Anatomical structure of cladodes of Ruscus L. taxa (Liliaceae) in
Transcription
Anatomical structure of cladodes of Ruscus L. taxa (Liliaceae) in
FABAD J. Pharm. Sci., 36, 119-128, 2011 RESEARCH ARTICLE Anatomical structure of cladodes of Ruscus L. taxa (Liliaceae) in Turkey Ayşegül GÜVENÇ*°, Maksut COŞKUN*, Okan ARIHAN** Anatomical structure of cladodes of Ruscus L. taxa (Liliaceae) in Turkey Türkiye’deki Ruscus L. taksonlarının (Liliaceae) Kladot Anatomisi Summary Özet The genus “Ruscus” of Liliaceae family is represented by four species (5 taxa) in Turkey; namely R. aculeatus L., R. hypoglossum L., R. colchicus P. F. Yeo, and R. hypophyllum L. Two varietes of R. aculeatus (R. aculeatus var. aculeatus and R. aculeatus var. angustifolius Boiss.) are also listed in the Flora of Turkey. Liliaceae familasında yer alan “Ruscus” cinsi, Türkiye’de R. aculeatus L., R. hypoglossum L., R. colchicus P. F. Yeo ve R. hypophyllum L. olmak üzere 4 tür (5 takson) ile temsil edilmektedir. R. aculeatus (R. aculeatus var. aculeatus ve R. aculeatus var. angustifolius Boiss.) iki varyete ile Türkiye Flora’sında yer almaktadır. Microscopical properties of transverse sections from the cladodes of each taxa were illustrated and photographed. In the cross section, it was not possible to differentiated upper and lower epiderma of cladodes. In the mesophyll of cladodes palisade and spongy parenchyma are not seen. There are a few layers of parenchyma cells beneath the upper epidermis and above the lower epidermis. Cross section of the midrib is clearly convex in the lower surface. Vascular bundles have been surrounded by sclerenchymatic bundles. The cladode is isobilateral and both epiderma are similar in appearance being composed of generally long cells with, straight or slightly sinuous walls. Numerous paracytic stomata are present on both surfaces. Her bir taksonun kladotlarından alınan enine kesitlerin mikroskobik özellikleri, çizim ve fotoğraflarla verilmiştir. Kladotların enine kesitlerinde alt ve üst epiderma farklılığını belirlemek mümkün değildir. Kladot mezofilinde palizat ve sünger parenkiması görülmemiştir. Üst epidermanın altında ve alt epidermanın üstünde çok dar parenkimatik hücre tabakası yer almaktadır. Orta damar, enine kesitte, alt yüzde hafifçe konvekstir. İletim demetleri sklerenkimatik bir halka ile kuşatılmıştır. Kladotlar isobilateraldir. Her iki epiderma genellikle uzun hücrelerden oluşmuş ve birbirine benzer görünüşte, düz veya hafifçe girintili çıkıntılı çeperlidir. Her iki yüzde de çok sayıda parasitik tipte stoma görülmektedir. Key Words: Ruscus aculeatus, Ruscus hypoglossum, Ruscus colchicus, Ruscus hypophyllum, cladodes, anatomy, Liliaceae. Anahtar Kelimeler: Ruscus aculeatus, Ruscus hypoglossum, Ruscus colchicus, Ruscus hypophyllum, kladot, anatomi, Liliaceae. Received: 01.10.2012 Revised: 09.01.2013 Accepted: 11.02.2013 * Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey ** Yüzüncü Yıl University, Faculty of Arts and Sciences, Department of Biology, Zeve Campus-Van, Turkey ° Corresponding Author E-mail: aguvenc@ankara.edu.tr 119 Güvenç, Coşkun, Arıhan INTRODUCTION Ruscus species are members of the Liliaceae family, which are perennial, rhizomatus and evergreen shrubs. The genus Ruscus is native to the Mediterranean, Southern and Western Europe. Five taxa of Ruscus grow naturally in Turkey. These are R. aculeatus var. aculeatus, R. aculeatus var. angustifolius, R. hypoglossum, R. colchicus and R. hypophyllum (1). The underground parts of the Ruscus aculeatus have been used medicinally as diuretic and antiinflamatory agents, as well as for hemorroids treatments and atherosclerosis and circulatory insufficiency prevention. As a treatment for diseases of circulatory system, R. aculeatus has a long tradition of proven success in Europe. A written record of its use as a phlebotherapeutic agent dates back at least 2000 years. These species are called as “sılcan, tavşanmemesi, tavşan kirazı, diken kökü, yandak dikeni, kandak, or sıçan dikeni”. A decoction of roots of R. aculeatus is widely used as a diuretic and for the treatment of urinary system disorders, as well as kidney stones in folk medicine in the vicinities of Eskişehir, Hatay, Mersin in Turkey (2-4). The roots of these species, which is exported around 200-1000 tons per year from Turkey, either fresh or as dried roots. Because of this reason, R. aculeatus is vulnerable in Turkey (5). In the chemical studies conducted on various parts of the Ruscus species, flavonoids and steroidal saponins particularly ruscine, ruscoside, neoruscogenin and ruscogenin as well as many new steroidal saponins have been identified. Intensive chemical studies have been carried on the Ruscus species and isolated many new steroidal saponins. The amounts of steroidal saponins have also been determined by HPTLC, HPLC, HPLC-ESI-MS, and UPLC methods (6-18). Stem leaves in Ruscus species, are scale-like and membranous, additionally, stems are reduced to photosynthetic phylloclades. Being a metamorphic form of stem, anatomical structure of the phylloclades should be very interesting. In a study, Sachs et al. investigated variable development and cellular patterning in the epidermis of R. hypoglossum. This study has concerned the presence and the meaning of immature stomata in the epidermis of it. The distribution of the stomata of Ruscus was remarkably variable (19). Although a lot of work has been done on R. aculeatus, especially morphological characteristics, phylloclade development and systematic (20-22), a few data are available in the literature related to anatomical structure of the genus (19, 23). We studied cross sections obtained from cladodes of R. aculeatus which is in European Pharmacopoeia 2008 (24) and the other three species growing in Turkey. We used the term of cladodes, because this term is used in the Flora of Turkey. Materials and methods Research materials were collected from various locations in Turkey. Voucher specimens were deposited in AEF (the Herbarium of Ankara University, Faculty of Pharmacy) Locations of the investigated plant samples are given in Table 1. Plants materials were preserved in 70% ethanol. Cross sections of the cladodes of the Ruscus taxa were performed by hand from the preserved materials in chloral hydrate solution and Sartur reagent. Sartur Table 1. Locations of the studied Ruscus taxa Species Locality Ruscus aculeatus var. aculeatus A3 Sakarya: Karasu, 22.9.2001, M. Coşkun, A. Güvenç & C. S. Erdurak (AEF 22940). R. aculeatus var. angustifolius A6 Samsun: Terme, Sivaslar village, 14.3.2002, M. Coşkun & O. Arıhan (AEF 22939). R. colchicus A6 Ordu: Ünye, 15.3.2002, M. Coşkun & O. Arıhan (AEF 22934). R. hypoglossum A7 Giresun: Tirebolu, İnköy roadside, 15.3.2002, M. Coşkun & O. Arıhan (AEF 22930); R. hypophyllum A7 Giresun: Tirebolu to Espiye, 16.3.2002, M. Coşkun & O. Arıhan (AEF 22933); 120 FABAD J. Pharm. Sci., 36, 119-128, 2011 reagent contains KI-I, aniline, sudan III, lactic acid, alcohol and water (25). Illustrations were made using a Leitz drawing prism attached to a LeitzWetzlar (45o) microscope. The cross sections were photographed with an automatic camera attached to Olympus BX 50 microscope. Results The anatomical features were observed in cross sections of the cladodes (Figures 1-10) and the comparisons of the anatomical characters of cladodes of taxa are given in Table 2. Cross section of cladode blade In the cross-section, it was not possible to differentiate upper and lower surfaces of the cladodes; after a thick cuticle, epidermis is preceded by parenchymatic cells. In the mesophyll of cladodes, palisade and spongy parenchymas were not seen. There were a few layers of parenchyma cells beneath the upper epidermis and above the lower epidermis. This parenchyma contains chloroplast and they exist instead of palisade parenchyma. Between the two parenchyma layers, one or two layers of large and colourless cells are present, differing from one species to other. This cell layer exists instead of spongy parenchyma (Fig. 2 A, B; Fig.3 A; Fig. 4 A; Fig. 5 A, B; Fig. 6 A, B; Fig. 9 A; Fig. 10 A). Cross section of the midrib Cross section of the midrib is clearly convex in the lower surface (Fig. 1). Vascular bundles are Figure 1. Transverse sections of the cladodes of Ruscus species growing in Turkey. A- R. aculeatus var. aculeatus; B- R. aculeatus var. angustifolius; C- R. colchicus; D- R. hypoglossum; E- R. hypophyllum. collateral and surrounded by sclerenchyma. The number of vascular bundles differ from species to species; there are numerous vascular bundles in R. colchicus, R. hypoglossum, and R. hypophyllum Table 2. Comparison of the cross sections of different Ruscus taxa native in Turkey. Epidermal cell Upper Lower Colorless Vascular bundles in the Section of parenchyma parenchyma parenchyma midrib cladode margin R. aculeatus var. aculeatus Square or rectangular 3-4 (-5) layers 3-5 layers 2 layers 1, pith sclerenchymatic rectangular R. aculeatus var. angustifolius rectangular 3-4 layers 3- (-4) layers 2 layers 1, pith sclerenchymatic rectangular R. colchicus rectangular 3-5 layers 2-4 layers 1- (-2) layers 6-7,pith sclerenchymatic and parenchymatic acute R. hypoglossum rectangular 2-3 layers 2-3 layers (1-) -2 layers 10-11 (-13), pith sclerenchymatic and parenchymatic rhombic R. hypophyllum rectangular 2-4 layers 2-3 layers 1- (-2) layers 10-11 (-13), pith sclerenchymatic and parenchymatic acute Species 121 Güvenç, Coşkun, Arıhan Figure 2. A-Cross sections of the cladodes margins of R. aculeatus var. aculeatus, A1- Surface of upper epidermis, A2-Surface of lower epidermis; B- R. aculeatus var. angustifolius; B1-Surface of upper epidermis B2-Surface of lower epidermis. acuticle, b- epidermis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, g- phloem, h- xylem. however few in the R. aculeatus (Fig. 3B; Fig. 4B; Fig. 7; Fig. 8; Fig. 10B). Vascular bundles other than midrib the cross section of the vascular bundles of the cladode blade, phloem is at the upper surface. 122 Surface epidermis Upper and lower epiderma are similar in appearance being composed of generally long cells, with straight or slightly sinuous walls. Numerous paracytic stomata are present on both surface (Fig. 2 A1, A2, B1, B2; Fig. 5 A1, A2, B1, B2; Fig. 9 A1, A2). FABAD J. Pharm. Sci., 36, 119-128, 2011 Figure 3. Cross sections of the cladodes of R. aculeatus var. aculeatus. A- leaf blade, B- midrib; a- cuticle, b- epidermis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, g- phloem, h- xylem. Figure 4. Cross sections of the cladodes of R. aculeatus var. angustifolius. A- leaf blade, B- midrib; a- cuticle, bepidermis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, g- phloem, h- xylem. Discussions In this study, we have reported the anatomical structure of cladodes of Ruscus taxa native to Turkey. Anatomical characteristics of the cladodes of these taxa have been studied and their structures have been determined. It has been observed in the anatomical structure of the cladodes of various Ruscus taxa that, especially midrib and section of cladode margins are quite different from each other. The number of vascular bundles in the midrib is one in R. aculeatus; however, this number is six or more than the six in the R. colchicus, R. hypoglossum and R. hypophyllum, respectively. Section of the cladode margin is rectangular in R. aculeatus, acute in R. colchicus and R. hypophyllum, and rhombic in R. hypoglossum (Figures 1, 2, 5, 9; Table 2). In Ruscus and Asparagus species (both from Asparagaceae family), stem leaves become scalelike and membranous as a result of the reduction of the stem to photosynthetic cladodes. In a previous study, we have reported the anatomy of cladodes of Asparagus species (26). In Asparagus species palisade and spongy parenchyma are seen in the mesophyll of cladodes. However, in Ruscus species these two types of parenchyma are not observed. Vascular bundles in the midrib of certain Ruscus taxa are numerous. This property is characteristic for stems of Monocotyledonae. Crystals of calcium oxalate are not seen in the cladodes of Ruscus species. References 1. Davis PH. Ruscus L. In: Davis PH. (ed.), Flora of Turkey and The East Aegean Islands. Vol. 8:72-74, Edinburgh University Press; Edinburgh; 1984. 2. Başer KHC, Honda G, Miki W. Herb Drugs and Herbalists in Turkey. Instutute for the study of Languages and Cultures of Asia and Africa. Tokyo, p. 36, 231, 1986. 123 Güvenç, Coşkun, Arıhan Figure 5. A-Cross sections of the cladodes margins of R. colchicus, A1- Surface of upper epidermis, A2-Surface of lower epidermis; B- R. hypoglossum B1-Surface of upper epidermis B2-Surface of lower epidermis a- cuticle, b- epidermis, cupper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, g- phloem, h- xylem, ı- stoma. 124 FABAD J. Pharm. Sci., 36, 119-128, 2011 Figure 6. Cross sections of the cladodes of A- R. colchicus. B- R. hypoglossum; a- cuticle, b- epidermis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- stoma Figure 7. Cross section of the cladodes midrib of R. colchicus. a- cuticle, b- epider-mis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, gphloem, h- xylem. Figure 8. Cross section of the cladodes midrib of R. hypoglossum. a- cuticle, b- epider-mis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, fsclerenchyma, g- phloem, h- xylem. 125 Güvenç, Coşkun, Arıhan Figure 9. A- Cross sections of the cladodes margins of R. hypophyllum. A1- Surface of upper epidermis, A2-Surface of lower epidermis; a- cuticle, b- epidermis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, g- phloem, h- xylem. 126 FABAD J. Pharm. Sci., 36, 119-128, 2011 Figure 10. Cross sections of the cladodes of R. hypophyllum. A- leaf blade, B-midrib; a- cuticle, b- epidermis, c- upper parenchyma, d- colorless parenchyma, e- lover parenchyma, f- sclerenchyma, g- phloem, h- xylem. 3. Baytop T. “Türkiye’de Bitkiler ile Tedavi. Geçmişte ve Bugün”. 2nd ed., Nobel Tıp Kitabevleri, İstanbul, p 353, 1999. 4. Tabata M, Honda G, Sezik E. A report on traditional medicine and medicinal plants in Turkey (1986). Faculty of Pharmaceutical Sciences, Kyoto University, pp. 52, 54, 1988. 5. Özhatay N, Koyuncu M, Atay S, Byfield A. Türkiye’nin Doğal Tıbbi Bitkilerinin Ticareti Hakkında Bir Çalışma. Doğal Hayatı Koruma Derneği, İstanbul, Türkiye. p. 50, 1997. 6. Elsohly AM, Doorenbos NJ, Quimby MW, Knapp JE, Slatkin DJ, Schiff PL, Euparone, a new benzofuran from Ruscus aculeatus L. J Pharm Sci 63: 1623-24, 1974. 7. Evans WC. Trease and Evans’ pharmacognosy. Thirteenth edition, English Language Book Society/ Bailliere Tindall, Oxford, p. 491, 1989. 8. Blumenthal M, Busse WR, Goldberg A, Gruenwald J, Hall T, Riggins CW, Rister RS. The complete German commission E monographs. Therapeutic guide to herbal medicines. American Botanical Council, Austin, Texas, pp. 99-100, 1998. 9. PDR for Herbal Medicines. Second edition. Medical Economics Company, Montvale, New Jersey, pp. 561-62, 2000. 10. Redman DA. Ruscus aculeatus (Butcher’s Broom) as a potential treatment for orthostatic hypotension, with a case report. J. Alternative Complementary Med. 6: 539-49, 2000. 11. Panova Von D, Nikoloff St, Achtardjieff C. Steroidsapogenine und sterole aus Ruscus hypoglossum. Planta Medica 26: 90-3, 1974. 12. Peneva B, Krasteva I, Nikolov S, Minkov E. HPTLC densitometric determination of ruscogenins in dry extract of Ruscus aculeatus L. Pharmazie 55: 103-6, 2000. 13. Bertani W, Forni GP. HPLC determination of ruscogenin and neoruscogenin in raw material and pharmaceutical preperations. Fitoterapia 55, 101-4, 1984. 14. Mimaki Y, Kuroda, Yokosuka A, Sashida Y. A spirostanol saponin from the underground parts of Ruscus aculeatus. Phytochemistry 51: 689-92, 1999. 15. De Combarieu E, Falzoni M, Fuzzati N, Gattesco F, Giori A, Lovati M, Pace R. Idetification of Ruscus steroidal saponins by HPLC-MS analysis. Fitoterapia 73: 583-96, 2002. 16. Güvenç A, Şatır E, Coşkun M. Determination of ruscogenin in Turkish Ruscus L. species by UPLC. Chromatographia 66: 141-5, 2007. 17. Mimaki Y, Aoki T, Jitsuno M, Kılıç CS, Coşkun M. Steroidal glycosides from the rhizomes of Ruscus hypophyllum. Phytochemistry 69: 729-37, 2008. 18. Mimaki Y, Aoki T, Jitsuno M, Yokosuka A, Kılıç CS, Coşkun M. Steroidal saponins from the rhizomes of Ruscus hypophyllum. Natural Product Communications 3: 1671-8, 2008. 19. Sachs T, Novoplansky N, Kagan ML. Variable development and cellular patterning in the epidermis of Ruscus hypoglossum. Annals of Botany 71: 237-43, 1993. 20. Cooney-Sovetts C, Sattler R. Phylloclade development in the Asparagaceae: an example of 127 Güvenç, Coşkun, Arıhan homoeosis. Botanical Journal of the Linnean Society 94: 327-71, 1986. 21. Hirsch AN. A developmental study of the phylloclades of Ruscus aculeatus L. Botanical Journal of the Linnean Society 74: 355-65, 1977. 22. Rudall PJ, Conran JG, Chase MW. Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation. Botanical Journal of the Linnean Society 134: 73-92, 2000. 23. Schulte PJ, Gibson AC. Hydraulic conductance and tracheid anatomy in six species of extatnt seed plants. Can J Bot 66: 1073-9, 1987. 128 24. European Pharmacopoeia, 6th Ed., Vol. 2, Strasbourg: Council of Europe pp. 1355-6, 2008. 25. Çelebioğlu S, Baytop T. Bitkisel tozların tetkiki için yeni bir reaktif. Farmakognozi Enstitüsü Yayınları, No. 10. Farmakolog 19, 301, İstanbul. 1949. 26. Güvenç A, Koyuncu M. Studies on the anatomical structure of cladodes of Asparagus L. species (Liliaceae) in Turkey. Israel Journal of Plant Sciences 50: 51-65, 2002.