XPCS: X-Ray Photon Correlation Spectroscopy
Transcription
XPCS: X-Ray Photon Correlation Spectroscopy
The European X-Ray Free-Electron Laser 1 XPCS: X-Ray Photon Correlation Spectroscopy Anders Madsen, European X-ray Free Electron Laser Facility, Hamburg anders.madsen@xfel.eu HSC17: Dynamical properties investigated by neutrons and synchrotron X-rays ESRF, 16 September 2014 Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Outline Introduction to coherent X-rays • coherence? • coherent X-ray scattering, SAXS, WAXS • speckle & photon statistics Introduction to XPCS • Time correlation functions • 2D XPCS, signal to noise ratio • Two-times and higher order correlations XPCS examples (depending on time): • Polymer gel during gelation (Czakkel et al.) • Concentrated hard-sphere suspensions (Kwasniewski et al.) • Surface dynamics of nanoparticle suspensions (Orsi et al.) •… Outlook to the European XFEL & the MID station Anders Madsen, European XFEL, 2 The European X-Ray Free-Electron Laser Coherence 3 • Quantum mechanics probability amplitudes (waves) • Optics Young’s double slit experiment, interference • X-ray (and neutron) scattering It’s all about probability amplitudes and interference !!! Example: Young’s double slit experiment (Thomas Young, 1801) [wave-character of quantum mechanical particles (photons)] Plane, monochromatic wave Laser beam P=|ΣjΦj|2 Φ: probability amplitude Φj ~ exp[-i(ωt-klj)] ω=ck, k=2π/λ, lj(L,y) P(y) ~ cos2(πyd/λL) ∆y=λL/d Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Coherent X-rays 4 Coherence diffraction limited beam or at least with a noticeable coherence length Coherent beam Easy in optical regime (OL, collimation, or point source) T. Young (1801) Difficult in the X-ray range (e.g. 3rd gen SR facilities) Why use X-ray coherence? One answer: coherent illumination leads to interference effects providing enhanced sensitivity to structure and dynamics in scattering experiments Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Coherence lengths Nλ Coherence volume: VC ∝ λ3 Coherent dflux Ic: VC × photon density (N-1)(λ+∆λ) 0 π Ic = Bλ2/4 …difficult, even if Brilliance is2πon the right track Longitudinal ll=λ/2(∆λ/λ) coherence length Anders Madsen, European XFEL, L Transverse lt=λL/2d coherence length The European X-Ray Free-Electron Laser How many coherent photons? How many photons are in the coherence volume? Coherent flux: IC = B λ2 / 4 B: Brilliance ph/s -3 B= in a bandwidth of 10 (Δλ/λ ) 2 2 mrad × mm State of the art SR: B > 1020 (beamlines at 3rd generation synchrotrons e.g. ESRF, APS and SPring8). Ic > 1010 ph/s Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Growth of X-ray brilliance 7 XFEL.EU Brilliance CPU speed Anders Madsen, European XFEL, Courtesy: O. Shpyrko, UCSD The European X-Ray Free-Electron Laser The Sun as a coherent light source Peak ~ 1 W/m2 (@500nm, 0.1%bw) i.e. 2.5x1018 ph/s/m2 at earth. 1m2 in earth’s distance (150Mkm) subtends 4.4x10-17 mrad2 Sun’s projected area ~ 1.5x1024 mm2 Sun’s peak B ~ 4x1010 ph/s/mm2/mrad2/0.1%bw @ 500nm Sun’s transverse coherence length ~ 10 µm @ 500nm Anders Madsen, European XFEL, 8 The European X-Ray Free-Electron Laser Young’s double-slit experiment with X-rays λ=2.1Å, d=11µm Visibility ~ 80% Leitenberger et al. Physica B336, 36 (2003) Smooth incoherent background Σj|Φj|2 Anders Madsen, European XFEL, λ=0.9Å, d=11µm Visibility ~ 30% ∆y=λL/d The European X-Ray Free-Electron Laser First speckle (1962) 10 A speckle pattern is the random intensity pattern observed when light with sufficient spatial and temporal coherence is scattered by a medium that introduces random fluctuations of the optical path comparable to the wavelength. It encodes the exact spatial arrangement of the scattering volume but the phase must be determined for an inversion to be possible… Speckle techniques applied in astronomy, metrology, e-, X-ray and light scattering, and radar imaging. First observation of optical speckle by laser (optical maser) light scattering: J. D. Rigden and E. I. Gordon, Proc. IRE 50, 2367 (1962) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser First X-ray speckle and first XPCS Nature 352, 608 - 610 (15 August 1991); (001) reflection Cu3Au Kodak Film X25, NSLS Anders Madsen, European XFEL, PSD gas Detector ID10, ESRF Signal ~ 0.6% 11 The European X-Ray Free-Electron Laser Speckle pattern. Statistical properties For a “perfectly” random sample, i.e. independent and random scattering amplitudes and phase shifts, and fully coherent illumination the speckle pattern obeys negative exponential statistics: Histogram of intensity Partial coherence Gamma distribution of intensity coming from M statistically independent superimposed speckle patterns PM(I)=(M/<I>)MIM-1exp(-MI/<I>)/Γ(M) σ2=<I>2/M, 1/M=β 1 Anders Madsen, European XFEL, I/<I> M ≈ Vscat/Vcoh speckle contrast = 1/M J. Goodman, Speckle Phenomena in Optics The European X-Ray Free-Electron Laser Analysis of static speckle patterns (SAXS): Partial coherence 13 ID10A (ESRF). SAXS geometry, Si(111) mono 10x10 µm beam size, PI CCD (20 µm pixel size) 2.3 m sample-detector distance M=2.85 Contrast = 35% Fit with Gamma distribution M=2.85 Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Speckle statistics at LCLS: Perfect coherence (almost) 14 Data from XPP @ LCLS Si(111), E=9 keV M~1, <β> ~ 0.94 C. Gutt et al, Phys. Rev. Lett. 108, 024801 (2012) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Which one is speckle, which one is just Poisson statistics? Poisson-Gamma distribution 15 45 40 400 5 35 400 4.5 450 3 30 4 400 2.8 500 450 25 3.5 1 2.6 400 450 0.9 550 500 3 20 2.5 15 2 10 2.4 0.8 2.2 500 450 600 550 0.7 2 1.5 5 0.6 500 550 1.8 650 600 1 0.5 400 550 450 5000.3 650 450 500 550 600 650 0.1 650 400 450 Anders Madsen, European XFEL, 550 600 1.2 0.2 400 500 550 550 1.4 400 600 500 1.6 600 0.5 0.4 650 600 450 600 650 0 1 650 0 650 0 The European X-Ray Free-Electron Laser First XPCS attempts at LCLS Anders Madsen, European XFEL, 16 The European X-Ray Free-Electron Laser Weak speckle patterns: The Poisson-Gamma distribution Anders Madsen, European XFEL, 17 J. Goodman, Speckle Phenomena in Optics The European X-Ray Free-Electron Laser Analysis of weak speckle patterns 18 Single-shots at LCLS, Poisson-Gamma statistics Anders Madsen, European XFEL, S. O. Hruszkewycz et al., PRL109, 185502 (2012) The European X-Ray Free-Electron Laser Contrast depends on scattering geometry and the detector 19 Contrast decreases at large angles due to increase in path length difference between scattered waves: h sin2(2θ) + d sinθ ≤ ll Detector at 2θ Contrast decreases if speckles are not resolved (approximation) d h Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Outline Introduction to coherent X-rays • coherence? • coherent X-ray scattering, SAXS, WAXS • speckle & photon statistics Introduction to XPCS • Time correlation functions • 2D XPCS, signal to noise ratio • Two-times and higher order correlations XPCS examples (depending on time): • Polymer gel during gelation (Czakkel et al.) • Concentrated hard-sphere suspensions (Kwasniewski et al.) • Surface dynamics of nanoparticle suspensions (Orsi et al.) •… Outlook to the European XFEL & the MID station Anders Madsen, European XFEL, 20 The European X-Ray Free-Electron Laser Coherent scattering. Motivation Isolated object 21 Static speckle Diffraction microscopy: Phase retrieval required but no limiting optics Ensemble of objects Correlation spectroscopy: Temporal: XPCS Temporal: XPCS Spatial: XCCA Anders Madsen, European XFEL, Dynamic speckle The European X-Ray Free-Electron Laser X-Ray Photon Correlation Spectroscopy Temporal intensity auto-correlation function of speckle intensity g (Q, t ) = ( 2) I (Q,τ ) I (Q,τ + t ) I (Q) 2 g (Q,t ) = β f (Q, t ) +1 ( 2) | f (Q, t ) | ~ Re( FT {S (Q, ω )}) 2 Coherence factor !!!! β=1/M | f (Q, t ) | ∝ ∫ ∫ ρ ne (Q) ρ me (Q) exp(iQ ⋅ [rn (0) − rm (t )]) VV Intermediate scattering function: information about the density correlations in the sample and their time dependencies Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Typical XPCS setup g (Q, t ) = ( 2) 23 I (Q,τ ) I (Q,τ + t ) I (Q) Anders Madsen, European XFEL, 2 = β f (Q, t ) + 1 2 The European X-Ray Free-Electron Laser Example: Brownian motion Example: Brownian Motion of Colloids Intermediate scattering function: f(Q,t) = exp(-Γt) = exp(-D0Q2t) Stokes-Einstein free diffusion coefficient k BT D0 = 6πηR geometrical factor viscosity particle radius (hydrodynamic) G. Grübel & F. Zontone, J. Alloys and Comp. 362, 3 (2004) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Photon statistics and XPCS, is it the same contrast? 25 Static speckle pattern XPCS Photon statistics Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser XPCS by a point detector (0D XPCS) Troika, ESRF 26 I(t) Evanescent wave XPCS t Time average g (∆t ) = ( 2) I (t ) I (t + ∆t ) I (t ) Overdamped capillary waves (glycerol): Simple exponential correlation function f(t) ~exp(-t/t0) Lorentzian S(q,ω) centered at ω=0 T. Seydel, A. Madsen, M. Tolan, G. Grübel, & W. Press, Phys. Rev. B 63, 073409 (2001) Anders Madsen, European XFEL, 2 β = 60% relaxation time t0 ~ few ms The European X-Ray Free-Electron Laser XPCS by a point detector (0D XPCS) Troika, ESRF 27 I(t) Evanescent wave XPCS t Time average g (∆t ) = ( 2) I (t ) I (t + ∆t ) I (t ) Propagating capillary waves (water): Simple exponential correlation function f(t) ~cos(ω0t)exp(-t/t0) Lorentzian S(q,ω) centered at ω=ω0 C. Gutt et al., Phys. Rev. Lett. 91, 076104 (2003) Anders Madsen, European XFEL, 2 Damped oscillation relaxation time t0 ~ few µs The European X-Ray Free-Electron Laser 2D X-ray Photon Correlation Spectroscopy Two-times correlation function Multi-speckle XPCS (1kHz, MAXIPIX) 28 t series of speckle patterns g (t1 , t 2 ) = ( 2) I (t1 ) I (t 2 ) I (t1 ) I (t 2 ) Average over ensemble of pixels (e.g. constant q region) Applications: Non-ergodic, non-stationary and heterogeneous systems Anders Madsen, European XFEL, A. Madsen et al., New Journal of Physics 12, 055001 (2010) The European X-Ray Free-Electron Laser Ergodicity 29 Common assumption in thermodynamics and computational physics; Liouvilles theorem; time a system spends in a given phase space volume is proportional to the size of the volume < >time Anders Madsen, European XFEL, = < >ensemble The European X-Ray Free-Electron Laser Non-Ergodicity 30 A particle (atom, molecule) does not explore the entire available phase space (position, velocity,…) during the measurement time glasses < >time Anders Madsen, European XFEL, gels pastes ≠ polymer/ composites < >ensemble The European X-Ray Free-Electron Laser Non-equilibrium dynamics 31 g (t1 , t 2 ) = ( 2) I (t1 ) I (t 2 ) I (t1 ) I (t 2 ) ∆t = t1- t2 = constant waiting time (t1+t2)/2 (age), changes along line t2 ~ exp(-t/τ) age constant ∆t changes Anders Madsen, European XFEL, t1 The European X-Ray Free-Electron Laser Non-equilibrium dynamics g ( 2 ) (t1 , t 2 ) 32 age Non-stationary, aging dynamics t2 ∆t t1 Anders Madsen, European XFEL, ∆t The European X-Ray Free-Electron Laser Outline Introduction to coherent X-rays • coherence? • coherent X-ray scattering, SAXS, WAXS • speckle & photon statistics Introduction to XPCS • Time correlation functions • 2D XPCS, signal to noise ratio • Two-times and higher order correlations XPCS examples (depending on time): • Polymer gel during gelation (Czakkel et al.) • Concentrated hard-sphere suspensions (Kwasniewski et al.) • Surface dynamics of nanoparticle suspensions (Orsi et al.) • Diffusion is solid crystalline materials (Leitner et al.) Outlook to the European XFEL & the MID station Anders Madsen, European XFEL, 33 The European X-Ray Free-Electron Laser Dynamics of a cross-linking polymer gel 34 OH OH Ů đ Ů Ů Ů Ů đ Ů đ đ Ů đ đ đ Ů đ Ů Ů Ů Ů đ đ Ů Ů Ů đ Ů đ Ů đ đ Ů Ů đ đ đ Ů Ů Ů đ Ůđ Ů Ů đ Ů H Ů Ů Ů C Ů H đ Ůđ 2 Na2CO3, E a Ů Ů Ů đ O Ů RESORCINOL cluster formation gelation particle formation mass fractal structure formation fractal surface branched polymer fractal surface Crosslinked polymer smooth surface (not fractal) FORMALDEHYDE SOLVENT EXCHANGE HEAT TREATMENT + DRYING RF HYDROGEL RF AEROGEL CARBON GEL Lin et al., Carbon 35, 1271 (1997); Tamon et al., J. Coll. Int. Sci. 206, 577 (1998) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Dynamics of a cross-linking polymer gel Initial 35 After 8 h Hydrogel Aerogel O. Czakkel et al., Micropor. Mesopor. Mater. 86, 124 (2005) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Dynamics of a cross-linking polymer gel g ( 2) 36 Dynamics appears in the window after 160 min (t1 , t 2 ) 1.05 -1 q = 0.00720 Å 160 min 1.04 160 min -1 q = 0.01000 Å -1 q = 0.01280 Å -1 q = 0.01559 Å -1 q = 0.01769 Å -1 1.03 g (2) t (q, t) q = 0.02049 Å t2 1.02 1.01 1 1 10 100 1000 t (s) 1.07 t1 t2 230 min 1.06 1.04 (2) (q, t) 1.05 g 230 min Continuous data acquisition; time averaging only in timeintervals where the process is quasi-stationery (10 min). 1.03 -1 q = 0.00720 Å -1 1.02 q = 0.01000 Å τ – Q dispersion can be measured at various ages of the sample O. Czakkel and A. Madsen, -1 q = 0.01280 Å -1 q = 0.01559 Å 1.01 -1 q = 0.01769 Å -1 q = 0.02049 Å -1 q = 0.02399 Å 1 1 10 100 1000 t (s) t1 Anders Madsen, European XFEL, Europhys. Lett. 95, 28001 (2011) The European X-Ray Free-Electron Laser Dynamics of a cross-linking polymer gel -1 q = 0.01559 Å (q, t) 1.05 AGE -1 1.04 445 min 425 min 393 min 345 min 320 min 290 min 270 min 255 min 230 min 190 min 180 min 170 min 160 min 1.04 1.03 g 1.04 1.06 (2) 1.05 445 min 425 min 393 min 345 min 320 min 290 min 270 min 255 min 230 min 190 min 180 min 170 min 160 min g (q, t) 1.06 (2) q = 0.02049 Å 1.05 (q, t) 445 min 425 min 393 min 345 min 320 min 290 min 270 min 255 min 230 min 190 min 180 min 170 min 160 min 1.07 g -1 1.07 (2) q = 0.0100 Å 1.08 37 AGE 1.03 1.03 1.02 AGE 1.02 1.02 1.01 1.01 1.01 1 1 10 100 1000 10 1 4 1 t (s) 4 10 I(q) 1000 100 10 1 0.001 100 t (s) 505 min 475 min 445 min 425 min 393 min 345 min 320 min 290 min 255 min 230 min 190 min 180 min 170 min 160 min 140 min 130 min 120 min 100 min 90 min 80 min 70 min 50 min 40 min 30 min 20 min 10 min 0 min SAXS 0.01 q (Å) Anders Madsen, European XFEL, 10 0.1 1000 10 4 1 1 10 100 1000 10 4 t (s) o The dynamics slows down with time (age) o Faster than exponential decay of g(2) o The structure also evolves continuously (SAXS) O. Czakkel and A. Madsen, Europhys. Lett. 95, 28001 (2011) The European X-Ray Free-Electron Laser Dynamics of a cross-linking polymer gel 38 Slow dynamics (α-relaxation) KWW form: g 0.02 ( 2) (t ) = β exp(−2[t / t0 ]γ ) + 1 3 Randomly distribured stresses? 2.5 160 min 0.015 2 170 min -1 1/tΓ0(sec [s-1) ] 25 v-11/Γ [s/m] 1/t0 ∝ Γ 30 180 min γγ 0.01 1.5 10 1 0.005 180 min 230 min Bouchaud & Pitard, EPJ E 6, 231 (2001) 0.5 444 min 0 0 0.005 0.01 0.015 -1 q (Å ) 0.02 0.025 5 0 0 0 0.005 0.01 0.015 -1 q (Å ) Hyper-diffusive behavior: The relaxation rate Γ is proportional to Q (ballistic motion), and decreasing with time. Analogy with glass formers… Anders Madsen, European XFEL, 15 444 min 170 min 160 min 190 min Gel point 280 min 20 0.02 0.025 0 5000 4 1 10 4 1.5 10 2 10 4 2.5 10 4 3 10 t (s) O. Czakkel and A. Madsen, Europhys. Lett. 95, 28001 (2011) 4 The European X-Ray Free-Electron Laser Glass studies indicating stress relaxations 39 Stress relaxations seems to drive the slow dynamics of many out-of-equilibrium systems. Approaching the glassy state there is often a transition to γ > 1 Metallic glass: Mg65Cu25Y10 (TG=405K) Propanediol (TG=170K) γ>1 γ=1.7 γ<1 γ=1 B. Ruta et al., PRL 109, 165701 (2012) Anders Madsen, European XFEL, C. Caronna, Y. Chushkin, A. Madsen PRL 100, 055702 (2008) The European X-Ray Free-Electron Laser Glass studies indicating aging dynamics 40 Aging of the dynamics seems to be a general feature near the glass transition 103 Aging dynamics of glassy ferrofluid: A. Robert et al., Europhys. Lett. 75, 764 (2006) Anders Madsen, European XFEL, 104 105 Age [s] Aging dynamics in Wigner glass: L. Angelini et al, Soft Matter 9, 10955 (2013) The European X-Ray Free-Electron Laser Two-step structural relaxation 41 non-ergodicity level Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Missing contrast (non-ergodicity level) q = 0.01559 Å -1 445 min 425 min 393 min 345 min 320 min 290 min 270 min 255 min 230 min 190 min 180 min 170 min 160 min 1.06 1.05 1.04 -1 1.04 445 min 425 min 393 min 345 min 320 min 290 min 270 min 255 min 230 min 190 min 180 min 170 min 160 min 1.04 1.03 (2) 1.05 min min min min min min min min min min min min min g (q, t) 1.06 (2) q = 0.02049 Å 1.05 (2) 445 425 393 345 320 290 270 255 230 190 180 170 160 1.07 g (q, t) -1 1.07 g (q, t) q = 0.0100 Å 1.08 42 1.03 1.02 1.03 1.02 1.02 1.01 1.01 1.01 1 1 1 10 100 1000 10 4 1 t (s) 10 100 1000 10 4 1 1 10 t (s) t (s) Debye-Waller model: β/β0=exp(-Q2r2loc/6)…. Analysis of “missing contrast” yields the localization length of fast dynamics assuming rattling dynamics (DW term, harmonic oscillator analogy) Anders Madsen, European XFEL, 100 Gel point 280 min 1000 10 4 The European X-Ray Free-Electron Laser Missing contrast studies. Studying what you can’t see… γ<1 43 Aging of localization length γ>1 No aging of localization length Aging dynamics of a Laponite glass: R. Angelini et al., in press (2014) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Is there a Hard sphere glass transition? Anders Madsen, European XFEL, 44 The European X-Ray Free-Electron Laser The Glass Transition Anders Madsen, European XFEL, 45 The European X-Ray Free-Electron Laser The Sample 46 PMMA colloids in cis-decalin (HS system) Dilute sample Form factor SAXS data from ID02, ESRF Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Monte Carlo SAXS fitting Anders Madsen, European XFEL, 47 The European X-Ray Free-Electron Laser SAXS on concentrated samples 48 Fits allow determination of the volume fraction Φ Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser XPCS correlation functions Intermediate scattering function: f(Q,t) = exp(-Γt) = exp(-D0Q2t) MSD ∝ D0t, ergo -log(f(Q,t))/Q2 is like MSD P. Kwasniewski, PhD thesis (ESRF & UJF, 2012) Kwasniewski, Fluerasu, Madsen, Soft Matter (in press, 2014) Anders Madsen, European XFEL, 49 The European X-Ray Free-Electron Laser Width function Anders Madsen, European XFEL, 50 The European X-Ray Free-Electron Laser Comparison with Mode-Coupling Theory Anders Madsen, European XFEL, 51 The European X-Ray Free-Electron Laser Extreme dynamical heterogeneity 52 Final relaxation of concentrated hard-sphere suspension is avalanche like (intermittent, collective, heterogeneous, and ballistic ) Quantitative analysis is challenging (extreme heterogeneity) P. Kwasniewski, PhD thesis (ESRF & UJF, 2012) Kwasniewski, Fluerasu, Madsen, Soft Matter (in press, 2014) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Extreme dynamical heterogeneity 53 Martensitic phase transformation in AuCd Two-time correlation function Aging dynamics is avalanche like L. Müller et al., PRL 107, 105701 (2011) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Higher-order correlation functions Levy dist. 54 coherent X-rays αi < αc Grazing incidence XPCS from monolayer of gold nanoparticles (7nm) γ=1.5 D. Orsi et al., PRL 108, 105701 (2012) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Higher-order correlation functions Two-time correlation function ta 55 Sample with quakes, just before avalanches set in… G (t1 , t 2 ) = I (t1 ) I (t 2 ) I (t1 ) I (t 2 ) τ = |t1 - t2| τ D. Orsi et al., PRL 108, 105701 (2012) Anders Madsen, European XFEL, ta = (t1+t2)/2 The European X-Ray Free-Electron Laser Higher-order correlation functions 56 g(4) has a peak characteristic time t* Connection with fast dynamics (nonergodicity level, missing contrast,…) D. Orsi et al., PRL 108, 105701 (2012) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Outline Introduction to coherent X-rays • coherence? • coherent X-ray scattering, SAXS, WAXS • speckle & photon statistics Introduction to XPCS • Time correlation functions • 2D XPCS, signal to noise ratio • Two-times and higher order correlations XPCS examples (depending on time): • Polymer gel during gelation (Czakkel et al.) • Concentrated hard-sphere suspensions (Kwasniewski et al.) • Surface dynamics of nanoparticle suspensions (Orsi et al.) •… Outlook to the European XFEL & the MID station Anders Madsen, European XFEL, 57 The European X-Ray Free-Electron Laser 4th generation hard X-ray sources 58 European XFEL SACLA SwissFEL Anders Madsen, European XFEL, Pohang XFEL LCLS - SACLA - SwissFEL – European XFEL – PAL XFEL - … The European X-Ray Free-Electron Laser Soft/Hard X-ray FELs worldwide 59 FLASH DESY, Hamburg, GER European XFEL Schenefeld, Hamburg, GER SACLA SCSS test Spring-8 Harima, JAP PAL XFEL Pohang, KOR LCLS SLAC, Stanford, CA FERMI Trieste, ITA SwissFEL Villigen, CH Also projects in Sweden, Poland, China,…. Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser European X-Ray Free-Electron Laser Facility XFEL.EU HQ surface building artist’s view 1 lab floor 2 office floors Built on top of underground exp. hall (90 x 50 m) Anders Madsen, European XFEL, 60 The European X-Ray Free-Electron Laser The European XFEL. An underground facility Accelerator tunnel (> 2 km long, ~ 6m diameter) Completed Feb. 2012 Last photon tunnel section was completed summer 2012 (~6 km tunnel in total drilled) Total length 3400 m www.xfel.eu Anders Madsen, European XFEL, 61 The European X-Ray Free-Electron Laser The European XFEL. Also visible overground… Schenefeld site (XFEL.EU HQ) Anders Madsen, European XFEL, 62 The European X-Ray Free-Electron Laser The Experimental Hall November 2011 Anders Madsen, European XFEL, 63 The European X-Ray Free-Electron Laser The Experimental Hall June 2013 Anders Madsen, European XFEL, 64 The European X-Ray Free-Electron Laser 65 June 2013 (MID tunnel) Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Facility Outline 66 MID @ SASE-2 Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser diagnostic endstand detector 969 m 967 m 959 m 957.5 m 957 m 956 m 955 m 952 m 950 m 949 m 948.5 m 948 m 946.5 m 940 m 936.5 m 933 m 931 m 929 m 920 m 888.5 m 887.5 m 880 m 729 m 727 m 400 m 380.5 m 0m Not shown: MCP at 303m (fine tuning of SASE) Distribution mirror(s) at 390m and 395m (MID on central branch) Beam loss monitors sample nanofocusing CRL timing diagnostic diff. pumping mirror(s) shutter-3 X-ray splitdelay line attenuator imager-6 slit-3 mono-2 Si(220) shutter-2 imager-5 high energy CRL CRL-2 mono-1: Si(111) XBPM & intensity-2 imager-4 slit-2 attenuator imager-3 slit-1 imager-2 HR-SSS high-energy mono imager-1 horizontal offset mirror 306 m 305 m 301 m 290 m 264 m 244 m 229 m 227.5 m 220 m 210 m 200 m 198 m 171 m λ shutter-1 2D-imager CRL-1 attenuator time-of-flight PES XBPM & intensity-1 K-mono spont. rad. aperture transmissive imager undulator Anders Madsen, European XFEL, t λ MID experimental hutch MID optics hutch MID photon beamline common SASE-2 beamline (MID/HED) 67 MID beamline overview The European X-Ray Free-Electron Laser Hutches at SASE-2 First light at XFEL.EU, 4Q 2016 First light at MID, 2Q 2017 Anders Madsen, European XFEL, 68 The European X-Ray Free-Electron Laser Materials Imaging and Dynamics Instrument Structure and dynamics of condensed matter with hard X-rays Structural and temporal correlations, coherent imaging,.. Techniques: XPCS, CXDI, XCCA, scattering, pump-probe,… 69 69 CXDI Full burst mode (4.5 MHz) for high rep. rate experiments 1 bunch/train (10 Hz) mode for alignment and special experiments Bunch charge: 1 pC – >1 nC Photon energy: 5 – 25 keV, possibly > 25 keV Bandwidth: 1e-3, 1e-4, 1e-5, split delay line,.. Seeding: YES Spot size on sample: from 0.1 µm to 0.1 mm XPCS Anders Madsen, European XFEL, XCCA, Angular Correlations The European X-Ray Free-Electron Laser Faster dynamics by XPCS? 70 Length Scale [Å] Raman Brillouin IXS Spin-Echo NFS DLS XPCS Scattering Vector Q [Å-1] Anders Madsen, European XFEL, Energy [eV] Frequency [Hz] INS The European X-Ray Free-Electron Laser Time structure of XFEL.EU SC linac, up to 17.5 GeV 10 pulse trains/sec 2700 pulses/train Multi-user mode pulse train 220 ns between pulses pulse duration ~ 10 fs 1e12 – 1e13 ph/pulse single pulse single pulse 220 220nsns Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Fast Acquisition of Diffraction Patterns Sequential mode for coherent scattering XFEL rep rate: 4.5 MHz, 220 ns (default) 1.3 GHz, 770 ps (possible, reduced intensity) Speckle methods Coherent diffractive imaging (CXDI) Time correlation spectroscopy (XPCS) Spatial auto- and cross-correlations (XCCA) Sample survives several pulses (as many as the detector can store) From Nature News and Views G. B. Stephenson et al., Nature Materials 8, 702 (2009) Anders Madsen, European XFEL, 72 4.5 MHz detector available at XFEL.EU The European X-Ray Free-Electron Laser Adaptive Gain Integrating Pixel Detector (AGIPD) AGIPD project leader: H. Graafsma (DESY) 4.5 MHz, 1M pixels, 200 µm pixel size On-chip memory, readout between trains 4 adjustable quadrants Central hole Anders Madsen, European XFEL, 73 The European X-Ray Free-Electron Laser MID Instrument at European XFEL Sample – AGIPD detector distance: 0.2 m - ~9 m Energy: 5 – 25 keV, higher by high-harmonic lasing? Work in European progress Anders Madsen, XFEL, 74 The European X-Ray Free-Electron Laser Ultrafast dynamics (fs-ps) by XSVS 75 X-Ray Speckle Visibility Spectroscopy (SVS) Time-resolution independent of detector speed Contrast analysis yields the degree of correlation C on summed image C(∆t) can be mapped out Sample can be renewed for every shot (injector, new solid target,..) C. Gutt et al., Optics Express 17, 55 (2009) Anders Madsen, European XFEL, Speckle contrast (%) 100 80 60 40 20 0 0 10 Delay τ 20 30 The European X-Ray Free-Electron Laser Hard X-Ray Split-Delay Line 76 Co-linear beams SDL at MID: 5 – 10 keV Few fs to 800 ps delay From 770 ps – 220 ns The accelerator can do it From 220 ns the detector can resolve single images Path length difference 1µm 3.3 fs …also for two-color experiments and four-wave mixing……….. Anders Madsen, European XFEL, Inclined beams The European X-Ray Free-Electron Laser Inclined beams from split-delay line Optical laser 77 X-ray XX ∆t X-ray Early beam 2αi Late beam sample XOX X-ray Optical X-ray Upwards deflecting mirror OXX 4 m mirror-sample distance, 2αi = 0.4 deg αi even larger with crystal Separation of two beams at detector Two images on AGIPD detector: 2nd pattern 1st pattern Anders Madsen, European XFEL, Optical X-ray X-ray The European X-Ray Free-Electron Laser MID Technical Design Report (TDR) http://www.xfel.eu/documents/technical_documents/ or https://bib-pubdb1.desy.de/record/154260 Anders Madsen, European XFEL, 78 The European X-Ray Free-Electron Laser Recent XPCS review 79 Check the handouts for reference list and more details Anders Madsen, European XFEL, The European X-Ray Free-Electron Laser Acknowledgments J. Hallmann, T. Roth, W. Lu, G. Ansaldi (XFEL, Hamburg) F. Zontone, Y. Chushkin, O. Czakkel, C. Caronna, P. Kwasniewski B. Ruta, (ESRF, Grenoble) A. Moussaid (UJF Grenoble) A. Robert, M. Sikorski (SLAC, LCLS) B. Leheny (Johns Hopkins University, Baltimore) A. Fluerasu (BNL, NSLS-II) R. Angelini, B. Ruzicka, L. Zulian, G. Ruocco (La Sapienza, Rome) D. Orsi, L. Cristofolini, G. Baldi (University of Parma) Anders Madsen, European XFEL, 80