Dark Matter Annihilation
Transcription
Dark Matter Annihilation
Dark Matter Annihilation Marcel Zemp (UM) with Jürg Diemand (UCSC), Mike Kuhlen (IAS), Piero Madau (UCSC), Ben Moore (UZH), Doug Potter (UZH) & Joachim Stadel (UZH) Extreme Star Formation in Dwarf Galaxies Ann Arbor, 29. July 2009 Dark Matter Candidate z Prime Dark Matter candidate ⇒ WIMP (Weakly Interacting Massive Particle) z Interacts only via gravity and weak nuclear force ⇒ neutral z Motivated by WIMP miracle z Supersymmetry ⇒ LSP (Lightest Supersymmetric Particle) z If WIMPs are Majorana particles ⇒ colliding WIMPs self-annihilate Dark Matter Annihilation z Annihilation channels: - fermion-antifermion pairs (tree level) - gauge boson pairs (tree level) - Higgs bosons (tree level) - photons (loop level) z After decay and hadronisation: - high energy neutrinos − + - relativistic e , e & p, p̄ - gamma rays Gamma Rays 0 arXiv:0906.1822 π → γγ Internal Bremsstrahlung: Final State Radiation (FSR) Virtual Internal Bremsstrahlung (VIB) χχ → γγ χχ → γZ Annihilation Luminosity z Annihilation is a two-body process L≡ 2 ρ dV z For cusped profiles √ 3 2 3 L ∝ rs ρs ∝ Vmax cV z Luminosity is concentrated L(rs )/Ltot ∼ 90% r200b = 402 kpc 800 kpc Via Lactea II 2 ρ Total Annihilation Signal ApJ, 2008, 686, 262 Subhalo Annihilation Signal ApJ, 2008, 686, 262 Central Flux Corrections γ= ApJ, 2008, 686, 262 γ= 1.2 1.0 VLII VLI Via Lactea II Subhaloes z 40000 subhaloes within 400 kpc z 2000 subhaloes within 50 kpc z 20 subhaloes within 8 kpc z Subhaloes locally at 8 kpc that looked smooth in previous simulations z Subhaloes within subhaloes etc. ⇒ Subsubhaloes ⇒ Sub2haloes ⇒ Subnhaloes rtidal Sub2haloes Mtidal = 1.97 × 109 Mo Mtidal = 5.09 × 109 Mo Subnhalo Abundance r2 Nature, 2008, 454, 735 00 = 10 50 0 40 2 kp kp c kp c c −3 N (> Vmax ) ∝ Vmax Subhalo Spatial Distribution n(r) ∝ ρ(r)M(r) −1 Vmax > 3 km s Nature, 2008, 454, 735 Subhalo Concentrations Mass dependence from Bullock MNRAS, 2001, 321, 559 cV ≡ ρ̄(rVmax )/ρcrit,0 ∝ (Vmax /rVmax )2 Nature, 2008, 454, 735 Boost Factor z Small subhaloes contribute more than large ones z Total resolved subhalo contribution is 97% of host halo in Via Lactea II ⇒ boost factor B = 1.97 z Extrapolation to smaller masses can lead to B = O(10) z Tidal debris ⇒ B = O(1) Corrected Total Signal ApJ, 2008, 686, 262 Diffuse Background z Isotropic extragalactic component ⇒ measured by EGRET z Galactic component ⇒ modelled with GALPROP z Undetectable subhaloes and smooth host halo ⇒ modelled from simulation z Detector sensibility z Calculate Signal-to-Noise S Detectable Subhaloes < σv >= 3 × 10−26 cm3 s−1 Mχ = 100 GeV/c2 ApJ, 2008, 686, 262 S>5 Signal-to-Noise Results z a few subhaloes should be detectable z 95 % are extended sources ⇒ discrimination against pointlike sources like pulsars z Distribution on sky is consistent with isotropy z High S ⇒ massive subhaloes with median Vmax = 24 km s-1 z D ~ 10 – 100 kpc
Similar documents
Measurements of jet rates with the anti
Full LEP data sample with 12 energies: s = 91.2 − 207 GeV. MC samples with simulated detector level: e + e − → γ ∗ /Z 0 → hadrons KK2f 3 signal samples hadronised with Pythia6 and Herwig6. e + e − ...
More information