2. - NAS-Sites.org
Transcription
2. - NAS-Sites.org
Genomic disorders, mechanisms for copy number variation, variation & CNV in evolution Exploring Human Genomic Plasticity & Environmental Stressors: Emerging Evidence E id on Telomeres, T l Copy C Number Variation & Transposons National Academies of Science Washington, D.C 4 October 2012 J James R R. L Lupski, ki M M.D., D Ph Ph.D., D D D.Sc S Department of Molecular & Human Genetics & Department of Pediatrics Baylor College of Medicine & Texas Children’s Hospital Houston, TX http://www.bcm.edu/geneticlabs/ Topics to be discussed: 1) Background – CNV & gene dosage 2) CNV mechanisms - ectopic synapsis (NAHR) 3) Triplications: dup - trp/inv – dup 4) Chromothripsis vs chromoanasynthesis & other highly complex genomic changes 5) CNV & evolution, environmental mutagenesis Interpersonal Genome Variation: ( germ-line genomic variation ) 1)) Background g – CNV & g gene dosage g 2) CNV mechanisms - ectopic synapsis (NAHR) 3) Triplications: dup - trp/inv – dup 4) Chromothripsis vs chromoanasynthesis &CGR (somatic intercellular variation) 5) CNV & evolution, environmental mutagenesis CNV & phenotypes; an historical overview Phenotypic Variation in Datura Due to Changes in Chromosome Copy Number The American Naturalist Vol. 56 : 16-31, 1922 Dr. Albert Francis Blakeslee S i for Station f experimental i l evolution Cold Spring Harbor L.I., LI N.Y. Calvin B. Bridges (1936) The Bar “Gene” Gene a duplication duplication. Science 83:210-211 “the ‘puff’…is more pronounced; the banding is more discontinuous …synapsis is disturbed” duplication triplication DUP and TRP convey distinct phenotypes “The respective shares attributable in tthe e tota total e effect ect to tthe e genic balance change [i.e. dosage] and to the position-effect change seems to be at present a matter of taste” taste - Calvin Bridges Genic‐Scale Rearrangements & Human Di Disease: A Historical Perspective A Hi t i l P ti α‐globin duplication α‐globin duplication β‐thalassemia (mild) Red‐green color blindness Higgs, et al. (1980) Nature 284:632‐5. Nathans, et al. Nathans, et al. (1986) Science 232:203‐10 Glucocorticoid‐remediable Lifton, et al. (1992) Nature aldosteronism (hypertension) ld t i (h t i ) (1992) Nature 355:262‐5 Genomic rearrangements? APP duplication and early‐onset Alzheimer disease d l t Al h i di Delabar, et al. (1987) Science 235:1390‐2 5 Quantification Gene Dosage Genee Dosage 4 3 2 1 Southern to determine gene dosage d 0 APP Control Loci Two reports then argued against APP d l duplication in Alzheimer disease lh d Tanzi, et al. (1987) Science 238:666‐9 <10 patients each <10 patients each Podlisny, et al. (1987) Science 238:669‐71 7 pages of negative data published; > 2X the 3 pages of positive data APP duplication and early‐onset Alzheimer disease again! Alzheimer disease…again! 20 years later !!! QMPSF In 5 families with autosomal dominant early onset Alzheimer disease Rovelet ‐ Lecrux, et al. (2006) Nat Genet 38:24‐26 Molecular mechanisms for chromosomal syndromes, y , Mendelian dz and complex p traits. A. Alzheimer disease a) trisomy 21 b) copy number variation duplication of APP c) SNPs in promoter regions promoters SNPs APP APP coding exons APP coding exons + genic pt mut ! B. Parkinson disease b) SNPs in promoter regions a) copy number variation triplication of SNCA promoters duplication of SNCA SNPs SNCA SNCA coding exons Shiga, Inoue, & Lupski (2007) Mendelian, non‐Mendelian, Multigenic inheritance and complex traits. In, The Molecular and Genetic Basis of Neurological and Psychiatric Disease Rosenberg,, Prusiner, DiMauro, Barchi, (Eds.) Human genome variation and disease: heuristic models to investigate genetic architecture of disease >1 gene in CNV contributes to phenotype? C ti Contiguous Gene Syndrome? digenic & triallelic Aneuploidy = a big CNV! J.R. Lupski, J.W. Belmont, E. Boerwinkle, R.A. Gibbs (2011) Cell 147: 32‐43 Interpersonal Genome Variation: 1) Background – CNV & gene dosage 2) CNV mechanisms - ectopic synapsis (NAHR) 3) Triplications: dup - trp/inv – dup 4) Chromothripsis vs chromoanasynthesis & other highly complex genomic changes 5) CNV & evolution, environmental mutagenesis Mechanisms for genomic disorder associated human genome rearrangements Feng Zhang NAHR NHEJ MMBIR: microhomologymediated, break induced p replication FoSTeS FoSTeS ×1 MEI – mobile element insertion L1 Retrotransposition FoSTeS × 2 TS P OH TSD RECOMBINATION TSD REPLICATION Zhang, Gu, Hurles, Lupski (2009) Ann Rev Genomics and Hum Genet 19:451-481 The CMT1A duplication – a CNV paradigm Raeymakers, y , Timmerman,, et al. ((1991)) Neuromuscular Disorders 1 :93-97 Lupski, et al. (1991) Cell 66 :219-232 [duplication] Lupski, et al (1992) Nat Genet 1:29-33 [gene dosage] ; Pentao, Liu, et al (1992) Nat Genet 2 :292-300 [NAHR] Proximal CMT1A-REP Distal CMT1A-REP B A C ~ 70% of all CMT1 pts D 76-90% of sporadic CMT1 [de novo mutation] PMP22 NORMAL: PMP22 = 2n B’ A’ C’ D’ CMT1A: PMP22 = 3n HNPP: PMP22 = 1n A CNV dzs: Schizophrenia Autism Obesity B C B’ C’ JCT CMT1A DUPLICATION D’ A’ D JCT HNPP DELETION Mechanism for deletion & reciprocal i l duplication d li ti L. Potocki & J. R. Lupski p NORMAL NORMAL: “I LIKE TO SWIM IN THE OCEAN BUT I DO NOT LIKE TO SWIM IN THE POOL POOL..” DELETION: “I LIKE IKE TO SWIM IN THE POOL POO .”” POOL.” DUPLICATION: DUPLICATION “I LIKE TO SWIM IN THE OCEAN BUT I DO NOT LIKE TO SWIM IN THE OCEAN BUT I DO NOT LIKE TO SWIM IN THE POOL POOL.” .” Genomic Disorders Concept predicated on two major premises: - genomic i rearrangements t NOT sequence q based changes g - genome architecture incites genome instability Lupski (1998) Genomic Disorders: Structural features of the human genome can lead to DNA rearrangements and human disease traits Trends in Genetics 14:415 14:415-420 420 Lupski (2009) Genomic Disorders: ten years on Genome Medicine 1:42.1-42.11 Calvin B. Bridges (1936) The Bar “Gene” Gene a duplication duplication. Science 83:210-211 “the ‘puff’…is more pronounced; the banding is more discontinuous …synapsis is disturbed” duplication triplication TRP – occurs de novo? OR from pre-rexisting DUP? mild CMT1A BAB3328 8 severe CMT1A BAB3 3330 mild CMT1A BAB B3329 BAB33 331 CMT1A duplication becomes a triplication in a family (unpublished) Shay Ben-Shachar & Avi Orr-Urtreger; Tel Aviv NAHR as the mechanism for recurrent genomic rearrangements genomic rearrangements A C * * * duplication deletion B interchromosome d l ti deletion duplication recurrent translocation map inversion intrachromosome (interchromatid) d l ti deletion intrachromatid d l ti deletion sister chromatid exchange isochromosome duplication Liu, et al. (2012) Curr Opin in Gen and Develop 22:211-220 iso17q –somatic isoY & isoX - constit. Genomic disorders: a new discipline of medical genetics a new discipline of medical genetics Post-genomic era Bridges (1936) Lupski et al. (1991) Science 83:210‐211 Cell 66:219‐232 The Bar “Gene” duplication Genomic duplication causes causes an eye phenotype causes an eye phenotype neurological disease neurological disease 1936 Courtesy Dr Pengfei Liu 1991 1998 genomic disorders defined Cheung et al. (2005) Genet. Med. 7:422‐432 Clinical utilization of CGH Feb ’04 Clinical CMA 2005 N = 45,894;29FEB2012 rare dz day! N > 50,000 today!!! Baylor Array CGH Team- clinically introduced high resolution human genome analyses Feb’04 Clinical Cytogeneticists Clinical Development Ankita Patel, Ph.D. Patricia Hixson, Ph.D. Cheerleaders Sau wai Cheung, Ph.D. Sisi Bi, B.S. Jim Lupski, M.D., Ph.D., D.Sc. Carlos Bacino, M.D. Marcus Coyle B.S., M.A. Art Beaudet, M.D. Pawel Stankiewicz, M.D., Ph.D. Rodger Song, B.S. Seema Lalani, M.D. Rebecca Davis, B.S. General Manager Weimin Bi, Ph.D. Lu Yang, B.S. Sean Kim, M.B.A. Amy Breman, PhD. Amanda Fullerton, B.S. Robert Johnson, Ph.D. Genetic Counselors Mitochondrial Disease Arrays Patricia Ward, M.S. Sandra Peacock, M.S. Lee-Jun Wong, Ph.D. Administration Jeff Mize, M.B.A., C.P.A. Marketing Alicia Braxton, M.S. Array Development Mike Frazier, B.S. Laura Ellis, M.S Pawel Stankiewicz, M.D., Ph.D. T. Brandon Perthuis, B.S. Statistics/Bioinformatics Tomek Gambin, B.S. Aloma Geer, Ph.D. Chad Shaw, Ph.D. Eric Burgess, B.S. Aleksandar Milosavljevic, Ph.D. Jian Li, B.S. Prenatal Genetics Christine Eng, M.D. Ignatia Van Den Veyver, M.D. CMA. - chromosomal C microarray analyses N = 50,310 (19 Aug 2012) Genome‐wide CNV studies in patients: lessons learnt Apparently Simple lessons learnt A locus can be subject to recurrent A locus can be subject to recurrent or non‐recurrent events. All rearrangement mechanisms possible at a locus, but particular type may be favored by local genome architecture. y g Gains (dup, trp) losses (del) and complexities can occur. Diseases are often sporadic due to de novo mutations. New mutations are quite frequent for CNV (10‐6 6 to 10‐44) compared to SNV (10‐8) [100X – 10,000X !!!]. Potocki-Lupski syndrome (PTLS;MIM #610883) 2000, seven patients with common duplication were described; 2007 multidisciplinary 2007, ltidi i li clinical li i l study t d Definition of a genomic disorder – from mechanism to clinical delineation Potocki et al (2000) Nat Genet 24:84-87 Potocki et al (2007) AJHG 80:633-649 PTLS Family Conference July 2012 p , Texas Children’s Hospital Houston,TX smile – say cheese! silly face! > 300 patients with PTLS in families’ database Rearrangement frequency at 17p11.2 Feng Zhang FAMILIES STUDIED: PTLS duplication PTLS d li ti N=79 SMS deletion N=131 Pengfei Liu Distribution of different mechanisms in del/dup Recurrent (NAHR) Nonrecurrent simple (FoSTeS or NHEJ) Complex (FoSTeS or multiple NHEJ) Total Deletion 107 (81.7%) 21 (16.0%) 3 (2.3%) 131 Duplication 56 (70.9%) 9 (11.4%) 14 (17.7%) 79 N = 210 pts! What have we learned? i) NAHR mediated recurrent rearrangements account for majority of the events. ii) An additional LCR‐mediated uncommon recurrent event (UR2) was identified ii) Deletion : duplications :: 2:1, for de novo NAHR. Turner et al. (2008) Nat. Genet. iii) Complex rearrangements is more prevalent (~ 8X !) in duplications. Six types of recurrent rearrangements at 17p11.2 all three LCRs are similar in identity; ~98.6% ! What makes one recurrent rearrangement more prevalent than another? i.e. what determines the NAHR frequency at a locus? Inter-LCR distance LCR length NAHR mediated rearrangement frequency at a given locus correlates positively with LCR length & inversely influenced by inter‐LCR distances inter‐LCR distances LCR Length LCR Distance LCR Length (Kb) LCR Length log (Fre equency) ln (Freq quency) Legend: Common Recurrent Uncommon Recurrent 1 LCR distance Uncommon Recurrent 2 Red: Dup Green: Del NAHR Synapsis ‐‐ Alignment of homologues in meiosis Terry Hassold Lab Petrice et al., (2005) Meiotic Synapsis Proceeds from a Limited Number of Subtelomeric Sites in the Human Male. Am J Hum Genet. 77: 556-566. Ectopic synapsis as a mediator of ectopic crossing over ? ectopic crossing over ? Pengfei Liu * Liu, et al. (2011) Am J Hum Genet 89:580-588 * 2012 Cotterman Award c/w: i) NAHR & AHR hotspots coincide ii) same PRDM9 hotspot motif used iii) yst synaptonemal complex mutants abolish ectopic HR!!! Shinohara Lab Evidence in yeast Depletion of Zip1, an essential component of yeast synaptonemal Depletion of Zip1 an essential component of yeast synaptonemal complex, almost completely abolishes ectopic crossingover (Shinohara et al., personal communication) Topics to be discussed: 1) Background – CNV & gene dosage 2) CNV mechanisms - ectopic synapsis (NAHR) 3) Triplications: dup - trp/inv – dup 4) Chromothripsis vs chromoanasynthesis & other highly complex genomic changes 5) CNV & evolution, environmental mutagenesis Mechanisms for genomic disorder associatred human genomic rearrangements Feng Zhang NAHR NHEJ MMBIR: microhomologymediated, break induced p replication FoSTeS FoSTeS ×1 MEI – mobile element insertion L1 Retrotransposition FoSTeS × 2 TS P OH TSD RECOMBINATION TSD REPLICATION Zhang, Gu, Hurles, Lupski (2009) Ann Rev Genomics and Hum Genet 19:451-481 DNA replication model for genomic rearrangements Fork Stalling g and Template p Switching g FoSTeS Mechanism Jenny Lee Clauda Carvalho Microhomology mediated joining by priming DNA replication Template driven juxtaposition of DNA sequences separated t d by b large l genomic distances - template switch 1264 Lee , Carvalho, Lupski (2007) Cell 131:1235-1247 FoSTeS x 3 Cell 131:1235-1247, December 26, 2007 Jenny Lee Claudia Carvalho - Studied Pelizeaus-Merzbacher Dz y y g disorder - CNS dysmyelinating - ~ 70% due to different sized (i.e. non-recurrent) PLP1 dup join point DNA replication mechanism: Fork Stalling Template Switching, FoSTeS 1) Long distance template switching (120-550 Kb) 2) Tethered to original fork 3) Priming of DNA replication via microhomology 4) Template driven juxtaposition of discreet genomic segments from different locations MMBIR model Hastings, Ira, Lupski (2009) PLoS Genetics 5 (Jan): e1000327 Hastings, Lupski, Rosenberg & Ira (2009) Nat. Rev Genetics 10:551-64 collapsed replication fork (one-ended, dsDNA NOT DSB; i.e. two-ended dsDNA) new low processivity fork (disassociates repeatedly) Reforms different template Completes p replication p Breakpoint complexity Phil Hastings Microhomology at ‘join pt’ in FoSTeS/MMBIR: subtractive R E P L I C A T I V E ATGAATGACAGGATA...TCTAGACATATTCGA Reference ATGAATGACATATTCGA Rearrangement Jct Lee et al (2007) Cell 131:1235 Lee, 131:1235-1247 1247 Microhomology in the Shapiro model: additive ----ATGT Transposable element R f Reference Tn ATCG---- + TTCTAGGCACATTCTG TTCTAGGCACA Tn GCACATTCTG Rearrangement Jct Shapiro (1979) PNAS 76:1933-1937 Microhomology at sequenced breakpoint junctions in the human genome Number of Number of Number of rearrangements rearrangements Microhomology with with breakpoint length range* breakpoints microhomology sequenced Reference PLP1 (Xq22.2) 19 15 (79%) 2‐18 [1,2,3] LIS1 (17p13.3) Locus specific RAI1, PMP22 RAI1 PMP22 studies (17p11.2p12) 6 6 (100%) 2‐27 [4] 36 26 (72%) 2‐33 [5,6,7,8] STS (Xp22.31) 13 10 (77%) 2‐4 [9] Vissers et al Vissers et al. 38 29 (76%) 29 (76%) 2 30 2‐30 [10] Genome‐wide Conrad et al.# studies Kidd et al.# 324 168 (52%) 2‐30 [11] 973 289 (30%) 2‐20 [12] 10871 7166 (66%) 2‐50 [13] Mills et al.# 1. Lee et al., Cell 2007, 131:1235‐47. 2. Inoue et al., Am J Hum Genet 2002, 71:838‐853. 3. Woodward et al., J u Ge et 005, :966 98 . . Bi et al., Nat Genet 2009, 41:168‐177. 5. et a ., at Ge et 009, : 68 . 5. Liu et al., Am J Hum Genet u et a ., J u Ge et Am J Hum Genet 2005, 77:966‐987. 4. 2011, 89:580‐588. 6. Zhang et al., Am J Hum Genet 2010, 86:462‐470. 7. Zhang et al., Nat Genet 2009, 41:849‐ 853. 8. Zhang et al., Am J Hum Genet 2010, 86:892‐903. 9. Liu et al., Hum Mol Genet 2011, 20:1975‐1988. 10. Vissers et al., Hum Mol Genet 2009, 18:3579‐3593. 11. Conrad et al.Nature Genetics 2010 42:386‐391 12. Kidd et al., Cell 2010, 143:837‐847. 13. Mills et al., Nature 2011, 470:59‐65. FoSTeS/MMBIR favors gain (DUP, TRP, etc ) over loss of genomic material etc.) over loss of genomic material Pengfei Liu Replicative mechanism important to evolution: i) gene duplication/triplication ii) exon shuffling Liu, et al. (2011) Am. J. Hum. Genet. 89: 580‐588 PLoS Genetics 5:1-9[e1000327] 2009 Microhomolgy: -2 to 6 bp -Alu - Alu “One One can experimentally manipulate model organisms to surmise mechanism; however, th relevance the l to t human h is by inference or analogy alone – not by p direct experimental observations.” Zhang et al (2009)Trends in Genetics 25: 298-397 Two types of triplication structures yp p STS 3/61 = 4.9% of gains de novo occurs by double crossovers Liu, et al (2011) HMG type I triplication reference tandem triplication t type II triplication t i li ti reference dup-inv/trp-dup MECP2 13/58 = 22 22.4% 4% gains Liu, Carvalho, Hastings, Lupski (2012) Current Opinions in Genetics & Development 22: 211-220 a) arrayCGH findings – MECP2 locus in males with ID +2 DUPp Jct1 TRPp p J t2 Jct2 TRPd DUPd +1 aCGH 0 CEN TEL a b c b) Actual complex rearrangement genomic structure b) Actual complex rearrangement genomic structure Carvalho, et al. (2011) Nat Genet 43:1074-83 a b Jct1 c Claudia Carvalho Jct2 b’ DUP‐TRP/INV‐DUP a’ b’ c’ Carvalho Claudia a Jct2 Strand annealing and extension g Jct1 b c d Strand invasion at inverted ectopic homology e DNA f Second fork synthesis collapse a’ MMBIR b’ c’ a Replication a’ a’ a b’ b b’ b b’ c’ c c’ c c’ d’ a’ b b’ c’ c d’ a d’ b’ a a b’ b’ b c b’ or d’ Fork collapse Carvalho, et al. (2011) Nature Genetics 43:1074-1082 b c a b c d’ a a’ h a’ b’ c’ NHEJ Ligation DSB a’ a b’ b c’ c d’ b’ d’ Jct1 Jct2 Complex type II triplications DUP Claudia Carvalho Weimin Bi Feng Zhang MECP2 LIS1 PMP22 TRP DUP Carvalho et al (2009) Hum Mol Genet 18 :2188 :2188-2203 2203 Bi, et al (2009) Nature Genetics 41 :168-177 Zhang et al (2009) Nature Genetics 41 :849-853 Mild Brain Structural Anomalies by MRI duplication triplication B A LIS1 triplication gross dysgenesis of the Corpus callosum marked cerebellar atrophy duplication of YWHAE and LIS1 thinning corpus collosum splenium mild cerebellar volume loss Bi, et al (2009) Nature Genetics 41:168-177 Evolving new genes by DUP-TRP/INV-DUP Inversion brings breakpoints into spatial proximity perhaps within same replication factory type II triplication reference dup-inv/trp-dup AVPR2 TEX28 AVPR2 TEX28 TEX28/AVPR2 Jct1 Jct2 type II triplication evolves new genes by: i) creating novel junctions ) g j ii) inversion segment reading opposite strand 3 2 1 C* Properties of MMBIR replisome/polymerase A 2X tandem, tandem intra-chromosomal duplication Original segment 3 Duplicated segment 2 132 C* A 1 G* A *Lower Fidelity Primers Ref_seq_1 Bkpt_jct Ref seq 3 Ref_seq_3 Ref_seq_2 AGCAAGCTGGAATC AGCAAGTCACGCTA GTAAAGTCACGCCT CGTATTGATGGCTA Reduced P Processivity i i FISH demonstrates an inverted orientation of the middle copy in subjects S1–S6 with i bj t S1 S6 ith triplication (TRP) of subtelomere All due respects to Barbara: It is NOT all BFB genomic inversions: challenging to assay BACKGROUND: Only two pathogenic inversions mediated by IR BACKGROUND: Only two pathogenic inversions mediated by IR Two decades since the landmark Jane Gitschier study A single inversion disrupting the factor VIII gene (F8) > 45% of patients with severe hemophilia A (MIM# 306700) ! IP‐LCRs can lead to abnormal disrupt a dosage‐sensitive gene(s) through NAHR We delineated the genome‐wide distribution of IP‐ lCRs: 942 genes potentially disrupted! DTIP‐LCRs > 1500 throughout genome: many potential genes can have dosage potentially changed Topics to be discussed: 1) Background – CNV & gene dosage 2) CNV mechanisms - ectopic synapsis (NAHR) 3) Triplications: dup - trp/inv – dup 4) Chromothripsis vs chromoanasynthesis & other highly complex genomic changes 5) CNV & evolution, environmental mutagenesis Cell (2011) 144:27‐40 Cancer implications of chromosome Cancer implications of chromosome catastrophe phenomena: • 2‐3% of ALL cancer cell lines (N=746) • 25% of bone cancers (N=20) 25% f b (N 20) • Single catastrophic event NOT progressive rearrangement model (i.e. occurring sequentially and independently of one another over many cell cycles) •Multiple cancer genes mutated in single mutational event – multigenic inheritance? Liu et al. (2011) 146, 889-903. 10/12 pt referred for Developmental Delay (DD) 4/12 had Intellectual Disability + Behavioral Problems 12/12 had DD http://www.bcm.edu/geneticlabs/ Subject BAB3105 Subject BAB3105 Multple regions of: dup, trp, and inv ! Note: N t None of the N f th complexity is observed in parents; consistent in parents; consistent with being generated as part of a de novo p event Chromothripsis and Human Disease: Piecing Together the Shattering Process Ch i Christopher A. Maher and Richard K. Wilson h A M h d Ri h d K Wil Sanger –propose NHEJ C ll (2012) 148: 29‐32 Cell (2012) 148 29 32 Baylor propose FoSTeS/MMBIR Figure 1. Chromothripsis Reshapes the Genomic Landscape in a Single Devastating Event Three distinct types of highly complex genomic rearrangements Ch Chromothripsis/ Chromoanasynthesis Multiple de novo rearrangements: presented with y gp peripheral p neuropathy p y & developmental p delay y demyelinating Location Size Type Bkpt features Array detection 180k 1 M 1p36 6.4 Mb Duplication 1-bp micro Y Y Pat 3q13q21 943 kb Duplication 1-bp micro Y Y Pat 3q29 104 kb Duplication Mosaic? Y 5p12 440 kb Duplication 7-bp micro Y Pat 5q33q34 5.8 Mb Duplication 22q13 gain Y Y Pat 1 9p13 1.2 Mb Triplication 40-bp complex; 10-bp insert Y Y Mat, Intra 2 17p11p12 6.0 Mb Duplication 3-bp micro Y Y Mat 22q11 48 kb Duplication NAHR? Y 22q13 307 kb Duplication (inserted to q q ) 5q33q34) 3- and 48bp insert Y Genome-wide View Pengfei Liu Parent of origin 1 2 Mat A CNV mutator phenotype! 1 2 Multiple de novo rearrangements: presented with demyelinating peripheral neuropathy & developmental delay Occur on different parental chromosomes: Postzygotic event Location Size Type Bkpt features Array detection 180k 1 M Parent of origin 1p36 6.4 Mb Duplication 1-bp micro Y Y Pat 3q13q21 943 kb Duplication 1-bp micro Y Y Pat 3q29 104 kb Duplication Mosaic? Y 5p12 440 kb Duplication 7-bp micro Y Pat 5q33q34 5.8 Mb Duplication 22q13 gain Y Y Pat 1 9p13 1.2 Mb Triplication 40-bp complex; 10-bp insert Y Y Mat, intra 2 17p11p12 6.0 Mb Duplication 3-bp micro Y Y Mat 22q11 48 kb Duplication NAHR? Y 22q13 307 kb Duplication (inserted to q q ) 5q33q34) 3- and 48bp insert Y Genome-wide View 1 2 Mat 1 2 Multiple de novo rearrangements family #2 All occur on maternal chromosomes: germline event Location 1 2 Size Bkpt features Type Array blood 180k 1M Array Cell Line Y Y Y Y Y Y Y Y Y Y Parent of origin Mat 1p35.1p34.3 1.7 Mb Duplication 1q21.2 491 kb Triplication 3p21.1p14.3 4.2 Mb Duplication 5q35.3 52 kb Triplication 8q24.12q24.13 4.5 Mb Duplication Y Y 10q24.33q25.1 4.7 Mb Duplication Y Y 16p11.2 317 kb Duplication Y Y 16q23.1q23.2 4.2 Mb Duplication Y Y Mat 16q24.3 310 kb Duplication Y Y Mat 19q13.2q13.32 4.3 Mb Duplication Y Y Mat Xp11.23 211 kb Duplication Y Mat Y NAHR? Genome-wide View Pengfei Liu 1 Mat Mat Mat 2 1 2 Topics to be discussed: 1) Background – CNV & gene dosage 2) CNV mechanisms - ectopic synapsis (NAHR) 3) Triplications: dup - trp/inv – dup 4) Chromothripsis vs chromoanasynthesis & other highly complex genomic changes 5) CNV & evolution, environmental mutagenesis What is the evolutionary rheostat !!! CNV and Evolution DNA REPLICATION MECHANISM MECHANISM: Fork Stalling Template Switching, FoSTeS/MMBIR FoSTeS causes genomic dup and trip p rearrangements. g & complex FoSTeS creates entirely novel genes by g DNA DUP-TRP/INV-DUP. inverting FoSTeS may be a major mechanism for duplication CNV and thus a major driver of the Ohno “gene duplication / divergence” evolutionary hypothesis. divergence FoSTeS may cause exon shuffling? CNVs and evolution – inspired by the Galapagos Islands (August 2008) Intronic enomic Intrragenic Ge (olligogenic?) CNV enable rapid evolution of domesticated animals ( (Leif Andersson Lab, Uppsala SWEDEN) , pp ) Dorsal hair ridge and predisposition to d dermoid id sinus i 133 kb dup (Contains FGF3, FGF4, FGF19,ORAOV1) Rubin et al.2010 Nature 464:587-91 ‘High growth’ 19 kb del (3’ end of SH3RF2) Premature hair graying g y g and susceptibility to melanoma Salmon Hillbertz et al.2007 Nat Genet 39 1318 20 39:1318-20 4.6 kb dup (Intron 6 of STX17) Pea-comb Pea comb phenotype WGS Pielberg et al.2008 Nat Genet 40:1004-9 Wright et al. 2009 PLoS Genet 5:e1000512 Intergen nic ~20-40X amplification (Intron 1 of SOX5) Dark brown plumage color 8.3 kb del (Upstream of SOX10) Gunnarsson ett al.l G Pigment Cell Melanoma Res (In Press) Reciprocal CNV, mirror traits and psychiatric dz Crespi – evolution of the social brain 16p11.2 rearrangements diagnosed at Baylor MGL 16p11.2 rearrangements diagnosed at Baylor MGL (http://www.bcm.edu/geneticlabs/ ) Mar 2008‐June 2012 Lupski (2012) Biological Psychiatry 72: 617-619 253 families provided a molecular diagnosis! CONCLUSIONS : CNV What have we learnt? 1) NAHR favors del (2:1) whereas FoSTeS/MMBIR favors dup 2) Ectopic synapsis precedes ectopic crossing over/NAHR p can form de novo by y double crossovers at LCR or from 3)) Triplications pre-existing duplications 4) Triplications (type II) with non-recurrent breakpoints have a unique p p p structure dup-trp/inv-dup 5) Telomeres may be particularly susceptible to replicative mutagenesis 6) CGR can form by MMBIR with template switches occurring at BOTH homologous and micro-homologous micro homologous substrate sequences; a ‘one ‘oneoff’ event, multiple genic changes - important for evolution! 7) CGR show many characteristics attributed to chromosome catastrophe’s; the phenomena of chromothripsis described in 2-3% 2 3% of all cancers: chromothripsis OR chromoanasynthesis or BOTH mechanisms operative? Issues relevant to environmental mutagenesis 1)) CNV are important p for disease (genomic disorders) & evolution 2) Do current mutagenesis assays (Ames test) measure CNV formation? 3) C Can we d design i such h an assay? ? 4)) Are we introducing g compounds p into our environment that induce CNV mutagenesis? 5) What is the evolutionary ‘rheostat’ rheostat – SNV (single nucleotide variation) or CNV ACKNOWLEDEMENTS: Gibbs Lab & Baylor + Lupski Lab & http://imgen.bcm.tmc.edu/molgen/lupski/ Conclusion: potential t ti l CNV mutator t t phenotype h t 1) A genome-wide genome wide spectrum of de novo, large, rare variant CNV 2) Brkpnt analyses reveal signatures [short insertions flanked by microhomology + >SNV rate 1000X ]of replicative mechanism (MMBIR) 3) M Multiple lti l d de novo CNV ‘phenotype’ ‘ h t ’ can occur post-zygotically or in germline (maternal) Hypothesis: errors in cellular replication machinery required q for MMBIR Approach: WGS of entire trio (find smaller CNV) ES to find gene responsible