Desarrollo de organogeles comestibles como alternativa al uso de
Transcription
Desarrollo de organogeles comestibles como alternativa al uso de
ABSTRACT The main component of candelilla wax (CW) is hentriacontane, an n-alkane (C31H64) with self-assembly capability when dissolved in organic solvents. We have shown that CW develops organogels using safflower oil as the liquid phase. This research also has showed that the structural organization of CW -organogels depends on cooling rate, the supercooling (i.e., the thermodynamic strength for crystallization), and the annealing process. Additionally, the thermomechanical and microstructural characteristics of CW-organogels in safflower oil were compared with the ones showed by dotriacontane (C32H66; C32). Such comparisons were done using a rheometer with a True-gap™ system and a factorial experiments design where the variables evaluated were: gelator concentration (1% and 3%), gelation temperature (Tset, 5ºC and 25ºC), and cooling rate (1ºC/min and 10ºC/min). The results showed that the True-gap™ system provided a better correlation with the thermal behavior, the solid phase content (SPC) and the microstructure. The DSC results shown that independently of the cooling rate, T set, and gelator concentration, C32 had better self-assembly properties than CW. Additionally, the microphotograph showed that C32 developed larger needle-like crystals with higher extent of branching while CW crystallized as platelets. The presence of minor molecular components (i.e., triterpenoids, nonacosane, and tritriacontane) in CW had a profound effect in the crystal size developed by hentriacontane from the CW-organogeles. The results showed that C32 developed organogels at significantly lower SPC than CW. Nevertheless, C32 organogels achieved higher G’ profiles than CW, particularly at 1ºC/min and 3% of gelator concentration. The G’ profiles of the CW and C32 organogels also were higher at lower T set (i.e., 5ºC) and lower cooling rate (i.e., 1ºC/min), indicating a more structured three-dimensional network in the gels. Furthermore, under specific time-temperature conditions, CW organogels achieved a better structural order as a function of time (i.e., annealing) through a solid-solid transition from a rotator phase developed by the n-alkanes of CW. In contrast, C32organogels did not show this transition during the experimental conditions investigated. In conclusion, this investigation showed that through organogelation it is possible to structure vegetable oils into functional systems with potential application in the development of edible trans-free food products. RESUMEN El componente principal de la cera de candelilla (CW) es el hentriacontano (C 31H 64), un hidrocarburo con capacidad de auto-ensamblarse cuando se disuelve en solventes orgánicos. Nosotros hemos demostrado que CW desarrolla organogeles usando aceite de cártamo como fase líquida. Esta investigación también ha demostrado que la organización estructural de los organogeles de CW depende de la velocidad de enfriamiento, el superenfriamiento (i.e. la fuerza termodinámica para la cristalización), y el proceso de temperado. Adicionalmente, las características termo-mecánicas y microestructurales de los organogeles de CW en aceite de cártamo fueron comparadas con las mismas características mostradas por dotriacontano (C 32H 66; C32). Estas comparaciones fueron hechas usando un reómetro con un sistema de True-gap™ y un diseño de experimentos factorial donde las variables evaluadas fueron: concentración del gelante (1% y 3%), temperatura de gelación (T set = 5ºC y 25ºC) y velocidad de enfriamiento (1ºC/min y 10ºC/min). Los resultados muestran que el sistema de True-gap™ proporcionó una mejor correlación con el comportamiento térmico, el contenido de fase sólida (SPC) y la microestructura. Los resultados de DSC mostraron que independientemente de la velocidad de enfriamiento, T set y concentración del gelante, C32 tuvo mejores propiedades de auto-ensamblado que CW. Adicionalmente, las microfotografías mostraron que C32 desarrollo cristales grandes tipo aguja con alto mayor grado de ramificacion mientras que CW cristalizó como placas. La presencia de componentes moleculares minoritarios (ej., triterpeniodes, nonacosano y tritriacontano) en CW tuvieron un profundo efecto en al tamaño de cristal desarrollado por el hentriacontano de los organogeles de CW. Los resultados mostraron que C32 desarrollo organogeles a SPC significativamente menor que CW. Sin embargo, los organogeles de C32 alcanzaron perfiles de G’ más altos que CW, particularmente a 1ºC/min y 3% de concentración del gelante. Los perfiles de G’ de los organogeles de CW y C32 también fueron más altos a bajas T set (ej., 5ºC) y bajas velocidades de enfriamiento (ej., 1ºC/min), indicando una estructura tridimensional más estructurada en los geles. Además, bajo condiciones específicas de tiempo-temperatura, los organogeles de CW alcanzaron un mejor orden estructural como una función del tiempo (i.e. anillado) a través de una transición sólido-sólido desde la fase de rotación desarrollada por n-alcanos de CW. En contraste, los organogeles de C32 no mostraron esta transición durante las condiciones experimentales investigadas. En conclusión, esta investigación demostró que a través de la organogelación es posible estructurar aceites vegetales en sistemas funcionales con potencial aplicación en el desarrollo de productos comestibles libres de trans. INDICE I. ABSTRACT II. INTRODUCCIÓN III. RESUMEN EN EXTENSO Y PRIMER ARTÍCULO IV. RESUMEN EN EXTENSO Y SEGUNDO ARTÍCULO V. CONCLUSIONES GENERALES VI. ANEXO a. ARTÍCULO EXTRA INTRODUCCIÓN. Típicamente, los aceites vegetales, tales como el aceite de olivo, soya, maíz, girasol, canola, cártamo, entre otros, están formados principalmente por triacilglicéridos (ej., 9498%), los cuales son la esterificación de ácidos grasos saturados e insaturados en una molécula de glicerol. Los triacilglicéridos de los aceites tienen relativamente un bajo contenido de ácidos grasos saturados, y la doble ligadura que se encuentra en el ácido insaturado están en configuración cis. Sin embargo, estos aceites vegetales no poseen de manera natural las propiedades funcionales que cumplan con las expectativas de textura y estabilidad que el consumidor demanda en los productos alimenticios que se distribuyen actualmente en el mercado mundial. Para incrementar dicha funcionalidad (i.e., la estabilidad oxidativa, el punto de fusión), los aceites son sometidos a procesos de hidrogenación, el cual consiste en la saturación de los dobles enlaces de los ácidos grasos insaturados manteniendo como reactivo limitante el hidrógeno (ej., hidrogenación parcial). Este proceso es particularmente usado para impartir cremosidad, estabilidad, sabor a muchos productos alimenticios como margarinas, productos para untar, mantecas y grasas para freído. Sin embargo, durante la hidrogenación parcial, algunas de las dobles ligaduras son isomerizadas de la configuración original cis a la forma trans. Desafortunadamente, las investigaciones clínicas y nutricionales de los últimos años indican el que dietas que incluyen ácidos grasos trans ocasionan, al igual que los ácidos grasos saturados, un decremento de las lipoproteínas séricas de alta densidad (“colesterol bueno” o HDL) y un aumento en las lipoproteínas séricas de baja densidad (“colesterol malo” o LDL), resultando en un incremento en el nivel de colesterol sanguíneo y por lo tanto del riesgo de enfermedades coronarias. Además, Investigaciones recientes indican que una vez ingeridos las grasas trans se aumenta el riesgo de desarrollar diabetes tipo 2 en mujeres y en pacientes obesos. En consecuencia a toda esta evidencia del impacto en la salud derivada del consumo de ácidos grasos trans, en julio del 2003 la Administración Reguladora de Alimentos y Drogas de los Estados Unidos de América (Food and Drug Administration, FDA) reglamentó que a partir del 1º de Enero del 2006, todos los alimentos producidos en los Estados Unidos o bien importados por este país, incluyan como información al consumidor la concentración de ácidos grasos trans en la etiqueta de composición de nutrientes. Esta reglamentación tuvo un profundo impacto en la industria de aceites comestibles y alimentos a nivel mundial, y en México no fue la excepción, las industrias tuvieron que buscar nuevas estrategias de reformulación y procesamiento para disminuir el contenido de ácidos grasos trans y saturados en alimentos que contienen aceites e incrementar el valor nutrimental. Para mejorar la calidad en cuanto a la funcionalidad y la estabilidad oxidativa, varias alternativas para la elaboración de grasas han sido empleadas por la industria. Las alternativas que actualmente se investigan a nivel mundial son: 1. Desarrollo de procesos de interestificación (química o enzimática) entre aceites y grasas comestibles, o bien entre fracciones de TAGS de alta y baja temperatura de fusión. 2. Desarrollo de estructuras tipo gel a base de mezclas de TAGS de baja y alta temperatura de fusión. 3. Desarrollo de organogeles a través de mezclas de aceites vegetales y agentes autoensamblantes (ej., ácidos grasos, ceras, carbamatos). El proceso de interestificación de aceites vegetales para modificar las propiedades funcionales de aceites vegetales es, actualmente, una tecnología que se encuentra limitada por factores de carácter económico. Por lo anterior, el costo del producto generado (ej., fracciones de familias de TAGS con alta temperatura de fusión y grasas “cero” trans) es elevado. Por otro lado, el desarrollo de organogeles y geles a base de mezclas de TAGS de baja y alta temperatura de fusión, representan alternativas con alto potencial de implementación, menor costo de inversión y producción, pero aún escasamente investigadas en sus aspectos básicos. El desarrollo de organogeles es una alternativa prometedora que puede ser utilizada para modificar las propiedades físicas (ej., reología) de aceites vegetales sin el uso de modificaciones químicas (ej., hidrogenación parcial) que resulten en la producción de ácidos grasos trans. Los organogeles son materiales visco-elásticos formados por una molécula gelante y un solvente orgánico. En general, la formación de un organogel se basa en el auto-ensamblaje de moléculas de bajo peso molecular (< 3000 Da) en una fase apolar, que deriva en el desarrollo de una red tridimensional formada por estructuras fibrilares entrelazadas, o bien por estructuras tipo placas. Entre las moléculas gelantes dentro de esta categoría se encuentran derivados de ácidos grasos, derivados de carbohidratos, esteres de alcoholes de cadena larga y n-alcanos de cadena larga. Los nalcanos de cadena larga constituyen el componente más importante de aceites y lubricantes automotrices, además son componentes importantes en parafinas, ceras animales (ej. cera de abeja) o ceras vegetales, como la cera de la candelilla. De manera particular, la cera de candelilla, principal producto obtenido de la candelilla (E. antisyphilitica), se compone de ésteres, ácidos grasos, alcoholes y, de manera predominante, de n-alcanos de cadena larga (29 a 33 carbonos) en aproximadamente un 40% a 50% en peso. Dada su inocuidad comprobada en diversos estudios clínicotoxicológicos puede utilizarse, sin restricción alguna, como un aditivo alimentario acorde a la regulación 184.1976 de la Administración Reguladora de Alimentos y Drogas de los Estados Unidos (Food and Drug Administration, FDA). Así, se emplea como agente aglomerador en la fabricación de chicles, como desmoldante en productos panaderos y como agente “lustrador” en diversos productos incluyendo frutas. Debido a la alta cantidad de n-alcanos que presenta la cera de candelilla así como su utilización en la industria de alimentos puede emplearse como un fuerte candidato en el desarrollo de organogeles comestibles. Propiedades Termo-mecánicas de Organogeles de Cera de Candelilla y Dotriacontano en Aceite de Cártamo Juan A. Morales-Rueda1, Elena Dibildox-Alvarado2, Miriam A. Charo-Alonso2, Richard G. Weiss3 y Jorge F. Toro-Vazquez2. 1 Universidad Autónoma de Querétaro, DIPA-PROPAC, México. 2 Universidad Autónoma de San Luis 3 Potosí, Facultad de Ciencias Químicas, México. Georgetown University, Department of Chemistry, Washington, USA. RESUMEN Las propiedades termo-mecánicas de organogeles desarrollados por una mezcla compleja de n-alcanos presente en la cera de candelilla (CW) fueron investigadas y comparadas con organogeles desarrollados con dotriacontano (C32), un n-alcano puro. Ambos organogeles fueron desarrollados usando como fase líquida aceite de cártamo alto en trioleína (SFO). La cera de candelilla (Multiceras, Monterrey, México) y el dotriacontano (Humphrey Chemical Co., CT, USA) fueron analizadas por GC-MS. Muestras de CW, C32 y las correspondientes dispersiones en SFO (desde 0.5% hasta 10% p/v) fueron usadas para determinar los termográmas de gelificación, a dos velocidades de enfriamiento (1ºC/min y 10ºC/min), y de fusión (5ºC/min) por DSC. De los termográmas de gelificación se obtuvieron la temperatura de gelificación, T g y la entalpía de gelificación, Hg. Así mismo, de los termográmas de fusión se obtuvieron las temperaturas de fusión, T M y la entalpía de fusión HM. Para ambos casos, CW o C32, las variables estudiadas fueron dos niveles de concentración del agente gelante (1% y 3%), dos velocidad de enfriamiento (1ºC/min y 10ºC/min) y dos niveles de temperatura establecida T set para la gelificación (Tset; 5ºC y 25ºC). Los tratamientos asignados para cada sistema fueron resultado de un diseño factorial completamente aleatorio. Para cada tratamiento, fueron hechas dos determinaciones independientes (n=2). Los organogeles desarrollados bajo cada condición fueron caracterizados por reometría, calorimetría, contenido de fase sólida por resonancia magnética nuclear y microscopía de luz polarizada. Los resultados del análisis de la CW mostraron que está compuesta principalmente de hentriacontano (78.9 ± 0.1%), un n-alcano de 31 carbonos, mientras que los componentes minoritarios incluyen nonacosano (C29, 4.2 ± 0.1%) y tritriacontano (C31, 8.0 ± 0.2%), triterpenos como germanicol, lupeol o moretenol (7.4 ± 0.1%) y compuestos no identificados (1.6 ± 0.1%). Por otro lado, la pureza del dotriacontano fue de 99.5 ± 0.01%. Las propiedades térmicas de CW y C32 en estado puro mostraron lo siguiente. El termograma de gelificación para CW (Fig. 1) mostró una exotérma con una T g de 76.6 ± 0.7 ºC y dos picos a 59ºC y 53ºC, un Hg de 147.4 ± 1.9 J/g. Así mismo, el termográma de fusión mostró una endotérma con una temperatura de fusión (T p) de 64.4 ± 0.2 ºC y un HM de 149.8 ± 1.2 J/g. La posible explicación del comportamiento térmico de CW fue dada por el desarrollo de una fase de rotación. La fase de rotación es comúnmente observada en nalcanos y es caracterizada por un desorden en la orientación; la orientación espacial de las moléculas en su eje axial es preservada, sin embargo las moléculas pueden rotar alrededor de este eje. Entonces, durante el enfriamiento, el hentriacontano pudo desarrollar una fase de rotación proveniente de la materia fundida hasta el primer pico de 59 ºC (Fig.1), seguida de una transición sólido-sólido hasta el estado cristalino del alcano a 53ºC. Por otro lado, el termográma de enfriamiento de C32 mostró dos exotermás con temperaturas de pico de 67.5 ºC y 62.2 ºC, los cuales fueron asociados al desarrollo de una fase de rotación proveniente del fundido y a la transición de la fase de rotación hacia el estado cristalino, respectivamente (Fig.1). Los termográmas de fusión para C32 mostraron dos principales endotérmas con Tp de 66 y 69 ºC (Fig.1). El primer endotérma fue asociado con una transición sólido-sólido de la forma cristalina a la fase de rotación y el segundo endotérma fue asociado a la transición de la fase de rotación a la fase líquida. Las propiedades térmicas de los organogeles de CW y C32 en SFO mostraron termográmas simples con dos picos principales, en donde el mayor pico de la endotérma/exotérma fue asociado a la cristalización de los triacilglicéridos. El pico minoritario fue asociado al proceso de gelificación o fusión de CW o C32 (Fig.2A). Durante el proceso de gelificación y fusión de los organogeles en SFO no se presento el desarrollo de fase de rotación. La figura 2B mostro que independientemente de la concentración de agente gelante y la velocidad de enfriamiento. T g fue mayor para C32 que para CW, además, mayor concentración de CW que C32 fue requerida para alcanzar la misma T g. Estos resultados sugieren que las moléculas de C32 tienen mayor capacidad para autoensamblarse en el aceite que la mezcla de alcanos presente en la CW. Estos resultados fueron confirmados por el mayor calor de fusión (Fig. 3) y tamaño de cristal de C32 (Fig. 4A y 4C) que lo presentado por CW (Fig. 4B y 4D). El comportamiento de HM (Fig. 3) y las microfotografías (Fig. 4) sugieren que, la presencia de otros alcanos (i.e., nonacosano y tritriacontano) y triterpenos pudo provocar el desarrollo de una estructura tridimensional con baja cristalinidad y cristales más pequeños que lo desarrollado por un alcano puro como el C32. Para el contenido de fase sólida (SPC) de CW se observó que no fue afectado por la velocidad de enfriamiento ni por la temperatura de gelificación establecida, Tset (Fig. 5). Además, el SPC de los organogeles de CW fue menor cuando se utilizó una T set de 25ºC que cuando se uso una Tset de 5ºC. Sin embargo, la velocidad de enfriamiento tuvo un efecto en los organogeles de C32, excepto para la concentración del 1%. La T set no tuvo efecto en el SPC de organogeles a 1% de concentración, pero si afecto a lo organogeles del 3%. Entonces, el C32 forma organogeles con menor SPC que los organogeles de CW (Fig. 5), esto es independiente de la velocidad de enfriamiento y de la T set. Estos resultados demostraron la alta solubilidad y capacidad de autoensamble de C32 en SFO. Los perfiles del módulo de almacenamiento (G’) de ambos sistemas bajo las diferentes condiciones estudiadas son mostrados en la figura 6. Los perfiles de G’ de los organogeles de CW son más altos que los presentados por C32. Este comportamiento puede estar asociado al alto SPC y al menor tamaño de los cristales que componen la red tridimensional de los organogeles de CW (Fig. 4B y D). Los resultados mostraron que a mayor contenido de sólidos, mayor es el perfil de G’. Esto fue más evidente con los organogeles desarrollados a bajas velocidades de enfriamiento (compare las figuras 6A y 6B). El mismo comportamiento mostró los organogeles de C32, donde los geles desarrollados a 1ºC/min (Fig. 6C) tuvieron mayor perfil reológico que los organogeles desarrollados a 10ºC/min (Fig. 6D). Este fenómeno fue independiente de Tset. Se puede notar en los reogramas que hubo un cambio en la estructura de la red de ambos sistemas en función del tiempo; los valores de G’ decrecieron desde G’ 0 (i.e., el valor de G’ al tiempo cero) hasta G’f (i.e. valor de G’ después de 180 min). Este fenómeno se presento más evidente con organogeles de C32 desarrollados a 10ºC/min y una T set de 25ºC. Por otro lado, cuando los módulos de ambos sistemas, CW y C32, fueron graficados en función de SPC (Fig. 7), fue evidente que G’0 y G’f incrementaron de manera logarítmica en función de SPC. Sin embargo, no hubo diferencia significativa entre G’ 0 y G’f a 1ºC/min (Fig. 7A y C). En contraste, a 10ºC/min (Fig. 7B y D) G’ 0 y G’f fueron menores que a 1ºC/min, particularmente en organogeles de C32. Estos resultados mostraron que las estructuras de los organogeles fueron más estables a temperaturas de 5ºC y bajas velocidades de enfriamiento. Para entender mejor el comportamiento reológico, es necesario reconocer el desarrollo de la fase de rotación y su impacto en las zonas de unión de las microplacas que forman los agregados de la red tridimensional de los organogeles. La formación de la fase de rotación y la transición sólido-sólido ocurre en función del tiempo y depende de la temperatura Tset. Por lo tanto, durante el periodo de enfriamiento, la fuerza termodinámica para la formación del gel incremento más rápido a medida que se incremento la velocidad de enfriamiento. Como consecuencia, las moléculas del agente gelante tuvieron menos tiempo para organizarse a 10ºC/min que a 1ºC/min. El resultado general fue el desarrollo de un paquete molecular menor organizado (i.e. fase de rotación) a 10ºC/min que a 1ºC/min, particularmente cuando se empleo altas temperaturas (i.e. T set = 25ºC). Con este esquema y asumiendo que el modelo estructural para organogeles de alcanos propuesto por Abdallah y col. (Referencia 9) se aplica aquí, la presencia de una fase de rotación, particularmente en las zonas de unión, puede resultar en una modificación de la microestructura a nivel de las microplacas durante la medición de G’ (Fig. 6). Basado en lo anterior, se espera que las zonas de unión sean menor organizadas en organogeles desarrollados a 10ºC/min, particularmente a Tset = 25ºC (Fig. 6B y D). Los resultados del calor de fusión mostraron, particularmente en geles de CW, que HM fue mayor en organogeles desarrollados a 1ºC/min que a 10ºC/min, esto independientemente de la Tset (Fig.8). Además, los organogeles desarrollados a temperaturas de 25ºC, el HM incremento en función del tiempo, un proceso probablemente asociado con el perfeccionamiento del empaquetamiento molecular proveniente del empaquetamiento alcanzado originalmente (ej., fase de rotación). Este efecto fue más evidente en organogeles de CW a 3% (Fig. 8B). En contraste, los organogeles de C32, aunque hubo valores de HM más grandes a 1ºC/min que a 10ºC/min bajo todas las condiciones evaluadas, las diferencia no fueron significativas. Además, en todas las condiciones valoradas, los valores de HM permanecieron contantes en todo el intervalo de tiempo, indicando la auncencia de una transición sólido-sólido. Esto es explicado debido a que el superenfriamiento al que fueron sometidos los sistemas de C32 fue suficiente para desarrollar los cristales en ausencia de fase de rotación. Por lo tanto, el desarrollo de una fase de rotación pudo ser más probable en organogeles con CW que con organogeles con C32. En conclusión, los resultados obtenidos en esta investigación demostraron que es posible gelificar aceite de cártamo en un proceso de organogelación con CW y sin la presencia de ácidos grasos trans. Basados en la comparación con organogeles de C32, la presencia de componentes minoritarios de la cera de candelilla puede tener un profundo efecto en la formación de cristales de n-alcanos, y por consiguiente en sus propiedades físicas. Propiedades Reológicas de Organogeles de Cera de Candelilla y Dotriacontano Medidos con un Sistema True-Gap™. b a a Juan A. Morales-Rueda , Elena Dibildox-Alvarado , Miriam A. Charó-Alonso , and Jorge F. ToroVazqueza* a b Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, México; Universidad Autónoma de Querétaro, DIPA-PROPAC, México RESUMEN Mediciones reológicas de organogeles desarrollados con cera de candelilla (CW) y un n-alcano puro (dotriacontano, C32) fue evaluada con un reómetro equipado con un sistema de medición True-gap™ y comparadas con los reogramas obtenidos de un equipo con un sistema de espesor fijo. Los dos sistemas usaron geometrías de cono-plato. En contraste con el sistema de espesor fijo, el True-gap™ realiza correcciones en el espesor asociados a la expansión/contracción de la muestra y/o la geometría del equipo cuando ocurren cambios de temperatura durante la medición. Los organogeles de CW y C32 fueron preparados usando como fase líquida aceite de cártamo alto en trioleína (SFO) y los tratamientos estudiados resultaron de la combinación factorial de dos niveles de concentración de la molécula gelante (1% y 3%), dos temperaturas para el desarrollo de los geles (Tset; 5ºC y 25ºC) y dos velocidades de enfriamiento (1ºC/min y 10ºC/min). Los tratamientos fueron distribuidos aleatoriamente en las dispersiones de CW y C32 en aceite de cártamo. Para cada tratamiento fueron realizadas dos mediciones independientes (n=2). Los módulos de almacenamiento (G’) y de pérdida (G”) de los organogeles fueron evaluados con un espectrómetro mecánico (Para Physica MCR 301, Stuttgart, Alemania) usando una geometría de plato-cono (50 mm de diámetro, 1º, CP50-1/TG, Anton Paar, Graz-Austria) equipado con un sistema True-gap™. Los módulos G’ y G” fueron determinados en función del tiempo entre 0 y 180 minutos, siempre dentro de la región lineal viscoelástica (RLV) de las muestras. Los parámetros calorimétricos (i.e. calor de fusión; HM), el contenido de fase sólida (SPC) y las microfotografías de los organogeles de CW y C32 determinados en un trabajo previo fueron usados en esta investigación. Todos estos parámetros fueron medidos en función del tiempo (0 hasta 180 min) después de que alcanzaron la temperatura preestablecida a una dada velocidad de enfriamiento. Los resultados de la composición de CW y C32 ya han sido reportados, pero de manera rápida tenemos que CW está compuesta principalmente por ≈79% de hentriacontano (C31H64), mientras que el C32 tuvo una pureza de 99.5%. Las microfotografías obtenidas por microscopía de luz polarizada (PLM) (Fig.1-4) mostraron que C32 desarrolló cristales más grandes con alto grado de birrefringencia (Fig. 3 y 4) que los cristales desarrollados por CW (Fig. 1 y 2). Estos resultados señalaron que C32 tiene mejor capacidad de auto-ensamblarse en SFO que CW. La presencia de componentes minoritarios en CW pudo influir en el desarrollo de estructuras de menor cristalinidad, menor calor de fusión y menor tamaño que las estructuras desarrolladas por C32. Perfiles de G’ para organogeles de C32 al 1% y CW al 3% obtenidos con las técnicas de espesor fijo y True-gap™ a 1ºC/min y 10ºC/min son mostrados en la figura 5. Además, los valores de sólidos presentes en los oganogeles son mostrados, independientemente de la técnica usada. En general, con el sistema True-gap™ se observó un patrón constante en los valores de G’ en función del tiempo para los organogeles de C32 en todas las condiciones evaluadas, esto para concentraciones del 1% (Fig. 5A y 5C) y del 3% (datos no mostrados). En contraste, bajo las mismas condiciones de tiempo y temperaturas evaluadas, el sistema de espesor fijo mostró un continuo descenso en los valores de G’ en geles al 1% (Fig. 5A y 5C) y geles al 3% (datos no mostrados) hasta alcanzar una meseta. Resultados similares fueron observados con los organogeles de CW (Fig. 5B y 5D), Sin embargo, con el sistema de espesor fijo un comportamiento distinto fue observado a la velocidad de 10ºC/min y una T set de 25ºC. Con estas condiciones, los organogeles de CW al 3% mostraron un descenso continuo en los valores de G’ a T set de 25ºC (Fig. 5D). Este descenso fue más evidente en organogeles al 1% y también fue observado a Tset de 5ºC. Sin embargo, con el sistema True-gap™, los organogeles de CW al 3% desarrollados a la velocidad de enfriamiento de 10ºC/min a ambas T set se observó un incremento inicial en los valores de G’ hasta alcanzar paulatinamente una meseta (Fig. 5D). Los organogeles de CW al 1% mostraron un comportamiento similar (datos no mostrados). Los resultados obtenidos con el sistema de espesor fijo para los perfiles de G’ fueron explicados a que cuando la rampa de temperatura usada durante las mediciones reológicas, particularmente a altas velocidades de enfriamiento (ej., 10ºC/min; Fig. 5C y 5D), el ajuste automático del espesor fue inadecuado debido a que la geometría del equipo y la muestra no alcanzaron su expansión/compresión final. Por lo tanto, los resultados mostrados en la fig.5 demostraron que la falta de un apropiado ajuste en el tamaño del espesor afecto nuestras mediciones, particularmente a velocidades de 10ºC/min. Por otro lado, el sistema True-gap provee un tamaño de espesor real y contante durante las mediciones reológicas de los organogeles. En general, los perfiles de G’ obtenidos con este sistema mostraron que para el mismo tipo de molécula gelante, los valores de G’ fueron mayores a 1ºC/min que a 10ºC/min (i.e. los organogeles desarrollados a 1ºC/min alcanzaron un mayor orden estructural que los organogeles desarrollados a 10ºC/min). Cuando los valores de G’ después de 180 minutos (G’180) fueron graficados en función del correspondiente contenido de sólidos (Fig. 6), fue evidente que para la misma concentración de agente gelante y condiciones de tiempo-temperatura los valores de G’180 fueron más altos con C32 que con CW, particularmente a 1ºC/min y 3% de concentración. Estos resultados nuevamente puntualizan que C32 tiene mayor capacidad de auto-ensamblarse en SFO. Investigaciones han demostrado que la forma estructural de la red tridimensional de organogeles fibrilares es dependiente de la supersaturación del sistema. Se ha demostrado que la formación de zonas de unión transitorias (ej., fibras entrelazadas) y permanentes (ej., ramificaciones fibrilares) determinan las propiedades reológicas de la red tridimensional del gel. Por lo tanto, los organogeles formados con una red fibrilar (i.e., alto contenido de zonas de unión transitorias) proporcionan mayor elasticidad que los organogeles formados con redes formadas por estructuras esferulíticas (i.e., alto contenido de zonas de unión permanentes). Las microfotografías obtenidas por PLM demostraron que los organogeles de C32 desarrollados a 1ºC/min tienen mayor cantidad de estructuras tipo aguja con alto grado de ramificación (Fig. 3) que los organogeles desarrollados a 10ºC/min. Una explicación similar puede ser aplicada a los organogeles de CW, sin embargo la magnificación usada en este estudio no fue suficiente para apreciar las características microscópicas de los cristales de CW (Fig. 1 y 2). De la misma manera, los reogramas obtenidos con el sistema True-gap™ mostraron que los organogeles de CW fueron alcanzando un orden estructural mayor a medida que incrementó el tiempo. Este fenómeno fue más evidente a 10ºC/min (Fig. 5D), bebido a que la fuerza termodinámica impulsora para la formación del gel incremento más rápido a velocidades de enfriamiento altas. Consecuentemente, las moléculas gelantes tienen menor tiempo para organizarse a 10ºC/min que a 1ºC/min. Lo que significa que las moléculas de nalcano presentan un menor empaquetamiento molecular a 10ºC/min. Esto fue más evidente a altas Tset (ej. 25ºC), donde un menor superenfriamiento prevaleció (Fig. 5D). Una vez alcanzada la Tset los organogeles de CW evolucionaron conforme pasó el tiempo desde un fase de rotación desarrollada por los n-alcanos a un estado de mayor orden a través de una transición sólido-sólido. Entonces, los organogeles de CW desarrollados a 1ºC/min presentaron mayor HM (alto nivel estructural y por consiguiente mayor G’) que los organogeles de CW desarrollados a 10ºC/min (Fig. 7A). Adicionalmente, los organogeles desarrollados a Tset de 25ºC, HM incremento en función del tiempo, un proceso probablemente asociado con el desarrollo de una fase mejor organizada que la inicialmente alcanzada (i.e. fase de rotación) a través de un proceso de anillado. Por otro lado, los organogeles de C32 desarrollados con el sistema True-gap™ mostraron un perfil continuo en los valores de G’ a todas las condiciones evaluadas. Los perfiles de G’ para los organogeles de C32 fueron siempre mayores a velocidades de 1ºC/min (Fig. 6). Con esta velocidad de enfriamiento los cristales de C32 fueron más grandes que los desarrollados a 10ºC/min (Fig. 4), un proceso que resultó en la formación de organogeles con alto nivel de organización tridimensional (i.e., alta dimensión fractal) (Fig. 6). Además, los organogeles de C32 no presentaron una diferencia significativa en los valores de HM cuando fueron evaluados a las distintas velocidades de enfriamiento. Adicionalmente, HM permaneció constante en función del tiempo bajo todas las condiciones de tiempo y temperatura evaluadas, indicando la ausencia de una transición sólido-sólido. Esto es debido a que el superenfriamiento aplicado a los organogeles de C32 fue el suficiente para no desarrollar una fase de rotación. En conclusión, los resultados obtenidos con el sistema True-gap™ concordaron con el comportamiento de HM (Fig. 7), tamaño de cristal y organización tridimensional de la red cristalina observada en los organogeles de CW y C32 (Fig. 1-4). Entonces, el empleo de la técnica de espesor fijo debe hacerse con cuidado especialmente en determinaciones de G’ dependientes del tiempo y mediciones reológicas donde se involucren el uso de rampas de temperatura de alta velocidad (ej. 10ºC/min). CONCLUSIONES Los resultados obtenidos en esta investigación demostraron que es posible gelificar aceite de cártamo en un proceso de organogelación con CW y n-alcanos de cadena larga sin la presencia de ácidos grasos trans y ácidos grasos saturados. El proceso de organogelación se presenta como una estrategia factible para la modificación de las propiedades físicas de los aceites vegetales sin el empleo de la hidrogenación parcial. Bajo todas las condiciones evaluadas en esta investigación, la cera de candelilla demostró ser un excelente agente gelificante de aceite de cártamo alto en trioleína, sin embargo, es muy probable la cera de candelilla gelifique en la mayoría de los aceites vegetales. Los estudios han demostrado que los organogeles de CW tienen una estabilidad a la separación de fases al menos por a un año con una textura con alto potencial en la industria de los alimentos. Esta investigación también demostró que la presencia de componentes minoritarios de la cera de candelilla puede tener un profundo efecto en la formación de cristales de nalcanos, y por consiguiente en sus propiedades físicas. Sin embargo, las microfotografías obtenidas por PLM para los organogeles de CW demostraron no tener la suficiente magnificación para apreciar las características microscópicas de los cristales de CW. Además, los estudios realizados en este trabajo demostraron que bajo ciertas condiciones de tiempo y temperatura se pueden desarrollar geles de diferente plasticidad (ej., fase de rotación de los n-alcanos presente en la cera de candelilla), los cuales puedes ser manipulados para los fines que la industria de los alimentos requiera. Finalmente, los resultados obtenidos con el sistema True-gap™ concordaron con el comportamiento calorimétrico, tamaño de cristal y organización tridimensional de la red cristalina observada en los organogeles de CW y C32. Entonces, el empleo de reómetros sin el sistema de True-gap™ debe hacerse con cuidado especialmente en determinaciones de G’ dependientes del tiempo y mediciones reológicas donde se involucren el uso de rampas de temperatura de alta velocidad (ej. 10ºC/min). ANEXOS J Am Oil Chem Soc DOI 10.1007/s11746-009-1414-3 ORIGINAL PAPER Rheological Properties of Candelilla Wax and Dotriacontane Organogels Measured with a True-Gap System Juan A. Morales-Rueda Æ Elena Dibildox-Alvarado Æ Miriam A. Charó-Alonso Æ Jorge F. Toro-Vazquez Received: 14 April 2009 / Revised: 14 May 2009 / Accepted: 26 May 2009 Ó AOCS 2009 Abstract The rheology of organogels developed by candelilla wax (CW) and a pure n-alkane (dotriacontane, C32) was evaluated with a rheometer equipped with a true-gap system and compared with the rheograms obtained with a fixed-gap system. The two systems used a cone and plate geometry. In contrast to the fixed-gap system, the true-gap system makes the corrections in the gap size associated with the expansion/shrinkage of the sample and/or the rheometer geometry when changing temperature conditions are used during measurements. The CW and C32 organogels were prepared using safflower oil high in triolein (SFO) as the liquid phase, and the treatments studied resulted from the factorial combinations of two levels of gelator concentration (1 and 3%) and two gel setting temperatures (Tset; 5 and 25 °C) achieved using a cooling rate of 1 or 10 °C/min. The use of the true-gap system provided rheological parameters (i.e., G0 profiles) that agreed with the micro structure and the calorimetric (i.e., heat of melting, DHM) behavior of both the CW and the C32 organogels. The use of a fixed-gap system in the rheological characterization of organogels must be treated with caution, specially with time dependent E. Dibildox-Alvarado M. A. Charó-Alonso J. F. Toro-Vazquez Facultad de Ciencias Quı́micas, Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, Mexico J. A. Morales-Rueda Universidad Autónoma de Querétaro, DIPA-PROPAC, Querétaro, Mexico J. F. Toro-Vazquez (&) Facultad de Ciencias Quimicas-CIEP, Zona Universitaria, Av. Dr. Manuel Nava 6, 78210 San Luis Potosı́, Mexico e-mail: toro@uaslp.mx G0 determinations involving the use of fast temperature ramps (i.e., 10 °C/min). Keywords Rheology \ Lipid chemistry/Lipid analysis Lipid chemistry/Lipid analysis Introduction During recent years, organogels developed with low molecular weight compounds, such as fatty acids and nalkanes, have received a great deal of attention mainly because these molecules require only a small concentration (B2%) to achieve gelation [1–4]. However, very little is known about their rheological properties as affected by different time–temperature conditions. Rogers and Marangoni [5, 6] studied the effect of cooling rate and type of solvent on the non-isothermal nucleation and crystallization kinetics of organogels made with 12-hydroxystearic acid. These authors observed that cooling rates lower than 5 °C/min resulted in organogels with few crystal nuclei that grew large and showed very little branching. In comparison, the organogels developed at cooling rates higher than 5 °C/min showed higher nucleation and a highly branched fibrillar network [5]. Since crystal size, branching, and junction zones among fibers that form the three-dimensional network determine the gel rheological properties [7], Rogers and Marangoni [5] proposed that the organogel’s elasticity might be engineered through the control of variables that establish nucleation and its kinetics such as cooling rate. Unfortunately, Rogers and Marangoni [5, 6] did not evaluate the cooling rate effect on the rheological properties of the 12-hydroxystearic acid organogels. Within this context, the rheological behavior of n-alkane based organogels was investigated recently using candelilla 123 J Am Oil Chem Soc wax (CW) and dotriacontane (C32) as gelling agents and high-triolein safflower oil as the liquid phase [8]. C32 (C32H66) was used in its pure form (&99.0%), while CW was a mixture of n-alkanes with uneven carbon number (C29H60, &4.2%; C33H68, &8.0%) and alcohols of pentacyclic triterpenoids (&7.4%) with hentriacontane (C31H64) as its main component (&79%) [8]. The rheological profiles of CW and C32 organogels, developed at two gel setting temperatures (5 and 25 °C) achieved using a cooling rate of 1 or 10 °C/min, were determined with a mechanical spectrometer (Paar Physica UDS 200; Stuttgart, Germany) using a cone (50 mm, 1°; MK22) and plate geometry with a truncated fixed gap of 0.05 mm [8]. Under some time–temperature conditions G0 in both, the CW and C32 organogels, showed a steady and significant decrease as a function of time (i.e., 0–180 min), particularly in the organogels developed at 10 °C/min and a gel setting temperature of 25 °C [8]. This decrease in G0 was associated with the presence at the junction zones of less organized structures (i.e., alkanes in the rotator phase), that would result in the rupture of the bonds between the microplatelets of n-alkanes during G0 measurements. However, we could not fully explain this rheological behavior, mainly because the strain applied during G0 measurement (180 min) was always within the linear viscoelastic region of the system. A possible explanation for the decrease in G0 observed in that study might be associated with the expansion/ shrinkage suffered by the rheometer geometry and the organogel due to changing temperature conditions used during rheological measurements. These process ought to affect gap size and therefore the rheological measurements. Additionally, the expansion/shrinkage of the rheometer frame due to altering laboratory conditions might also modify the actual gap, particularly in long lasting experiments. Läuger et al. [9] detailed addressed the effect of these conditions on the viscosity of silicon oil. Within this framework, in an attempt to understand the rheological behavior of the CW and C32 organogels previously observed [8], in this investigation we determine the G0 profiles of these organogels using a mechanical spectrometer (Paar Physica MCR 301, Stuttgart, Germany) equipped with a true-gap system. This device makes the corrections in gap size associated with the expansion/shrinkage of the sample and/or the rheometer geometry due to changing temperature conditions used during measurements [9]. Materials and Methods CW and C32 organogels were developed using the same experimental design, gelator concentrations and time– temperatures conditions reported by Morales-Rueda et al. 123 [8]. In short, the treatment conditions investigated resulted from the factorial combination of gelator concentration (1 and 3%, w/w), gel setting temperatures (Tset, 5 and 25 °C), and cooling rates (1 and 10 °C/min). The treatments were randomly distributed among aliquots of the CW or C32 dispersions in SFO. For each treatment two independent measurements were done (n = 2). The main difference with our previous work [8] is that in the present investigation the elastic (G0 ) and loss (G00 ) moduli of the organogels were determined with a mechanical spectrometer (Paar Physica MCR 301, Stuttgart, Germany) using a steel cone-plate geometry (50 mm, 1°; CP50-1/TG, Anton Paar, Graz-Austria) equipped with a true-gap system. Temperature was controlled by a Peltier system located in both the base and top of the measurement geometry through a Peltier-controlled hood (H-PTD 200). The control of the equipment was made through the software Start Rheoplus US200/32 version 2.65 (Anton Paar, Graz-Austria). The gel dispersion at room temperature was applied on the base of the geometry and the cone was set using the true-gap function of the software. Any excess of the sample was removed from the borders of the rheometer geometry with the help of a spatula. After 20 min at 90 °C the system was cooled at the corresponding cooling rate until achieving a particular Tset. At a given Tset the G0 and G00 were determined as a function of time within 0 and 180 min, always within the linear viscoelastic region (LVR) of the system. For the systems at 1% CW and 1% C32 concentration the strain applied was between 0.01 and 0.05%. At 3% gelator concentration the strain used was between 0.05 and 0.1%. A frequency of 1 Hz was used in all cases. The same SFO, CW, and C32 used in our previous investigation [8] were also utilized in the present work. Therefore, the calorimetric parameters (i.e., heat of melting, DHM), the solid phase content (SPC), and the microphotographs of the CW and C32 organogels determined in the original work [8] were also used in this investigation. All these parameters were measured as a function of time (0–180 min) after achieving a preestablished Tset at a given cooling rate. Results and Discussion The composition of CW, C32, SFO have been previously reported [8]. In short, CW contained 78.9 ± 0.1% of hentriacontane (C31H64), while the C32 utilized had a purity of 99.50% (±0.01%). The microphotographs obtained by PLM (Figs. 1, 2, 3, 4) showed that, independent of gelator concentration and Tset, C32 developed larger needle-like crystals, highly branched and with a higher extent of birefringence (Figs. 3, 4) than the crystals J Am Oil Chem Soc Fig. 1 Polarized light microphotographs of CW organogels developed at 1 °C/ min at the Tset’s of 5 °C (a) and (c) and 25 °C (b) and (d) at 1% (a) and (b) and 3% (c) and (d) gelator concentration Fig. 2 Polarized light microphotographs of CW organogels developed at 10 °C/ min at the Tset’s of 5 °C (a) and (c) and 25 °C (b) and (d) at 1% (a) and (b) and 3% (c) and (d) gelator concentration developed under the same conditions by CW (Figs. 1, 2). In our previous work [8] we showed that, independent of the gelator concentration and the cooling rate used, the gelation temperature for C32 was always higher than for CW. This indicated that for a given Tset higher supercooling was achieved by C32 than by CW, independent of gelator concentration and cooling rate. Additionally, we observed that a higher concentration of CW than C32 was required to achieve the same gelation temperature (see Fig. 2b in [8]). All these results pointed to the fact that C32 has a higher self-assembly capability in the SFO than CW. However, it is important to point out that although hentriacontane was the major component in CW, nonacosane, tritriacontane, and triterpene alcohols were also present in CW [8]. This mixed composition might result in the development of mixed self-assembled structures with a 123 J Am Oil Chem Soc Fig. 3 Polarized light microphotographs of C32 organogels developed at 1 °C/ min at the Tset’s of 5 °C (a) and (c) and 25 °C (b) and (d) at 1% (a) and (b) and 3% (c) and (d) gelator concentration Fig. 4 Polarized light microphotographs of C32 organogels developed at 10 °C/ min at the Tset’s of 5 °C (a) and (c) and 25 °C (b) and (d) at 1% (a) and (b) and 3% (c) and (d) gelator concentration lower extent of three-dimensional molecular structure (i.e., lower crystallinity and DHM) and smaller crystals than the ones achieved by pure C32. In organogels developed with stearic alcohol and stearic acid, Schaink et al. [10] and Gandolfo et al. [11] obtained smaller crystals at a 3:7 stearic acid to stearyl alcohol ratio than with the pure compounds. 123 Figure 5 shows some characteristics G0 profiles for 1% C32 and 3% CW organogels obtained under isothermal conditions once a particular Tset (i.e., 5 or 25 °C) was achieved at a given cooling rate (i.e., 1 or 10 °C/min). The rheological profiles were obtained with the fixed and the true-gap systems. The corresponding SPC present in the organogels was independent of the type of system used J Am Oil Chem Soc Fig. 5 G0 profiles for 1% C32 (a) and (c) and 3% CW (b) and (d) organogels measured with the fixed and the true-gap systems. The rheological profiles were obtained under isothermal conditions at the Tset of 5 and 25 °C, achieved using a cooling rated of 1 °C/min (a) and (b) or 10 °C/min (c) and (d) (fixed gap vs. true gap) in the rheological measurements, and is also shown in Fig. 5. It is important to point out that for the same gelator type and cooling rate used the SPC in the organogels remained constant during the 180 min involved in the rheological measurements (i.e., once Tset was achieved no additional CW or C32 crystallization occurred). For a given type of organogel developed at the same Tset, cooling rate, and gelator concentration different G0 magnitudes and G0 profiles as a function of time were obtained with each type of system. Overall, with the truegap system under all time temperature conditions investigated a constant G0 pattern as a function of time was observed in the C32 organogels developed at 1% (Fig. 5a, c) and 3% concentration (data not shown). Under the same time–temperature conditions, the use of the fixed-gap system showed a steady decrease in G0 at both the 1% (Fig. 5a, c) and the 3% (data not shown, see [8]) concentration until a plateau was achieved. Similar observations applied to the rheological measurements with CW (Fig. 5b, d). However, with the CW we observed a distinctive behavior at a cooling rate of 10 °C/min, particularly at the Tset of 25 °C. Under these conditions the use of the fixedgap system with 3% CW organogels, resulted in a concomitant decrease of G0 at the Tset of 25 °C (Fig. 5d). This decrease was more evident at 1% concentration, and was also observed at the Tset of 5 °C (data not shown, see [8]). However, with the true-gap system, the 3% CW organogels developed at both Tset’s at a cooling rate of 10 °C/min, 123 J Am Oil Chem Soc followed a G0 profile that initially increased slowly attaining a plateau (Fig. 5d). Similar behavior was observed with the 1% CW organogels (data not shown). In high quality rheometers, like the one used by Morales-Rueda et al. [8] (i.e., Paar Physica UDS 200; Stuttgart, Germany), the gap position can be set accurately to within 1 lm [9]. However, such models use a compensating gap adjustment routine (i.e., auto gap control) during temperature dependent rheological measurements that rely on a constant thermal expansion coefficient (e.g., 1 lm/K). The software makes the appropriate gap adjustments based on empirically established temperature position functions using the expansion coefficient determined once the thermal expansion is completed [9]. It seems that when a temperature ramp was used during rheological measurements using a fixed-gap system, particularly a high cooling rate (i.e., 10 °C/min; Fig. 5c, d) the automatic gap adjustment was inaccurate since the equipment geometry and the organogel had not reached their final expansion/shrinkage. These results showed that the lack of an appropriate adjustment in gap size due to the expansion/shrinkage of both the rheometer geometry and the organogel affected our previous G0 measurements [8], particularly when a cooling rate of 10 °C/min was used to achieve the Tset’s. The true-gap system constantly measures the magnetic impedance and the voltage between the lower and the upper plate of the geometry using appropriate electronics. Both the magnetic impedance and the voltage have specific relationships with the gap size. Thus, during the rheological measurements the voltage between the lower and the upper plate of the geometry is measured by the rheometer’s electronics, and by taking into consideration the particular relationship between voltage and gap size, an electronic feedback mechanism constantly adjusts the gap to the desired constant value through the rheometer’s software [9]. Thus, in contrast with the fixed-gap system, the true gap provides a constant and real gap size during the organogels’ rheological measurements. In general, the G0 profiles obtained with the true-gap system showed that, for the same type of gelator and independent of its concentration and the Tset used, higher G0 profiles were obtained at 1 °C/min than at 10 °C/min (i.e., at 1 °C/min the organogels achieved a higher level of structural organization than at 10 °C/min). This was particularly evident with C32 organogels (i.e., Fig. 5a, c). When the G0 values after 180 min (G0 180) at both cooling rates were plotted as a function of the corresponding SPC (Fig. 6), it was evident that for the same gelator concentration and time–temperature conditions higher G0 180 were obtained with C32 than with CW organogels, particularly at 1 °C/min and at 3% of gelator concentration. This in spite of the higher SPC (P \ 0.05) and smaller crystal sizes developed by CW organogels (Figs. 1, 2) in comparison 123 Fig. 6 G0 values of the CW and C32 organogels after 180 min (G0 180) as a function of the solid phase content (SPC %). The values plotted are the means of two independent determinations obtained at 1 °C/min (a) and 10 °C/min (b) at the corresponding Tset with the ones developed by C32 organogels (Figs. 3, 4). This agreed with our previous conclusion [8] that indicated that with the exception of the 1% gelator concentration at Tset of 25 °C at both cooling rates, C32 developed organogels at significantly lower SPC than CW. This is independent of the cooling rate and Tset used [8] (i.e., at the Tset investigated C32 observed higher solubility in SFO than CW). These results again pointed out that C32 has higher self-assembly capability in the SFO than CW. Wang et al. [7] have shown that the topological structure of a three-dimensional fiber network in an organogel depends on the supersaturation of the system. Specifically, these authors showed that the development of transient (i.e., entanglement of fibers) and permanent (i.e., branching of fibers) junction zones in a gel network is supersaturation dependent [7]. In turn, both the transient and permanent junction zones determine the rheological properties of the self-assembled fibrillar network [7]. These authors concluded that organogels with fibrillar network structures with a high extent of transient junction zones, have higher elasticity than organogels with spherulitic network structures (i.e., a network with high extent of permanent junction zones). The microphotographs obtained by PLM showed that independent of Tset, C32 organogels developed at 1 °C/ J Am Oil Chem Soc min showed larger needle-like crystals with a higher extent of branching (Fig. 3) than the organogels developed at 10 °C (Fig. 4). As a result higher G0 180 was observed in the C32 organogels developed at 1 °C/min than in the ones obtained at 10 °C/min (Fig. 6). A similar explanation might be applied to CW organogels. However, the magnification used in the PLM was not sufficient to appreciate the microscopic characteristics of CW crystals (Figs. 1, 2). The rheograms obtained with the true-gap system showed that CW organogels were achieving a higher structural order as a function of time (i.e., G0 steadily increased as a function of time). This phenomenon was more evident when a cooling rate of 10 °C/min was used to achieve the Tset’s (Fig. 5d). As discussed in our previous paper [8], during the cooling stage the thermodynamic driving force for gel formation (e.g., the difference between the temperature of the system and the gelation temperature, Tg) increased faster at the higher cooling rate. Consequently, during the cooling stage the gelator molecules had less time to organize at 10 °C/min than at 1 °C/min, i.e., for a given Tset, a less well organized molecular packing of the n-alkanes was achieved at 10 °C/min than at 1 °C/min. This was particularly evident at the higher Tset (i.e., 25 °C) where the lower supercooling conditions prevailed (Fig. 5d). Once Tset was achieved, the CW organogels evolved into a higher state order as a function of time through a solid ? solid transition from a rotator phase developed by the n-alkanes. Rotator phases are commonly observed in n-alkanes and are characterized by a crystalline lattice of the molecular centers while molecules rotate about their chain axes (i.e., structural disorder) [12–14]. Thus, as noted in our original work [8], independent of the Tset used, CW organogels developed at 1 °C/min observed higher DHM (i.e., higher level of structure and therefore higher G0 ) than the CW organogels developed at 10 °C/min (Fig. 7a). Additionally, in organogels developed at Tset of 25 °C the DHM increased as a function of time, a process probably associated with the development of a more organized molecular packing from the one originally achieved (e.g., rotator phase) through an annealing process. These effects were more evident in 3% CW organogels than in 1% CW organogels (data not shown, see [8]), suggesting that a concentration effect is also involved in the development of a better structured three-dimensional network. Previously our group described a similar phenomenon also in CW organogels [15], which was observed later in 12-hydroxystearic acid organogels by Rogers et al. [16]. As pointed out in our previous reports [8, 15] the DHM increment observed in CW organogels as a function of time (Fig. 7a) could not be associated to changes in the SPC, mainly because the SPC achieved by the organogels right after attaining Tset remained constant during the whole period of rheological and DHM measurements. Fig. 7 Heat of melting (DHM) as a function of time for organogels of 3% CW (a) and 3% C32 (b) developed at the Tset and cooling rate show in the legend. Values plotted are the mean and standard deviation of two independent determinations With the true-gap system, the C32 organogels showed a steady G0 profile at all time–temperature conditions investigated. Although SPC was statistically higher in the C32 organogels developed at 10 °C/min than in the ones developed at 1 °C/min (P \ 0.05), as for CW, the G0 profiles of C32 organogels were always higher at 1 °C/min (Fig. 6). As previously mentioned, at this cooling rate larger C32 crystals with a greater extent of branching were obtained at all Tset’s (Fig. 3) than at 10 °C/min (Fig. 4), a process that resulted in organogels with a higher level of three-dimensional organization (i.e., higher fractal dimension) than the one achieved at 10 °C/min (Fig. 6). With the C32 organogels although there was a tendency to obtain higher DHM at 1 °C/min than at 10 °C/min under all conditions investigated, the differences were not significant (Fig. 7b). Additionally, at all conditions investigated the DHM of C32 organogels remained constant as a function of time indicating the absence of a solid ? solid transition. Given the Tg values previously reported for C32 [8], at the Tset investigated this gelator system achieved higher thermodynamic driving force for gelation during the isothermal stage than the CW system, and therefore, C32 organogels 123 J Am Oil Chem Soc achieved a higher structural order (i.e., higher G0 ) than CW organogels. Thus, the development of a rotator phase would be less probable in the C32 organogels than in the CW organogels (i.e., development of a higher state order by C32 organogels as a function of time through a solid ? solid transition from a rotator phase will not exist). Therefore, under the time–temperatures conditions investigated both the DHM (Fig. 7b) and the G0 for C32 organogels remained constant during the 180 min of experimentation (Fig. 5a, c). In conclusion, contrary to the rheological results obtained with the fixed-gap system, the G0 results obtained with the true-gap system agreed with the DHM behavior (Fig. 7), crystal size, and three-dimensional organization of the crystal network observed by the C32 and CW organogels (Figs. 1, 2, 3, 4). Thus, we must use a fixed-gap system with caution specially with time dependent G0 determinations (i.e., creep and recovery measurements), and rheological measurements involving the use of fast temperature ramps (i.e., 10 °C/min). Acknowledgments The investigation was supported by grant # 48273-Z/25706 from CONACYT. The technical support from Concepcion Maza-Moheno and Elizabeth Garcia-Leos is greatly appreciated. References 1. Wright AJ, Marangoni AG (2007) Time, temperature, and concentration dependence of Ricinelaidic acid: canola oil organogelation. J Am Oil Chem Soc 84:3–9 2. Kumar R, Katare OP (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 6:E298–E310 3. Murdan S, Gregoriadis G, Florence AT (2000) Novel sorbitan monostearate organogels. J Pharm Sci 88:608–614 4. Abdallah DJ, Weiss RG (2000) n-Alkanes, Gel n-alkanes (and many other organic liquids). Langmuir 16:352–355 123 5. Rogers MA, Marangoni AG (2008) Non-isothermal nucleation and crystallization of 12-hydroxystearic acid in vegetable oils. Cryst Growth Des 8:4596–4601 6. Rogers MA, AG Marangoni (2009) Solvent-modulated nucleation and crystallization of 12-hydroxystearic acid: a nonisothermal approach. Langmuir ARTICLE ASAP DOI:10.1021/ 1a8035665 7. Wang R, Liu X, Xiong J, Li J (2006) Real-time observation of fiber network formation in molecular organogel: supersaturation dependent microstructure and its related rheological property. J Phys Chem B 110:7275–7280 8. Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Weiss RG, Toro-Vazquez JF (2009) Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. Eur J Lipid Sci Technol 111:207–215 9. Läuger J, Ziegler A, Raffer G (2004) True gap control: direct measurement of the real gap size during parallel-plate and cone and plate rheological experiments. Revista Mexicana de Ingenierı́a Quı́mica 3:307–310 10. Schaink HM, van Malssen KF, Morgado-Alves S, Kalnin D, Van der Linden E (2007) Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res Intern 40:1185–1193 11. Gandolfo FG, Bot A, Flöter E (2004) Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J Am Oil Chem Soc 81:1–6 12. Espeau P, White JW (1997) Thermodynamic properties of nalkanes in porous graphite. J Chem Soc Faraday Trans 93:3197– 3200 13. Zgardzinska B, Pietrow M, Goworek T, Wawryszczuk J (2006) ortho-Positronium in some n-alkanes: influence of temperature and pressure. Acta Physica Pol A 110:747–753 14. Tozaki K, Inaba H, Hayashi H, Quan C, Nemoto N, Kimura T (2003) Phase transitions of n-C32H66 measured by means of high resolution and super-sensitive DSC. Therm Acta 397:155–161 15. Toro-Vazquez JF, Morales-Rueda A, Dibildox-Alvarado E, Charo-Alonso M, Alonzo-Macias M, Gonzalez-Chavez MM (2007) Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc 84:989– 1000 16. Rogers M, Wright AJ, Marangoni AG (2008) Post-crystallization Increases in the mechanical strength of self/assembled fibrillar networks is due to an increase in network supramolecular ordering. J Phys D 41:215501 Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 207 Research Paper Thermo-mechanical properties of candelilla wax and dotriacontane organogels in safflower oil Juan A. Morales-Rueda1, Elena Dibildox-Alvarado2, Miriam A. Charó-Alonso2, Richard G. Weiss3 and Jorge F. Toro-Vazquez2 1 Universidad Autónoma de Queretaro, DIPA-PROPAC, Mexico Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Quimicas, Mexico 3 Georgetown University, Department of Chemistry, Washington, USA 2 The thermo-mechanical properties of organogels developed by a complex mixture of n-alkanes present in candelilla wax (CW) were investigated and compared with the ones of organogels developed by a pure nalkane, dotriacontane (C32). In both cases, the liquid phase used was safflower oil high in triolein (SFO) and the variables studied were two levels of gelator concentration (1 and 3%), cooling rates of 1 and 10 7C/ min, and two gel setting temperatures, 5 and 25 7C (Tset). Based on comparisons of the organogels made with C32, the presence of minor molecular components in CW had a profound effect on the crystal habit of the n-alkanes in CW-based organogels, and therefore on their physical properties. Thus, independent of the cooling rate and Tset, C32 showed a higher solubility and higher self-assembly capability in the SFO than CW. Nevertheless, for the same gelator concentration and time-temperature conditions, C32 organogels had lower G’ profiles than CW organogels. Additionally, independent of the type of gelator, more stable organogel structures were developed at Tset = 5 7C and using the lower cooling rate. The rheological behavior of the organogels was explained considering the formation of a rotator phase by the n-alkanes, its solid-solid transition, and their dependence as a function of the cooling rate and Tset. The results here obtained showed that it is possible to gelate SFO through organogelation with CW and without the use of trans fats. Keywords: Organogels / Candelilla wax / Trans-free / Rheology / Hentriacontane Received: July 10, 2008; accepted: September 19, 2008 DOI 10.1002/ejlt.200810174 1 Introduction Candelilla wax (CW) is a wax derived from the leaves of a small shrub native to northern Mexico and the southwestern USA, Euphorbia cerifera and Euphorbia antisyphilitica, from the family Euphorbiaceae. CW is a worldwide recognized food additive approved by the FDA (under regulations 21CFR, 175.105, 175.320, 176.180), used mainly as a glazing agent and binder for chewing gums. It is also used in the manufacture of lip balms and lotion bars, and in the paint industry to make varnishes. Additionally, CW can be used as a Correspondence: Jorge F. Toro-Vazquez, Facultad de Ciencias Quimicas-CIEP, Av. Dr. Manuel Nava 6, Zona Universitaria, San Luis Potosí, SLP 78210, Mexico. E-mail: toro@uaslp.mx Fax: 151 444 8262372 © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim substitute for carnauba wax and beeswax in different food systems. Reports on CW composition show the presence of 49–50% n-alkanes with 29–33 carbons, 20–29% esters of acids and alcohols with even-numbered carbon chains (C28–C34), 12–14% alcohols and sterols, and 7–9% free acids [1, 2]. In a previous investigation, we showed that under several time-temperature conditions, the n-alkanes present in CW, particularly the hentriacontane (C31), develops thermoreversible organogels in dispersion with safflower oil [3]. This investigation and several others [4–6] have shown that organogelation is a promising alternative that might be used to modify the physical properties of vegetable oils without the use of chemical modifications that result in the presence of trans fatty acids. This opens new alternatives to produce transfree margarines, vegetable oil-based spreads, and coatings. During the last years, organogels developed with low-molecular-weight compounds, such as fatty acids and n-alkanes, www.ejlst.com 208 J. A. Morales-Rueda et al. have received particular attention, mainly because these gelator molecules require only a small concentration (2%) to achieve gelation [5, 7–9]. However, very little is known about their rheological and calorimetric properties as affected by different time-temperature conditions. Within this framework, the objective of this paper is the investigation of the thermo-mechanical properties of organogels developed by a complex mixture of n-alkanes, the ones present in CW, in comparison with the organogels developed by pure n-alkanes, i.e. dotriacontane (C32). In both cases, the liquid phase used was safflower oil high in triolein (SFO). The variables investigated include two levels of gelator concentration (1 and 3%), two different cooling rates (1 and 10 7C/min) and two different gel setting temperatures (5 and 25 7C). An important characteristic of this experimental setup is that, while the main components in CW are n-alkanes with an odd number of carbons and with lengths between 29 and 33 carbons [3], dotriacontane is an n-alkane with 32 carbons. 2 Materials and methods 2.1 Vegetable oil, CW, dotriacontane, GC-MS, and HPLC analysis SFO extracted from genetically modified seed was obtained from Coral Internacional (San Luis Potosí, Mexico). Micronized high-purity CW obtained from E. cerifera was supplied from Multiceras (Monterrey, Mexico) and the dotriacontane (C32) was of reagent grade (Humphrey Chemical Co., CT, USA) recrystallized several times from petroleum ether. The SFO was analyzed for triacylglycerols (TAG) by HPLC [10], while the CW and the C32 were analyzed by capillary GC-MS as described previously [3]. The composition is reported as the mean 6 standard deviation of at least two independent determinations (n = 2). Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 heat of melting (DHM) were calculated with the equipment software (TA Instruments Universal Analysis 2000, v. 4.0) using the first derivative of the heat flux. Tg is the temperature where the first derivative of the heat capacity of the sample initially departed from the baseline. In contrast, Tp is the temperature where the first derivative of the heat capacity associated with the melting endotherm crossed the baseline. The DHg and DHM values correspond to the exotherm and endotherm areas associated with the gelation and melting process, respectively. At least two independent determinations were done and the corresponding mean of the thermal parameters was plotted as a function of the gelator concentration. 2.3 Experiment design For each system, CW or C32, the treatment conditions investigated resulted from the factorial combination of the different levels of gelator concentration (1 and 3%), gel setting temperatures (Tset, 5 and 25 7C), and cooling rates (1 and 10 7C/ min). The CW concentrations (i.e. 1 and 3%) and Tset (i.e. 5 and 25 7C) investigated were selected based on the results previously obtained with CW [3]. At the 1 and 3% CW concentrations a Tset of 5 7C provided a high thermodynamic drive for gelation since this temperature is 30–40 7C below the melting temperature (Tp) for CW organogels. In contrast, a Tset of 25 7C provides a lower thermodynamic drive for gelation since this temperature was just 10–20 7C below the CW organogels’ melting temperature. The treatments were randomly distributed among aliquots of the CW or C32 dispersions. For each treatment two independent measurements were done (n = 2). The organogels developed under such conditions were characterized by rheometry, calorimetry, solid phase content (SPC), and polarized light microscopy. 2.4 Oscillatory rheometry, heat of melting, and SPC of the organogels 2.2 Dynamic gelation and melting of organogels Different concentrations of CW or C32 were dispersed in SFO to achieve gelator concentrations within 0.5 and 10% (wt/vol). The CWor the C32 was solubilized in the SFO by heat (90 7C) and agitation during 20 min. Samples of CW, C32 and the corresponding dispersions were used to determine the dynamic gelation and melting thermograms by differential scanning calorimetry (DSC) using a TA Instruments Model Q1000 (TA Instruments, New Castle, DE, USA). Samples of the dispersions (5–7 mg) were sealed in aluminum pans, heated at 90 7C for 20 min and then cooled to –80 7C at a rate of 1 or 10 7C/min. After 2 min at –80 7C, the system was heated up to 90 7C at a rate of 5 7C/min. The thermal parameters corresponding to the temperature at the beginning of the gelation endotherm (Tg), the heat of gelation (DHg), the temperature at the peak of the melting endotherm (Tp), and the © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The elastic (G’) and loss (G”) modulus of the organogels were determined with a mechanical spectrometer (Paar Physica UDS 200; Stuttgart, Germany) equipped with a steel cone (50 mm, 17) and plate geometry (MK-22) with a truncated gap of 0.05 mm (sample size 0.5 mL). The CW or C32 dispersion was applied inside the geometry and after 20 min at 90 7C the system was cooled at 1 or 10 7C/min until achieving the corresponding Tset. Temperature was controlled by a Peltier system located in the base of the measurement geometry. At a given Tset, G’ and G” were determined as a function of time within 0 and 180 min using a frequency of 1 Hz. On the other hand, the heat of melting (DHM) and the SPC of the organogels, as a function of time (0–180 min) after achieving a pre-established Tset at a given cooling rate, were determined by DSC and low-resolution NMR (Minispec Bruker model mq20; Bruker Analytik, Rheinstetten, Germany), respectively. www.ejlst.com Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 2.5 Polarized light microscopy Polarized light microphotographs of organogels were obtained using a polarized light microscope (Olympus BX51; Olympus Optical Co., Ltd., Tokyo, Japan) equipped with a color video camera (KP-D50; Hitachi Digital, Tokyo, Japan) and a platina (TP94; Linkam Scientific Instruments, Ltd., Surrey, UK) connected to a temperature control station (LTS 350; Linkam Scientific Instruments, Ltd.) and a liquid nitrogen tank. To guarantee a uniform sample thickness, a drop of the melted sample was gently smeared over a preheated glass microscope slide (90 7C) using another glass slide at a 457 angle. The slide with the sample was placed in the platina and, after 20 min at 90 7C, the system was cooled (at 1 or 10 7C/min) to a given Tset with the temperature control station (Linksys32 version 1.3.1; Linkam Scientific Instruments, Ltd., Waterfield, UK). Polarized light microphotographs of the organogels were obtained as a function of time (0 and 180 min) once Tset was attained. 3 Results and discussion 3.1 Composition and thermal analysis of CW and C32 The results of the CW analysis showed that the main component of CW was hentriacontane (78.9 6 0.1%), an n-alkane of 31 carbons (C31). Minor components include other alkanes also with an odd number of carbons, particularly nonacosane (C29, 4.2 6 0.1%) and tritriacontane (C33, 8.0 6 0.2%), triterpene alcohols with a molecular formula of C30H49OH (i.e. Rheology and thermal properties of organogels 209 germanicol, lupeol or moretenol; 7.4 6 0.1%), and 1.6% (6 0.1%) of unidentified compounds. The purity of C32 by GC-MS was 99.50% (6 0.01%). The CW cooling thermograms (Fig. 1) showed one major exotherm with a Tg of 76.58 7C (6 0.68 7C), two temperature peaks at 59 and 53 7C, and DHg of 147.35 J/g (6 1.91 J/g). The melting thermograms show one endotherm with a melting temperature (Tp) of 64.42 7C (6 0.23 7C) and a DHM of 149.75 J/g (6 1.20 J/g). The melting temperature reported for 99.5% pure hentriacontane (67.05 7C) [11] is close to the Tp of CW. However, expressing the DHM for CW per unit mass of hentriacontane (82.9 kJ/mol), this value was greater than the DHM for 99.5% hentriacontane (i.e. 73.3 kJ/mol [11]). In addition to triterpenoids, other n-alkanes (i.e. nonacosane and tritriacontane) were present as minor components in CW. Thus, during cooling, the nonacosane and tritriacontane might develop a mixed molecular packing with hentriacontane. This would explain the two temperature peaks reported in the CW exotherm and the higher DHM than that of pure hentriacontane [3]. However, the development of a rotator phase might be considered as an alternative explanation for the thermal behavior observed by hentriacontane. Rotator phases are commonly observed in n-alkanes and are characterized by a crystalline lattice of the molecular centers while molecules rotate about their chain axes (i.e. structural disorder) [12–14]. Thus, during cooling, hentriacontane might develop a rotator phase from the melting at 59 7C (Fig. 1), followed by the transition to the alkane crystal at 53 7C. To the authors’ knowledge, the rotator phases of hentriacontane have not been investigated. However, with the exception of n-alkanes with an even number of carbons below Figure 1. Dynamic cooling (10 7C/min) and corresponding melting thermograms (5 7C/min) for CW and C32. Tg and Tp are defined in the text. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com 210 J. A. Morales-Rueda et al. 22 atoms, rotator phases are present in n-alkanes with carbon chains from 11 to 40 atoms long [12, 13]. In any case, based on the CW composition and the thermal parameters discussed above, the phase transitions observed in the CW thermograms were associated to the phase behavior of hentriacontane. Both the cooling and heating thermograms for C32 showed similar behavior as the one reported by Tozaki et al. using a high-resolution super-sensitive DSC and low cooling and heating rates (i.e. 0.4 mK/s) [14]. Thus, the first and second exotherms with peak temperatures at 67.5 and 62.2 7C were associated with the development of a rotator phase from the melt and the transition from the rotator phase to crystal, respectively (Fig. 1). Despite the different cooling rates used in our study and the one by Tozaki et al. [14], the two phase transitions had similar peak temperatures. Nevertheless, additional phase transitions reported by Tozaki et al. [14] (i.e. rotator phase IV to rotator phase III) were not observed in our work. This was mainly due to the higher heat flow sensitivity of the equipment designed and used by these authors [14] in comparison with the one used in the present work. The heating thermograms showed two major endotherms with Tp of 66 and 69 7C (Fig. 1). The first endotherm was associated with a solid-solid transition from the crystalline to the rotator phase, and the second one to the transition from the rotator to the liquid phase [14]. The minor endotherm with a Tp of 64.5 7C has been associated with the disorder of the n-alkane structure near the molecules’ end [14]. As with the cooling thermograms, despite the higher cooling and heating rates used in the present work, all these endotherms had peak temperatures similar to the ones reported by Tozaki et al. [14]. 3.2 Thermal-mechanical properties of CW and C32 organogels in SFO The cooling and heating thermograms for the corresponding CW and C32 dispersions in SFO were simple, showing just two peaks. The major peak, associated with the crystallization and melting process of TAG from SFO, was always present at temperatures below 0 7C in both the cooling and heating thermograms (data not shown). The minor peak, found at temperatures above 0 7C (Fig. 2A), was associated with the gelation and melting process of CW and C32 components in the SFO. The peaks associated with the development and melting of the rotator phase were not observed in the CWand C32 dispersions. Given the dilution of CWand C32 with SFO, lower cooling and heating rates might be required to achieve the appropriate signal resolution to observe the rotator phase transitions. However, such conditions were not used in the present investigation. Independent of the gelator concentration and the cooling rate used, Tg was always higher for C32 than for CW (Fig. 2B). Additionally, a higher concentration of CW than C32 was required to achieve the same Tg (Fig. 2B). This indicated that dotriacontane molecules have higher self-assembly capability in the SFO than the mixture of alkanes with an odd number © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 Figure 2. Dynamic cooling (10 7C/min) (A) and corresponding melting thermograms (5 7C/min) for 3% CW and C32 dispersions in SFO (B). Tg, Tp, DHg and DHM are defined in the text. of carbons as the ones present in CW. This was confirmed by the higher heat of melting (Fig. 3) and a larger crystal size with a high extent of birefringence of the structures developed by C32 (Fig. 4A and C for 1 and 3%, respectively, both at a cooling rate of 10 7C/min), in comparison with the ones developed by CW (Fig. 4B and D for 1 and 3%, respectively, both at cooling rate of 10 7C/min). It is important to point out that the previous results are not associated with the critical (i.e. minimum) concentration needed by C32 and CW to develop a gel. The minimum concentration required by C32 and CW to gel in SFO was not determined in the present study. The DHM behavior (Fig. 3) and the microphotographs shown in Fig. 4 suggested that, although hentriacontane was the major component in CW, the presence of other alkanes (i.e. nonacosane and tritriacontane) and triterpene alcohols might result in the development of mixed self-assembled structures with a lower extent of three-dimensional molecular structure (i.e. lower crystallinity and DHM) and smaller crystals than the ones achieved by pure C32. Schaink et al. [15] and Gandolfo et al. [16] showed the strong influence that the gelator composition has on crystal size, shape, and rheology of organogels developed in sunflower oil by different stearic acid-to-stearyl alcohol ratios. In general, smaller crystals with www.ejlst.com Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 Rheology and thermal properties of organogels 211 Figure 3. Heat of melting (DHM) values of dispersions of CW and C32 in SFO after dynamic cooling at two cooling rates (1 and 10 7C/min). Figure 4. Polarized light microphotographs of C32 and CW in SFO at Tset = 5 7C cooled at 10 7C/min. C32 organogels at 1% (A) and 3% (C); CW organogels at 1% (B) and 3% (D). higher rheological profiles were obtained at a stearic acid-tostearyl alcohol ratio of 3 : 7 than with the pure compounds [15, 16]. Independent of the Tset used to develop the CW organogels, the cooling rate did not affect the SPC (Fig. 5). Additionally, CW organogels developed at Tset = 25 7C had a lower SPC than at Tset = 5 7C (p ,0.05). However, with C32 organogels a higher SPC was developed at 10 7C/min than at 1 7C/ © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim min (p ,0.05; Fig. 5). This is except for the 1% C32 system at Tset = 25 7C where both cooling rates provided the same SPC. On the other hand, with C32, Tset had no effect on the SPC of 1% organogels while with 3% organogels a higher SPC was obtained at Tset = 25 7C than at Tset = 5 7C (p ,0.05; Fig. 5). Thus, with the exception of the 1% gelator concentration at Tset = 25 7C at both cooling rates, C32 forms organogels at significantly lower SPC than CW (Fig. 5). This is indewww.ejlst.com 212 J. A. Morales-Rueda et al. Figure 5. SPC of organogels developed with 1% (A) and 3% (B) CW and C32 dispersions in SFO at two cooling rates (1 and 10 7C/ min) and two Tset (5 and 25 7C). pendent of the cooling rate and the gel setting temperature used (Fig. 5). These results demonstrate, as a corollary, the higher solubility and higher self-assembly capability of C32 in the SFO, in comparison with the n-alkanes with an odd number of carbons present in CW. Note that the SPC values plotted in Fig. 5 are the mean values of SPC determined by NMR every 10 min during 180 min. This is since, for the same gelator type and cooling rate used, once Tset was achieved, the SPC in the organogels remained constant during the 180 min of the experiment. The standard error for the mean SPC values was 0.09%. The G’ profiles in both gelator systems under the different conditions of organogel formation studied are shown in Fig. 6. For the same gelator concentration and time-temperature conditions, lower G’ profiles were observed in the C32 organogels than in the CW organogels. This result was probably associated with the higher SPC and smaller crystal size of the network components in the CW organogels (Fig. 4B, D) than in the C32 organogels (Fig. 4A, C). A more detailed analysis showed that with CW the higher the SPC, the higher is the organogels’ G’ profile. This phenomenon was more evident in the organogels developed at the lower cooling rate (compare Fig. 6A with 6B). With C32, despite the higher SPC present in the organogels developed at 10 7C/min, the ones developed at © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 1 7C/min showed higher G’ profiles (Fig. 6C) than the organogels developed at 10 7C/min (Fig. 6D). This phenomenon was independent of the Tset utilized. Note that, although the strain applied during the 180 min of the experiment was always within the linear viscoelastic region (LVR), some changes in the gelator network structure of both types of organogels occurred as a function of time: G’ values decreased from G’0 (i.e. G’ value at time zero) to G’f (i.e. G’ value after 180 min). This phenomenon occurred mainly in organogels developed at 10 7C/min (Fig. 6B, D), particularly at Tset = 25 7C and with the C32 system. It is important to point out that the mechanical spectra (i.e. G’ and G” vs. frequency) of the organogels developed after 180 min showed that, in all cases and for the whole frequency interval (0.01–100 Hz), G’ was higher than G” (data not shown). The profiles of the mechanical spectra indicated that under the treatment conditions investigated strong and weak gels were developed. These results will be presented in another paper. When the moduli for the CW and C32 organogels were plotted as a function of the SPC (Fig. 7), it was evident that G’0 and G’f increased in a logarithmic fashion as a function of SPC in the organogels. However, at 1 7C/min, no significant difference between G’0 and G’f was observed, particularly at the higher SPC (Fig. 7A, C). In contrast, at 10 7C/min (Fig. 7B, D), both G’0 and G’f were lower than at 1 7C/min (Fig. 7A, C), particularly in C32 organogels, and there was a significant difference between G’0 and G’f. These results showed that, independent of the type of gelator, more stable organogel structures were developed at Tset = 5 7C and using the lower cooling rate. To understand this rheological behavior, it is necessary to recognize the development of the rotator phase and its impact on the junction zones between the microplatelet units that form the primary building blocks of the three-dimensional networks of the organogels. The rotator phase formation and its solid-solid transition occur over a period of time that depends on Tset. Thus, during the cooling stage, the thermodynamic driving force for gel formation (e.g. the difference between the temperature of the system and Tg) increased faster at the higher cooling rate. Consequently, the gelator molecules had less time to organize at 10 7C/min than at 1 7C/min. Consistent with this, at 10 7C/min a lower temperature (i.e. lower Tg) was required to achieve the molecular packing for organogel formation (Fig. 2B) than at 1 7C/min. In turn, achieving a given Tset at 10 7C/min resulted in a lower thermodynamic drive for gelation during the isothermal stage (i.e. Tg – Tset) than when the same Tset was achieved at 1 7C/min. The overall result was the development of a less well organized molecular packing (i.e. rotator phase) at 10 7C/min than at 1 7C/min, particularly at the higher Tset (i.e. 25 7C). Within this framework and assuming that the structural model for nalkane organogels advanced previously [17] applies here, the presence of less organized structures (i.e. rotator phase), particularly at the junction zones, would result in a modification of the microstructure at the microplatelets level during G’ www.ejlst.com Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 Rheology and thermal properties of organogels 213 Figure 6. Elastic modulus (G’) as a function of time of CW and C32 organogels in SFO. The Tset, gelator concentration, and the mean SPC with corresponding standard deviation are shown in each case. CW organogels developed at 1 7C/min (A) and 10 7C/min (B); C32 organogels developed at 1 7C/min (C) and 10 7C/min (D). Figure 7. Elastic modulus at time zero (G’0) and after 180 min (G’f ) as a function of SPC of CW and C32 organogels in SFO. CW organogels developed at 1 7C/min (A) and 10 7C/min (B); C32 organogels developed at 1 7C/min (C) and 10 7C/min (D). © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ejlst.com 214 J. A. Morales-Rueda et al. measurements (Fig. 6). This, despite the strain applied, was always within the LVR of the organogels. Based on the above discussion we would expect the junction zones to be less structured in organogels developed at 10 7C/min, particularly at Tset = 25 7C (Fig. 6B, D). Should the rotator phase be developed at a Tset = 25 7C, this phase with “structural disorder” might evolve into a higher-order state as a function of time through a solid-solid transition. A transition such as the one proposed has been observed in n-heneicosane (C21) and n-pentacosane (C25) [18]. The changes of DHM as a function of time, particularly in the CW organogels, were consistent with this process. Thus, independently of the Tset used, organogels developed at 1 7C/ min showed higher DHM (i.e. higher level of molecular structure) than the organogels developed at 10 7C/min (Fig. 8). Additionally, in organogels developed at Tset = 25 7C, the DHM increased as a function of time, a process probably associated with the achievement of a more organized molecular packing from the one originally achieved (e.g. rotator phase). These effects were more evident in 3% CWorganogels (Fig. 8B) than in 1% CW organogels (Fig. 8A). In contrast, in the C32 organogels, although there was a tendency to obtain a higher DHM at 1 7C/min than at 10 7C/min under all conditions tested, the Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 differences were not significant (results not shown). Additionally, under all conditions investigated, the DHM in C32 organogels remained constant as a function of time, indicating the absence of a solid-solid transition. This might be explained considering that under the time-temperature conditions investigated, the supercooling (i.e. Tg – Tset) in the C32 system was high enough to develop crystals with no rotator phase. Given the Tg values shown in Fig. 2B, at a given Tset, C32 ought to have a higher thermodynamic driving force for gelation during the isothermal stage than the CW system. Thus, the development of a rotator phase would be more probable in the CW organogels than in the C32 organogels. The results here obtained showed that it is possible to gel SFO through organogelation with CW and without the use of trans fats. Previous studies showed that 3% organogels of CW have a phase separation stability at least up to 3 months with a texture of potential use for the food industry [3]. Based on comparisons of gels made with C32 as gelator, the presence of minor molecular components in CW seemed to have a profound effect on the crystal habit of the n-alkanes in CW-based organogels, and therefore on their physical properties. Ongoing investigation using CW, pure hentriacontane (C31), and different proportions of C31 with other n-alkanes addresses this important issue. Additionally, investigations that evaluate the presence of a rotator phase as a function of Tset and its effect on organogel rheology will be undertaken. Acknowledgments The investigation was supported by grant no. 48273-Z/25706 from CONACYT. We acknowledge and appreciate the fellowship from CONACYT for J.A.M.-R. during his stay at Georgetown University, Department of Chemistry. The technical support from Concepcion Maza-Moheno and Elizabeth Garcia-Leos is greatly appreciated. Conflict of interest statement The authors have declared no conflict of interest. References Figure 8. Heat of melting (DHM) as a function of time for CW organogels developed at Tset of 5 or 25 7C and 1 or 10 7C/min. 1% CW organogels (A), 3% CW organogels (B). © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim [1] P. M. Kuznesof: Candelilla wax, chemical and technical assessment (CTA). Chemical and Technical Assessment, 65th Joint FAO/WHO Expert Committee on Food Additives (JECFA), ftp://ftp.fao.org/es/esn/jecfa/cta_65_candelillla_wax.pdf (2005). [2] Instituto de la Candelilla, http://www.candelilla.org/es/propie dades.htm (2004). [3] J. F. Toro-Vazquez, J. A. Morales-Rueda, E. Dibildox-Alvarado, M. Charó-Alonso, M. Alonso-Macias, M. M. González-Chávez: Development of organogels with candelilla wax and safwww.ejlst.com Eur. J. Lipid Sci. Technol. 2009, 111, 207–215 flower oil with high triolein content. J Am Oil Chem Soc. 2007, 84, 989–1000. [4] A. Bot, W. G. M. Agterof: Structuring of edible oils by mixtures of g-oryzanol with b-sitosterol or related phytosterols. J Am Oil Chem Soc. 2006, 83, 513–521. [5] A. J. Wright, A. G. Marangoni: Time, temperature, and concentration dependence of ricinelaidic acid-canola oil organogelation. J Am Oil Chem Soc. 2007, 84, 3–9. [6] M. Pernetti, K. F. van Malssen, E. Flöter, A. Bot: Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci. 2007, 12, 221–231. [7] R. Kumar, O. P. Katare: Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: A review. AAPS Pharm Sci Tech. 2005, 6, E298–E310. [8] S. Murdan, G. Gregoriadis, A. T. Florence: Novel sorbitan monostearate organogels. J Pharm Sci. 2000, 88, 608–614. [9] D. J. Abdallah, R. G. Weiss: n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 2000, 16, 352–355. [10] D. Pérez-Martínez, C. Alvarez-Salas, J. Morales-Rueda, J. F. Toro-Vazquez, M. Charó-Alonso, E. Dibildox-Alvarado: The effect of supercooling on crystallization of cocoa butter-vegetable oil blends. J Am Oil Chem Soc. 2005, 82, 627–632. [11] INFOTHERM: http://www.fiz-chemie.de/infotherm/servlet/ infothermSerch (2006). © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Rheology and thermal properties of organogels 215 [12] P. Espeau, J. W. White: Thermodynamic properties of nalkanes in porous graphite. J Chem Soc Faraday Trans. 1997, 93, 3197–3200. [13] B. Zgardzinska, M. Pietrow, T. Goworek, J. Wawryszczuk: ortho-Positronium in some n-alkanes; influence of temperature and pressure. Acta Phys Pol A 2006, 110, 747–753. [14] K. Tozaki, H. Inaba, H. Hayashi, C. Quan, N. Nemoto,T Kimura: Phase transitions of n-C32H66 measured by means of high resolution and super-sensitive DSC. Therm Acta 2003, 397, 155–161. [15] H. M. Schaink, K. F. van Malssen, S. Morgado-Alves, D. Kalnin, E. Van der Linden: Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res Int. 2007, 40, 1185–1193. [16] F. G. Gandolfo, A. Bot, E. Flöter: Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J Am Oil Chem Soc. 2004, 81, 1–6. [17] D. J. Abdallah, S. A. Sirchio, R. G. Weiss: Hexatriacontane organogels. The first determination of the conformation and molecular packing of a low-molecular-mass organogelator in its gelled state. Langmuir 2000, 16,7558–7561. [18] K. Nozaki, T. Yamamoto, T. Hara, M. Hikosaka: Rotator phase transition through an intermediate state in odd nalkanes: In situ optical observation study. Jpn J Appl Phys. 1997, 36, 146–149. www.ejlst.com