Sedra/Smith Microelectronic Circuits 5/e
Transcription
Sedra/Smith Microelectronic Circuits 5/e
Sedra/Smith Microelectronic Circuits 5/e Chapter 5B MOS Field-Effect Transistors (MOSFETs) S. C. Lin, EE National Chin-Yi University of Technology 1 5.5 Small-Signal operation and models 5.5.1 The DC Bias Point 1 1 2 2 I D = kn (VGS − Vt ) = knVOV 2 2 VDS = VDD − I D RD To ensure saturation region operation. We must have VD > VOV S. C. Lin, EE National Chin-Yi University of Technology 2 5.5.2 The Signal Current in the Drain Terminal vGS = vgs + VGS 1 ∴ iD = kn (vgs + VGS − Vt ) 2 N 2 i +I d D 1 1 2 = kn (VGS − Vt ) + kn (VGS − Vt )vgs + kn vgs 2 (5.43) 2 2 DC bias current I D nonlinear distotion The Current component that is directly proportional to the input signal vgs To reduce the nonlinear distotion, the input signal shonld be kept small 1 'W 2 ' W so that kn vgs << kn (VGS − Vt )vgs ⇒ vgs <<2(VGS − Vt ) L 2 L S. C. Lin, EE National Chin-Yi University of Technology 3 Example : For the amplifier in Fig.A, let the MOSFET is specified to have Vt = 2V and kn' W / L = 2mA/V 2 ,VGS = 5V, assume λ =0. if vgs = 0.5sin ωt volts (a) Determine the various components. (b)Find the second harmonic component as a percentage of the amplitude of fundamental Sol: (a ) iD = 1mA/V 2 × (5 - 2) 2 V 2 + 2mA/V 2 × 0.5sin ωt × (5 - 2)V 2 + 0.25sin 2 ωt ×1mA 1 1 = 9 + 3sin ωt + 0.25( − cos 2ωt ) ( mA ) 2 2 = 9.125 + 3sin ωt − 0.125cos 2ωt ( mA ) ▲ (b) Harmonic distotion percentage 0.125 × 100% = 4.16% ▲ D% = 3 S. C. Lin, EE National Chin-Yi University of Technology 4 Small-signal operation of the enhancement MOSFET amplifier. id ' W gm ≡ = kn (VGS − Vt )(5.47) vgs L ∂I D gm ≡ ∂VGS (5.49) vgs =VGS S. C. Lin, EE National Chin-Yi University of Technology 5 5.5.3 The voltage gain vD = VDD − iD RD = VDD − (id + I D ) RD = VDD − I D RD − id RD The biasing component is VD = VDD − I D RD The signal component is vds = −id RD = − g m vgs RD vd ∴ Av ≡ = − g m RD vgs The minus sign, indicates that the vd is 1800 out of phase with respct to the vgs (5.50) (5.51) S. C. Lin, EE National Chin-Yi University of Technology 6 vi = vgs small signal condition Total instantaneous voltages vGS and vD for the circuit in Fig. 4.34. S. C. Lin, EE National Chin-Yi University of Technology 7 5.5.5 Small-signal Equivalent-Circuit Models (a) neglecting the dependence of iD on vDS in saturation (the channel -length modulation effect); (b) including the effect of channel -length modulation, modeled by output resistance ro = |VA| /ID. S. C. Lin, EE National Chin-Yi University of Technology 8 5.5.6 The Transconductance gm gm = id = kn ( vGS − Vt ) vgs W ' W v V k − = ( GS t ) n VOV (5.55) L L 1 'W 2 ' W I D = kn VOV ⇒ VOV = 2 I D / kn 2 L L Subtituting for VOV in (5.55) by = kn' VOV = 2 I D / k (W / L ) , we obtain ' n g m = 2kn' (W / L ) I D (5.56) iD ID Q Slop ≡ g m = 0 1 2 VOV VOV 2I D ( vGS − Vt ) , we obtain g m = 2 VOV Figure 5.38 Yet another useful expression for g m , Subtituting for kn' in (5.55) by ID 1 V 2 OV W L 2I D ID = vGS − Vt VOV / 2 S. C. Lin, EE National Chin-Yi University of Technology (5.57) 9 Example 5.10 For the amplifier in Fig.a, let the MOSFET is specified to have Vt = 1.5V, VA = 50Vand kn = 0.25mA/V 2 . Assume the coupling capacitors to be sufficiently large so as to act as short circuit at the signal frequencies of intrrest.(a) Find the voltage gain (b)Find the input resistance (c) Find the largest allowable input signal. S. C. Lin, EE National Chin-Yi University of Technology 10 (b)ii = (Vi − Vo ) / RG 1 W Sol:(a ) I D = kn' (VGS − Vt ) 2 2 L 1 = × 0.25 × (VGS − 1.5) 2 N 2 V DS = Vi V (1 − o ) RG Vi = Vi (1 − Av ) RG = 4.3 Vi RG VDS = 15 − I D RD = 15 − 10 I D ⇒ I D = 1.06mA ▲ VD = 4.4V ▲ W gm = k (VGS − Vt ) L = 0.25 × (4.4 − 1.5) = 0.724mA/V ▲ V 50V ro = A = = 47kΩ ▲ I D 1.06mA ' n ⇒ vo = − g m vgs ( RD // RL // ro ) v Av = o = − g m ( RD // RL // ro ) vi = −0.725(10 //10 // 47) = −3.3V/V ▲ Thus : Rin = Vi RG = ii 4.3 = 10 / 4.3 = 2.33MΩ ▲ (c)vDS (min) = vGS (max) − Vt vDS − Av vˆi = vGS + vˆi − Vt 4.4 − 3.3vˆi = 4.4 + vˆi − 1.5 Vt 1.5 = = 0.35V ▲ vˆi = Av + 1 3.3 + 1 S. C. Lin, EE National Chin-Yi University of Technology 11 5.5.6 The T Equvalent-Circuit Model S. C. Lin, EE National Chin-Yi University of Technology 12 Figure 5.41 (a) The T model of the MOSFET augmented with the drain-to-source resistance ro. (b) An alternative representation of the T model. S. C. Lin, EE National Chin-Yi University of Technology 13 5.6 Basic MOSFET Amplifier Configurations 5.6.1 The Three Basic Configurations + vi + RD − + RD vo vi + − − vo − (a) Common-Source (CS) (b) Common-Gate(CG) vi −+ RD + vo (c) Common-Drain(CD) − or Source Follower S. C. Lin, EE National Chin-Yi University of Technology 14 5.6.2 Characterizing Amplifier Rin vi = vsig , Rin + Rsig RL vo = Avo vi Ro + RL S. C. Lin, EE National Chin-Yi University of Technology 15 vi Input resistance: Rin ≡ ii vo Open-circuit voltage gain: Avo ≡ vi RL =∞ vo RL Voltage gain with RL : Av ≡ = Avo vi RL + Ro io Short-circuit current gain: Ais ≡ ii (5.67) RL = 0 io Current gain: Ai ≡ ii S. C. Lin, EE National Chin-Yi University of Technology 16 vx Output resistance : Ro ≡ ix vi = 0, RL =∞ vo vi vo Rin overall voltage gain: G v ≡ = ⋅ = Av vsig vsig vi Rin + Rsig Rin RL = Avo Rin + Rsig RL + Ro S. C. Lin, EE National Chin-Yi University of Technology (5.68) 17 5.6.3 The Common-Source (CS) Amplifier Characterizing Parameters of CS Amplifier Rin = ∞ + Rsig vsig + − Ri RD + vi − vo = −( g m vgs ) ( RD // ro ) Avo = − g m ( RD // ro ) vo Ro ≈ − g m RD − Rsig vsig Rin = ∞ − (5.71) Ro = RD // ro ≈ RD + vi = vgs (5.69) (5.73) + g m vgs ro RD vo − Ro = RD // ro S. C. Lin, EE National Chin-Yi University of Technology 18 Concludes: X The input resistance is ideally infinite. Y The Ro ≈ RC is moderate to high in value (typically, in the kilohms to tens kilohms range). Reducing RD to lower Ro is not a viable proportional, because the Av is also reduced. Z The open circuit voltage gain Avo can be hig, making the CS configration the work-hourse in MOS amplifier design. However the bandwidth of the CS amplifier is severely limited. S. C. Lin, EE National Chin-Yi University of Technology 19 Overall Voltage Gain v Av = o = − g m ( RD // RL // ro ) vi (5.75) vi = vsig (5.74) vo vi vo = ⋅ = − g m ( RD // RL // ro ) Gv ≡ vsig vsig vi (4.76) Performing the Analysis Directly on the Circuit g mvgs Rsig vsig + − + 0 + vi = vgs Rin = ∞ − ro RD vo Ro = RD // ro − vo = − g mvgs ( RD // ro ) S. C. Lin, EE National Chin-Yi University of Technology 20 4.6.4 The Common-Source (CS) Amplifier with an Source Resistance + Rsig + vsig + − RD vi Rin − 0 ++ i vi Rin = ∞ Ro Rs − Rsig vsig vo − vgs 1 gm + i RD − Rs vo − Ro = RD S. C. Lin, EE National Chin-Yi University of Technology 21 1/ g m ) ( 1 vgs = vi = vi 1 + g m Rs (1/ g m ) + Rs vi gm = i= vi (1/ g m ) + Rs 1 + g m Rs (5.78) g m RD vo g m RD = vo = −iRD = vi ⇒ Avo = 1 + g m Rs vi 1 + g m Rs (5.80) Total resistance in drain Av (from gate to drain ) = − (5.81) Total resistance in source Ro = RD Alternatively, Av can be obtained by simply replacing RD in (5.80) by ( RD //RL ) g m ( RD //RL ) vo RD //RL Av = = = 1/ g m + Rs 1 + g m Rs vi S. C. Lin, EE National Chin-Yi University of Technology (5.83) 22 5.6.5 The Common-Gate (CG) Amplifier RD Rsig + vi + Rin = 1/ g m vo vi vo = −iRD , i = − 1/ g m − vi − + Ro − Rin vo Avo ≡ = g m RD vi (5.85) Ro = RD (5.86) 1/ g m Rsig + vsig (5.84) vi − Rin = 1/ g m i + i RD vo − Ro = RD S. C. Lin, EE National Chin-Yi University of Technology 23 Overall Voltage Gain 1/ g m ) ( vi Rin = = vsig Rin + Rsig (1/ g m ) + Rsig (5.87) vo Av = = g m ( RD // RL ) vi 1/ g m ) ( vo vi vo = ⋅ = g m ( RD // RL ) Gv ≡ vsig vsig vi (1/ g m ) + Rsig RD // RL = 1 / g m + Rsig S. C. Lin, EE National Chin-Yi University of Technology (5.88) 24 5.6.6 The CD Amplifier or Source Follower The Need for Voltage Buffers Rsig = 1 MΩ Rsig = 1MΩ vsig = 1V RL = 1 kΩ + 1 kΩ vo 1mV 1V − Ro = 100Ω Rsig = 1 MΩ 1V Avo = 1 vsig = 1 V + RL = 1 kΩ Rin very large vo 0.9V − S. C. Lin, EE National Chin-Yi University of Technology 25 D i Rsig Rsig G 0 + vsig + − + vi Rin − RL Ro + vo − vsig vi − vsig + i 1/ g m vi Rin = ∞ − S RL i 0 Rsig 1/ g m i RL ro + vo − Ro = 1/ g m + vo − S. C. Lin, EE National Chin-Yi University of Technology 26 Rin = ∞ vo RL Av ≡ = (5.89), vi RL + (1/ g m ) Ro = 1/ g m vo Avo ≡ vi 1 (5.90) RL =∞ (5.91) Overall Voltage Gain vo vi vo Gv ≡ = ⋅ = 1⋅ Av vsig vsig vi RL = ≈1 RL + (1/ g m ) (5.92) G v will be lower than unity,but close to unity. S. C. Lin, EE National Chin-Yi University of Technology 27 5.7 Biasing in MOS amplifier circuits iD = 1 W ⎫ µn Cox (vI − Vt ) 2 ⎪ 2 L ⎬ Biasing by Fixed VGS ⎪⎭ VG = VGS + I D RS Figure 5.51 The use of fixed bias (constant VGS) can result in a large variability in the value of ID. Devices 1 and 2 represent extremes among units of the same type. S. C. Lin, EE National Chin-Yi University of Technology 28 Figure 5.52 Biasing using a fixed voltage at the gate, VG, and a resistance in the source lead, RS: (a) basic arrangement; (b) reduced variability in ID; S. C. Lin, EE National Chin-Yi University of Technology 29 (c) practical implementation using a single supply; (d) coupling of a signal source to the gate using a capacitor CC1; (e) practical implementation using two supplies. S. C. Lin, EE National Chin-Yi University of Technology 30 Example 5.12 Design the circuit of Fig.5.53 to establish a I D = 0.5mA. The MOSFET is specified to have Vt = 1V and kn = 1mA/V 2 . For simplicity, assume λ = 0. Calculate the percentage change in value of I D obtained when the MOSFET is replaced with another unit having the same kn' W / L but Vt = 1.5V. Solution VDD − VD 15 − 10 = = 10kΩ (a ) RD = ID 0.5 VS 5 = = 10kΩ RS = I D 0.5 ▲ ▲ 1 ' 1 2 I D = kn (W / L)VOV = ⋅1⋅ VOV 2 N 2 2 0.5mA ⇒ VOV = 1V ▲ S. C. Lin, EE National Chin-Yi University of Technology 31 Thus. VGS = Vt + VOV = 2V VG = VS + VGS = 5V+2V = 7V we may select RG1 = 8MΩ, and RG2 = 7MΩ ▲ (b) If the NMOSFET is replaced with another having Vt = 1.5V 1 2 I D = ⋅1 ⋅ (VGS − Vt ) 2 VG = VGS + I D RS ⇒ VGS = 7 − 10 I D 2I D = ( 7 − 10 I D − 1.5 ) ⇒ I D = 0.455mA 2 ∆I D = 0.455 − 0.5 = −0.045mA −0.045mA ×100% = −9% which 0.5mA ▲ S. C. Lin, EE National Chin-Yi University of Technology 32 5.7.3 Biasing Using a Drain-to-Gate Feedback Resistor Here the large feedback resistance RG (Usually in the MΩ range) ⇒ I G = 0 We can written VGS = VDS = VDD − I D RD or VDD = VGS + I D RD Figure 5.54 Biasing the MOSFET using a large drainto-gate feedback resistance, RG. S. C. Lin, EE National Chin-Yi University of Technology 33 5.7.4 Biasing Using a Constant-Current Source. S. C. Lin, EE National Chin-Yi University of Technology 34 1 2 I D1 = ( µnCox )(W / L )1 ( vGS − Vt ) 2 VDD + VSS − VGS I D1 = I ref = R 1 2 I = I D2 = ( µnCox ) (W / L )2 ( vGS − Vt ) 2 1 ( µnCox ) (W / L )2 (vGS − Vt ) 2 I D2 I 2 = = I D1 I ref 1 ( µn Cox ) (W / L )1 (vGS − Vt ) 2 2 I = I ref (W / L )2 (W / L )1 S. C. Lin, EE National Chin-Yi University of Technology 35 5.8 Discrete-Circuit MOS Amplifier. 5.8.2 The Common-Source Amplifier S. C. Lin, EE National Chin-Yi University of Technology 36 S. C. Lin, EE National Chin-Yi University of Technology 37 S. C. Lin, EE National Chin-Yi University of Technology 38 Analysis of the circuit is straight ward and proceeds in step-by step manner, from the signal source to the amplifier load. ig = 0, Rin = RG vo = − g m vgs ( ro // RD // RL ) vo Av ≡ = − g m ( ro // RD // RL ) vi The overall voltage gain from the signal-source to the load will be RG Rin Gv = Av = − g m ( ro // RD // RL ) (5.101) Rin + Rsig RG + Rsig Rout = ro // RD S. C. Lin, EE National Chin-Yi University of Technology 39 5.8.3 The Common-Source Amplifier with a Source Resistance S. C. Lin, EE National Chin-Yi University of Technology 40 Small-signal equivalent circuit with ro neglected. ig = 0, Rin = RG vo g m ( RD // RL ) Av = = − vi 1 + g m Rs Avo = Av RL =∞ g m RD =− 1 + g m Rs RG g m ( RD // RL ) ⋅ Gv = − 1 + g m Rs RG + Rsig S. C. Lin, EE National Chin-Yi University of Technology 41 (a) A common-gate amplifier based on the circuit of Fig. 5.56 S. C. Lin, EE National Chin-Yi University of Technology 42 (b) A small-signal equivalent circuit of the amplifier in (a). S. C. Lin, EE National Chin-Yi University of Technology 43 (c) The common-gate amplifier fed with a current-signal input. S. C. Lin, EE National Chin-Yi University of Technology 44 5.8.5 The Common- Drain or Source-Follower Amplifier. S. C. Lin, EE National Chin-Yi University of Technology 45 Small-signal equivalent-circuit model. vo Av = vi = RL // ro 1 ( RL // ro ) + gm Avo = Av = Gv = , RL =∞ ro 1 ro + gm Ro = (1/ g m ) // ro RG RL // ro ⋅ RG + Rsig R // r + 1 ( L o) gm 1 which approaches unity for RG >> Rsig , ro >> and ro >> RL gm S. C. Lin, EE National Chin-Yi University of Technology 46 5.8.6 The Amplifier Frequency Response S. C. Lin, EE National Chin-Yi University of Technology 47 5.9 The Body Effect and other Topics 5.9.1 The role of the substrate-The body effect (5.107) Vt = Vto + γ ⎡⎣ 2φ f + vSB − 2φ f ⎤⎦ where Vto is the threshold voltage for vSB = 0 φ f is a physical parameter with typically 0.3V γ is a fabrication-process parameter 2qN A εs , typically γ = 0.4V 1/ 2 (5.108) given by γ = Cox S. C. Lin, EE National Chin-Yi University of Technology 48 Modeling the body effect The body effect occurs in a MOSFET when the source is not tied to the substrate. We consider the body effect { )} ( 2 1 'W iD = kn VGS − ⎡Vt0 + γ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ 2 L ∂iD ' W = kn gm ≡ VGS − ⎡Vt0 + γ 2φ f + VSB − 2φ f ⎤ ⎣ ⎦ ∂VGS L { g mb ∂iD ∂iD ≡ =− ∂VBS ∂VBS { )} ( vGS , vDS = constant )} ( 1 − 1 W = kn' VGS − ⎡Vt0 + γ 2φ f + VSB − 2φ f ⎤ × γ ( 2φ f + VSB ) 2 ⎣ ⎦ L 2 gm = gm ∂Vt γ γ = χ g m where χ ≡ = (5.111) ∂VSB 2 2φ f + VSB 2 2φ f + VSB S. C. Lin, EE National Chin-Yi University of Technology 49 Figure 5.62 Small-signal equivalent-circuit model of a MOSFET in which the source is not connected to the body. S. C. Lin, EE National Chin-Yi University of Technology 50 5.9.3 Temperature effects (1)T ↑ Vt ↓ ( −2mV / o C ) ⇒ iD ↑ (2)T ↑ k ' ↓ ⇒ iD ↓ (Dominant) 5.9.4 Breakdown and input protection (1)As the vDS ↑,a value is reached at which the PN junction between the drain region and substrate suffers avalanche breakdown. Usually occurs at voltages of 20V ↔ 150V (2)Punch-through in drain to source (3) When the vGS exceeds about 30V the oxide breakdown. The protection mechanism invariably makes use of clamping diodes. S. C. Lin, EE National Chin-Yi University of Technology 51 S. C. Lin, EE National Chin-Yi University of Technology 52