Slides 5.49 MB - UC Irvine International Imaging Genetics Conference
Transcription
Slides 5.49 MB - UC Irvine International Imaging Genetics Conference
New approaches to explaining missing heritability in AD Keoni Kauwe Brigham Young University Lambert et al, Nature Genetics 2013 Karch and Goate, Biol Psych 2015 Ridge et al, PLoS ONE 2013 Updated- all known variants, 1KG imputation Ridge et al. Under Review Karch and Goate, Biol Psych 2015 • Phenotypic heterogeneity • Practical limits on sample size • Epistasis If bigger isn’t working… • • • Endophenotypes? • imaging, cerebrospinal fluid, psychometrics Other genetic features? • • Mitochondrial genome Epigenetics Creative study designs? • • deeper phenotyping public data mtDNA and imaging data temporal pole thickness whole brain volume temporal pole thickness hippocampal atrophy Ridge PG, Koop A, Maxwell TJ, Bailey MH, Swerdlow RH, Kauwe JS, Honea RA, Alzheimer's Disease Neuroimaging I: Mitochondrial haplotypes associated with biomarkers for Alzheimer's disease. PloS one 2013, 8(9):e74158. mtDNA Genome Assembly, Mapping, and Variant Detection Map Reads Realign Around InDels Recalibrate Base Quality Scores Joint Call Variants Convert multi-sample VCF to Fasta mtDNA next steps • Full analysis of all variants for known AD and other disease variants • Full annotation of genomes and variants (requires software development) • Post annotated genomes for download through the ADNI Genetics Core Population-based analysis of AD risk alleles: epistasis • CD33 : MS4A4E (p < .003, SF = 5.31) • CLU : MS4A4E (p < .02, SF = 3.81) Ebbert et al. Biol. Psychiatry. (2013). CD33-MS4A4E interaction fails to replicate by meta-analysis Study ACT1 ADC2 ADNI LOAD TARC1 UMVUMSSM_a UMVUMSSM_b UMVUMSSM_c Cache SF p−val 0.9 0.43 1.76 0.33 7.99 0.08 0.66 0.21 1.27 0.44 1.11 0.44 0.59 0.4 0.41 0.32 5.31 0.003 Meta (no Cache) 0.94 Meta (w\ Cache) 1.4 N 1858 681 371 2965 388 1058 390 271 2419 0.81 7982 0.28 10401 0.3 2.0 4.0 Synergy Factor Ebbert et al. Alz & Dem. (2015). 6.0 8.0 CLU-MS4A4E Meta-analysis supports statistical epistasis Study ADC2 ADNI LOAD TARC1 UMVUMSSM_a UMVUMSSM_b Cache SF p−val N 1.07 0.47 681 2.81 0.18 371 1.9 0.07 2965 0.39 0.19 395 2.57 0.08 1067 3.16 0.18 390 3.81 0.02 2419 Meta (no Cache) 1.79 0.008 5869 Meta (w/ Cache) 2.23 4e−04 8288 0.3 1.0 2.0 Synergy Factor Ebbert et al. Alz & Dem. (2015). 3.0 4.0 5.0 Finding the “right” genes • Loss of protein function that protects from disease constitutes a desirable and tractable therapeutic target • PCSK9 C697X and cholesterol • First reported in 2005, confirmed in 2007 • Drugs have already been approved and are in use • AD resilient individuals in UPDB and Cache County • Large pedigrees (with full medical records) • Selection of AD risk pedigrees (excess AD mortality) • Linkage (SNP array data) and Variant Analysis (WGS) !3# Posi,on# 4.478747# 9.791228# 14.210349# 18.261529# 21.988689# 25.532309# 28.998589# 32.175229# 35.798089# 39.915389# 43.673349# 47.248849# 50.989889# 54.622928# 58.766889# 62.201669# 66.777849# 69.915269# 73.380569# 76.891789# 80.389969# 84.651609# 88.887589# 93.313089# 97.037689# 101.632889# 105.153289# 108.687289# 112.252689# 116.023889# 119.715489# 122.966689# 126.554689# 130.217889# 134.154889# 138.360889# 142.681689# 145.973489# 149.757089# 154.763889# 157.969288# 161.565889# 166.578889# 170.601089# LOD$ Chr$10$*$583803$lods$ 4# 3# 2# 1# 0# 583803# !1# !2# !3# Posi+on# 4.936747# 11.276549# 17.249469# 24.485309# 31.149269# 38.455869# 44.784069# 49.500488# 54.497749# 59.605069# 64.878929# 70.612989# 75.781709# 80.424429# 85.503569# 90.589369# 96.748609# 102.215669# 107.133069# 113.624069# 118.530069# 124.059869# 128.947269# 134.863269# 140.152069# 146.803669# 151.703669# 156.450469# 161.957267# 167.730069# 172.966869# 178.933869# 184.356069# 189.495869# 194.544069# 200.680668# 206.128869# 211.056269# 216.558469# 223.616069# 228.653469# 233.856469# 239.214469# 245.124468# 250.746069# 257.774468# Chr$2$&$546137$lods$ 3# 2# 1# 0# 546137# !1# !2# Variant Analysis • Quality Scores, removal of SNPs in highly variable portions of the genome • Function, heterozygosity • Experimentally observed to be associated with a phenotype • Are within 2 hops upstream and that are known or predicted to affect susceptibility to late-onset Alzheimer disease or genes within 1 hop downstream of them • Variants were excluded that are observed with an allele frequency greater than or equal to 3.0% of the genomes in public databases Validation: Results 405 Cases, 801 Controls (TREM2) SNP Gene p-value OR All Samples MAF (controls/cases) rs142787485 RAB10 0.01836 0.5853 0.04135 / 0.02759 rs7653 SAR1A 0.004947 0.3534 0.03 / 0.01 Validation: Results 544 Cases, 3605 Controls (Cache) SNP Gene rs142787485 RAB10 rs7653 SAR1A p-value OR 0.028 0.69 All Samples MAF (cont/cases) cases 0.045 / 0.031 0.26 0.87 0.025 / 0.021 Validation: Results Gene-based (SKAT-O) 132 cases, 359 controls (ADNI) • RAB10 (p=1E-04) • SAR1A (P=1) RAB10 • RAB10 is a member of the RAS oncogene family. It is involved in regulation of membrane trafficking and movement of proteins from the golgi apparatus to the membrane (Mitra, 2011; Hutagalung, 2011; Bao, 1998). • RAB10 is known to bind APP {Olah, 2011 #2748} and RNAi silencing of RAB10 is known to decrease AB levels without affecting sAPPBeta levels, possibly by altering gamma secretase cleavage or changing secretion/degradation of AB (Udayar, 2013). • Rs142787485 results in altered miRNA regulation via the miRNAs MIR374A and MIR374B (Garcia, 2011; Liu, 2012). • Together this information suggests that the rs142787485 variant may result in a change in RAB10 expression via miRNA regulation. Reduced expression could result in decreased abeta 42, a known mechanism for reducing AD risk (Jonsson, 2012). Increased expression of RAB10 in AD vs. control neurons _at (RAB10) - CC ease Status RAB10 Expression (log10) 22980_at( log222981_s_at (RAB10)- CC AD 222981_s_at( P=0.03 3.5 3.0 2.5 2.0 1.5 Control Disease Status AD Modulation of RAB10 expression does not alter full length APP RAB10 expression alters Aβ Conclusions • • RAB10 variants may impact AD risk • Suggests RAB10 may be a useful therapeutic target for AD Knockdown of RAB10 results in favorable AB42/AB40 ratio AD DREAM Challenge Training Q1: N=767 (ADNI) Q2: N=176 (ADNI) Q3: N=628 (ADNI) Leaderboard model development Q1: N=588 (ROS/MAP) Q2: N=129 (ROS/MAP) Q3: N=94 (ANM) Q1:100maxsubmissions Q2/Q3:50maxsubmissions ▪AD#1 Challenge Scientific Advisory Board ▪Co-Chairs ▪Peter St. George Hyslop (Cambridge/Toronto) ▪Robert Green (Harvard) ▪Members ▪Alan Evans (McGill University) ▪Chris Gaiteri (Allen Institute for Brain Science) ▪David Bennett (Rush) ▪George Vradenburg (USAgainstAlzheimer's) ▪Gil Rabinovici (UCSF) ▪Gustavo Stolovitzky (IBM/DREAM) ▪Kaj Blennow (Goteborg University) ▪Keoni Kauwe (BYU) ▪Kristine Yaffe (UCSF) ▪Nolan Nichols (University of Washington) ▪Paul Thompson (UCLA) ▪Reisa Sperling (Harvard) ▪Scott Small (Columbia) ▪Ex Officio ▪Maria Carillo (Alzheimer's Association) ▪Mike Weiner (UCSF, ADNI PI) ▪Neil Buckholz (NIH-NIA) Final Scoreboard model evaluation Q1: N=587 (ROS/MAP) Q2: N=128 (ROS/MAP) Q3: N=88 (ANM) Question 1: Predict the change in MMSE scores 24 months after initial assessment using clinical data and SNP array data Question 2: Predict the set of cognitively normal individuals whose biomarkers are suggestive of amyloid perturbation using clinical data and SNP array data Question 3: Classify individuals into diagnostic groups and to predict MMSE scores using processed MRI data AD DREAM Challenge • • No compelling scientific results Lessons learned • • • Proper harmonization/documentation results in broad use of data (527) • “truly open dataset” Need engagement of more scientists with domain expertise Sample size or depth/quality of phenotyping? Summary • • Great progress in AD Genetics Further progress will require: • • Innovative use of existing data • Studies that address complexity in genetic architecture • Evaluation of other genetic features Innovative use of samples with high quality phenotyping (even with lower N) • structural variants, epigenetics • • Excellent Undergraduates • • Extensive research experience Training in Computer Science, Statistics, Biology Fantastic candidates for PhD programs Acknowledgments • Perry Ridge, Mark Ebbert, Kauwe Lab Undergraduates (BYU) • Lisa Cannon-Albright (Univ. of Utah) • Carlos Cruchaga, Celeste Karch (WUSM) • Alison M. Goate (MSSM) • The Cache County Study on Memory in Aging • Mary Lou Fulton Supercomputing Center at BYU • Alzheimer’s Disease Genetics Group • the Alzheimer Disease Genetic Consortium (ADGC) • Alzheimer’s Disease Neuroimaging Initiative (ADNI) • the GERAD Consortium http://www.assayprotocol.com/uploads/ APP%E5%89%AA %E5%88%87.jpg In silico inhibitor screen • Two interaction pockets • 4.7 million small molecules Small Molecule Inhibitors APP APOE e4 TREM2 PLD3 APOE e2 GWAS SNPs Ridge et al and Kauwe, PLoS ONE 2013 Follow-up Discussion • Additional genetic data- gene based tests, allele specific expression, etc. • • Gene based test using coding variants only? • Drug redirection? Methods for evaluating the individual variant impact