Thiol-disulfideinterchange - Whitesides Research Group
Transcription
Thiol-disulfideinterchange - Whitesides Research Group
C H A P T E1R3 Thiol-disulfide interchange RAJEEVA SINGH lmmunoGen,lnc., 748 Sidney St.,Cambrtdge,MA 02139 and G E O R G EM W H I T E S I D E S Departmentof Chemistry,Harvard university,12 oxford St.,Cambridge,MA02138 I . INTRODUCTION II. M E T H O D S U S E D I N F O L L O W I N G T H I O L - D I S U L F I D E INTERCHANGE A. Spectroscopic(UV, NMR) Assays B. Enzymatic Assays C. AssaysBasedon Chromatography III. MECHANISM A. Products B. Dependenceon Solution pH, and on the pK" Values of Thiols C. Kinetics 1. Ratelaw 2. Br/nsted relation 3. Substituent effects a. Steric b. Acidity c. Charge d. Hydrogen bonding e. Reactions involving cyclic disulfides 4. Solvent effects 5. Gas-phasestudies 6. Catalysis 7. Comparison with selenolate-diselenideinterchange D. Transition State Structure E. TheoreticalCalculationson Thiol-Disulhde Interchanse F. MechanisticUncertainties . . SupplementS: The ,hr^irnrv of sulphur-containinll functional aroups Edited by S. Patai and Z. Rappoport O 1993 John Wiley & Sons Ltd 633 634 636 636 631 638 638 638 638 639 639 640 641 641 642 642 642 643 643 645 645 646 646 646 641 634 R. Singh and G. M. Whitesides IV . E Q UI LI B RI U M I N T H I O L D I S U L F I D E I N T E R C H A N G E REACTIONS A. Equilibria Involving Monothiols B. Equilibria Involving a,co-Dithiols V . A P P LI CA T I O N SO F T H IO L -D ISU L F ID E IN TE R C H A N GE IN BIOCHEMISTRY u. CO NCLUDI N G R EMA R K S VII. ACKNOWLEDGMENTS VIII . RE F E RE NC ES 6-l 641 648 654 655 656 656 I. INTRODUCTION Thiol-disulfrde interchangeis the reaction of a thiol (RSH) with a disulfide (R'SSR'), with formation of a new disulfide (RSSR') and a thiol (R'SH) derived from the original disulfide(equation 1).The reaction is unique in organic chemistry:although it involves the cleavageand formation of a strong covalent bond (the S-S bond; bond energy ca 60 kcal mol 1),it occurs reversibly at room temperature in water at physiological pH (ca 7)1-a.The reaction is moderately fast: a typical value of the observed rate constant i s c a 1 0 M - 1 m i n - r a t p H 7 a n d r o o m t e m p e r a t u r e sT. h e h a l f - l i f ef o r t h e r e a c t i o ni s ca 2h for mM concentrationsof thiol and disulfidein aqueoussolution at pH 7. and for alkanethiolswith normal valuesof pK^ (ca9-10). The yield of the reactionis quantitative if side-reactions-such as air oxidation of thiol to disulfide, and cleavageof disulfidebonds at high pH-are preventedr. (I) Thiol-disulfide interchangeis an Sr2 reaction. Thiolate anion (RS ) is the active nucleophileand the reactioncan be stoppedif the solution is made acidict. The reaction -zo. is overall second-order:first-ordereach in thiolate and in disulfide(equations) 4f In this chapter, we will distinguish between rhlol-disulfide interchange(the overall observedprocess,equation 1),and thiolate-disulfideinterchange(the reaction of thiolate anion with disulfide,equation 3). The two processesdiffer according to the extent to which thiol is dissociatedto thiolate anion under the reaction conditions. R S H + R , S S R , = R S S R , +H S R , (2) RSH = RS + H+ (pK^*t") _SR, (3) R S _+ R , S S R , = R S S R , + * (4) H + SR'= HSR' (pK"*'tt) 2s and involves the backside Thiolate-disulhde interchange is base catalyzed2l nucleophilic attack of thiolate anion along the S-S bond axis of the disulfide26.It showslesssensitivityto solventthan most S"2 reactionsinvolving oxygen and nitrogen nucleophilesls.The rates of thiolate-disulfide interchangein polar aprotic solvents (DMSO, DMF) are faster by a factor of approximately 103 than rates in polar protic solvents(water,methanol).For comparison,the rate enhancementfor oxyanions(which s are more highly solvatedthan thiolates)1 on moving from protic to polar aprotic solvents i s 1 0 6 -1 0 7 . Biologicallyimportant moleculescontainingthe thiol or the disulfidegroup are widely distributedin naturel'2,and the unique position of thiols and disulfidesin biochemistry 3. has beenreviewedin severalexcellentbooks and articlest The thiol-containingamino acid cysteine-is presentin proteinsand peptides;examplesincludeglutathione2-and trypanothione2s-30.Severalcofactors coenzymeA, dihydrolipoamide,coenzyme M ( - O 3 S C H 2 C H 2 S H ) 3 r c o n t a i n t h e e s s e n t i atlh i o l f u n c t i o n a l i t y l ' 2T. h e d i s u l f i d eb o n d s 635 = f = .-F c 0 -10 50 a) lTl q q) C LLJ 30 20 r0 0 -r0 0 30 60 90 120 150 180 D i h e d r a al n g l e ( H S S Ho r C S S C ) F I G U R E 1 . R e l a t i v ee n e r g yl k J m o l ' ) o f H S S H a n d M e S S M e a s a f u n c t i o n o f t h e d i h e d r a l a n g l e ( { , R S S R ) :( ) M M 2 ( 8 5 ) ;( - - ) 6-31G* [M. Aida and C. Nagata, Theor. Chint.Acta,70,73 1 1 9 8 6 ) J( -, - ) S C F a n d M P 2 [ C . J . M a r s d e na n d B . J . S m i t h ,J . P h t ' s . C h e m . , 9 2 , 3 4 7( 1 9 8 8 ) l ;( - - - ) O P L S [ W L . J o r g e n s e nJ,. P h 1 , s . Chem.,90, 6379 (1986)1. Reprinted with permission from Reference16. Copyright (1990) American Chemical Society 636 R. Singh and G. M. Whitesides betweencysteineresiduesare important tertiary and quarternary structural clcntcnrrin proteins(especially extracellularproteins)suchas immunoglobulins,enzymes,horntor.rc.. procollagenand albuminl-3. The cleavageof the disulfidebond(s)of many proteins1e.g. deoxyribonuclease I) resultsin loss of activity32.Thiol-disulfide interchangemay plal a role in metabolic regulation of enzymatic activities3'::':+.76. activities of several chloroplastenzymessuch as fructose-1,6-biphosphatase, NADP-malate dehydrogenase, sedoheptulose1,7-biphosphatase,NADP-glyceraldehyde-3-phosphatedehydrogenase and phosphoribulokinase are enhancedby reduction of their specificdisulfide bonds by photogeneratedreducing equivalentstransferredvia ferredoxinand thioredoxin3''rs-'17. The cleavageof disulfide bonds of B-adrenergicand other cell surfacereceptorsby thiols activatesthe receptorin a manner similar to binding of agonist3s'3e. The thiol functional group is essentialfor activity of many enzymesl'2such as thiol proteases (papain, ficin, bromelain)a0,B-ketoacylthiolaseal-a3,enolaseaa,creatine kinase,glyceraldehyde-3-phosphate phosphofructokinase dehydrogenase, and adenylate kinaser-3'11.Theseenzymesare inactivein mixed disulfideform, and can be reactivated using strongly reducing thiols (e.g. dithiothreitol, lV,ly''-dimethyl-N,lV'-bis(mercaptoacetyl)hydrazine)l1'18. A thiolate anion may be involved in methanogenesisby 2elle redox coupling with a Ni cofactorin methyl coenzymeM reductase3t.The reactivethiol functionalityis maskedas a trisulfidein the potent DNA-cleavageagents-calichemycin and esperimicin4s-48. The rate-determiningstepin the unmaskingof theseDNA-cleavage agentsis the cleavageof the trisulhde by a thiol (e.g.glutathione)48. The thiolate anion formed undergoesintramolecularMichael-typeattack on an enonesystem,which in turn facilitatesthe ring closureof the enediynemoiety to form the reactivearomaticdiradical. Thiolate anion is a strong nucleophileand a good leaving group becauseof its high polarizability and low degreeof solvation.The thiol group is less strongly hydrogenbonded, and the thiolate anion is lesssolvated,than the alkoxide anion. The value of pKu of the SH group of butanethiol in DMSO (ca 17) is 7 units higher than in water (ca 10);the correspondingpKu value for the OH group of butanol is 12 units higher in DMSO (ca28) than in water (cctI6)ae-s1. The optimum CSSC dihedral angle in the disulfide bond is ca90 (Figure l). The energy barrier to rotation around CSSC bond is c'u7.5kcalmol-1 s2. Five-membered cyclic disulfidesare strainedand have a CSSC dihedral angle of ca 30. s3. Sulfur shows concatenation:molecular sulfur S, exists as an eight-memberedring; organosulfur compoundscontainingtri- and polysulfidelinkages(RS"R)are found in nature and have s. been characterizedsa's This chapter focuseson the physical-organicaspectsof the thiol-disulfide interchange reaction.The biochemicalaspectsof the reaction are only lightly touched upon here, and we recommend References1-3 to the readerfor a detailedreview of the biochemistrv. I I . M E T H O D SU S E D I N F O L L O W I N GT H I O L - D I S U L F I D EI N T E R C H A N G E A. Spectroscopic (UV, NMR) Assays The kinetics of thiol disulfide interchange reactions involving formation of a chromophoric thiolate are convenientlyfollowed by UV spectroscopy.The reaction of thiolates with excessEllman's reagent [EllS-SEll, 5,5'-Dithiobis(2-nitrobenzoic acid)] is usedfor quantitativeestimationof thiol by measuringthe absorption due to Ellman's thiolate(EllS ) at 412nm (equation5)so-su. Reactionsof thiols with 4,4'-dipyridyldisulfide and 2,2'-dipyridyl disulfide generate chromophoric thiols: 4-thiopyridone (r3z+n-: 1 9 6 0 0 M t c m - 1 ) a n d 2 - t h i o p y r i d o n e( e . o . , _ : 8 0 8 0 M - 1c m t ) r e s p e c t i v e l y s o - t ' u . The kinetics and equilibria of reactions involving cyclic five- and six-membered disulfidescan be followed at 330nm and 290 (or 310nm) respectively.Five-membered 637 13. Thiol-disulfide interchanse RS_.,;b,_, el'o*o, Ellman's Reagent EIIS-SEII (5) ---* RS-S + OrN EIIS E 4 r 2 n ^ :1 3 6 0 0M tcm-t cyclic disulfides absorb in the UV region a t 3 3 0 n m ( e : 1 4 7 M t c m t ) a n d s i x membered disulfides absorb at 290nm (e: 2 9 0 M t c m t ) o r 3 l 0 n m ( e: 1 1 0 M I a-- tys,s:,63-6s. 1H NMR spectroscopycan be used to determinethe position of equilibria in thiol disulfideinterchangereactionsro'13'18, and to follow the kineticsof the reactions(either in the reactingsystemor after quenchingwith acid)18'6668.This method is usefulwhere the methyleneprotons e and p to the sulfur in the reactantsand products differ in chemical s h i f t a n d c a n b e i n t e g r a t e da c c u r a t e l yD . y n a m i c l H N M R l i n e s h a p ea n a l y s i s l s ' 1 ' a n d spin-transfermethodse'6ehave been used to determinethe rate constantsof degenerate intermolecular thiolate-disulfide interchangereactions:RS- + RSSR: RSSR + RS Analysisof 1H NMR lineshapes, wherethe resonances is useful are exchange-broadened, for determining the rates of fast degenerateintermolecular interchangereactionsbetween thiolatesand disulfides(ft. c:al0 107M t ,- tlts'tz. 16. spin-transfermethod between pairs of exchangingprotons and carbons (a to sulfur) is applicable for slower rates (ft. ca2-60M-1 s-r1o'oo. B. Enzymatic Assays The kinetics of reduction of oxidized glutathione (GSSG) by thiols is conveniently followedsusing a fast enzymaticreactioninvolving glyoxalase-I.The glutathione(GSH) that is releasedis convertedto S-lactoylglutathione by reaction with methylglyoxalin the presenceof glyoxalase-I(GX-I), and the appearanceof S-lactoyl glutathione is followed spectrophotometricallyat 240nm (e :3370M-r cm 1) (equations6 8)s. The rates of reactionsinvolving aminothiols cannot be determinedby this method because they react rapidly with methylglyoxal and form speciesthat absorb strongly at 240nm and thus interfere with the spectroscopicmeasurements.This assay is subject to errors due to oxidation of thiol groups if air is not carefullyexcluded. R S _+ G S - S G = R S S G + G S GS- + CH3COCHO = GS-- CH(OH) GS-CH(OH) (6) (7) COCH. COCH. + GX-I = GS-CO-CH(OH)CH1 + cX-I (8) The equilibria of thiol disulfide interchange reactions between ry,o-dithiols and lipoamide can be determinedconvenientlyby the addition of lipoamide dehydrogenase and NAD*. NADH is produced;this compound is covenientlymonitored at 340nms't0 F 638 R. Singh and G. M. Whitesides .SH R \sn , \ / *CoNH2 S -S (9) a? \s -1tlr &coNH2 \ HS + / SH ftcoNH2 SH HS NAD' (l 0 ) llpoamrde dehydrogenase - -\ - r - ,^ r *CONH2 / +NADH + H- S-S (equations9 and 10).The equilibrium constantsfor e,to-dithioland lipoamide are then calculatedfrom the measuredequilibrium constant of the z,o-dithiol with respectto NAD* and from the standard value of the equilibrium constant for linoamide and NADH. C. Assays Based on Chromatography The kinetics and equilibrium constants of thiol-disulfide interchange reactions involving cysteinederivativesor peptidescontaining cysteinehave been determinedby HPLC71 and gel-filtrationchromatographyl2on the reaction mixtures after quenching with acid.The equilibrium products of the reactionof glutathioneand cystinehave been separatedby ion-exchangechromatographyT3or by electrophoresisof the 3sS-labeled compoundsTa.Gas chromatography of the equilibrium mixture of alkanethiols and disulfideshas been used to estimateequilibrium constantsTs. III. MECHANISM A. Products Thiol disulfideinterchangeof a monothiol (RSH) with a disulfide(R'SSR')involves multiple equilibria (equations1 and 11):the reactionproducts include all possiblethiols (RSH and R'SH), symmetricaldisulfides(RSSR, R'SSR')and mixed or unsymmetrical disulfides(RSSR'). RSH+ RS-SR,= RS- SR+ R,SH (l l) B. Dependence on Solution pH, and on the pK" Values of Thiols Becausethe thiol-disulfide interchangereactionrequiresthiolate anion, the observed rate of reaction (and, in systemsin which the participating thiols have different values of pKu, the observedposition of equilibrium) dependsupon the pH of the solution and 639 13. Thiol-disulfide interchange the extent of ionization of the various thiols. For a thiol of pK" 10, only 0.1?; of thiol is presentas thiolate at pH J, and ll" of thiol is in thiolate form at pH 8; the observed rate constantof the thiol-disulfide interchangeat pH 8 is thereforel0 times fasterthan that at pH 7.The thiolatecan be generatedby addition of base,e.g.potassium/-butoxide, in polar aprotic solvents(DMSO, DMF)1s. Thiol is a much weaker nucleophilethan thiolate, and direct reaction between thiol and disulfide has not been observed. The reaction of thiolate with disulfide is effectively quenched by addition of acid and c o n v e r s i o no f R S - t o R S H . C. Kinetics 1 . R a t el a w The thiol disulfideinterchangereactionis overall second-order:first-orderin thiolate reactionof a thiolate(RS )with Ellman'sdisulfide For a representative and in disulfide6'7. (EllS-SEll,equation 5) the rate laws are given by equatiorrsl 2 and 13. The rate constant ft*, derivedfrom equation 12,basedon the concentrationof the thiolate,is independent basedon total concentrationof thiol (equation 13), of pH; the observedrate constantkoo.o, dependsupon pH. The value of the rate constant ft*, is useful for interpretationsof reactivity (such as Br/nsted correlationsof rates or equilibrium constantswith values of pK" of thiols).The calculationof the observedrate constantkou.a3t the pH of reaction is straightforwardfrom equation 13 using the value of the total thiol presentin solution, [RSH],o,u,: IRS ] + [RSH], and is usefulfor predictingratesat the samepH. The two rate constants koo.oand ft*, are related to each other by equation 14 and can be interconverteduding the values of the pK" of thiol and the pH of solutions'o.Table I lists the valuesof rate constantsfor representativethiol-disulfide interchangereactions in water. (dIEllS fldt): (t2) (13) k R S[ R S - ] [ E l l S - S E l l ] (dIEllS ]/dr) : ft"b,,r[RSH],.,"r[EllS-SEll] (14\ k * , : k o o . u (+l l o ' ( a - P H ) r a t e c o n s t a n t so f t h i o l - d i s u l f i d e i n t e r c h a n g er e a c t i o n si n w a t e r TABLE 1. Representative Reactants Thiol Mercaptoethanol 3-Mercaptopropanoic acid Mercaptoethanol Propanethiol Thiophenol Dithiothreitol Dithiothreitol Disulfide pKo (thiol) (M k*, I min ') (M ftnb.,l" - I ') min Temp ( c) Ref. Oxidizedglutathione Oxidized glutathione 9.6 10.6 3.4x 103 1 . 2x 1 0 4 It.7 3.2 30 30 5 5 Ellman's disulhde Ellman's disulfide E l l m a n ' sd i s u l f i d e Papain-S-SCH-., Oxidized mercaptoethanol 9.6 10.5 6.6 9.2 9.2 1 . 5x 6.4x 1 . 3x 5 . 3x 3 . 7x 3 . 7x 1 0 4 2 . 0x 1 0 4 9 . 6x 1 0 s 3 . 3x 1 0 3 2.3n 30 25 30 30 25 6 7 6 11 18 107 101 106 10s 102 'Values of kon"oare at pH 7. hThe value of the rate constant is corrected statisticallyfor the presenceof two thiol g r o u p so n d i t h i o t h r e i t o l . Y 640 R. Singh and G. M. Whitesides 2. Brdnsted relatron The log of the rate constants(/<*. ) of thiolate disulhdeinterchangereactionsfollows a Br/nsted correlation with the values of pK" of the thiols. The Br/nsted plot for the reaction of thiolates with oxidized glutathiones has a Br/nsted coefficient(slope),f",.. of 0.5. The Br/nsted coefficientsare also ca 0.4-0.5 for the reaction of thiolates with Ellman's disulfide6'7.Alkyl and aryl thiolates show separatecorrelation lines with Ellman'sdisulfideT,but show a similar slope,fnu" :0.5. An aromatic thiolate reactswith Ellman's reagentTor the mixed disulfideEIIS-SCH2CH2CH2OH76at a rate faster by a factor of 6 than an aliphatic thiolate of the same pKu. The higher reactivityof aromatic thiolates in comparison to aliphatic thiolates is probably due to greater softness(and weakersolvation)of the formerT'8.Br/nsted correlationshave also beenreportedfor the reaction of thiolates with 4,4'-dipyridyl disulfideseand 2,2'-dipyridyl disulhde6o. A Br/nsted correlation(equation l5) for thiol disulfideinterchange(equation l6) has been assembledempirically by systematicexamination of the influenceof pKuRSH for the nucleophilic(nuc),central (c) and leaving group (lg) thiols on the rate of the reaction. Equations 17 and 18 represent different types of fits to data (ft*, is in units of M l m i n - 1 ) s . E q u a t i o n l T r e p r e s e n t tsh e b e s t f i t t o a l l t h e a v a i l a b l ed a t a , a l t h o u g h i t is suspectbecausethe valuesof pn,. and Br"arenot obviouslycompatiblewith a transition statewith chargesymmetricallydistributedbetweenthe terminal sulfur atoms.The data included in the correlation are taken from a range of studiesand are not necessarily directly comparable. Severaldifferent setsof Br/nsted coefhcientsgive similar fits to the observed data (equations17 and 18); this observation suggeststhat the Br/nsted coefficientsare not sharply defined. We recommend equation l8 for general use based on the symmetry of the valuesof /inu"and p,r. The value of f" for the central thiol has beenestimatedas ca -03 to -0.4 from a limited set of data for reactionsof RS- with E l l S - S E l l ,R S - S E l l ,a n d H O C H , C H , C H , S - S E l l 7 6 . logk*, : C + f,,"pKun'" *f"pKu'* p,rpK"'* r\ R'u"S + R'S-SRrg R n u c s S R "+ S R r g logk*r :7.0* 0 . 5 0 p K , " u-"0 . 2 7 p K u ' - 0 . 7 3 p K u r s l o g f t * r - : 6 . 3* 0 . 5 9p K , ' u " - 0 . 4 0p K u ' - 0 . 5 9p K " r s (15) (16) (17) (18) The data on which equations17 and l8 are based cover a range of different (and perhapsnot directly comparable)thioland disulfidestructures.A study of the Brpnsted coefficientsof the nucleophilic,central and leavinggroup thiols using a carefullylimited and consistentset of thiols and disulfidesu'oLrldbe usefulmechanistically.In the absence of unambiguouslyinterpretabledata, these correlations(equations17 and l8) should be consideredas kinetic modelsfor thiolate-disulfideinterchangereactions.Although they do not have an unimpeachablemechanisticfoundation, they are useful in predicting rate constants (ft*r ) in water. The value of kp" can be converted to the observed rate constant (ft.0.0)at the pH of reaction using equation 14. The optimum value of pK" of the nucleophilicthiol for the maximum observedrate (koo.o)of thiol-disulfide interchange at a given pH can be predicted by a Brdnsted correlation (equation l9)t'u.The optimum value of pKu of the nucleophilicthiol (based on the assumptionof pnu":0.50)is thereforethe value of the pH of the reactionmixture; at pH 7 a nucleophilic thiol of pKu: 7 will show the maximum observed rate of thiol-disulfide interchange(Figure 2).This predictioncloselymatchesthe observedrates of thiol-disulfide interchanges'6and is useful in designing reagentsthat reduce disulfide bonds rapidly at pH 718'20.For a thiol of pKu>>pH, only a small fraction of the total thiol is presentas thiolate; for a thiol of pKu <<pH, thiol is presentas thiolate. but its 13. Thiol-disulhde interchanse 641 1.0 a 0. 8 E + I a tr 0.6 o. 4 I .n E il o.2 G 0. 0 56789 eKo FIGURE 2. Comparison of plots of the log ol rate constant of the thiolate-disulfide interchangereaction (1ogk*, , -) vs pK" of a nucleophilic thiol, and of the degree of dissociation at pH I (), ----) vs pKu of thiol. The values of rate constant (k*, ) are calculated using equation 17, assuming the value of 0.u" as 0.5, and the value of pKu of both the central and leaving group thiols as 8.5. The observed rate constant (koo.o)in terms of the total c o n c e n t r a t i o no f t h i o l a n d t h i o l a t e i n s o l u t i o n i s g i v e n b y k o u , o : 9 l r n s - nucleophilicityis low. A thiol of pK": pH balancesthe proportion of thiol presentas thiolate and adequate nucleophilicityof the thiolate. pH: pK"+ log[(1- p)lp] ( le ) 3. Subslifuenteffects a. Steric. The steric effectis most pronounced when all three thiols in the transition state are fully substituted at the carbon I to sulfur. It is significantly large even when two of the three adjacent thiols in the transition state are fully substituted at the carbon r to sulfur. The rate constant for reaction of r-butyl thiolate with bis(r-butyl) disulfide ' s 1 1 i nb u t a n o l i s c a 1 0 6 - f o l ds l o w e rt h a n t h a t f o r 1 - b u t y lt h i o l a t ew i t h (k. :10-7M bis(1-butyl)disulfide(/c. : 0.26M I s 1)24.The observedrate constantfor the reaction with the mixed disulfideof penicilof penicillamine(-OOC-CH(NHJ)-C(CH3)2SH) - 1.; is ca 10s-foldslower than lamine and glutathioneat pH J .4 (l;"b,d: 0.00047M 1min that of penicillaminewith glutathione disulfide which contains no substitution n to sulfur ( k o 6 . 6 : 3 7 M l m i n - 1 1 6 6 .T h e o b s e r v e dr a t e c o n s t a n tf o r t h e r e a c t i o n o f g l u t a t h i o n e lmin t) is also ca2000-fold lower than for with penicillamine disulfide (0.012M The equiliglutathionewith mixed penicillamine-glutathione disulfide (27 M 1min 1166. brium constant for the formation of bis(r-butyl)disulfideis small in the reaction of r-butyl thiol with mixed 1-butyl /-butyl disulfide,i.e. the formation of bis(r-butyl)disulfide is 7. disfavoredTs'7 Steric effectsare small for alkyl substitution at carbon p to sulfur: the rate constant for degeneratethiolate disulfide interchange of neopentyl thiolate with its disulfide is only threefold lower than that of 1-butyl thiolate with its disulfidels.The reaction of thiol group of the Bovine serum albumin (BSA) with Ellman's disulhdeis anomalously * slower,by a factor of 14,than that with cystamine(* H3NCH2CH2SSCH2CH2NH3 )78. \ 642 R. Singh and G. M. Whitesides The thiol groups in some proteins appear to be relativelyinaccessible, possibly due to a combination of stericeffectand other factorssuch as local hydrophobicitv or charse charge repulsion. b. Acidity. The rate constants of thiolate disulfide interchange reactions vary significantlywith the aciditiesof the substratethiols: The reaction of mercaptoethanol w i t h E l l m a n ' sd i s u l f i d e( k n s : 1 . 5 x 1 0 7M r m i n r ) 6 i s s i g n i f i c a n t l yf a s t e rt h a n t h a t o f m e r c a p t o e t h a n owl i t h g l u t a t h i o n ed i s u l f i d e( / . * , : 3 . 4 x l 0 r M r m i n r ) s i n w a t e r :t h e relevant values of pK" are 4.5 for EIISH and 8.7 for GSH. Brdnsted correlations (equations15-18) describethe effectof acidities(pK^) of the nucleophilic,cenrral and leaving group thiols on the rate constantsof thiolate disulfide inteichangereactions. The rate constants for thiolate-disulfide interchangc(kns ) arc larger for incrcasing valuesof pK" for nucleophilicthiols,and for decreasingpKu valuesfor centraland leaving group thiols. The rate constant should be affectedmore by a change in the pK" valuei of the nucleophilicand leaving group thiols than that for the central thiol, beciuse the Br/nsted coefficientsare larger for the nucleophilicand leaving group thiols than for the central thiols. A mixed disulfide (R'SSR") may have two constituent thiols of different acidities (pKu*'tt ) pK.n"sH;.The cleavageof the mixed disulhdeR'SSR"by a nucleophilicthiolate RS- occursfavourably with releaseof the more acidic thiol (R"SH), and the lessaci<iic R'S group is retainedin the new mixed disulfide(RSSR')76. c. Charqe. The rates of thiol-disulfide interchangereactionsin aqueous solutions with charged substituentsvary by as much as a factor of 2.5 from the predicted rate constantsbasedon structure reactivitycorrelationswith unchargedsubstituents'e.The deviations from predicted values based on uncharged substituentsare the greatestwhen the chargeis on the centralgrolrp,and the deviationsdecreasewith increasingdistanceof the chargefrom the reactivesitete;e.g., both the ratesof reactionsof OTCCHTCH2S with t h e m i x e d d i s u l f i d e s ' O 2 C C H 2 C H 2 S S C 6 H * N O r -apn d O 2 C C H 2 C H , C H , S S C 6 H 4 NOz-P are lower than the predicted values based on the Br/nsted correlation with u n c h a r g e ds u b s t i t u e n t sb, u t t h e d e v i a t i o n i s l o w e r w i t h O , C C I H 2 C H , C H , S S C 6 H 4 NOr-ptn.A similar effectof the negativechargeon R groups is sein in the raG constantsfor degenerateRS /RSSR interchangereactionse.Thiolateswithout chargedsubstituents,such as mercaptoethanol thiolate, react 25 times faster with a positively charged analog of Ellman'sdisulfidethan with the negativelychargedEllman'sdisulfide;this rzitiodecreases to ca I to 3.5for a thiolate with a positivelychargedsubstituentthree bonds from sulfur (cysteineethyl ester),and increasesto 120 for a thiolate with a nesativelv charsed -)to. s u b s t i t u e n (t - O 2 C C H T S The electrostaticinfluenceof the local cysteineenvironmentsin peptideshas been observedin thiol-disulfide interchangereactionsrt'at.76. rate constantsin water for the reactionof the negativelychargedEllman'sdisulfideand a peptidecontainingcysteine with two positive neighbors,one positive and one neutral neighbor, or two neutral n e i g h b o r sa r e 1 3 0 , 0 0 03, 3 5 0 a n d 3 7 0 M - 1 s - r r e s p e c t i v e l a y t pH 7 and 20mM ionic s t r e n g t h 8 l .E l e c t r o s t a t i cc o n t r i b u t i o n st o t a l i n g a f i c t o r o i Z O O b( A G : 4 . 3 k c a l m o l - r ) have been estimated for the fastestand the slowest thiol-disulfide interchangereactions of small charged substratesin 50\ methanol-water mixture; these contributions to the free energy comprise *3.0kcalmol I from attraction and - 1.3kcalmol- 1 from repulsionTl. d. Hydroglen bonding. The rates of thiolate-disulfide interchange in polar aprotic solvents are not significantly affected by groups capable of intramolecuiar hydiogen bondingls. The rate constant for the degeneratethioiate disulfideinterchang. reaction 13. Thiol-disulfide 643 interchange TABLE 2. Comparison of rate constants for degenerate thiolate disullide i n t e r c h a n g e( R S + -SR) in polar protic and polar aprotic solvents RSSR=RSSR + RS_ M- Solvent HOCH,CH.S Na' K' K* K* K' Na* K* KK* KKn DrO DrO CD3OD DMF-d? DMSO-d6 DMF-d? DMSO-d6 DMF-d7 DMSO-d6 DMSO-d6 DMSO-/6 cH3cH2cH2cH2scH3c(cH3)2cH2sHOC(CH3)2CH2S H O C H T C ( C 3H) 2 C H 2 S AGI 19-: ;,c,tt ( M 1 s 1 . 1( k c a l m o l - t ) LHI AS+ -lmol ( 2 9 7K ) ( 2 9 7K ) ( k c a lm o l t ) ( c a l K 0.0077 0.0095 0.0040 20 2l 43 54 l5 t6 1.1 0.67 16.2 l 6 .r 16.6 I 1.5 _tJ t a I --) 13 IJ t) -10 -11 l') l a l-) r r.5 11.1 I 1.0 1t.1 |.7 13.2 13.5 t0 o -10 - 16 lmol I. 1.AS]. t; AH;. ' l j n c e r t a i n t i e s a r fet:, t2cal K t l 0 ' l ; , ' A G l . + 0 . l k c a lm o l f lkcalmol b R a t ec o n s t a n t sw e r e i n f e r r e df r o m v i s u a lc o m p a r i s o no f t h e s i m u l a t e d' H N M R l i n e s h a p e sw i t h t h e e x p e r i m e n t a l : ll other line shapesT . h e v a l u e sf o r C D . O D a r e u n p u b l i s h c do b s e r v a t i o n so f R . S i n g h n n d G . M . W h i t e s i d e s a values are frogr reference I 5. of 2-hydroxyethanethiolateis only twofold lower than that of 1-butanethiolatc.In stericallyhinderedthiolates,introduction of a hydroxy group either P or "; to the C- S bond slows the interchangeby approximately a factor of 15 in DMSO (Table 2). A gem-dimethyleffectand weakersolvationof the hydroxyl group in the stericallyhindered substratemay result in greaterintramolecularhydrogen bonding than in the sterically s. unhindered2-hydroxyethanethiolater e. Reactionsint'oltin(Jc),clicdisul/ides. The rate constantfor degenerateintermolecular thiolate-disulfideinterchangeinvolving cyclic five-membereddisulfides(1,2-dithiolane) is higher than that involvingcyclic six-membereddisulfides(1,2-dithiane)by a factor of t)tt. The rate constants for the cyclic six- and c a 6 5 0 ( A A C I c a 3 . 8k c a l m o l disulfidesare similar to thosefor noncyclicdisulfides't.The ring strain seven-membered of 1,2-dithiolane(estimated by calorimetry) is higher than that of 1,2-dithianeby 1; from kineticsand 3.7kcalmol 182.The agreementof the value of AAGI (3.8kcal mol the value of ring strain (3.7kcalmol ') from calorimetry suggeststhat the ring strain is completelyreleasedin the transition stater'. In in the cyclic five-membereddisulf-rde the transition state,the S-S bond is expectedto be longer than in the ground state of disulfide,and the CSS angle at the central carbon is energeticallymost favorable at ca90"s:'a+. 161r geometry expectedfor the transition state is better matched by the structureof the ground state of the cyclic five-membereddisulfidethan that of cystine, b a s e do n X - r a y c r y s l a l l o g r a p h i sc t r u c t u r a lp a r a m e t e r s r ' . 4. Solventeffects The ratesof thiolate disulfide interchangereactionsare larger in polar aprotic solvents (DMSO, DMF) than in polar protic solvents(water, methanol) by a factor of ca 103 ( T a b l e2 ) 1 s .T h e n a t u r eo f t h e c o u n t e ri o n s ( N a * , K * ) , o r a d d i t i o n o f 1 8 - c r o w n - 6t o t h e reaction involving potassiumalkanethiolate,has no effecton the rate of thiolate disulfide i n t e r c h a n s ien D M S O t 5 . 644 R. Singh and G. M. Whitesides The transition state is expected to have a more delocalizednegative charge and thereforeto be lessinfluencedby solvation than the ground state thiolate. The higher ratesof thiolate-disulfideinterchangein polar aprotic solvents(DMSO, DMF) than in polar protic solvents(water, methanol) may be explained by a smaller destabilizarion of the transition state than that of the ground state thiolate, in going from polar protic solventsto polar aprotic solvents(Figure 3)15.The log of the rate constant depends l i n e a r l y o n t h e s o l v e n tc o m p o s i t i o ni n m i x t u r e s o f w a t e r a n d D M S O ( F i g u r e 4 l t s ' t r . R r + l-T LRS..s..r*J D M S O ,D M F RS - + R S SR RS - water,methanol + RS S R FIGURE 3. Hypotheticalplot of free energy vs reaction coordinate for thiolate-disulhdeinterchanger e a c t i o n i n p o l a r p r o t i c s o l v e n t s ( w a t e r . methanol) and in polaraprotics o l v e n t s( D M S O , D M F ) * ctl o 020406080 moloh 100 DrO (or CD3OD) F I G U R E 4 . E f f e c to f a d d i t i o n o i D r O ( l ) o r C D 3 O D ( O ) o n l o g of rate constants (k) ol thiolate-disulfide interchange of potassium 2-hydroxyethanethiolateand bis(2-hydroxyethyl)disulfide in DM SOdu. The values of rate constants are for 297K and are in M I s t r 645 13. Thiol-disulfide interchange The correspondingplot for methanol-DMSO mixture, although not linear, also shows a gradual decreasein the log of the rate constant with an increasingmole fraction of methanol (Figure 418s.The absenceof a sharp drop in rate on addition of small mole fractions of water or methanol to DMSO suggeststhe absenceof specificsolvation of thiolate by polar protic solvents.In going from polar protic to polar aprotic solvents. the increaseof approximately 103in rate of reaction involving thiolate anion (RS-) is g , 2 r e a c t i o n so f a l k o x i d ea n i o n ( R O - ; t s . T h e a l k o x i d e l e s st h a n t h a t ( 1 0 6 - 1 0 7 ) i n v o l v i n S anions are more solvatedin water than are thiolate anionss6'87. and 1,2-dithiolane The rate of thiolate disulfideinterchangeof 1,3-propanedithiolate ( c y c l i cf i v e - m e m b e r e d i s u l f i d e )i s e x t r e m e l yf a s t i n D M S O ( t R S c ' c l 0 8 M 1 s - r ) a n d only ca 102 slower than the diffusion limittT (equation20). This large rate arisesfrom is destabilizedrelativeto the transition two factors:(i) the ground state of 1.2-dithiolzrne statebecauseof ring strain, and (ii)the thiolate is relativelymore destabilizedin DMSO than is the transition state with its more delocalizedcharse17. +O=-O+O S_ S_ S-S S-S (20) S_S_ A c o m p a r i s o n o f t h e s t r e n g t h so f t h e R S - " H O R c o m p l e x e sa n d R O - " H O R massspectrometryshowsthat complexesincorporatcomplexesby pulsedhigh-pressure i n g a l k o x i d e sa r e m o r e s t a b l eb y 2 T k c a l m o l - r t h a n t h o s e i n c o r p o r a t i n gt h i o l a t e s s 8 . The weak contributions of ionic hydrogen bond to solvation in RS-(HzO), complexes are effectivelydissipatedwithin the first 2-3 solvent molecules(rt: 2 -3)tt. 5 . G a s - p h a s es l u d i e s The reaction of ethanethiolate(CrHrS ) with dimethyl disulfide(CH-rSSCH.,)in the gas phase occurs exclusivelywith thiolate disulfide interchange;this reaction yields methanethiolate(CH35 ) and mixed ethyl methyl disulfide(CH3SSC2HT)tn.A possible s i d er e a c t i o n t, h e c a r b o n - c e n t e r esdu b s t i t u t i o nt o y i e l d C H l S S a n d C H . S C r H r . i s n o t The valueof the rate constantfor the reactionof ethanethiolatewith dimethyl observed8e. disulfide in the gas phase is estimated as 3 x 10eM I s 1. Comparison of this rate constant with the collisional rate constant susseststhat the reaction occurs with a probability of 0.003per collisionse. 6. Catalysis A number of species aromatic thiols, nonthiol nucleophilesand cations have been surveyedas potential catalystsfor thiol-disulfide interchangein waterls; catalysisis o b s e r v e do n l y w i t h s e l e n o l s ' s ' t oa, n d e v e n w i t h t h e s es p e c i e st h e m a g n i t u d e so f t h e catalysisare not largc. Selenols are only effective as catalysts for thiol disulfide interchange reactions involving strongly reducing dithiolsle. The observed rate of reduction of bis(2hydroxyethyl)disulhde b-v-' dithiothreitol in water at pH 7 is enhancedby a factor of 15 i n t h e p r e s e n c eo f 5 m o l u , , 2 - a m i n o e t h a n e s e l e n T o lh. i s c a t a l y t i ca c t i v i t y o f s e l e n o l si s probably due to a combination of the low pK^(ca 5.5 to 7) (and hencesignificantlyhigh concentrationof RSe at pH 7) for selenols,and weak solvationand high polarizability (and hence high nucleophilicity)of the selenolateanion. The precursorsof selenols. (RSeCN) can also be conveniently used to diselenides(RSeSeR)and selenocyanates catalyzethe thiol-disulfide interchangereactionsinvolving strongly reducingdithiols'e. Thiol-disulfide interchangereactionsinvolving monothiols are not catalyzedby selenols. Strongly reducins dithiols at becausethesedisulfidesoxidize the selenolsto diselenides. 646 R. Singh and G. M. Whitesides even moderate concentrationscan reduce diselenidesto selenols.and thereforein the thiol-disulfide interchangereactions involving strongly reducing dithiols, the selenol remainsin the reduced(and catalytic)statele. 7. Compartson wrth selenolate-drselenrde rnterchange The observed rate of selenolate-diselenide interchange for selenocysteamine and s e l e n o c y s t a m i n( e k o o . o : 1 . 6 5x 1 0 7M - 1 s t ) u n i n w a t e r a t p H 7 i s f a s t e i b y a f a c t o r o f 107 than the correspondingthiol <lisulfideinterchange reaction of cysteamineand c y s t a m i n e( f t o t . a : 1 . 4 M - t s 1 ) , p o s s i b l y d u e t o ( i ) b e t t e r n u c l e o p h i l i c t t ya n d b e t t e r leavinggroup ability of selenolatethan for thiolate, and (ii) low pK, of selenols(c,a5.5 to 7) and thereforehigh concentrationof the nucleophilicselenolatcanion at pH 76e. In this system,the absoluterate constant(k*s" ) for the selenolatediselenideinteichange is higher than that of the structurallyanalogousthiolate-disulfideinterchange(ft*s ) by 2.4x l}s. D. Transition State Structure A study of crystal structuresof compounds containing divalent sulfur (Y S Z: Y,Z + H) showsthat nonbondedcontactsof nucleophilesare directedalong the extension of one of the covalent bonds to sulfur26.According to the frontier-orbial model. the HOMO of the nucleophileinteractspreferentiallywith the LUMO (o*) orbital of S y or S-2. Attractive nonbonded interactions may represent the incipient stages of chemical reactions26The preferredattack of the thiolate nucleophileon the diiulfide (S-S) bond is thereforealong the extensionof the S S bond. In the transition state the negativecharge rnust be delocalizedover the three sulfur atoms. The transition state is qualitatively pictured as having greater negativecharge at the terminal sulfurs than at the central sulfur, based on the value of ihe BrdnstJd c o e f f i c i e n t sf:n , . : l J r r : 0 . 5 ( b y s y m m e t r y ) :f i , = - 0 . 3 t o - 0 . 4 s 8 . T h e a b s e n c eo f curvature in the Br/nsted plots for attack of thiolate anions having a range of pK" valueson a singledisulfidesuggeststhat the transition state structurecloesnot .hang. with changes in structure of the thiolate anions or the disulfide groups for theie thiol-disulfideinterchangereactionss 7.Superpositionof plots of log kl, (rateconstant) vs log K. (equilibrium constant) for zr sericsof thiol disulfide interchaneereactions. varying in equilibrium constantby a factor of approximately102'. shows gradual c_urvature of the type expectedon the basisof the Hammond postulatcs.Although these data indicate a change in transition state structures,factors other than Hammond postulatebehavior,such as solvation,can causecurvature in Brdnsted plots. Although thiolateanionsare not as strongly solvatedas alkoxide anions,interpretaiionssuggesting a change in structure of the transition state from a curved Brdnsted plot should Ue t r e a t e dw i t h c a u t i o n s o ' e o1' e. T h e v a l u eo f A S ; f o r t h i o l d i s u l f i d ei n t e r c h a n g ei n p o l a r p r o t i c ( w a t e r .m e t h a n o l )a n d I (Table2)ts. p o l a r a p r o t i c( D M S O , D M F ) s o l v e n t si s c ' a - 1 0 t o - l 6 c a l K - 1 m o l This value is less than that expectedfor complete localizationof two particlesin the transition state,and suggeststhat the decreasein entropy in the transition state relative to two particlesin the ground stateis partially compensatedeither by releaseof solvent moleculesattachedto the thiolatein lhe ground statels,or by a relativelyloosetransitionstate structure(with two weak, partial S..S bonds) or both. E. Theoretical Calculations on Thiol-Disulfide Interchange An ab initio MO study on the thiolate-disulfideinterchangereaction indicatesthat the reactionis a typical S"2 reactionand proceedsvia a singlelransitionstatewith little xt I* t 7 13. Thiol-disulfide interchanee 647 conformationaldistortione2.The chargedistribution in the transition stateis calculated to be higher on the two terminal sulfurs and lower on the central sulfur, in agreement with the experimental results based on Br/nsted coeflicientse2.The geometry of the transition state has been suggestedto be a trigonal bipyramidal configuration at the central sulfur with the nucleophilic and leaving sulfurs in apical positions83.The participation of d orbitals is noi essentialin stabilizationof the transition state83. 0.2- 0.4. R S . . S. . . S R R 0.4- F. Mechanistic Uncertainties The geometry of the transition state is unclear:the relative dispositionsof the alkyl groups on the three sulfur atoms in the transition state are not known. The symmetry of the transition state with respectto the nucleophilicand leaving group thiols is still ambiguous,although microscopicreversibilitywould indicate a symmetricalstructure if there is a single transition state. Unsymmetrical transition states connected by a symmetricalintermediateare possible,but seem unlikely. A more complete characterization of the Br/nsted coefficients,and appropriate calculations, will both be useful in understandingthis issue.The transitionstateseemsto be lesssolvatedthan the ground statethiolate,but the degreeof solvation of the transition state is not known. Resolving the question of solvation may be useful in designing strategies for catalysis of thiol-disulfide interchange.Strategiesfor catalysisbasedon desolvationand destabilization of the ground statethiolatesseemunlikely to producelargeeffects.A more plausible strategy (although one that representsa difficult problem in molecular design) will be to stabilizethe transition state of the catalyzedreaction, perhaps by appropriate chargetransition state. charse interactionsin the charse-delocalized I V . E Q U I L I B R I U MI N T H I O L - D I S U L F I D EI N T E R C H A N G ER E A C T I O N S A . E q u i l i b r i a I n v o l v i n gM o n o t h i o l s In the equilibria involving a monothiol (RSH) and a disulfide(R'SSR')(equations1 and l1), the distribution of speciesis nearly random or statisticalif the pKu values of the thiols (RSH and R'SH) are similar, i.e. K r : { ( I R S S R ' , ] [ R ' S H ] ) ^ [ R S H ] I R ' , S S R) l' ]t 2 and K z : \ ( I R S S R ]I R ' , S H ] X [ R S H ] I R S S R ' , ]I) : 0 . 5 The experimentalvaluesof equilibrium constantsfor the interchangeinvolving glutathione (RSH) and cystine(R'SSR')in water at pH 7 are similar to those expectedfrom random d i s t r i b u t i o f l ,K r : 3 . 7 a n d K z : 0 . 7 9 2 3 ' 7 3 ' e 3 . The equilibrium constants for thiol disulfide interchangereactions for a seriesof monothiols and disulfides,at values of pH in which the equilibrium concentrationof thiolate anion is small, are relatively insensitiveto changesin substituents(exceptfor sterically hindered structures with alkyl substituentsat carbon 1 to sulfur)68.The formation of bis(r-butyl)disulfidesis disfavoredin equilibria involving t-butyl thiol and m i x e d r - b u t y l l - b u t y l d i s u l f i d e T s ' 7 1 ' ea4n,d t h e f o r m a t i o n o f p e n i c i l l a m i n ed i s u l f i d ei s disfavored in equilibria involving penicillamine and mixed penicillamine cysteine disulfide68. The equilibrium constant for the interchangeof a monothiol (RSH) with a disulfide \ 648 R. Sineh and G. M. Whitesides (R'SSR')is pH dependentif the valuesof pK" of the thiols (RSH and R'SH) are different. In general,the equilibrium mixture favours the most stable thiolate: the equilibrium is, in effect,driven to one side by the free energy of ionization of the most acidic thiol. At a value of pH betweenthe valuesof pK" of RSH and R'SH, the formation of the thiolate correspondingto the thiol of lower pK, is preferreds.The equilibrium of the thiol-disulfide interchangereactioninvolving mercapioethanol(pK" : 4.0)ano Ellman's disulfide (pK" of EIISH ca 4.5) in aqueous buffer at pH 7 8 is shifted entirely toward the formation of Ellman's thiolate and the disulfrdeof mercaptoethanol.The amount of Ellman'sthiolateis approximatelyquantitativelyequalto thaf of initial mercaptoethanol, and hence the utility of Ellman's assay. The valuesof the equilibrium constant(K'o'a, of thiol-disulfideinterchangein aqueous medium can be dissectedint.o KsH (defined for thiols) and Ks (defined for thioiates;s. The equilibrium constant KsH shows no obvious correlationwith the valuesof pKu, but t1 i{199.1tcedby.steric effects.The plot of the log of the equilibrium constanf Kb vs 2(PK,*tn-pKuR'sH) is linear (slope ia 1.2)s.xs is=thereforestrongly influencedby the aciditiesof the participating thiolss. Electrostaticeffectson equilibria of thiol-disulfide interchangereactionsare small in magnitude,but occur in the expecteddirection. The formation of mixed disulfidewith unlike chargeson the two component thiols is favored, and the formation of mixed disulfidewith like chargeson the two componentthiols is disfavoredT2. In the equilibrium involving N-acetylcysteine (A, bearing one negativecharge on the cysteinecaiboxylate) and,the 85 114 peptide fragment of Kunitz soybeantrypsin inhibitor (B, bearing one positive charge on the N-terminal leucine residuenext to cysteine),the proportions of disulfidesA-B, A-A and B-B in water at pH 7 and,lowionic strengih(20mM) are 72%,10% and 181"respectively, and at high ionic strength(1 M) are 6lg;, 15,1;and 24.,,, respectively.The expectedstatisticaldistributions are 50.t.,25'; an<i25".,,reipectively. The electrostaticeffectat low ionic strength(20mM) favors the formation of A B. and disfavorsthe formation of A A more than that of B - B. becausethe two negative chargeson A-A are closer to each other than are the positive chargeson B- B. At high ionic strengthsthe electrostaticeffectsare shieldecland the obseived distribution is similar to that statisticallyexpectedT2. B . E q u i l i b r i a I n v o l v i n ga , o D i t h i o l s Thiol-disulfide interchangeof a,rr;-dithiols(HS R SH) with a disulhde (R'SSR') can generatea varietyof productsrangingfrom cyclicmonomericdisulfide,cyclicdimeric 6S-SR' Lrt dH [\sH + R',s-sR *t" + al \{ .S -S\ RR Ls-sJ -I-s-R-s+ 4S-SR' L,- ,*' mixed disulfides cyclic monomenc disulfide cyclic dimeric bis (disulhde) oligomer (cyclic or linear) (21) 7 649 13. Thiol-disulhde interchange bis(disulfide)to oligomeric disulhde (equation 2l). The product distribution depends on the nature of R, and on the concentrationsof the dithiol and the disulfide. Cyclic monomeric disulfidesare the major products for the thiol'_disulfideinterchange reactionsof 1,3-dithiolsto 1,6-dithiolsin which the two thiol groups are separatedby three to six atoms (equations22 and 23).The formation of the cyclic monomeric disulfide occurs via the intramolecular thiol disulfide interchange reaction of the intermediate mixed disulfide (kr, equation 22): this reaction is significantly faster than the corresponding intermolecularreaction.High effectiveconcentration(EC, see below and also Table 3, for footnote c) favors the formation of the cyclic monomeric disulfrdelt. .SH R Ltt k1 + R/ S - S R/ k_1 4 S -SR ' R + R'SH lt" A:_;l -r. ' S I i\_s + R'SH (22) K"q : ( ISRS] [R',SH]2)/([HS-R--SH] ) [R',SSR',] (23) The stability of the cyclic disulfideis an important factor in the overall equilibrium. Cyclic six-membereddisulfideshave a CSSC dihedral angle of ca 60. and are more stable than cyclic five-membereddisulfides,which have a CSSC dihedral angle of ca 30'ra. The ring strain in cyclic five-membereddisulfrdeshas been estimatedas 3.Tkcalmol-1 higher than that for the cyclic six-membereddisulhdest'. It has been estimated that the ring cleavage(k ,, equation 22) of cyclic five-membereddisulfides is faster by a factor of ca 600 than that of cyclic six-membereddisulfidesr7. On the other hand, the formation of the cyclic five-membereddisulfide(kr, equation 22)is fasterby a factor of ca 20 than that of the cyclic six-membereddisulhde,basedon valuesof kinetic effectiveconcentrations for analogousreactionslT.The overall result is that K"o for formation of a six-membered disulfide from the correspondingdithiol is more favorable than that for a five-membered disulfidefrom its dithiol by a factor of ca 3013'17. The reducing ability of s,rr-r-dithiolsdepends on two factors: (i) the stability of the monomeric cyclic disulfide, and (ii) the kinetic effective concentration for the intramolecular ring-closurestep (kr, equation22). 1,4-Alkanedithiolsthat form strain-free cyclic six-membereddisulfidesare the most reducing (K", ca 10-103M, equation 23); rings respectivelyare 1,3- and 1,5-alkanedithiolsthat form five- and seven-membered ca 10-fold less reducing (Table 3). Rings smaller than six-membered are less favored primarily for enthalpic reasons(ring strain, including angle strain in the CSSC group). Rings larger than six-memberedare lessfavored becauseof conformational entropy (low kinetic effectiveconcentrationfor the intramolecular ring-closure)t:'t0.In 1,8-dithiols, the effective concentration for intramolecular ring-closure is sufficiently low that intermolecular oligomeric disulfide formation becomes competitive with cyclic monomeric disulfide formationl3. The reduction potentials of dithiols that form oligomeric products are similar to those for monothiolss'13.1,2-Dithiolsform cyclic bis(disulfide)dimers in relatively dilute solution (r'a l mM), but polymerize aI higher 13. concentrations Molecular mechanicscalculationsof equilibriaof thiol-disulfideinterchangereactions involving a,o-dithiols with 1,2-dithianecorrelatewell with experimentalresults,but do not give the absolutevaluesof energiestu.The empirical relationshipbetweencalculated differencesin strain energy (ASE) and the experimental values of AG is: AG c'a0.4ASE. Why the molecular mechanicscalculations overestimatestrain is not known. This correlation may be a useful guide for designing e,rr;-dithiolsof appropriate reduction potential. - 650 R. Singhand G. M. Whitesides TABLE 3. Equilibrium constants for thiol disulfide interchange K(ME") Structure €o(V)" Eq. againstD References Dithiols that form cyclic monomers' (^Y-rt 1500M - 0.354 DTT d.e 670M -0.344 DTT d,e 1 8 0M -0.327 Lip d.e 77M - 0.316 DTT d.e 65M - 0.314 DTT d,e 63M - 0.313 DTT 44M -0.309 DTT 19M - 0.298 DTT r5M -0.295 DTT 14M -0.294 DTT d.e 8 . 6M - 0.288 ME. DTT d.e 8.0M -0.287 DTT d.e \-/---sH ff," \-\-s" HoF.,-, "n'1"-;; a---su \,,-sH l /\ 2 \st LSH sH or\f=-'c sn oZ\-,-- r^r" |\._jn d.e H'c'6-1^su ".6,s-s" H,c 1 /P ,N-\ rt" \ ,,SH NJ H.c--( o "'tV- H,c- \---^..^.. :)H (Yt'n')4co:H HS SH /--\/-sH \ / L q H ( r ' o n t i n u e Id 651 13. Thiol-disulfide interchanse TABLE 3. (continuedl K(ME'-) Structure /"-- _ .sH eo(V)' Eq. againstb References 6 . 7M - 0.285 DTT d.e o.*sn 6 . 1M -0.284 DTT d,e (r',vX 4.4M -0.279 DTT d,e rY-'" 3 . 6M -0.277 DTT //---SH .^SH 3 . 6M -0.277 3.1M -0.275 DTT 2 . 9M -0.274 DTT 2 . 5M -0.272 DTT 2.-rM -0.2'71 ME. DTT 1 . 8M -0.269 DTT 1 . 2M -0.263 DTT d,e 0 . 6 7M * 0 .2 5 5 DTT d,e 0 . 3 0M -0.245 ME i 0 . 2 1M -0.240 DTT d.e S.*s" /'-v-sH (-/ ,z-SH \_sH l- HS----r 511 z-SH DTT d.e d.e H.c\-sH H.CX,---SH H.C \-SH o\-H.C. ' 'N' tsH ilsH d.e d.e A.1 'U Y at" \_sH tl,e CONMe, I a\su (-,-t" I CONMet },1-tt r \_qFl /-SH \-SH 6,6'-sucrose disulfide HS(CH2)6SH ( r ' o n t i n u e Id - 652 R. Singh and G. M. Whitesides TABLE 3. kttntinuedl Structure K(ME"-) so(V)' Eq. againstb References Monothiolsthat form dimers 1i}--JsH \-,/ 2.6 -0.272 ME L1 cH3(cH2)6sH 1.1 -0.261 ME d HOt^\--sH 1.0 -0.260 ME d A-t" Y/ 0.31 -0.245 ME (l r--rlt" tl 0.40M -0.254 ME d.e a^"'?tn tt 0.38M -0.254 ME d,e 0 . 3 2M -0.253 ME e.g 0.035M -0.239 ME d,e 4.8 -0.280 ME 4.0 -0.278 ME 3.4 -0.276 3.1 -0.27s ME 3.0 -0.275 ME (1 2.8 -0.274 ME k Dithiols that.fbrm cvclic dimers \---\SH \,/^.sH zl-sH t()l H.cr'*n "t-,Arn DithiolsthatJbrm polymers HS"*-sH HS,, ,sH ,,A, "rt-Vfr" "i-Q-r" rtt t^l HS---A\2\ SH (continued I 7 653 13. Thiol-disulhde interchanse TABLE 3. (continued) Eq. againstD K(ME"-) co(V)" -{t' l-1_qg t 1.8 - 0.268 ME HS(CHr)8SH HS(CH,),SH 1.7 1.4 -0.267 -0.265 ME ME HS, 1.3 -0.264 ME 0.20 -0.240 ME Structure Y O\ )--l- s " r^\ HS-< ( ) >-Srr \"/ References .t u .t u "i:,,(V)values vs standard hydrogen electrodeat pH 7.0 and 25"C. All r;,,(V)values are calculated using the r;n(V) v a l u e sf o r l i p o i c a c i d [ - 0 . 2 8 8 V . D . R . S a n a d i ,M . L a n g l e y a n d R . L . S e a r l s ,J . B b l . C h e m . . 2 3 4 .1 7 8 ( 1 9 5 9 )a n d - i o p h y s .A t ' t u , 3 7 . 3 1 4( 1 9 6 0 ) la n d t h e K " o v a l u eb e t w e e nl i p o i c a c i d a n d t h e c o m p o u n d o f C . V . M a s s e y ,B i o c h e m B interest. bAbbreviations:DTT, dithiothreitot; Lip, lipoic acid; ME, 2-mercaptoethand. 'The value of K(ME") for this group olcompounds is sometimescalled the effectiveconcentration (EC). dEquilibrations were carried out at 25 C. in a l/1 mixture of do-methanoliphosphatebufier (50mM. pH 7.0) in DrO, see Reference13. "The equilibrium constants (K) in the Houk and Whitesidespaper (13) were systematicallyin correct by a factor of 103 (originating in error in manipulation of units during the original calculations) and have been adjusted accordingly. The values of equilibrium constants, which were obtained from equilibrium with DTT. have also been readjusted by a factor of approximately 2 so as to obtain a similar value to that reported in this paper. / E q u i l i b r a t i o n s w e r e c a r r i e d o u t a t 2 5 C i n a l / l m i x t u r e o f r / . - m e t h a n o l i p h o s p h a t be u f f e r ( 5 0 m M . p H 7 . 0 )i n D r O , s e eG . V . L a m o u r e u x a n d G . M . W h i t e s i d e sJ, . O r q . ( ' h e m . , 5 8 . 6 3 3( 1 9 9 3 ) . ,Equilibrations were carried out in oln-methanolwith 0.02mM sodium methylate added, see Reference13. h E q u i l i b r a t i o n sw e r e c a r n e d o u t i n D r O ( p D 7 . 0 . 5 0 m M p h o s p h a t e )s. e e R e f e r e n c e1 8 . i E q u i l i b r a t i o n sw e r e c a r r i e d o u t i n D , O ( p D 7 . 0 , 5 0 m M p h o s p h a t e )s. e e R e f e r e n c e 20. i E q u i l i b r a t i o n sw e r e c a r r i e d o u t i n D r O ( p D 7 . 0 , 5 0 m M p h o s p h a t e ) s. e e W . J . L c s s a n d G . M . W h i t e s i d e s J. . Orq. Chem., 58, 642 (1993). ftEquilibrations were carried out in r/o-benzenewith 0.02mM tetramethylguanidineadded, see Referencel3. The equilibrium constant for the thiol disulfideinterchangeof an r,co-dithiolwith a 'effective concentration' disulfide (equations22 and 23) has also been termed as the (ECles'so.The equilibrium expressionfor effectiveconcentration is a measure of the propensityof thiols to form the cyclic disulfidee6.The EC has also been interpretedin terms of the proximitr of thesethiol groups in the ground state (that is, as a kind of localconcentration),and thus usedto infer information about conformation.Considering that the value of the equilibrium constant is very strongly influencedby strain in the CSSC group and by ring strain (for cyclic disulfides),its interpretation in terms of 'proximity' 'concentration' must be evaluatedwith the possibility of contributions and from theseterms in mindro. If the EC is used (and interpreted)just as an equilibrium constant,but as one with an easily rememberedreferencevalue (EC ctt I 10 M for an r,o-dithiol forming a strain-freecyclic disulfide) it has the virtue of being easy to remember and to interpret. The equilibrium expressionfor effectiveconcentration (EC : K"o, equations 22 and 23) involvesa ring-closurestep (kr) in the forward reaction (k, is a measureof the kinetic effectiveconcentration),and a ring-cleavagereaction (k ,) in the reversedirection. The ring-cleavagereaction, k ,, is faster for a more strained cyclic disulfide than for an unstrained one, and correspondinglythe value of the equilibrium expressionfor effective concentration(EC : K"u) is lower for the more strainedcyclic disulfide. \ 654 R. Singh and G. M. Whitesides In casesinvolving cyclic disulfideswith ring strain, the trends of the equilibrium expressionfor effectiveconcentration(equilibrium EC) may be differentthan the trends of the kinetic values for effectiveconcentration(kinetic EC). In a comparison of the formation of cyclic five-membered disulfide and cyclic six-membered disulf-rde,the equilibrium EC (relatedto K.o, equations22 and 23) is favored for the formation of the six-membereddisulfideby a factor of 30 over the five-memberecl disulfide.whereasthe kinetic EC (relatedto k,.equation 22)is higherfor the ring-closurereactionfor formation of the five-membereddisulfidethan that of the six-membereddisulfideby a factor of 20. The value of the equilibrium EC is easierto determinethan that of the kinetic EC. As we have indicated,however,the equilibrium EC is a direct measureof proximity only when there is no strain in the disulfidesor dithiols, and it is perhaps most useful as i measureof proximity when theseother factors(e.g.ring strain reflectingan unfavorable CSSC dihedral angle;terms destabilizingthe dithiol relative to disulfide)are absent or can be independentlyestimatedl6. V . A P P L I C A T I O N SO F T H I O L - D I S U L F I D EI N T E R C H A N G EI N B I O C H E M I S T R Y The subject of the thiol-disulfide interchangereaction is an important one in biochemistry,and has been discussedextensivelyelsewhere' 3. Here we will only outline s o m eo f t h e i s s u e s . Disulfrde-reducingreagents are used in biochemistry for a number of purposes, especiallyin reduction of cystinegroups in proteins and in maintaining essentialthiol groups in their reduced stateeT. e,rr-r-Dithiols,such as dithiothreitol (DTT)70, N,l{'-dimethyl-N,N'-bis(mercaptoacetyl)hy drazine(DMH)t 8 and meso-2.5-d,imercaptoA/,.4y',4/',N'-tetramethyladipamide (DTA)20,have higher reduction potential than cystine groups in proteins, and are useful disulfide-reducingreagents because they react specificallywith the cystinedisulfideto be reducedwithout any unwanted sicle-reaction with the protein. The value of the first pK" of DTT is 9.2s,and it is thereforcrelatively s]ow as a reducing reagentat pH 7. DMH and DTA (pK^ r'a 8) reduce small organic disulfidesand disulfidebonds in proteins c'a7 times faster than does DTT in water at . e r c a p t o e t h a n o(lM E , p H l t 8 ' 2 0M p K " c a 9 . 6 )i s i n e x p e n s i vaen d i s u s e di n l a r g ea m o u n t s (0.1-0.7M) in bioc_hemicalmanipulations, for example in conjunction with SDS gel-electrophoresiseT. Mercaptoethanolis weakly reducingand it often generates complex reaction mixtures containinq mixed disulfidess. ntt, HO HO \ ( SH SH DTT N-N /CH. MerN SH ME ';-61- ^/ \" DMH bH (r-r NMe, DTA The cyclic five-membered disulfide lipoamide is a cofactor of the pvruvate dehydrogenasecomplexes'ee.The rate of ring opening of this cyclic five-membered disulfide by thiolate*disulfide interchange is faster by a factor of ca 103 than that involving cyclic six- or seven-membereddisulfidesrT.The evolutionary sclection of lipoamide as a cofactor in pyruvate dehydrogenasecomplex may reflect the fast rate of ring opening of the cyclic five-memberedring by nucleophilesand the resultingability of the lipoamidesto maintain a high flux through the pyruvatedehydrogenase complexr7. / 13. Thiol-disulfide interchanse 655 The valttesof pK, of thiol groups in proteins have been measuredkinetically from t h e B r o n s t c d c o r r e l a t i o n o f t h i o l d i s u l f i d ei n t e r c h a n g er e a c t i o n s r r .T h e p K , o f t h e actirc'-site t h i o l i n p a p a i n i s e s t i m a t e da s c ' r r4 a t p H 6 , a n d t ' u 8 . 4 a t p H 9 1 r . A t l o w P H { r , i 6 t t h e p r o x i m a t ep o s i t i v e l yc h a r g e dg r o u p i n c r e a s e tsh e a c i d i t y o f t h e a c t i v e - s i t e t h r o l i n p a p a i n .T h e p K " o f t h e t h i o l g r o u p o f r e d u c e dl y s o z y m ei s c , r z1 1 .T h e s ev a l u e s rrf pN.,. although semiquantitative,are useful for comparison with the values of pK" t i c ' t c ' r r n i n ebdy o t h e r m e t h o d s rr . Thc-redox equilibria betweenthe cystine-bridgedcyclic disulfidestructuresin proteins lnd thcir correiponding reducedopen-chainz,r,,r-ditiriol forms have been measuredfor : i \ er i t l p r o t e i n s 3T. h e v a l u e o f t h e e q u i l i b r i u mc o n s t a n t( o r e q u i l i b r i u me x p r e s s i o nf o r ciicctire concentration,equilibrium EC) for the thiol disulfide interchangereaction of It protein z,a-r-dithiol can be a useful measureof proximity of the two thiol groups in the protein if there is no ring strain associatedwith the correspondingcyclic disulfide. .{ high value of the equilibrium EC suggeststhat the two thiol groups are nearby spatially,are limited in mobility and can form a CSSC group with little or no angle s t r a i n1 6 ' e s ' e 6 . T h e d i s u l f i d eb o n d s i n p r o t e i n sa r e f o r m e d a f t e r t r a n s l a t i o n r o o ' 1 0T1h. e p a t h w a y o f sequentialdisulfide bond formation has been studied for bovine pancreitic rrypsin i n h i b i t o r ( B P T I ) 1 0 2 ' ' 0 'ar n d f o r r i b o n u c l e a s A e 1 0 4 .I n t h e c a s eo f B P T I . i n t e r p r e t a t i o n s o f d i f f e r e n ts e t s o f d a t a h a v e l e d t o d i f f e r e n tc o n c l u s i o n s r 0 2 , l 0 T 3h . e conilusion of Weissman and Kim that all well-populated folding intermediatesin the oxidative foldingof BPTI contain only nativedisulfidebonds -,is still beingactivelydebateclI05.r 06. The inclusionbodies,clbtainedfrom the expressionof eukaryoticproteinsin genetically engineeredE. coli. may contain protein with unformed and mismatched disulfide ' 0 8 .T h e c o n v e r s i o n b o n d sI 0 7 1 o f t h e ' w r o n g l y ' d i s u l f i d e - c o n n e c t epdr o t e i n t o t h e 'correctly'disulfide-connected protein is a major problem in biotechnology.The general approach is to reduce the 'wrongly' disulfide-connectedprotein completelv and to oxidize it gradually with a redox buffer containing a mixtuic of thiol anA alsutnderou. Protein-disulfide isomcrase has been proposed as catalyst for the thiol-disulfide interchangeinvolving proteinsttn, Its low catalytic activity and absenceof specificity m a k e i t s b i o l o g i c a lr o l e u n c e r t a i n r l r ' r 1 2T. h i o r e d o x i nh a s a c y s t e i n eo f l o w p K . , a n c ii t reactswith disulfidesrapidl-vat pH 7. Thioredoxin is redox-coupledto NADPH via the enzymethioredoxin reductase,and may be of metabolic significancein thiol-disulfide i n t e r c h a n g er e a c t i o n s1r 3 I 1 s . V I . C O N C L U D I N GR E M A R K S Thiol disulfide interchange is a reversibleSr2 reaction that involves cleavageand formation of a covalent S S bond. The active nucleophileis the thiolate anion (RS ); the thiol (RSH) is not active. The rates of reaction of thiolate anions with disulfides show a Br/nsted correlationwith the valuesof pK" of thiols. The value of the Brdnsted coefficientfor the nucleophilicthiol (t'a0.5)is well studied,but a more completeanalysis of the Br/nsted coefficientsfor the central and leaving group thiols would be a useful step toward a better understandingof the structureof the transition state. The rate constant of the thiolate-disulfideinterchangereaction (k*, , based on the concentrationof thiolate anion) is influencedby factorssuch as pK" of thiol and CSSC dihedral angle in the disulfide.The rate constant(k*, ) increaseswith increasingvalues of pK" of the thiols becauseof the increasingnucleophiticityof the thiolate anions.The observedrate constant of reaction (/coo.o), however,is optimum for the value of pK" of the thiol equal to the pH of the soluiion. The most stable CSSC dihedral angle in the disulfideis ca 90". Cyclic five-membereddisulfides,with CSSC dihedral angle of r,a 30 , are strained,and are cleavedc'a103timesfasterthan the less-strained cyclicsix-membered 656 R. Singh and G. M. Whitesides disulfide.An improved theoreticalconformationalanalysisof the ground state of cyclic disulfides-in terms of the bond angles,bond lengths,and the CSSI and CCSS dihedral angles-would be useful to predict the ring strains and rates of thiol disulfide interchangereactions involving cyclic disulfides. Thiolate-disulfideinterchangereactionsare faster in polar aprotic solventssuch as DMSO and DMF than in water. The rate enhancementin going from water to polar aprotic solventsis lower than for reactionsof alkoxide anions. The thiolate-disulfide interchangeinvolving strained cyclic five-membereddisulfide is extremelv fast (kp" c a 1 0 8M t s - t ) i n p o l a r a p r o t i c s o l v e n t s . Disulfide bonds are presentin proteins and are formed from the cysteinethiols after translation.The physical-organicstudy of severalbiochemicalissuesrelatedto the thiol disulfideinterchange-the mode of formation of the'correct'disulfidebonds.the degree of stability imparted to the protein by the disulfide bond. the strain in the large-iing protein disulfides,the role of thiol-disulfide interchangein regulationof prorein activity and the design of reagents that can efficiently reduce disulfide bonds-would be important and useful. VII. ACKNOWLEDGMENTS We thank Watson Lees for important contributions to the analysesof equilibrium constants,and Dr Guy Lamoureux for helpful discussions.ProfessorH. Schera_ea (Cornell) directed our attention to the error in Reference13; we thank him for this help. Our researchwas sponsoredby the National ScienceFoundation under the Engineering ResearchCenter Initiative to the M.I.T. Biotechnology Process EngineeringCenter (Cooperative A g r e e m e nC t D R - 8 8 - 0 3 0 1 4 ) a n bd y t h e N a t i o n a l I n s t i t u t e so f H e a l t h( G r a n t GM3e589). VIII. REFERENCES l. P. c. Jocelyn, Biochemistry of'thesH Group.Acadcmicpress,London.1912. 2. R. J. Huxtable,Biochemistrv of Sulfur.PlenumPress. New york, 1986. 3. H. F. Gilbert,Adt,.Enzymol.,63,69 (1990). 4 . J . H o u k ,R . S i n g ha n d G . M . w h i t e s i d e sM. e t h o t lLs , t r : t ' m o l . , r 4 3 , l (2rg9 8 7 ) . 5. R. P. Szajewski and G. M. whitesides. J. Anr.chent.sor'..102,20il (r9u0). 6 . G . M . w h i t e s i d e Js ., E . L i l b u r na n d R . P . S z a j e r . r , Js .koi .r q . C h e m . , 4 2 . 3 3( r2g 7 l l . 7. J. M. wilson,R. J. Bayerand D. J. Hupc..t. ,4m.Chetn.Soc..99.7922(rg77l. 8 . D . J . H u p ea n d E . R . P o h l ,I s r .J . C h e r n . . 2 G , 3(9l 95t l 5 ) . 9. W. Guo,J. Pleasants and D. L. Rabenstein. (1990). J. Orq.Chern,55,373 10. D. A. Keireand D. L. Rabenstein. Bioorq.Chem..l7.25:'(1989). ll. Z. Shaked,R. P. Szajewski and G. M. Whitesidcs. Biot,hemistr,i', 19,4156(19U0). 1 2 .G . M . w h i t e s i d e Js ., H o u k a n d M . A . K . P a t r e r s oJn.. o r t t .C h e m . 4 8l.l 2 0 9 8 3 ) . 1 3 .J . H o u k a n d G . M . W h i t e s i d e s ,A J .m .C h e mS. o c .1. 0 9 . 6 8 2(51 9 8 7 ) . 1 4 .J . H o u k a n d G . M . W h i t e s i d eTs e. t r u l . r e d r o n . 4 5(.199l 8 9 ) . 1 5 . R . S i n g ha n d G . M . W h i t e s i d eJs.,A m .C h e mS. o r ' .l.1 2 . l l 9 0 ( 1 9 9 0 ) . 16.J. A. Burnsand G. M. Whitesides. J. Am. Chent. Sor'.,I12.6296(1990). 17. R. Singhand G. M. Whitesides, J. Ant.Chem,Sor'.,112.6304 (1990). 1 8 .R . S i n g ha n d G . M . W h i t e s i d eJs.,O r q .C h e m . . 5 6 . 2 3 3 ( 129 9 1 ) . 1 9 . R . S i n g ha n d G . M . W h i t e s i d eJs.,O r ( t .C h e r n . . 5 6 . 6 9(31l 9 9 1 ) . 2 0 . w . J . L e e sR , . S i n g ha n d G . M . w h i t e s i d e Js . o r q . C h e m . . 5 6 , 7 3 0 2991). 2 1 . H . L e c h e rC, h e mB. e r . , 5 3 . 5 9(11 9 2 0 ) . 22. D. R. Goddardand L. Michaelis, J. Biol.Chem.,106,605 (1934). 2 3 . I . M . K o l t h o f fw , . S t r i c k sa n d R . C . K a p o o r J, . A m .C h e m s. o c . . 7 j , 4 7 3(31 9 5 5 ) . 2 4 . A . F a v a ,A . l l i c e t oa n d E . C a m e r a. ,1 .A m .C h e m . i o c . i 9 . 8 3 3( 1 9 5 7 ) . 25. L. Efdjarnand A. Pihl,/. Biol.Chem..225.499 il957). 7 13. Thiol-disulfide interchange 657 26. R. E. Rosenfield.R. Parthasarathy and J. D. Dunitz, J. Am. Chem. Soc.,99, 4860 (197'l). 2 1 . K . T . D o u g l a s ,A d t . E n z ) t m o \ . , 5 9 , 1 0(31 9 8 7 ) . , . P e r e i r a ,M . S e l aa n d A . C e r a m i . 1 8 . G . B . H e n d e r s o n ,P . U l r i c h , A . H . F a i r l a m b , I . R o s e n b e r gM P r o L ' .N a t l . A c a d . S c i .U . 5 . A . , 8 5 ,5 3 7 4( 1 9 8 8 ) . 1 9 . F . X . S u l l i v a n ,S . L . S h a m e sa n d C . T . W a l s h , B i o c h e m i s t r l ' . 2 8 , 4 9 8 6( 1 9 8 9 ) . 3 0 . S . L . S h a m e s ,B . E . K i m m e l , O . P . P e o p l e s ,N . A g a b i a n a n d C . T . W a l s h , B i o c h e m i s t r J , . 2 ' 1 , 5 0 1 4( 1 9 8 8 ) . l , i o o r g .C h e m . , 1 9 ,1 0 1( 1 9 9 1 ) . - l l . A . B e r k e s s eB 31. P. A. Price, W. H. Stein and S. Moore, J. Biol. Chem.,244, 929 (1969). , 05 (1985). 3 3 . D . M . Z i e g l e r ,A n n . R e u .B i o c h e m . , 5 4 3 3 4 . H . F . G i l b e r t , M e t h o d sE n z y m o l . , l 0 7 , 3 3 0 ( 1 9 8 4 ) . 3 5 . B . B . B u c h a n a n ,A n n . R e u .P l a n t P h y s i o l . , 3 l , 3 4 5 ( 1 9 8 0 ) . 3 6 . R . A . W o l o s i u k a n d B . B . B u c h a n a n ,A r c h . B i o c h e m .B i o p h y s . , l 8 9 , 9 7 ( 1 9 7 8 ) . 37. T. Kagawa and M. D. Hatch, Arch. Biochem.Biophys.,184, 290 (1977). 38. C. C. Malbon, S. T. George and C. P. Moxham, Trends Biochem.Sci., 12, 172 (1987). 3 9 . E . A i z e n m a n ,S . A . L i p t o n a n d R . H . L o r i n g , N e u r o n , 2 , 1 2 5 7 ( 1 9 8 9 ) . 40. A. N. Glazer and E. L. Smith, in The Enzymes,Vol. III, 3rd ed. (Ed. P. D. Boyer), Academic P r e s s ,N e w Y o r k , 1 9 7 1 ,p p . 5 0 l - 5 4 6 . 4 1 . S . T h o m p s o n , F . M a y e r l , O . P . P e o p l e s ,S . M a s a m u n e , A . J . S i n s k e y a n d C . T . W a l s h , Biochemistry, 28, 5735 ( I 989). , u r e .A p p l . C h e m . 6 l , 3 0 3( 1 9 8 9 ) . 4 2 . S . M a s a m u n e ,C . T . W a l s h ,A . J . S i n s k e ya n d O . P . P e o p l e sP 43. S. Masamune, M. A. J. Palmer, R. Gamboni, S. Thompson, J. T. Davis, S. F. Williams, O. P. P e o p l e s ,A . J . S i n s k e ya n d C . T . W a l s h , J . A m . C h e m .S o c . ,1 l l , 1 8 7 9( 1 9 8 9 ) . 44. P. M. Weiss, R. J. Boerner and W. W. Cleland, J. Am. Chem. Soc.,109, 1201 (1981\. 4 5 . M . D . L e e , T . S . D u n n e , C . C . C h a n g , G . A . E l l e s t a d , M . M . S i e g e l ,G . O . M o r t o n , W . J . McGahren and D. B. Borders. J. Am. Chem. Soc., 109, 3466 (1987). 4 6 . J . G o l i k , G . D u b a y , G . G r o e n e w o l d ,H . K a w a g u c h i , M . K o n i s h i , B . K r i s h n a n . H . O h k u m a , K. Saitoh and T. W. Doyle, J. Am. Chem. Soc., 109, 3462 (1987). , . P a s t e l ,D . B . B o r d e r s 4 7 . G . A . E l l e s t a d ,P . R . H a m a n n , N . Z e i n , G . O . M o r t o n , M . M . S i e g e l M a n d W . J . M c G a h r e n , T e t r a h e d r o nL e t t . , 3 0 , 3 0 3 3 ( 1 9 8 9 ) . 4 8 . K . D . C r a m e r a n d C . A . T o w n s e n d , T e t r a h e d r o nL e t t . , 3 2 , 4 6 3 5 ( 1 9 9 1 ) . 4 9 . E . M . A r n e t t a n d L . E . S m a l l . J . A m . C h e m .S o c . , 9 9 , 8 0 8 ( 1 9 7 7 ) . 5 0 . F . G . B o r d w e l l a n d D . L . H u g h e s ,J . O r g . C h e m . , 4 7 , 3 2 2 4( 1 9 8 2 ) . 5 1 . J . J . D e l p u e c h a n d D . N i c o l e , J . C h e m . S o c . ,P e r k i n T r a n s . 2 , 1 0 2 5 ( 1 9 7 4 ) . 5 2 . D . A . D i x o n , D . Z e r o k a . J .J . W e n d o l o s k i a n d Z .R . W a s s e r m a nJ,. P h 1 t l C h e m . . 8 9 , 5 3 3 4 ( 1 9 8 5 ) . 5 3 . L . T e u b e r ,S u l f u r R e p o r t s , 9 , 2 5 7( 1 9 9 0 ) . 5 4 . D . N . H a r p p , R . A . S m i t h a n d K . S t e l i o u ,J . O r q . C h e m , 4 6 , 2 0 7 2 ( 1 9 8 l ) . 5 5 . B . L . C h e n a r d , D . A . D i x o n , R . L . H a r l o w , D . C . R o e a n d T . F u k u n a g a ,J . O r q . C h e m . . 5 2 . 2411 (1987). 5 6 . G . L . E l l m a n , A r c h . B i o c h e m .B i o p h y s . , 8 2 , ' 7 0( 1 9 5 9 ) . 5 1 . A . F . S . A . H a b e e b ,M e t f u t d sE n z y m o l . , 2 5 , 4 5 7( 1 9 7 2 ) . 5 8 . P . W . R i d d l e s ,R . L . B l a k e l e ya n d B . Z e r n e r , M e t h o d s E n z v m o l . ,9 l . 4 9 ( 1 9 8 3 ) . 5 9 . C . E . G r i m s h a w ,R . L . W h i s t l e ra n d W . W . C l e l a n d , J . A m . C h e m .S o c . ,l 0 l . 1 5 2 1( 1 9 1 9 ) . 6 0 . M . S h i p t o n a n d K . B r o c k l e h u r s t ,B i o c h e m .J . , 1 7 1 , 3 8 5 ( 1 9 7 8 ) . 6 1 . K . B r o c k l e h u r s ta n d G . L i t t l e , B b c h e m .J . , 1 2 8 , 4 7 1 ( 1 9 7 2 ) . 6 2 . D . R . G r a s s e t t ia n d J . F . M u r r a y , A r c h . B i o c h e m .B i o p h y s . ,l l 9 , 4 l ( 1 9 6 7 ) ' 6 3 . J . A . B a r l t r o p , P . M . H a y e s a n d M . C a l v i n , J . A m . C h e m .S o c . , 7 6 , 4 3 4 8( 1 9 5 4 ) . 6 4 . K . S . I y e r a n d W . A . K l e e , J . B i o l . C h e m . , 2 4 8 , 7 0 7( 1 9 7 3 ) . 6 5 . T . E . C r e i g h t o n ,J . M o l . B i o \ . . 9 6 , 7 6 7 ( 1 9 7 5 ) . 6 6 . D . L . R a b e n s t e i na n d Y . T h e r i a u l t . C a n . J . C h e m . , 6 2 , 1 6 7 2( 1 9 8 4 ) . 6 7 . D . L . R a b e n s t e i na n d Y . T h c r i a u l t , C a n . J . C h e m . , 6 3 ,3 3 ( 1 9 8 5 ) . , a n . J . C h e m . , 6 3 , 2 2 2 5( 1 9 8 5 ) . 6 8 . Y . T h e r i a u l t a n d D . L . R a b e n s t e i nC , . G u o a n d D . L . R a b e n s t e i nJ, . A m . C h e m .S o c . ,l l l , 6 5 5 3 ( 1 9 8 9 ) . 6 9 . J . C . P l e a s a n t sW 3, 480 (1964). 70. W. W. Cleland, Biochemistr,r', 7 1 . G . H . S n y d e r ,J . B i o l . C h e m . ,2 5 9 , ' 7 4 6 8( 1 9 8 4 ) . . i o p h y s .A c t a , 7 4 9 , 2 l 9 7 2 . G . H . S n y d e r ,M . K . R e d d y , M . J . C e n n e r a z z oa n d D . F i e l d , B i o c h e m B (1 9 8 3 ) . 658 R. Singh and G. M. Whitesides 7 3 . G . G o r i n a n d G . D o u g h t y , A r c h . B i o c h e m .B i o p h v - s . , 1 2 6 , 5 4(71 9 6 8 ) . 7 4 . L . E l d j a r n a n d A . P i h l , J . A m . C h e m . S o r ' . , 7 9 , 4 5 8 9( 1 9 5 7 ) . 7 5 . G . D a l m a n , J . M c D e r m e d a n d G . G o r i n , J . O r q . C h e m . , 2 9 , 1 4 8 0( 1 9 6 4 ) . 7 6 . R . F r e t e r , E . R . P o h l , J . M . W i l s o n a n d D . J . H u p e , J . O r g . C h e m . , 4 4 , 1 7 7 1( 1 9 7 9 ) . '77. G . G o r i n , G . D o u g h t y a n d R . G i d e o n , J . C h e m . S o c .( B ) , 1 2 9 ( 1 9 6 7 ) . 7 8 . J . M . W i l s o n , D . W u , R . M - D e G r o o d a n d D . J . H u p e , J . A m . C h e m .S o t ' . ,1 0 2 , 3 5 9 ( 1 9 8 0 ) ' 7 9 . D . J . H u p e a n d D . W u , J . O r q . C h e m . , 4 5 ,3 1 0 0( 1 9 8 0 ) . 8 0 . G . L e g l e r , B i o c h e m .B i o p h y s .A c t a , 4 0 5 , 1 3 6 ( 1 9 7 5 ) . , . J . K a r a l i s a n d D . F t e l d , B i o c h e m i s t r \ ' . 2 0 , 6 5 0 9( 1 9 8 1 ) . 8 1 . G . H . S n y d e r ,M . J . C e n n e r a z z oA 8 2 . S . S u n n e r ,N a t u r e , 1 7 6 , 2 1 7( 1 9 5 5 ) . 83. J. A. Pappas, J. Am. Chem. Soc'.,99, 2926 (1977). 84. u' Schmidt' P. Gralen, K' Altland and H'w' Goedde'Adu' Enzl'mol''32'423(1969)' , n p u b l i s h e do b s e r v a t i o n s . 85. R. Singh and G. M. Whitesidesu 8 6 . J . G a o , D . S . G a r n e r a n d W . L . J o r g e n s e nJ, . A m . C h e m .S o c . ,1 0 8 , 4 7 8 4( 1 9 U 6 ) . 8 7 . A . E . H o w a r d a n d P . A . K o l l m a n " J . A m . C h e m .S o c ' .l,l 0 , 7 1 9 5( 1 9 8 8 ) . 8 8 . L . W . S i e c k a n d M . M e o t - n e r ( M a u t n e r ) ,J . P h y s .C h e m . , 9 3 ,1 5 8 6( 1 9 8 9 ) . 8 9 . J . J . G r a b o w s k i a n d L . Z h a n g , J . A m . C h e m .S o c . ,l l l , 1 1 9 3( 1 9 8 9 ) ' 90. F.G.Bordwell,T.A.CripeandD.L.Hughes,inl{ucleophilicity,Adv.Chem.Series2l5(Eds. J . M . H a r r i s a n d S . P . M c M a n u s ) , A m e r i c a n C h e m i c a l S o c i e t y ,W a s h i n g t o n , D . C . . 1 9 8 7 , pp. 137-153. 9 1 . F . G . B o r d w e l l , J . C . B r a n c a a n d T . A . C r i p e , I s r . J . C h e m . , 2 6 , 3 5 7( 1 9 8 5 ) . 9 2 . M . A i d a a n d C . N a g a t a , C h e m . P h y 5 .1 ' r , r . , 1 1 2 , 1 2 9 ( 1 9 t t 4 ) . 9 3 . P . C . J o c e l y n ,E u r . J . B i o c h e m . , 2 , 3 2 7( 1 9 6 1 ) . 9 4 . H . A . S m i t h , G . D o u g h t y a n d G . G o r i n , J . O r q . C h e m . , 2 9 , 1 4 8 4( 1 9 6 4 ) . 9 5 . T . E . C r e i g h t o n ,B i o p o l y m e r s , 2 2 , 4 (91 9 8 3 ) . 9 6 . T . - Y . L i n a n d P . S . K i m , B i o c h e m i s t r v - , 2 8 , 5 2 8(21 9 8 9 ) . 97. P. C. Jocelyn, M ethods Enzymol, 143. 246 (1987). 98. L. J. Reed, Acc. Chem. Res.,7, 40 (1914). 9 9 . R . N . P e r h a m , B i o c h e m i s t r t ,3 0 , 8 5 0 1 ( 1 9 9 1 ) . a lo d i f i c a t i o no l 1 0 0 . R . B . F r e e d m a na n d D . A . H i l l s o n . i n T h e E n z t ' m o l o g l ' o J ' P o s t - T r a n s l a t i o nM Proteins (Eds. H. C. Hawkins and R. B. Freedman), Academic Press. London. 1980, pp.157-212. (1987). 1 0 1 .J . K o i v u a n d R . M y l l y l a , J . B i o l . C h e m . . 2 6 2 . 6 1 5 9 1 0 2 . T . E . C r e i g h t o n ,P r o g . B i o p h y s .M o l . B i o l . , 3 3 , 2 3 1 ( 1 9 7 8 ) . 1 0 3 . J . S . W e i s s m a na n d P . S . K i m , S c i e n c e , 2 5 31. 3 1 3(61 9 9 1 ) . , . K o n i s h i , D . M . R o t h w a r f a n d P . W . M u i , P r o < ' .l i u t l . A t ' a d . S t ' i . U . S . , 4 . . 1 0 4 . H . A . S c h e r a g aY 8 4 . 5 7 4 0( 1 9 8 7 ) . 1 0 5 . T . E . C r e i g h t o n ,S c i e n c e , 2 5 6 , 1Il ( 1 9 9 2 ) . , 1 2( 1 9 9 2 ) . 1 0 6 . J . S . W e i s s m a na n d P . S . K i m , S c i e n c e , 2 5 6 1 1 0 7 . R . P a i n . T r e n d s B i o c h e m .S c i . , 1 2 , 3 0 9 ( 1 9 8 7 ) . 1 0 8 . R . W e t z e l , T r e n d s B i o c h e m .S c i . , 1 2 , 4 7 8 ( 1 9 8 7 ) . , i o t ' h e m i s t n ' . 9 . 5 0 1(51 9 7 0 ) . 1 0 9 . V . P . S a x e n aa n d D . B . W e t l a u f e r B 1 1 0 . R . B . F r e e d m a n .N a t u r e . 3 2 9 , 1 9 6 ( 1 9 8 7 ) . 1 1 1 . R . P a i n , N a t u r e , 3 2 8 , 2 9 8( 1 9 8 7 ) . 1 1 2 . K . L a n g a n d F . X . S c h m i d .N a t u r e , 3 3 l , 4 5 3 ( 1 9 8 8 ) . 1 1 3 . V . P . P i g i e t a n d B . J . S c h u s t e r ,P r o c . N u t l . A c a d . S c ' i .U ' S . , 4 . . 8 3 , 7 6 4 3( 1 9 8 6 ) ' 1 1 4 . A . H o l m g r e n ,A n n . R e u .B i o c h e m . , 5 4 , 2 3 (11 9 8 5 ) . 1 1 5 . J . L u n d s t r o m , G . K r a u s e a n d A . H o l m g r e n , J . B i o l . C h e m . , 2 6 7 , 9 0 4 1( 1 9 9 2 ) '
Similar documents
Abstract - Procyanidln B-2 3. is subject to facile C
pyrocat~hol B-rings in analogues.9. and 1Q relative to the positions of these rings in the tetrahydropyrano[2,3-h]chromenelc. The chemical shifts of 8- and 16-H(C) and thus unambiguous proof for su...
More information3, 3 -dimethylplatin acyclobutanes Produces Bis(tri
oC and following the rate of exchangeof [(CD3)2CD]rP)at 50 phosphinesby 3tPltHl NMR spectroscopy.Completeequilibration of deuteratedand nondeuteratedphosphinesamong 2,2-LHLD, and 2-(LD)2 was observ...
More information