Constraining Dark Matter Annihilation to Gamma Rays and Charged
Transcription
Constraining Dark Matter Annihilation to Gamma Rays and Charged
Constraining Dark Matter Annihilation to Gamma Rays and Charged Particles Thomas Jacques Based on work with N. Bell, J. Beacom, G. Mack, H. Yuksel 2009-07, Seattle Introduction Existence √ Rotation Curves, Gravitational Lensing, Bullet Cluster, Cosmic Microwave Background, Big Bang Nucleosynthesis, Large Scale Structure, etc. Thomas Jacques - INT 09-2A 2009.06 Indirect Detection Properties? Plenty of candidates - Which is DM? Indirect detection often focuses on choosing a model, and comparing predicted flux to observed flux Great for testing a model, not so great for finding the nature of DM Thomas Jacques - INT 09-2A 2009.06 Indirect Detection Properties? Plenty of candidates - Which is DM? Indirect detection often focuses on choosing a model, and comparing predicted flux to observed flux Great for testing a model, not so great for finding the nature of DM So, what can we deduce about DM, in a model independent way, from it’s annihilation flux? Great progress in recent years; A number of bounds on annihilation cross section/decay width We expand and strengthen these limits, focusing on two final states, γγ and e+e-, and determining conservative upper limits on the annihilation cross section 〈σAv〉, so we can be confident that these are robust upper limits Thomas Jacques - INT 09-2A 2009.06 Previous Bounds Thomas Jacques - INT 09-2A 2009.06 γγ χ χ γ χ γγ γ Photon line ‘Smoking Gun’ χ Fairly Universal, even if small branching Don’t know branching ratio: Gives an upper limit for this channel only from Mack, Jacques, Beacom, Bell, Yuksel; Phys.Rev.D78:063542 (2008) Thomas Jacques - INT 09-2A 2009.06 Annihilation Flux Annihilation flux from a nearby source: dΦγ 1 = !σA v"Br(γγ) dE 2 Thomas Jacques - INT 09-2A ! 0 R 2 ρ(s) dNγ d% 4πm2χ dE 2009.06 Annihilation Flux Annihilation flux from a nearby source: dΦγ 1 = !σA v"Br(γγ) dE 2 ! 0 R 2 ρ(s) dNγ d% 4πm2χ dE Flux in some direction depends on: Thomas Jacques - INT 09-2A 2009.06 Annihilation Flux Annihilation flux from a nearby source: dΦγ 1 = !σA v"Br(γγ) dE 2 ! 0 R 2 ρ(s) dNγ d% 4πm2χ dE Flux in some direction depends on: Cross section, Thomas Jacques - INT 09-2A 2009.06 Annihilation Flux Annihilation flux from a nearby source: dΦγ 1 = !σA v"Br(γγ) dE 2 ! 0 R 2 ρ(s) dNγ d% 4πm2χ dE Flux in some direction depends on: Cross section, Integral along the line of sight of the DM density squared, Thomas Jacques - INT 09-2A 2009.06 Annihilation Flux Annihilation flux from a nearby source: dΦγ 1 = !σA v"Br(γγ) dE 2 ! 0 R 2 ρ(s) dNγ d% 4πm2χ dE Flux in some direction depends on: Cross section, Integral along the line of sight of the DM density squared, The γ-ray spectrum per annihilation (Dirac delta) Thomas Jacques - INT 09-2A 2009.06 Annihilation Flux Annihilation flux from a nearby source: !σA v"γγJ∆Ω 1 dNγ dΦγ = dE 2 J0 4πm2χ dE Thomas Jacques - INT 09-2A 2009.06 Density profiles Minimize uncertainty by looking at large angular regions Focus on conservative Kravtsov profile, but show results for other profiles NFW and Einasto profiles most widely used in literature Thomas Jacques - INT 09-2A 1 30 2009.06 Observation Regions Galactic Center Our main flux source; lots of data M31 (Andromeda) Relatively weak upper limits on 〈σAv〉 Analysis very similar to GC case Cosmic Annihilation Diffuse photon flux from extragalactic DM annihilation Analysis includes integral over redshift, photon attenuation, DM clumping factor Thomas Jacques - INT 09-2A 2009.06 Data Use data from INTEGRAL, COMPTEL, EGRET, HEGRA, CELESTE, HESS, SMM Cover broad range of energies: ~10-5 to ~104 GeV Thomas Jacques - INT 09-2A 2009.06 Results -20 10 1 31 -22 M 10 A GR CE LE ST E HE Results more general than they appear: We integrate the signal over a large energy bin, so results are valid for an annihilation spectrum as wide as our analysis bin (0.4 in log10 E) EG RE T M 31 10 SS HE Very conservative analysis E IDG R GC -26 10 10 UND RO TON KG BAC HO P USE -28 F DIF RO MW CG -30 At worst, our limit would be increased by a factor of several for a broad annihilation spectrum (except for INTEGRAL/HEGRA) RA L 10 IN TE G 3 -1 < "Av >## [cm s ] -24 M3 -32 10 -34 10 -5 10 10 -3 -1 10 10 m! [GeV] Thomas Jacques - INT 09-2A 1 10 3 10 5 2009.06 Results -16 10 -18 ity 10 r ita Un T K K < "Av >total [cm s ] 10 d 3 -1 un Bo Using Br(γγ) = 10-4, find a limit on the total cross section -20 Neutrinos Gamma Rays -4 Br($$!=1 Br(##!=10 -22 10 -24 10 -26 Natural Scale 10 -28 10 -30 10 Thomas Jacques - INT 09-2A 2009.06 -5 10 10 -3 -1 10 10 m! [GeV] 1 10 3 10 5 Positron Excess PAMELA Positron excess Nature 458, 607-609 Thomas Jacques - INT 09-2A Fermi e+e- excess Phys. Rev. Lett. 102, 181101 (2009) 2009.06 Positron Excess Thomas Jacques - INT 09-2A from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008) 2009.06 Positron Excess Nearby Pulsars? Dark Matter Annihilation? No antiproton excess Large annihilation cross section Thomas Jacques - INT 09-2A from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008) 2009.06 Positron Excess Nearby Pulsars? Dark Matter Annihilation? No antiproton excess Large annihilation cross section Thomas Jacques - INT 09-2A Want to constrain annihilation to e+eLook for associated gamma-ray emission from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008) 2009.06 Positron Excess Nearby Pulsars? Dark Matter Annihilation? No antiproton excess Large annihilation cross section Internal Bremsstrahlung Want to constrain annihilation to e+eLook for associated gamma-ray emission χ e− χ e+ No dependence on Magnetic field, ISRF, Diffusion Hard gamma rays near the endpoint, and background decreases with energy Thomas Jacques - INT 09-2A from N. Bell & T. Jacques; Phys.Rev.D79:043507 (2008) 2009.06 Internal Brem Spectrum Similar to analysis for gamma-gamma case -1 Different spectrum !σA v" J∆Ω 1 dNγ dΦγ = dE 2 J0 4πm2χ dE 10 s=4mχ2 s’=4mχ(mχ-E) ! α dσIB ln = σtot × dE Eπ " ! s m2e # 2 1 dσIB dNγ = dE σtot dEγ E dNγ /dE [GeV annihilation ] 100 −1 1 $! 100 E [GeV] 1000 " ! #2 $ s 1+ s Beacom, Bell, Bertone, Phys.Rev.Lett.94:171301 (2005) Thomas Jacques - INT 09-2A 2009.06 -16 10 Un ita -18 d 3 -1 T KK un Br(ii ) < σAv >total [cm s ] Bo Constraints y rit 10 -20 10 -22 + - 10 τ τ νν + - -24 µ µ 10 -26 Natural Scale 10 + - e e -28 10 γγ -30 10 -20 E ST LE CE .S H.E .S. -22 10 -2 -1 0 1 2 3 4 10 10 10 10 10 10 mχ [GeV] -23 -24 10 10 -3 10 10 10 ET 10 -21 EG 3 -1 <σAv>e+e- [cm s ] 10 10 -32 10 R 10 -25 -26 10 -27 10 L TE P M Natural Scale CO -28 10 -3 10 -2 10 -1 10 0 1 10 10 mχ [GeV] 2 10 3 10 4 10 5 Thomas Jacques - INT 09-2A 2009.06 5 Helicity Suppression S-wave annihilation of Majorana particles to fermion pairs is often suppressed by a factor of mf2 IB emission of hard gamma rays from the propagator can lift this suppression, making Br(f f γ) significantly larger than Br(f f) χ e− χ γ γ χ e+ e− χ e+ This would improve our limits by a significant factor eg Bergstrom, Phys.Lett.B 225, 372 (1989) Bringmann, Bergstrom, Edsjo, JHEP 0801, 049 (2008) Thomas Jacques - INT 09-2A 2009.06 Comparison Cirelli, Kadastik, Raidal & Strumia arXiv:0809.2409 Thomas Jacques - INT 09-2A 2009.06 Summary We have placed model independent constraints on the Dark Matter annihilation cross section to various final states Examined γγ, e+e-, µ+µ-, τ+τγγ constraints valid for moderately broad annihilation spectra Extremely conservative analysis Thomas Jacques - INT 09-2A 2009.06