DLP Projector and RPTV

Transcription

DLP Projector and RPTV
OPT-ME-EE-TH
DLP Projector and RPTV
Introduction of Projector Design
BJ Wang
5/22/2013
Optical
Engine
Projector power
Ballast
Power
&
Ballast
Module
Lamp Power
DC to DC
12V , 5V , 3.3V
Power Supply
PFC
AC IN
Main
board
Module
Fan
Module
EMI Filter
Lamp
Module
LED DLP Projector System Layout
Projection Lens
Reflect G spectrum,
Transmit B spectrum,
Reject tail of B spectrum
Filter
Reflect R spectrum,
Transmit B and G spectrum,
Reject tail of G spectrum
Filter
B
LED Array
Optical
Integator
DMD
Relay Lens Group
Lens
G
LED Array
R
LED Array
1
Osc
SDRAM
RDRAM
DAD1000
Audio
Amp
A
B
Fields of
colored light
4,000
3471
3,000
2464
1837
2,000
1398
1,000
0
Filter
Illumination
Optics
B
LED
2001
2002
2003
Consumer
Included in
G LED
R LED
DLPTM
5717
Fan #1
4448
Fan
Drivers
2004
2005
Professional
1,062
Filter
5.0V
3.3V
1.5V
R LED
G LED
B LED
887
Power
Monitor
Voltage
Reg
and
LED
Drivers
5078
5,000
3092
EEPROM
Control Data
A Texas Instruments Technology
630
USB
Temp
Sense
2264
S-Video
16
6,000
379
DDR
DMD
IR
6604
1684
DDP2000
TVP5146
Video
Decoder
7604
7,000
24
200
16
6542
Control
DVI
Composite
Video
(Source: PMA)
8,000
Data
Valid
AD9882
Triple ADC
+ DVI
Front Projection Market Forecast
Optional
153
Component
HDTV,STV
Sequence
OEM ARM
Software
TI ARM
Software
PLD
1358
VGA
Graphics
DM270
DSP
40
SDcard or
Flash Card
FLASH
SDRAM
Units in '000s Worldwide
Flash
2006
2007
TOTAL
Component Set along with DMD
New Circuits (only for LED Projector)
DLP Projector Layout vs LCD Projector Layout
Three Products
Existing Color Management Solutions
Reflective Liquid Crystal
On Silicon (rLCOS )
Digital Light Processing
(DLPTM )
Transmissive Liquid
Crystal (tLCD’s)
Polarizing Beam
Splitters (PBS)
ColorWheelTM
DLP
LCD
ColorCubeTM
Acer Projector
Lights up Eyes. Turns on Smiles.
Acer Confidential
LCD projector 新輕薄光學引擎
LCD Optical Engine
燈泡變小
Folding
Mirror
Dichroic
Mirror 2
Dichroic
Mirror 1
LCDs
鏡投變小
EMP-7500
4.2 kg
Lens
Array
PBS
Light
(Polarized
Source
Beam Splitter)
X-cube
EMP-50
加裝一片聚光鏡
3.1 kg
讓光線途徑縮短 菱鏡變小
Folding
Mirror
Folding
Mirror
Projection
Lens
2
Acer Confidential
How to measure the temperature of optical parts
1 . Measurement parts
? Polarizer (IN , PRE, OUT)
? Panel (LCD)
Thermo-couple device:
K-type
ASAHI PYRO INDUSTRIAL CO.,LTD
K-0.1-DSC-DUPLEX-1500-J
? P-S converter (PBS)
? (RGB)
? (RGB)
?
14
050323
050323
2 . Measurement method
? Polarizer - IN & PRE
Thermo couples is stuck on the polarizer
? ’Polarizer - OUT
K-type
ASAHI PYRO INDUSTRIAL CO.,LTD
K-0.1-DSC-DUPLEX-1500-J
Tape
Polarizer
Apply Thermo-couple with Scotch tape on
OUT- Polarizer
050323
050323
? P-S converter (PBS)
? Panel (LCD)
The shade of aluminum tape
P-S converter(PBS)
Thermo couples
Integrator lens-B
Integrator lens-A
Entrance side
Exit side
Incident light
Apply Thermo-couple with Scotch tape on
exit side
rotator
Aluminum tape to make shadow on
measurement points of rotator
3
050323
050323
3 . Measuring temperature
? ’P-S converter (PBS)
Measure stable temperature
80
T (? )
70
60
50
40
30
20
10
0
0
10
20
30
40
50
60
Apply Thermo-couple with Scotch tape on
rotator in PBS
70
h(min)
Measuring by KEYENCE NR-1000
050323
DLP Projector Optical Configurations
4 . Measurement result of 0.7” XGA with MLA (D4)
Brightness
1959 (lm)
substrate
Life TEST 2000h
at 25C ambient
R
51.7
Soda
OK
G
76.6
Crystal
OK
B
70.3
Sapphire
OK
R
45.7
OK
G
59.4
OK
B
59.0
G
75.8
Sapphire
OK
B
76.2
Sapphire
OK
R
77.6
Crystal
OK
G
67.1
on X-cube
OK
B
68.4
on X-cube
OK
T
Polarizer-IN
LCD
Pre-polarizer
Polarizer-OUT
(℃)
OK
69.2
PBS (Max)
DLP™ One Chip
DLP™ Three Chip
u Compact, Lightweight
u Auto Convergence
u High Image
u Lower Cost
u High Efficiency
Quality
u Higher Cost
OK
System Electronics - 1 ChipNormalizes
CRT Black
“Front End”
25Hz to 60Hz
“Back End”
Scaling/
FRC
Video
Enhance
Graphics
Graphics Path
A/D
Artifact
control
RGBY
CSC
Data
Reformatting
Frame
Buffer
Video
Video Path
Decode/
Digitize
Level
Effects
De-De
Gamma
60Hz
Scaling
60Hz to 85Hz
60Hz to 85Hz
uP
Timing/
Control
Prom
4
l
System Electronics - 3 Chip
“Front End”
25Hz to 60Hz
DeDe
DeDe
DeDe
-Gamma
Gamma
Gamma
60Hz
Scaling/
FRC
Decode/
Digitize
Video
Enhance
Artifact
Artifact
Artifact
control
control
control
RGBY
CSC
RGBY
CSC
CSC
Graphics
Graphics Path
“Back End”
l
l
Data
Data
Data
Reformatting
Reformatting
Reformatting
Frame
Frame
Frame
Buffer
Buffer
Buffer
Video
Video Path
One-Chip Systems – Front Projection (Conference
Room, Mobile, & Home Entertainment)
l
Core Technology comparison, DLP™ vs. LCD
“Products in marketplace” comparison
One-Chip Systems – Rear Projection Television
l
l
Core Technology comparison, DLP™ vs. CRT
“Products in marketplace” comparison
Scaling
A/D
60Hz to 85Hz
l
Timing/
Control
60Hz to 85Hz
uP
Three-Chip Systems – Front Projection (Large
Venue & Digital Cinema)
Core Technology comparison, DLP™ vs. LCD
“Products in marketplace” comparison
l Core Technology comparison, DLP™ vs. Film
l
l
Prom
Technology Advances
Polysilicon LCD
LCOS
CRT
Plasma
DDP1000
BP Integration
DLP™
DLP
™
Brightness
150mm
DDP3020
in 2005
Pe
rfo
rm
anc
e
DDP1010
HE Integration
DDP1110
Performance
Shr ink
Weight/Volume
.9 XGA
17um Pixel
Graphics
Waf
er C
onve
rsio
DDP2000
Integration cost reduction
Pe
rfo
rm
anc
e
.7 XGA
14um XB Pixel
14um pixel
n
Video Performance
Yield,
Performance
Reliability
200mm
Type A
Package
Pac
kag
Volume Production/Cost
ing
Assembly
Subcontractor
Startup
Brand Equity
Cost Reduced
Type A Package
1999
2000
14 ICs Total
FLASH
28 ICs Total
Image Input
Connectors
VGA
Graphics
Component
HDTV,STV
DVI
Composite
Video
S-Video
423
Discretes
Sequence
OEM ARM
Software
TI ARM
Software
Intf
VS
HS
TMDS
Receiver
TFP501
SDRAM
DRAM
IR
DDP2000
or
DDP3020
EEPROM
Lamp
Motor
Driver
TM
Included in DLP
DRAM
VS
HS
Control
VS
HS
48
165MHz
BT656
400MHz
LVDS
Aux Video
FEP1000
1.8V
1.5V
Fields of
colored light
Light & Temp
Sense
Signal
I2C
EEPROM
Stereo
Analog
Audio
TPA2008D2
TMP100
Temp Sense
USB
3.3V2
Mono
PWRGOOD
Audio
Amp
Fields of
colored light
Fan #1
12V
Stereo 2
Illumination
Optics
Component Set along with DMD
System
Config
DAC
Audio
2
2 X LVDS
DMD
A Texas Instruments Technology
GPIO
DVI,HDMI
16 pair
32
IR IC
DDP4000
Light Sense
Digital Audio
3.3V1
2.5V
DAD1000
TI ARM
Software
A Texas Instruments Technology
Reg
Reg
Reg
Reg
Reg
Power
Monitor
Integrator Rod
Field-Sequential
Color Wheel
Composite
Video
DDR
DMD
2003
DDC
PROMs
S-Video
Temp
Sense
Position
Sensor
EEPROM
2002
Osc
Sequence
OEM ARM
Software
Component
HDTV,STV
Lampsync
Lampsyncz
10/16 Bit
Control Data
Image Input
Connectors
VGA
Graphics
Control
Video
Decoder
Holdoff
FET
EEPROM
DAD1000
FLASH
350
Discretes
Fan #2
24/48 Bit
Intf
ADC
Fan #1
Fan
Drivers
Wireless
DSP
EEPROM
USB
Audio
Amp
Optional
EEPROM
EEPROM
Triple
ADC
w/ PLL
Osc
2001
Fan #2
DAD1100
6 Regulated DC Voltages
Lampsync, Lampsyncz
RGB LED Drive
Motor Drive
Lamp
Integrator Rod
GPIO
Illumination
Optics
Candidates for integration into the DAD1100 or DAD_ADC
Candidates for integration into the DDP4000
Field-Sequential
Color Wheel
Included in DLPTM Component Set along with DMD
TI Chips (but not from DLPTM )
5
Main Board Black Diagram
DMD Board Black Diagram
26V
AV Box
PC_R
GUI
WithAV
Power
ROMco
de
Power
5V, 3.3V, 12V
YUV422
Key signal
Power
5V, 3.3V, 12V
74244
Buffer
latch
Key
signal
IR signal
Key
signal
Abnormal signal
reset
clk
Comp
CW index
Clock
Generator
CW driver CLK
Driver CLK
Driver CLK
Clock
Data
DPF2A
Blaze ASIC
Power on
LED signal
RGB 888 Data
Format
Conversion
Image
Enhancement
Artifact
Mitigation
DMD
Formating
64 Bit color data
Dport
Clock
Speaker
Hsync
Hsync
Dataenable
Dataenable
Clock Generation & Distribution
Hsync
Hsync
Value of DMD temperature prediction
tool
Color
Wheel
Using the DMD temperature prediction
tool
u Determine Illumination Distribution (Optical Engineer)
;
find percentage of illumination light on:
w active array
w array border
w window aperture
u Determine Screen Lumens and Lumen/Watt value of projected light
;
measure or choose expected ANSI screen lumens
;
measure projector output spectrum and determine lumen/watt value
using:
P(λ)
V(λ)
740
695
Wavelength
650
800
700
600
500
400
300
200
100
0
605
250
305
360
415
470
525
580
635
690
745
800
u DMD heatsinking requirements can be determined using the tool.
1.40E-02
1.20E-02
1.00E-02
8.00E-03
6.00E-03
4.00E-03
2.00E-03
0.00E+00
560
Watts/CM^2
u Total DMD thermal load (light + electrical) can be estimated with the
tool.
515
u The tool allows trade -offs to be made in the optical and thermal
design to meet DMD thermal requirements.
CW
Power
MicroController
Configuration &
CW Control
Phone in
u DMD temperature prediction tool allows a first pass estimate of
critical DMD temperatures before hardware is available.
CW sensor
Motor
Driver
Control
Signal
470
Dataenable
Syncval
Resetz
Poweron
Vsync
Hsync
Lampsync
Dataenable
Syncval
Resetz
Poweron
Vsync
Hsync
TDA7267
Preaudio
Control
425
RGB
888
DMD Board
TDA7433
Clkin
Photopic Lumens/Watt
Conversion
I2C
I2C
RGB
888
Power
Lamplit
CWindex
Power
Lamplit
CWindex
Loadz
Load16
system
reset
380
32 to 16
mux
Video
FIFO
text FIFO
I2C
DMDMode0
DMDCLK(58Mhz)
Data
Address
Address
Clkin
arbiter
Vertical scaling
Horizontal fine (phase)scaling
Line FIFO Buffer
Clock
generation
DMDMode1
Reset
Control
2500911-1
TI display controller
ASIC
Lampen
SDRAM
RGB888
PW164
Digital Signal processor
SAC_BUS
Phaseed reset
PWM
Sequencer
Flash
YUV422
General
purpose vibdata slicer
Fir-prefilter prescaler and scaler
Chroma &
Luma
Analog Dual ADC
Digital Decoder with adaptive comb filter
Vsync
Lamplit
PBData1
Composit
Power on
LED signal
Scaler
Syncval
Vsync
Lamplit
PBDATA0
RCA
(Composite)
S-Video
(Chroma & luma)
Abnormal signal
Micro
processor
Poweron
Syncval
Clock
OSD
processor
Poweron
Contr
ol
Frame Buffer Memory
MBRST0~14
Lset
resetz
I2C_SDA
Resetz
Main Board
24C16
DDC
PC_SDA
Resetz
Configure
PC_B
Adpoweron
I2C_SCL
PC_SCL
29LV400T
Firmwave
Flash
Data
Translation Board
filter
Control
Address
Vport
Vport
PC_G
Gport
Gport
PC_5V
Vsync
power
WithAV
I2C
YUV422
DClock
Hsout
I2C
Sync
A/D C
Clock
Generator
7.5V
SR16VCC
Boot
B_odd_even
SR16C
Phase Preset
Driver
-26V
DMD Chip
PC_Hsync
Voltage
Generation
5V
G_odd_even
A/D C
Clamp
YUV422
A/D C
Clamp
Clamp
D-Sub
R_odd_even
Power
Lampen
PC_Gin
PC_Bin
Sync
AD9884
ADC/AMP/PLL
PC_Rin
Power
Wavelength(nm)
P(λ) V(λ) d λ
Lumens/Watt =
10/11/00
SPO
10/11/00
CREATING DRAMATIC V ISUAL EXPERIENCES T HROUGH DIGITAL SOLUTIONS
SPO
P(λ) d λ
=
220 to 260 typical
CREATING DRAMATIC V ISUAL EXPERIENCES T HROUGH DIGITAL SOLUTIONS
Using the DMD temperature prediction
tool
Using the DMD temperature prediction
tool
u Measure or estimate case -to-ambient DMD thermal resistance.
;
Case -to-ambient thermal resistance will be system dependent.
u Determine projection lens efficiency
;
Measurements can be made with mock-up projectors or estimated based
on measurements from last generation projectors.
; Case -to-ambient thermal resistance is defined as:
u Enter these values in the tool to obtain the following output:
;
Rcase−to −ambient
(T
=
ceramic
− Troom ambient)
QDMD
;
;
Array and Getter temperature prediction
Maximum ∆ T getter-to -array
Load on array, border, and window aperture
where: QDMD = Total DMDload
(electrical+ light)
10/11/00
SPO
CREATING DRAMATIC V ISUAL EXPERIENCES T HROUGH DIGITAL SOLUTIONS
10/11/00
SPO
CREATING DRAMATIC V ISUAL EXPERIENCES T HROUGH DIGITAL SOLUTIONS
6
Thermal Resistance VS. Surface Area
The specification for Fischer Elektronik GmbH & CO. KG
Application :Heat sinks for PGA ’s and Transistor
K/W
Material : Aluminum Alloy
7
6
5
4
3
2
1
0
0
10
20
Transfer to
Thermal Resistance
vs. Base Area
MPC
AL
Area
TR
40
40
3.3
19
Thermal Resistance (W/K)
24
30
40
50
60
70
Area
23
22
21
From this graph we find ABC’MPC + copper, its base area is only 60 cm2 ,
thermal resistance is 2.8 W/K. But heat sinks products of Fischer Elektronik,
the thermal resistance is no matter howall higher than ABC’s MPC. In equal
base area, MPC’s TR is better than Fischer 2~8 times. Because MPC has
20
19
18
17
5
10
15
20
25
30
35
40
45
much surface area than any materials.
Base Area (cm2)
Thermal Resistance Test
Model
mobile
mobile pump
pump
新製品
概要
Rotor與羽根車結合 、為 DC ? 動 之超 小 型、
長 壽命 之循 環pump
特長
1. ?
?
2. ? ? ? ?
? 採用DC brush less MOTOR
? 以水中滑 動軸承結 構達成軸承 之長壽命 化
? 以seal less結構達成防止水漏 ?
pump 之基 本 構 成
??????
? ? ? ?
? outer rotor? ? ? ? ? ? ? ? ? ?
羽根車
carbon軸承
給水
3. ? ? ? ? ?
? DCMOTOR及高? 率羽根車
吐水
4. 低 振 動、 低雜 音
用途
Thermal resistance = ( junction – Ambient ) / input power
? ? ? ?
制御基板
Outer rotor magnet
? 液體 循環 (冷卻用, 保?
用)
? 媒介 之搬 送
etc.
Fan Mylar Assembly
Mylar assembly NG.
The air flow through ballast is
no good.
Mylar assembly OK
7
Light pipe/rod baffle
Baffle DMD
Field Lens
C-Ring
LP & ILL Lens
Module
Boss for CW
Module Mounting
Lamp
Module
Screw for fixing LP
& ILL Lens Module
DMD Datum Plan
Chip BD
Hook for Lamp
Module Mounting
Mesh
DMD HSG – Top View
Tube Exit
Slide 1
FM
FM HLD – Clip
only
Slide 2
Slide 3
8
DMD Baffle (about
0.2 mm in thickness)
Mounting with
THR Tape
Heat Sink held by Clip
Clip Lamp
Top Box Lamp
LP & ILL Lens Module – Front View
Btm Box Lamp
HLD Lamp
(AL Alloy)
Clip Front Glass
Design Guidelines for Noise
•
•
ISO 7779
1. Choose the thermal design point appropriately, taking proper account
of thermal and acoustical effects. Small changes in electronic case
temperature requirements can result in dramatic changes in Air-moving devices
AMD noise emission levels. A system designed to withstand environmental
extremes (room temperature and air density) can usually benefit considerably
from an adaptive cooling design in which AMD rotational speed is controlled by
an on-board controller and thermal sensor. In many cases, an adaptivelycooled system can provide better thermal protection under extreme conditions
while having reduced noise emissions under more "typical" conditions.
2. Design the system to be cooled to have the lowest possible static
pressure rise for the required air flow. A low static pressure rise indicates
that the AMD can operate at a low tip speed, resulting in a low noise level. The
static pressure rise across a system is caused by several sources of resistance,
such as the devices being ventilated and finger guards which may be required
for safety. If unnecessary sources of resistance can be eliminated, the air flow
will increase. It should then be possible to reduce the tip speed of the device to
obtain the desired air flow at a lower noise level.
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
9
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
•
•
•
•
3. Select the operating point for a centrifugal blower so that it operates
near its point of maximum static efficiency, considering the required air
flow rate and the pressure drop through the system. Operation away from
the point of maximum static efficiency should be in the direction of lower static
pressure rise and higher air flow.
4. Select a point of operation of a fan that is away from the best efficiency
point in the direction of higher air flow and lower static pressure rise.
Small fans are often unstable when operated at air flow rates less than the air
flow rate at the best efficiency point. They are often very noisy under conditions
of high static pressure rise and low air flow rate.
5. Select a fan or blower with a low sound power level and avoid AMDs that
have high level peaks in their one third-octave -band sound power spectrum.
Such peaks usually indicate the presence of discrete frequency tones in the
spectrum. Such tones can be difficult to eliminate and generally are a
source of annoyance.
6. Select a fan or blower having the lowest speed and largest diameter
consistent with the other requirements.
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
•
•
7. Minimize system noise levels by designing the system so that obstructions
are not present within one fan diameter of the inlet to axial -flow fans [6], so that
the airflow into the inlet of axial-flow fans is as spatially uniform as possible.
Avoid the direct attachment of the AMD to lightweight sheet metal parts.
8. Mount axial-flow fans so that the air-flow direction is towards the equipment
being cooled. Any proper span and shape to avoid turbulence. Pulling air over
equipment being cooled usually causes undesirable turbulence around the fan
inlet when gap is not proper and produces an increase in noise l evel especially.
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
Thermal RD Engineer
Nu* = Const* Re
Nu = 0.038 Re0.8 Pr 1/3 ; Pr=0.71
Nu* = Nu [(T_smax - T_inf) /(T_s - T_inf ) ]
---------------------------------------------- simple rules obtained
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
10
Some thermal design examples for vehicle
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
• 1. 負責該計劃的RD由OPT, O/E, ME, EE, Power工
程師手中開始所有元件規格和圖面版本了解(其中
包括:Fans, DMD, C/W, Lamp, ballast, H/S,
Thermal break, sleeve and fin, f/g, lamp holder,
lamp door and … etc. Almost every parts.)
• 2. 設變, 預算, 數量, 料況交期, 實驗規劃… (job list:
where, when, who, whom, next, milestone, plan B, … )
• 3. 依照計劃時程(project schedule)確保按時完成
LP0/LP1/LP2, 如有困難儘早highlight. 請求協助.
• 4. LP2 pass後,EPR的元件到庫之前,負責該計劃
的Thermal RD工程師應該主動聯絡IQC/Buyer,確
認SA的訂定是否妥當,有無遺漏或困難.主動聯絡
QRE和PE了解生產和測試最新情況.追蹤有相關
GECM導入情況.
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
Other important points:
• *參與 Project Schedule之排定及跟催。
• *跟催 other function members之工作進度檢查及
工作協調 , 以確保其工作品質 , 使其能如期完成
所交付之工作目標 。
• * 每週提出 Project Status 報告,並參加每週之
Project 檢討會。
• * 定期舉行 Project Reviewing Meeting, 以確保
Schedule之進度及產品品質 ,並綜合提出檢討報
告。文件之 Review 與跟催及處理 。
• 安排 CSD 等售後服務之技術訓練轉移及問題處
理
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
11
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
採取這種方式進行產品研發,比較有彈性,但並非
毫無紀律。公司會訂定績效目標,並舉行管理檢討
會議,正如傳統流程一樣。差別在於他們在達到既
定標準時,才會展開決策,而不是只看已經過多少
時間。例如,一項產品概念可能要在某種技術功能
業經驗證,而且該產品成本落在某特定範圍內時,
才會定案。計畫負責人可事先預估實現目標所需時
間,但是由於團隊努力想盡快達到目標,因此可以
免除不成熟的決策所導致的等待時間及資訊落差。
結果決策品質提高,產品研發程序更有效率,而且
產品更新、更能滿足市場需求。
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
Design Review
• 包括入口開口率及是否開在正確位置
• 外觀形狀會影響最多
• lamp box上方加鐵片防止上蓋溫度過熱及
lamp box融化,lamp和holder/door的gap
• 風扇轉速盡量不要相同,避免造成共振.
• Color Wheel 下座採用橡膠材質作阻尼減震
• DMD 散熱的know how在於控制風流和
Heatsink有效散熱面積
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
12
Design Concept
Status
Power, Ballast, EE
OK
Lamp
OK
Reliability
DMD
OK
Optical component
(C/W, L/P)
OK
Material component
OK
Noise
OK
V-T curve
OK
Altitude
OK
V-T curve for Pb6100
5000
4500
Fans (rpm)
The total power consumptions for the
system are made up of lamp, power
module (i.e. PFC, ballast and DC/DC) and
main-board. And the power consumption
is approximately 255W (i.e. lamp=200W,
PFC≒20W, ballast≒20W, DC/DC≒5W
and main-board≒10W). Required CFM is
approximately 13.6 CFM.
Category
Design Confirmation:
4000
3500
數列1
數列2
3000
2500
2000
36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9
T_s1_dmd (degC)
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
Measured heatsink performance
1.Modification of V-T curve to include the filter:
(assumes 0.7 XGA LVDS type A package)
air cooled small black pinfin heatsink
large black 3-chip heatsink
with Sanyo Denki Fan
(rated for 12V, operated at 8V)
fan voltage =
8V
fan blockage plate 5 mm above fan
ATT copper cooler CM25
dimensions: 38 x 38 x 10 mm
volume =
14 cm^3
weight =
15 grams
R_htsk =
3.28 C/W
Q_parasitic =
2.0 W
dimensions:
volume =
weight =
R_htsk =
Q_parasitic =
dimensions:
volume =
weight =
R_htsk =
Q_parasitic =
1.1 After adding the filter, fans rpm should start at initial rpm when ambient
temperature is less than 25degC to secure all components under thermal spec.
1.2 After adding the filter and at 35degC, fans rpm should increase to certain rpm
to secure all thermal conditions.
1.3 After the filter is dirty enough, the clues from certain relationship between
sensor temperatures can shut down the system and warn user to change filter.
1.4 The system will be shut down by hot ambient temperature (T_amb>40degC,
judged from temperature sensor at inlet i.e. if T_s_blower > 57degC) or dirty filter
(i.e. elseif T_s_blower<57degC and (T_s_lamp+T_s_dmd-T_s_blower)>120degC.).
1.5 Verify the new V-T curve at different temperature and the shutdown mechanism
with as many systems as possible.
Lumens
Max
Tarray
(C)
Max
Tgetter
(C)
0
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
48.1
53.7
56.5
59.3
62.1
64.9
67.7
70.5
73.3
76.1
78.9
81.7
47.8
53.6
56.5
59.4
62.3
65.2
68.1
71.0
74.0
76.9
79.8
82.7
(rated for 12V, operated at 8V)
fan voltage = 8V
fan blockage plate 5 mm above fan
45 x 46 x 30 mm
62 cm^3
71 grams
1.60 C/W
2.5 W
62 x 53 x 25 mm
82 cm^3
175 grams
1.38 C/W
3.0W
Lumens
Max
Tarray
(C)
Max
Tgetter
(C)
Lumens
Max
Tarray
(C)
Max
Tgetter
(C)
0
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
44.9
48.2
49.9
51.5
53.2
54.8
56.5
58.1
59.8
61.4
63.1
64.7
66.4
68.0
69.7
71.3
44.6
48.1
49.9
51.6
53.4
55.1
56.9
58.6
60.4
62.2
63.9
65.7
67.4
69.2
70.9
72.7
0
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
45.3
48.3
49.8
51.3
52.8
54.3
55.8
57.3
58.8
60.3
61.8
63.3
64.8
66.3
67.8
69.3
44.8
48.0
49.7
51.3
52.9
54.5
56.1
57.7
59.3
60.9
62.5
64.1
65.7
67.3
68.9
70.5
11/08/01
BENQ Confidential (yyyy/mm/dd) 2003, BENQ Corporation
Why Simulation?
• Advantages:
1.Cost issue. M/U is too expensive in early stage of R/D. (i.e. LCD
TV) by using avail software, Flotherm.
2.EZ to change different layouts, conditions quickly àoptimization
(still need some real tests before mp)
3.Show some fancy pictures to boss and IC. ^.^
• Disadvantages:
1.Uncertainties of numerical errors and modeling – How to avoid?
Controlling parameters, proper grid/boundary/initial conditions.
2. Verification of experimental data is always needed before MP.
BENQ Confidential ( yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential ( yyyy/mm/dd) 2003, BENQ Corporation
13
degC
160
140
120
100
80
60
40
20
0
100000
Lamp box temperature
250000
500000
total grid number
Computing time
total grid number
How? Why? What? Where?
1.Compact model/ EZ Test
-break into several small subs
2.Coding/tunning improved
3.Faster CPU/Memory
4. Proper assumptions
-incompressible, constant K,
2D/3D, viscous dispersive,
… etc.
BENQ Confidential ( yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential ( yyyy/mm/dd) 2003, BENQ Corporation
1. Numerical stability analysis
Steady state, trans-critical, time-step, iteration, grid number… etc.
Even if it is not converged, it still tells you something…
Interpretation of all kinds of plots. What/How to read them?
Limitation of ‘FloTherm’... Programming and CFD know-how.
2. Check basic flow pattern and temperature.
Is it close to real case or not?
Do you get what you need?
Does anything not make sense?
3. Adjust all parameters and boundary conditions.
According to experience or experiment…
4. Extension to predict future cases or further improvement.
We can now utilize the simulation and help us to predict.
CFD software: Pb6100 projector thermal simulation
BENQ Confidential ( yyyy/mm/dd) 2003, BENQ Corporation
BENQ Confidential ( yyyy/mm/dd) 2003, BENQ Corporation
Basic Knowledge of Discharge Process
Atom Excitation / Light Emission
How to Use and Improve
•
Photo-Optic
Before C0 or C1 stage (Without Mockup)
–
•
Check the main flow pattern and temperature between
the different placement, especially Fan (Fast)
C2 stage
–
•
Confirm the simulation by experiment (Exact)
After C3 stage
–
Adjust the parameters according to experiment (Knowhow)
–
Build up the database to predict more accurate at
future C0 model.
BenQ Confidential (yyyy/mm/dd) 2005, BenQ Corporation
-
+
+
+
+
+
+
+
-
Atom
Ionisation
Excitation
OSRAM Taiwan, Andreas Osten
+
+
+
+
+
+
+
Light Emission
OSRAM Confidential
14
Photo-Optic
Basic Knowledge of Discharge Process
Halogen Cycle Process
Hg
inert gas
halogen gas
Inert Gas Filling
Hg evaporation
leads to blackening
evaporated Hg is
pushed back by inert
gas
(N 2 , Ar, Kr, Xe)
evaporated Hg is
bounded by halogen
atom and released at
hot spot
Photo-Optic
5
7
1
2
5
OSRAM Confidential
Photo-Optic
P-VIP Technology of OSRAM
P-VIP / other Technologies
HL53,2: 14mg Hg, red. vol.
90W
120W
150W
0,15
3
4
P-VIP (UHP)
Company A Company B
dc
ac
Operating
pressure
> 200 bar
< 160 bar
< 150 bar
Rel. Lumen
output
100 %
< 80 %
< 70 %
Life time
behaviour
Ø 3000 h
(at 100W:
> 6000 h)
< 1,5 mm
Ca. 500 h
< 500 h
> 1,5 mm
> 1,5 mm
Extended operating pressure ( const. arc length )
0,20
Phi in arb. units
1- Burner
2- Reflector
3- Front cover glass
4- Heat sink bar
5- Reflector cuts
6- Contacts
7- Alignment
OSRAM Taiwan, Andreas Osten
P-VIP Technology of OSRAM
Spectrum vs. pressure
0,25
6
Halogen Filling
OSRAM Confidential
OSRAM Taiwan, Andreas Osten
Photo-Optic
P-VIP Technology of OSRAM
Basic Lamp Design
0,10
Arc gap
0,05
0,00
=> poor spectrum of non-UHP type lamps
=> lower efficacy for non-UHP type lamps
400
500
600
700
800
wavelength in nm
OSRAM Taiwan, Andreas Osten
OSRAM Confidential
Photo-Optic
P-VIP 5kV-Ignition
Burner Design
OSRAM Confidential
OSRAM Taiwan, Andreas Osten
Photo-Optic
P-VIP Technology of OSRAM
Rise Time After Ignition
5000
4500
Lamp is suited
for low voltage ignition:
4000
about 80% of phimax
3500
• ignition aid (UV-enhancer)
phi [lm]
• ignition wire (antenna-wire)
3000
2500
2000
• hot restrike after 40 - 50s possible
Ignition with 5 kV (current: 20 kV) possible ! ! !
( EP 0 722 184 A Osram Sylvania 96 , WO 00/77826 Philips 99 )
OSRAM Taiwan, Andreas Osten
OSRAM Confidential
1500
lamp EO 65.2
1000
lamp EO 68.5
lamp EO 37.1
500
0
0
50
90 seconds after ignition
OSRAM Taiwan, Andreas Osten
100
150
200
250
300
time [s]
OSRAM Confidential
15
P-VIP Technology of OSRAM
Alignment Process
Photo-Optic
For example: Alignment of burner into elliptical Reflector
Photo-Optic
P-VIP Technology of OSRAM
Alignment Process
For example: Alignment of burner into elliptical Reflector
1st) Alignment
into optical
center
2nd ) Alignment
for max. luminous flux
OSRAM Taiwan, Andreas Osten
OSRAM Confidential
P-VIP Technology of OSRAM
Alignment Process
OSRAM Taiwan, Andreas Osten
Photo-Optic
OSRAM Confidential
Photo-Optic
Thermal specification
e.g. 120W burner
For example: Alignment of burner into elliptical Reflector
back foil welding < 350°
bulb 850°- 950°(120W)
front foil welding < 350°
3rd ) To fix the burner with
cement into reflector
OSRAM Taiwan, Andreas Osten
front contact < 400°
OSRAM Confidential
OSRAM Taiwan, Andreas Osten
OSRAM Confidential
Photo-Optic
OSRAM Taiwan, Andreas Osten
OSRAM Confidential
Photo-Optic
OSRAM Taiwan, Andreas Osten
OSRAM Confidential
16
Photo-Optic
Negative Thermal Impacts
e.g. shaft cracks
Bulb
T ≈ 900°
C
Welding T < 350°
C
W-Electrode
Mo-Lead In
100
%
Quartz Matrix
Mo-Foil
Compact: 150x73x32
Ultra-Compact:
150x60x32
Laptop:
135x50x32/25
Powerpack:
150x60x32/25
5kV Laptop 150W:
135x50x25
Minibar:
120x41x24
82%
54%
Welding T > 350°
C
72%
Bulb
T ≈ 900°
C
48%
Revolution in Size Reduction
Direction of
Oxidation
Cracking
Forces
OSRAM Confidential
OSRAM Taiwan, Andreas Osten
34%
MOx
Division, Content owner, Date(in numbers), ISO No
98
Block diagram of the driver
Most reliable lamp system
– Flatter free operation & arc stabilisation
PowerPack UHP-driver
Fuse (4AF)
Filter/Buffer
CB1-3
+
V DS
320-400
Vdc
(operating)
Down
converter
Non pulse operation
Ignition
circuit
Lamp
UHP250 W
ControlCircuitry
CB1-1
Power supply
Projector set
Full
bridge
Comm. Interface (opto-isolated)
Analogue
Control
µ Control
+interfacing
(Digital)
Int.
supply
Pulse operation
CB2-3
4
5
SCI
RxD
1
2
Flag/ TxD
Communication Interface Projector set
Division, Content owner, Date(in numbers), ISO No
via interface lamp-pulse operated driver
99
UHP lamp structure
Division, Content owner, Date(in numbers), ISO No
100
UHP product range
Burner
?
100/120W
100/120W
Reflector
P/E
P/E23
23
PP22
22
PP21.5
21.5
150/200W
150/200W
P/E
P/E21
21
EE19
19
200/250W
200/250W
?
Division, Content owner, Date(in numbers), ISO No
101
Division, Content owner, Date(in numbers), ISO No
?
102
17
UHP burner
optical properties
•Only Hg as radiating species:
UHP
•much higher luminance than metal
DC-metal halide
halide (>>1Gcd/m2)
•no color demixing
• High Hg pressure (200bar) for good
Ultra short arc distance:
1.45 > 1.3 > 1.0 mm
spectrum and high burning voltage
• Regenerative chemical cycle keeps
Ultra high luminance:
1000 à 1500 Mcd/m²
quartz wall clear
• realized for the first time in a commercially used
HID lamp with Philips proprietary UHP technology
Division, Content owner, Date(in numbers), ISO No
103
Division, Content owner, Date(in numbers), ISO No
104
1mm
1.3mm
600
1200
limiting box
200
200
100
Presentation Title
Division, Content owner, Date(in numbers), ISO No
105
? ? ? ? ?
Noise
Size
Pixel Numbers
Distortion
Sharpness
Scaling
Brightness
Contrast
Gray Scale
Picture Quality
Pixel Defect
Color
White Balance
Viewing Angle
Response
Uniformity
Streaking Image Sticking
? ? ? ? ? ? ? ? ?
PDP
LCD
Copyright : J.Nakamura
Japan Picture Quality & Technology Laboratory
Presentation Title
Japan
Presentation
Picture
Title
Quality & Technology Laboratory
? ? ? ? ? ? ? ? ?
18
CIE 1931 – xy
Coordinate
Color System
z*
y*
x*
x = X / ( X + Y+ Z )
y = Y / ( X + Y+ Z )
z = Z / ( X + Y+ Z )
X = (Y / y) * x
Z = (Y / y) * ( 1 - x - y ) = (Y / y) * z
Presentation Title
Presentation Title
CIE 1960
CIE 1976
The representation of this CIE
diagram gives an undue
proportion to the green
area. Various transformations
of the original 1931 CIE
Chromaticity Diagram have
been proposed to correct this
distortion and to yield
approximately uniform
chromaticity spacing.
Presentation Title
This 1960 formula "crushes" all
yellow, brown, orange and red
colors into a relatively small area of
the diagram between the achromatic
point and the spectrum locus. This
area should be as large as possible
because of the importance of these
colors in food, oil, paint, and other
industries.
Presentation Title
同色異譜(metamerism)-I
同色異譜(metamerism)-II
在特定照明和觀測條件下,兩個物體所反射的
輻通量的光譜成分不同,而顏色卻互相匹配,並擁有
相同的三刺激值
X = ∫ φ1 (λ ) x(λ ) dλ = ∫ φ2 (λ ) x(λ ) dλ
λ
λ
Y = ∫ φ1 (λ ) y (λ ) dλ = ∫ φ2 (λ ) y (λ )dλ
λ
λ
Z = ∫ φ1 (λ ) z (λ )dλ = ∫ φ 2 (λ )z (λ )dλ
λ
Presentation Title
λ
Presentation Title
19
White Balancing in RGB Space
X 
 R
 Y  = M * G 
 
 
 Z 
 B
Red: (xr; yr; zr=1-(xr+yr))
Green: (xg; y g; zg=1-(xg+yg))
Blue: (xb; y b; zb=1-(xb+yb))
z = 1-(x+y)
 Xn   r 1 g1
 Yn  =  r 2 g 2
  
 Zn   r 3 g3
Presentation Title
 xn / yn  xr
 1  =  yr

 
 zn / yn   zr
zn = 1-(xn+yn)
X = x*Y / y ,
Z = z*Y / y
Since the Yn has to be 1 for the white -point:
Xn = Yn / y n * xn = xn / y n
Yn = y n / y n = 1
Zn = Yn / y n * zn = zn / y n
(n:neutral)
b1 1  ar * xr ag * xg
b2 * 1 =  ar * yr ag * yg
b3 1  ar * zr ag * zg
RGB Color Space Conversion
ab * xb  xr xg
ab * yb =  yr yg
ab * zb   zr zg
xb   ar 
yb *  ag 
zb   ab 
xg
yg
zg
xb  ar 
yb * ag 
zb  ab 
 X   xr *ar xg * a g
 Y  =  yr * ar yg * a g
  
 Z   zr * ar zg * a g
 R   xr * ar
G  =  yr * ar
  
 B   zr * ar
xg * ag
yg * ag
zg *ag
 ar   xr xg
 ag  =  yr yg
  
 ab   zr zg
−1
xb   xn / yn
yb  *  1 
zb   zn / yn
xb* a b  R
yb * a b * G 
zb* a b  B
−1
xb * ab
 X   xr * ar
yb * ab *  Y  =  yr * ar
zb * ab
 Z   zr * ar
xg * ag
yg * ag
zg *ag
−1
xb * ab
 x / y
yb * ab *  1  * Y
zb *ab 
 z / y 
Presentation Title
PDP TV ? LCD TV ? ? ? ? ? ?
Example:
xr=0.64; yr=0.33;
xg=0.29; yg=0.60;
xb=0.15; yb=0.06;
xn=0.312713; yn=0.329016;
zr=1-(xr+yr);
zg=1-(xg+yg);
zb=1-(xb+yb);
zn=1-(xn+yn);
Argb=inv([xr xg xb; yr yg yb;zr zg zb])*[xn/yn; 1; zn/yn];
ar=Argb(1);
ag=Argb(2);
ab=Argb(3);
M=[xr*ar xg*ag xb*ab; yr*ar yg*ag yb*ab; zr*ar zg*ag
zb*ab]
• invM=inv(M)
• %RGB= invM*XYZ
•
•
•
•
•
•
•
•
•
•
•
•
•
Presentation Title
PDP
Presentation
Japan Picture
Title
Quality
LCD
& Technology Laboratory
? ? ? ? ? ? ? ? ?
PDP TV ? LCD TV ? ? ? ?
Copyright : J.Nakamura
PDP 1
Presentation
Japan Picture
TitleQuality
& Technology Laboratory
PDP 2
? ? ? ? ? ? ? ? ?
LCD - A
LCD - B
LCD - C
PDP - A
PDP - B
PDP - C
Japan Picture
Presentation
TitleQuality
& Technology Laboratory
? ? ? ? ? ? ? ? ?
20
Computational Photography
Original
Modified
Presentation Title
Presentation Title
PDP
PDP Panel
Panel
PDP 7843e Back-Side
Fan Board
Audio Board
(Power Amplifier)
Main Power Board
Speaker Board
PC Input Board
Video Input Board
Interface Board
Presentation Title
Presentation Title
Structure-1
Structure-1
Presentation Title
Structure-2
Structure-2
Presentation Title
21
Housing-U/case
Housing-U/case
Presentation Title
Thermal
Thermal of
of PDP
PDP TV
TV
Presentation Title
RPTV 背投電視
Presentation Title
Presentation Title
Presentation Title
Presentation Title
22
Cermax Lamp 420W from PerkinELmer
MES
Thank you!
Presentation Title
23

Similar documents

P150EM/ P151EM1 SERVICE MANUAL

P150EM/ P151EM1 SERVICE MANUAL Top with Fingerprint (P150EM) .................................................... A-3 Top without Fingerprint (P150EM) .............................................. A-4 Top with Fingerprint (P151...

More information