coupling Calculations and bullets are M. Allan´s data 47 MAPLima IAEA ITAMP Surprisingly, at higher energies the agreement is not good!! July 7-9 2014 Cambridge C2H4 30.0 eV : inelastic 1st Triplet 1 Differential Cross Section (10 UNICAMP -16 2 cm /sr) Brunger ci22ch2 0,1 0,01 0,001 0 48 MAPLima 30 60 90 120 Scattering Angle (degrees) 150 180 IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 49 MAPLima Multichannel effects on the e--C2H4 scattering IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 50 MAPLima Multichannel effects on the elastic process of e--C2H4 scattering IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 51 MAPLima Multichannel effects on the elastic process of e--C2H4 scattering IAEA ITAMP July 7-9 2014 Multichannel effects on the elastic process of e--C2H4 scattering Cambridge C2H4 20 eV : elastic 1 --> 1 100 Differential Cross Section (10 UNICAMP -16 2 cm /sr) Khakoo Buckman Tanaka ci22-ch1 ci22-ch2 ci22-ch17 ci22-ch45 10 1 0,1 0 52 MAPLima 30 60 90 120 Scattering Angle (degrees) 150 180 IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 53 MAPLima Multichannel effects on the elastic process of e--C2H4 scattering IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 54 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 55 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 56 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 57 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 58 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 59 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 60 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 61 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 62 MAPLima Multichannel effects on the Electronic excitation of ã 3B1u state of C2H4 by electron impact IAEA ITAMP Back to Phenol July 7-9 2014 Cambridge MAPLima !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! ! ! !"#$!%&'( !!!!! !!!!!!!! !!!!!!!! ! !"#$!%&'!()*+'*,-!'.!-)/!%012033 !"#$!%$425$6123 !!!!!!!! !!!!!!!! !!!!!!!! !"#$!%$425$6073 ! ! ")!%*!%!( !$89!'.!-)/!%01123 !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! ! % !"#$% !!!!!!!! ! 63 !!!!!!!! ! $ !"# %! UNICAMP !"#$%&'()*+(,-. '/ 0$12 %!! "! #! $! %&! )*+,,-./0123014-256-17 %'! %(! IAEA ITAMP Back to Phenol July 7-9 2014 Cambridge $ !"# MAPLima !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! ! ! !"#$!%&'( !!!!! !!!!!!!! !!!!!!!! ! !"#$!%&'!()*+'*,-!'.!-)/!%012033 !"#$!%$425$6123 !!!!!!!! !!!!!!!! !!!!!!!! !"#$!%$425$6773 ! ! ")!%*!%!( !$89!'.!-)/!%01123 !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! ! ! % !"#$% !!!!!!!! ! 64 !!!!!!!! %! UNICAMP !"#$%&'()*+(,-. '/ 0$12 %!! "! #! $! %&! )*+,,-./0123014-256-17 %'! %(! IAEA ITAMP Back to Phenol July 7-9 2014 Cambridge !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! ! ! !"#$!%&'( !!!!! !!!!!!!! !!!!!!!! ! !"#$!%&'!()*+'*,-!'.!-)/!%012033 !"#$!%$425$6123 !!!!!!!! !!!!!!!! !!!!!!!! !"#$!%$425$6773 ! ! ")!%*!%!( !$89!'.!-)/!%01123 !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! %! ! ! $ !"# !"#$%&'()*+(,-. '/ 0$12 %!! % !"#$% UNICAMP !!!!!!!! ! "! #! $! %&! )*+,,-./0123014-256-17 65 MAPLima %'! %(! IAEA ITAMP Back to Phenol July 7-9 2014 Cambridge %" $" !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! !!!!!!!! #" ! $ !"# UNICAMP !"#$%&'()*+,(-./ '0 1 ! ! "#$!%&'( !!!!!!!! !!!!!!!! !!!!!!!! !"#$!%&'!()*+'*,-!'.!-)/!%012033 !"#$!%$425$6123 !"#$!%$425$6773 !!!!!!!! !!!!!!!! !!!!!!!! ! ! ")!%*!%!( !$89!'.!-)/!%01123 !" " !" #" $" %" ()*+,-./01234.5167 66 MAPLima &" '" IAEA ITAMP July 7-9 2014 UNICAMP Cambridge 67 MAPLima Back to Phenol (very fresh data from Michael Brunger/Cristina Lopes collaboration) IAEA ITAMP July 7-9 2014 Cambridge Thank you very much for your attention UNICAMP A copy of this presentation is at http://www.ifi.unicamp.br/~maplima/maplima-IFGW.pdf 68 MAPLima
Similar documents
“ κ
THPT Ving Tau THPT Nguyen Huc THPT Ving Tau THPT Ving Tau THPT Ving Tau THPT VIng Tau THPT Ving Tau THPT Ving Tau THPT VIng Tau THPT Ving Tau THPT Ving Tau THPT Ving Tau THPT Ving Tau THPT Ving Tau...
More informationSUNBELT SWiM SPAS
S u n b e lt S w i m S pa s Swimming, water jogging, aqua aerobics and resistance exercises are all great cardiovascular workouts, and they’re about as low-impact as you will find. Combine these fi...
More informationPolyatomic Molecular Orbital Theory
Filling the resulting MO’s of homonuclear diatomic molecules with electrons leads to the following results:
More information