Chapter 8
Transcription
Chapter 8
RaymondA.Serway ChrisVuille ChapterEight Rota:onalEquilibriumand Rota:onalDynamics Applica:onofForces • Thepointofapplica:onofaforceisimportant – Thiswasignoredintrea:ngobjectsaspoint par:cles • Theconceptsofrota:onalequilibriumand rota:onaldynamicsareimportantinmany fieldsofstudy • Angularmomentummaybeconserved • Angularmomentummaybechangedby exer:ngatorque Introduc:on Forcevs.Torque • Forcescauseaccelera:ons • Torquescauseangularaccelera:ons • Forceandtorquearerelated Sec:on8.1 Torque • ThedoorisfreetorotateaboutanaxisthroughO • Therearethreefactorsthatdeterminetheeffec:venessofthe forceinopeningthedoor: – Themagnitudeoftheforce – Theposi-onoftheapplica:onoftheforce – Theangleatwhichtheforceisapplied Sec:on8.1 Torque,cont • Torque,τ,isthetendencyofaforcetorotate anobjectaboutsomeaxis – τ =rF • τisthetorque – SymbolistheGreektau • risthelengthoftheposi:onvector • Fistheforce • SIunitisNewton.meter(N.m) Sec:on8.1 Direc:onofTorque • Torqueisavectorquan:ty – Thedirec:onisperpendiculartotheplane determinedbytheposi:onvectorandtheforce – Iftheturningtendencyoftheforceis counterclockwise,thetorquewillbeposi:ve – Iftheturningtendencyisclockwise,thetorque willbenega:ve Sec:on8.1 Mul:pleTorques • Whentwoormoretorquesareac:ngonan object,thetorquesareadded – Asvectors • Ifthenettorqueiszero,theobject’srateof rota:ondoesn’tchange Sec:on8.1 GeneralDefini:onofTorque • Theappliedforceisnotalwaysperpendicular totheposi:onvector • Thecomponentoftheforceperpendicularto theobjectwillcauseittorotate Sec:on8.1 GeneralDefini:onofTorque,cont • Whentheforceisparallelto theposi:onvector,no rota:onoccurs • Whentheforceisatsome angle,theperpendicular componentcausesthe rota:on Sec:on8.1 GeneralDefini:onofTorque,final • Takingtheangleintoaccountleadstoamore generaldefini:onoftorque: – τ = rFsinθ • ristheposi:onvector • Fistheforce • θistheanglebetweentheforceandtheposi:on vector Sec:on8.1 LeverArm • Theleverarm,d,istheperpendiculardistancefromtheaxisof rota:ontoalinedrawnalongthedirec:onoftheforce • d=rsinθ • Thisalsogivesτ=rFsinθ Sec:on8.1 TorqueandAxis • Thevalueofthetorquedependsonthe chosenaxisofrota:on • Torquescanbecomputedaroundanyaxis – Theredoesn’thavetobeaphysicalrota:onaxis present • Onceapointischosen,itmustbeused consistentlythroughoutagivenproblem Sec:on8.1 RightHandRule • Pointthefingersinthe direc:onoftheposi:on vector • Curlthefingerstoward theforcevector • Thethumbpointsinthe direc:onofthetorque Sec:on8.1 NetTorque • Thenettorqueisthesumofallthetorques producedbyalltheforces – Remembertoaccountforthedirec:onofthe tendencyforrota:on • Counterclockwisetorquesareposi:ve • Clockwisetorquesarenega:ve Sec:on8.2 TorqueandEquilibrium • FirstCondi:onofEquilibrium – Thenetexternalforcemustbezero – Thisisastatementoftransla:onalequilibrium • TheSecondCondi:onofEquilibriumstates – Thenetexternaltorquemustbezero – Thisisastatementofrota:onalequilibrium Sec:on8.2 Selec:nganAxis • It’susuallybesttochooseanaxisthatwill makeatleastonetorqueequaltozero – Thiswillsimplifythetorqueequa:on Sec:on8.2 EquilibriumExample • Thewoman,massm,sitson theleZendofthesee-saw • Theman,massM,sits wherethesee-sawwillbe balanced • ApplytheSecondCondi:on ofEquilibriumandsolvefor theunknowndistance,x Sec:on8.2 CenterofGravity • Theforceofgravityac:ngonanobjectmust beconsidered • Infindingthetorqueproducedbytheforceof gravity,alloftheweightoftheobjectcanbe consideredtobeconcentratedatasingle point Sec:on8.3 Calcula:ngtheCenterofGravity • Theobjectisdividedupinto alargenumberofvery smallpar:clesofweight (mg) • Eachpar:clewillhaveaset ofcoordinatesindica:ngits loca:on(x,y) Sec:on8.3 Calcula:ngtheCenterofGravity,cont. • Weassumetheobjectisfreetorotateabout itscenter • Thetorqueproducedbyeachpar:cleabout theaxisofrota:onisequaltoitsweight:mes itsleverarm – Forexample,τ1 = m1gx1 Sec:on8.3 Calcula:ngtheCenterofGravity,cont. • Wewishtolocatethepointofapplica:onof thesingleforcewhosemagnitudeisequalto theweightoftheobject,andwhoseeffecton therota:onisthesameasalltheindividual par:cles. • Thispointiscalledthecenterofgravityofthe object Sec:on8.3 CoordinatesoftheCenterofGravity • Thecoordinatesofthecenterofgravitycan befoundfromthesumofthetorquesac:ng ontheindividualpar:clesbeingsetequalto thetorqueproducedbytheweightofthe object Sec:on8.3 CenterofGravityandCenterofMass • Thethreeequa:onsgivingthecoordinatesof thecenterofgravityofanobjectareiden:cal totheequa:onsgivingthecoordinatesofthe centerofmassoftheobject • Thecenterofgravityandthecenterofmass oftheobjectarethesameifthevalueofg doesnotvarysignificantlyovertheobject Sec:on8.3 CenterofGravityofaUniformObject • Thecenterofgravityofahomogenous, symmetricbodymustlieontheaxisof symmetry • OZen,thecenterofgravityofsuchanobject isthegeometriccenteroftheobject Sec:on8.3 ExperimentallyDeterminingtheCenter ofGravity • Thewrenchishungfreely fromtwodifferentpivots • Theintersec:onofthelines indicatesthecenterof gravity • Arigidobjectcanbe balancedbyasingleforce equalinmagnitudetoits weightaslongastheforce isac:ngupwardthrough theobject’scenterof gravity Sec:on8.3 NotesAboutEquilibrium • Azeronettorquedoesnotmeantheabsence ofrota:onalmo:on – Anobjectthatrotatesatuniformangularvelocity canbeundertheinfluenceofazeronettorque • Thisisanalogoustothetransla:onalsitua:onwherea zeronetforcedoesnotmeantheobjectisnotin mo:on Sec:on8.4 SolvingEquilibriumProblems • Diagramthesystem – Includecoordinatesandchooseaconvenientrota:onaxis • Drawafreebodydiagramshowingalltheexternal forcesac:ngontheobject – Forsystemscontainingmorethanoneobject,drawa separatefreebodydiagramforeachobject Sec:on8.4 ProblemSolving,cont. • ApplytheSecondCondi:onofEquilibrium – Thiswillyieldasingleequa:on,oZenwithoneunknown whichcanbesolvedimmediately • ApplytheFirstCondi:onofEquilibrium – Thiswillgiveyoutwomoreequa:ons • Solvetheresul:ngsimultaneousequa:onsforallof theunknowns – Solvingbysubs:tu:onisgenerallyeasiest Sec:on8.4 ExampleofaFreeBodyDiagram (Forearm) • Isolatetheobjecttobeanalyzed • Drawthefreebodydiagramforthatobject – Includealltheexternalforcesac:ngontheobject Sec:on8.4 ExampleofaFreeBodyDiagram (Ladder) • Thefreebodydiagramshowsthenormalforceandtheforceof sta:cfric:onac:ngontheladderattheground • Thelastdiagramshowstheleverarmsfortheforces Sec:on8.4 ExampleofaFreeBodyDiagram (Beam) • Thefreebodydiagram includesthedirec:ons oftheforces • Theweightsactthrough thecentersofgravityof theirobjects Sec:on8.4 TorqueandAngularAccelera:on • Whenarigidobjectissubjecttoanettorque (Στ≠0),itundergoesanangularaccelera:on • Theangularaccelera:onisdirectly propor:onaltothenettorque – Therela:onshipisanalogousto∑F=ma • Newton’sSecondLaw Sec:on8.5 MomentofIner:a • Theangularaccelera:onisinversely propor:onaltotheanalogyofthemassina rota:ngsystem • Thismassanalogiscalledthemomentof iner-a,I,oftheobject – SIunitsarekgm2 Sec:on8.5 Newton’sSecondLawforaRota:ng Object • Theangularaccelera:onisdirectly propor:onaltothenettorque • Theangularaccelera:onisinversely propor:onaltothemomentofiner:aofthe object Sec:on8.5 MoreAboutMomentofIner:a • Thereisamajordifferencebetweenmoment ofiner:aandmass:themomentofiner:a dependsonthequan:tyofmagerandits distribu:onintherigidobject • Themomentofiner:aalsodependsuponthe loca:onoftheaxisofrota:on Sec:on8.5 MomentofIner:aofaUniformRing • Imaginethehoopis dividedintoanumber ofsmallsegments,m1… • Thesesegmentsare equidistantfromthe axis Sec:on8.5 OtherMomentsofIner:a Sec:on8.5 Example,Newton’sSecondLawfor Rota:on • Drawfreebodydiagramsof eachobject • Onlythecylinderisrota:ng, soapplyΣτ=Iα • Thebucketisfalling,butnot rota:ng,soapplyΣF=ma • Rememberthata=αrand solvetheresul:ng equa:ons Sec:on8.5 Rota:onalKine:cEnergy • Anobjectrota:ngaboutsomeaxiswithan angularspeed,ω,hasrota:onalkine:cenergy KEr=½Iω2 • Energyconceptscanbeusefulforsimplifying theanalysisofrota:onalmo:on Sec:on8.6 Conserva:onofEnergy • Conserva:onofMechanicalEnergy – Remember,thisisforconserva:veforces,no dissipa:veforcessuchasfric:oncanbepresent – Poten:alenergiesofanyotherconserva:ve forcescouldbeadded Sec:on8.6 Work-EnergyinaRota:ngSystem • Inthecasewheretherearedissipa:veforces suchasfric:on,usethegeneralizedWorkEnergyTheoreminsteadofConserva:onof Energy • Wnc=ΔKEt+ΔKEr+ΔPE Sec:on8.6 ProblemSolvingHintsforEnergy Methods • Choosetwopointsofinterest – Onewhereallthenecessaryinforma:onisgiven – Theotherwhereinforma:onisdesired • Iden:fytheconserva:veandnonconserva:ve forces Sec:on8.6 ProblemSolvingHintsforEnergy Methods,cont • Writethegeneralequa:onfortheWorkEnergytheoremiftherearenonconserva:ve forces – UseConserva:onofEnergyifthereareno nonconserva:veforces • Usev=rωtoeliminateeitherωorvfromthe equa:on • Solvefortheunknown Sec:on8.6 AngularMomentum • Similarlytotherela:onshipbetweenforce andmomentuminalinearsystem,wecan showtherela:onshipbetweentorqueand angularmomentum • Angularmomentumisdefinedas – L=Iω – and Sec:on8.7 AngularMomentum,cont • Ifthenettorqueiszero,theangularmomentum remainsconstant • Conserva-onofAngularMomentumstates:LetLi andLfbetheangularmomentaofasystemattwo different:mes,andsupposethereisnonetexternal torquesoΣτ=0,thenangularmomentumissaidto beconserved Sec:on8.7 Conserva:onofAngularMomentum • Mathema:cally,when – Appliestomacroscopicobjectsaswellasatoms andmolecules Sec:on8.7 Conserva:onofAngularMomentum, Example • Withhandsandfeet drawnclosertothe body,theskater’s angularspeedincreases – Lisconserved,I decreases,ωincreases Sec:on8.7 Conserva:onofAngularMomentum, Example,cont • Comingoutofthespin, armsandlegsare extendedandrota:on isslowed – Lisconserved,I increases,ωdecreases Sec:on8.7 Conserva:onofAngularMoment, AstronomyExample • CrabNebula,resultofsupernova • Centerisaneutronstar – Asthestar’smomentofiner:adecreases,itsrota:onal speedincreases Sec:on8.7