Schneider Diavolezza 2016
Transcription
Schneider Diavolezza 2016
Katharina Schneider 2/2/2016, CQom Workshop, Diavolezza, Switzerland Towards the transduction of radiofrequency qubits to optical qubits with slotted photonic crystal cavities Katharina Schneider, Paul Seidler IBM Research β Zurich ksc@zurich.ibm.com © 2016 IBM Corporation Outline 1. Optomechanics with 1D slotted photonic crystals High optomechanical coupling rate based primarily on the moving boundary effect. 2. Piezoelectric actuation of a 1D photonic crystal Towards the coherent conversion of radiofrequency photons to optical photons 2 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Slotted 1D photonic crystal structures Q = 1.4 x 105 (measured) V = 0.0096 (l/n)3 β Q/V > 107 Active material Seidler et al., Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio, Opt. Exp., 32483 (2013); Optomechanics Sensing and Metrology Modulators for communication Coherent transduction of RF to optical photons Foundations of quantum mechanics 3 Optical switches/transistors Ultralow-threshold lasers Single-photon sources Entangled photon sources Electrical or optically driven harmonic generation/frequency conversion Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Fundamentals of Optomechanics mechanical mode Ξ©π , Ξπ optical mode Mirror displacement β Change of the optical cavity mode πππ ππ π₯ β πo + π₯+β― ππ₯ laser ο·o , ο« Vacuum optomechanical coupling strength ππo π0 = β π₯π§ππ ππ₯ π₯=π₯π§ππ β (π β + π) Optical field Harmonic oscillator + interaction Hamiltonians π» = οππ πβ π + οΞ©π π β π + οπ0 (π β + π) πβ π Two contributions: π0 = πππ,ππ΅ +πππ,ππΈ Mechanical deformation 1. Moving dielectric boundary 2. Photo-elastic effect 4 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Optimization of the slottes photonic crystal for optomechanics ο§ Electric field is concentrated in the air region at the high index contrast boundary ο Small contribution of photo-elastic effect ο Moving dielectric boundary effect dominates ο§ Optimization of F = Q β π0 with COMSOL and Matlab ο Coupling can be increased by making the slit narrower ο Challenge: maintain the high mechanical resonance frequency Achieved structure from simulation: Optical field Mechanical deformation simulated: Ξ©π /2Ο = 3.3 GHz simulated: Q = 1.8 x 106 5 πππ,ππ΅ β β5 β πππ,ππΈ Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Device structures, that exploit the effect of the slit Optical field Mechanical deformation Open slit 760 MHz Q = 1.6 x 106 Slit closed with crossbars 3.2 GHz Q = 1.8 x 106 Vertical slit 6.1 GHz Favored properties can be engineered by design. Q = 3.8 x 105 Horizontal Double slit 6 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Fabrication process HSQ Si (220 nm) SiO2 (3mm) 100-keV e-beam exposure/ development Si Si Buffered HF wet etch Si 7 HSQ Si SiO2 HBr/O2 ICP-RIE Si SiO2 Si Si Si photoresist Si SiO2 Si Katharina Schneider, ksc@zurich.ibm.com UV photo exposure/ development SiO2 Si © 2016 IBM Corporation SEM images of devices 40nm 8 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation How to measure the optomechanical coupling strength g0 Optomechanically induced transparency and absorption Calibration tone Gorodetsky et al, βDetermination of the vacuum optomechanical coupling rate using frequency noise calibrationβ, OSA (2010) 9 Weis et al., βOptomechanically Induced Transparency,β Science 330, 1520 (2010). © 2016 IBM Corporation Katharina Schneider, ksc@zurich.ibm.com Calibration tone measurement Power Meter 99:1 Fiber Optic Splitter Fiber Polarization Controller Phase modulator EDFA Electrical Spectrum Analyzer Tunable Infrared Laser β’ The cavity transduces laser frequency fluctuations and cavity frequency fluctuations in the same way: ππ Ξ© = GV,Ο Ξ© β’ β’ 10 Optical Receiver Tunable Bandpass Filter 2 β ππ Ξ© Phase-modulate the laser field with a known modulation depth π½ at frequency Ξ©πππ . ? ? Compare the calibration tone signal with the thermomechanical frequency noise. Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Calibration tone measurement mechanical resonance calibration tone Integrated area beneath the thermomechanical noise peak: π2 π = 2π02 ππ‘β GV,Ο Ξ©π 2 Integrated area beneath calibration tone: π2 πππ 1 2 2 = Ξ©πππ π½ GV,Ο Ξ©πππ 2 2 Comparison leads to N g0/2Ο 9 960 ± 50 kHz 10 560 ± 20 kHz π½Ξ©πππ 1 π 2 π GV,Ο Ξ©πππ π0 = 2 ππ‘β π 2 πππ GV,Ο Ξ©π Gorodetsky et al, βDetermination of the vacuum optomechanical coupling rate using frequency noise calibrationβ, OSA (2010) 11 © 2016 IBM Corporation Katharina Schneider, ksc@zurich.ibm.com Comparison to existing designs Jasper Chan, Amir H. Safavi-Naeni, Jeff T.Hill. Seán Meenehan, and Oskar Painter; Optimized optomechanical crystal with acoustic radiation shield, Appl. Phys. Lett. 101 081115 (2012) 12 Rick Leijssen and Ewold Verhagen; Strong optomechanical interactions in a sliced photonic crystal nanobeam, Scientific reports 5, 15974 (2012) Chan et al. Leijssen et al. π0 /2Ο 194 THz 186.7 THz Q0 1.2·106 400 πM/2Ο 5.1 GHz 5.8 MHz QM 6.8·105 200 (free space) πππ,ππΈ /2Ο 950 kHz * πππ,ππ΅ /2Ο -90 kHz * π0 /2Ο 1.1 MHz Katharina Schneider, ksc@zurich.ibm.com *simulation 11.5 MHz © 2016 IBM Corporation How to measure the optomechanical coupling strength g0 Optomechanically induced transparency and absorption Calibration tone Gorodetsky et al, βDetermination of the vacuum optomechanical coupling rate using frequency noise calibrationβ, OSA (2010) 13 Weis et al., βOptomechanically Induced Transparency,β Science 330, 1520 (2010). © 2016 IBM Corporation Katharina Schneider, ksc@zurich.ibm.com Optomechanically induced absorption (OMIA) Power Meter Int 99:1 Fiber Optic Splitter Fiber Polarization Controller ππ EDFA EOM Vector Network Analyzer Optical Receiver Tunable Bandpass Filter Tunable Infrared Laser Freq Constructive interference of the lower sideband and the intracavity probe field ο Enhanced transparency window for the probe beam Weis et al., βOptomechanically Induced Transparency,β Science 330, 1520 (2010). 14 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Inferring the optomechanical vacuum coupling rate g0 Expected transmission: π π /2 π‘ ΞOπΆ = πΊ2 π /2 + π Ξ©π β ΞππΆ + Ξπ /2 ο optomechanical coupling rate πΊ can be measured G = π0 β ππππ£ π π laser optical mode ο·o , ο« π π Ξ©π , Ξπ mechanical mode The intracavity photon number ππππ£ can be determined from the power leaving the cavity. H.Haus, βWaves and fields in optoelectronics,β , PrenticeHall, (1984) ο Quite a number of uncertainties in this calculation! Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation OMIA β data used for evaluation N=9 16 Katharina Schneider, ksc@zurich.ibm.com N=10 © 2016 IBM Corporation Final results for 1D slotted photonic crystals simulation calibration tone OMIA N g0/2Ο [kHz] g0/2Ο [kHz] 9 700 ± 400 970 ± 70 10 500 ± 300 560 ± 70 g0/2Ο [kHz] 967 The slotted photonic crystal devicesβ¦ β’ show a high vacuum optomechanical coupling strength. β’ exploit optomechanical coupling based primarily on the moving boundary effect. β’ achieve the resolved sideband regime. 17 N π /2Ο [GHz] Ξ©π /2Ο [GHz] 9 4.01 2.69 10 1.70 2.68 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Advantage of moving boundary effect because of wavelength independence! 18 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Mach-Zehnder interferometer to increase the measured RF power Power Meter πΌππ β πΈ1 πΈ2 β π ππ + ππ β π½ β cos ππ π‘ + Ξπ 99:1 Fiber Optic Splitter Fiber Polarization Controller + πΈ1 πΈ2 β π ππ β ππ β π½ β cos βππ π‘ + Ξπ EDFA Electrical Spectrum Analyzer Optical Receiver + πΈ22 β π ππ β π ππ β ππ β π½ β cos ππ π‘ Tunable Bandpass Filter + πΈ22 β π ππ β π ππ + ππ β π½ β cos ππ π‘ Tunable Infrared Laser 9:1 1:1 no Device 19 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Outline 1. Optomechanics with 1D slotted photonic crystals High optomechanical coupling rate based primarily on the moving boundary effect. 2. Piezoelectric actuation of a 1D photonic crystal Towards the coherent conversion of radiofrequency photons to optical photons 20 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Microwave quantum computer interfaces Stefan Filip, IBM Research, Zurich: Quantum information processing with superconducting circuits CLIENT Blind Quantum Computing Quantum computation without access to client data Prepare and receive optical states Typical qubit frequency: 5-10 GHz How to communicate with a quantum computer over long distances? Quantum Optical Communication Channel Use optical qubits to reduce decoherence! 300 K 10 mK Enable secure, remote interaction with quantum computers 21 slide adapted from J.Orcutt, IBM Research Yorktown © 2016 IBM Corporation Alternatives for RF/microwave to optical conversion optical mode laser mechanical mode Ξ©π , Ξπ Ξπ ππ π0 Ξπ π0ππ π ππππ£ ο·o , ο« Ξ©π Compute Electrostatic actuation Ξ©π π0 Freq Transmit Piezoelectric actuation C C d33 L L R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal and K. W. Lehnert, βBidirectional and efficient conversion between microwave and optical light,β Nature Physics 10, 321-326 (2014). 22 J. Bochmann, A. Vainsencher, D. D. Awschalom and A. N. Cleland., Nanomechanical Coupling between microwave and optical photons, Nat. Phys. Lett. 2478 (2013) Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Frequency conversion in the quantum regime with an intermediate mechanical resonator Efficient coupling into and out of the cavities. Couplings greater than relaxation rates: 2π0 ππππ£ β« Ξπ , π Requirements The transducer should not add any noise. 23 Bandwidth: FWHM of the mechanical oscillator in presence of the drives F. Lecocq et al., Mechanically mediated microwave frequency conversion in the quantum regime, arxiv: 1512.00078v1 © 2016 IBM Corporation Summary Optomechanics with 1D slotted photonic crystals β’ Resolved sideband regime β’ High optomechanical coupling strength of 960 kHz β’ Based primarily on the moving boundary effect Towards the coherent conversion of radiofrequency photons to optical photons Quantum Optical Communication Channel superconducting metal electrodes 24 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation Special thanks toβ¦ β’ Prof. Kippenberg and the k-Lab β’ Bert Offrein and the IBM photonics group β’ Antonis Olziersky Thanks for your attention! 25 Katharina Schneider, ksc@zurich.ibm.com © 2016 IBM Corporation
Similar documents
E51 • T51 Series
NOTES All dimensions in inches. May vary Β± ΒΌ inches. Not for construction purposes unless certified. *See motor dimensions for βC-AHβ dimension (Varies depending on motor enclosure). Β© Copyright ...
More informationE51 • T51 Catalog Pages
56C Thru 215TC Motor Frames FRAME 56C 143 TC 145 TC 182 TC 184 TC 213 TC 215 TC
More information