Anos de Vitalidade
Transcription
Anos de Vitalidade
Supercondutividade 100 Anos de Vitalidade J. Albino Aguiar UFPE Depto. de Física – UFPE, Recife, Brasil Recife - BR uperlab RESUMO Cem anos atrás, Heike Kamerlingh Onnes e seus colaboradores descobriram a supercondutividade. Esta descoberta alimentou, desde o início, o sonho da obtenção de altos campos magnéticos para aplicações tecnológicas e instigou cientistas a procurarem entender esta intrigante propriedade da matéria. Nesta palestra abordaremos o desenvolvimento histórico dessa excitante área de pesquisa desde o tempo de Heike, até os dias atuais. UFPE Recife - BR uperlab ROTEIRO •O COMEÇO • AS PRELMINARES • A DESCOBERTA • O DESENVOLVIMENTO • SUPERCONDUTIVIDADE NO DF-UFPE • AS PERSPECTIVAS UFPE Recife - BR uperlab O COMEÇO O ELETROMAGNETISMO – • A história do eletromagnetismo tem início na Antiguidade. • Thales de Mileto ao esfregar âmbar com pele de carneiro, observou que pedaços de palha eram atraídos pelo âmbar. • Conhecia-se também as propriedades magnéticas de certos materiais. • Eléktron (ἤλεκτρον) = âmbar em grego UFPE Recife - BR uperlab O COMEÇO uperlab O ELETROMAGNETISMO – • Antigamente ligação entre eletricidade e magnetismo era desconhecida. Somente no século XIX desenvolveuse uma relação entre os estudos desses fenômenos. • O magnetismo na antiguidade = mineral magnetita. Suas propriedades e seu uso eram envolvidos por muito misticismo. • Gerolamo Cardano (1550) - Em De Subtilitate discute as diferenças entre forças elétricas e forças magnéticas. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • William Gilbert (século XVI) - trabalho metódico (De Magnete) sobre as propriedades do magnetismo - Primeira aplicação do método científico. • Depois do trabalho de muita gente: • Otto von Guericke (1660) – Elektrisiermaschine, a primeira máquina eletrica. • Robert Boyle (1675) - forças elétricas podem atuar no vácuo. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XVIII: • Luigi Aloisio Galvani realiza estudos em animais e, numa rã, constata a presença do chamado "fluido de energia": bioeletricidade. • Charles François de Cisternay Du Fay - dois tipos de força elétrica. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – Benjamin Franklin - relâmpago é um fenômeno elétrico. • Joseph Priestley, Lord Henry Cavendish, Charles Augustin de Coulomb e Siméon-Denis. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1820 - Hans Christian Ørsted - interação entre eletricidade e magnetismo. • André-Marie Ampère – explica a observação de Orsted. •1827 - Georg Simon Ohm - Die galvanische Kette mathematisch bearbeitet (O Circuito Galvânico Investigado Matematicamente): teoria de circuitos: Lei de Ohm. UFPE Recife - BR O COMEÇO O ELETROMAGNETISMO – • Século XIX: • 1831 - Michael Faraday - indução magnética; formula o princípio do transformador. UFPE Recife - BR uperlab O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1864 - James Clerk Maxwell - A Treatise on Electricity and Magnetism as quatro equações do eletromagnetismo. Previsão da existência das ondas eletromagnéticas – luz como uma forma de eletromagnetismo. • FOTO DE MAXWELL !!! • 1873 - Zénobe Gramme – transmissão de através de cabos condutores aéreos. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1879 - Thomas Alva Edison inventa a lâmpada elétrica. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • Brasil - A eletricidade começa a ser utilizada no país, além da Europa e dos Estados Unidos, logo após o invento do dínamo e da lâmpada elétrica. No mesmo ano, D. Pedro II inaugura a iluminação da estrada de ferro. • 1880 - Edison patenteia o sistema de distribuição elétrica. 1881 - Brasil - A primeira iluminação externa pública do país é inaugurada na atual Praça da República, em São Paulo. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1882- Edison implementa o primeiro sistema de distribuição elétrica, em corrente contínua a 110 volts, em Manhattan. • 1883 - Brasil - primeira usina hidrelétrica do país, em Diamantina, Minas Gerais. • 1883 - D. Pedro II inaugura, em Campos - RJ, o primeiro serviço público municipal de iluminação elétrica do Brasil e da América do Sul. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1888 - Heinrich Hertz comprova a existência das ondas eletromagnéticas. • 1890 (aproximadamente) - Disputa entre Nikola Tesla e Edison na implementação dos sistemas de distribuição elétrica, a chamada Guerra das Correntes. Vence Tesla, com a corrente alternada. Transformadores elevadores de a tensão, diminuindo as perdas na transmissão de energia. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1892 - Tesla publica a base do sistema de corrente alternada. George Westinghouse patrocina os projetos de Tesla. • 1893 - Charles Proteus Steinmetz desenvolve uma formulação matemática para o estudo de circuitos em corrente alternada. • 1897 - Joseph John Thomson - O descobrimento do elétron. UFPE Recife - BR O COMEÇO uperlab O ELETROMAGNETISMO – • Século XIX: • 1892 - Tesla realiza a primeira transmissão de rádio; porém, esta invenção é creditada, embora sob controvérsias, a Guglielmo Marconi em 1904. (Cristo Redentor (????)) !!!! • A engenharia elétrica - profissão reconhecida. • Grande desenvolvimento no campo da eletrônica - válvula, transistores e circuitos integrados. UFPE Recife - BR O COMEÇO uperlab •O ELETROMAGNETISMO – • Século XX: • Diferenciação entre engenharia elétrica de potência e eletrônica, e como consequência as telecomunicações e a ciência da computação. • A descoberta de materiais supercondutores causa grande impacto no estudo da eletricidade, cujas inovações são gradualmente implementadas. UFPE Recife - BR AS PRELIMINARES uperlab • 1906 - Heike Kamerlingh Onnes (1853-1926) Liquefação do hidrogênio. • Termometria a baixas temperaturas (Pt como termômetro auxiliar). • Resistividade (r) dos metais (Pt, Au, Hg) para T ~ 0 K : • Lord Kelvin (1902) – r é infinita para T = 0 K. • Menor temperatura atingida 14 K. UFPE Recife - BR AS PRELIMINARES uperlab • 1908 - Liquefação do hélio: 10 de julho de 1908 - Heike Kamerlingh Onnes (1853-1926) – Abre-se um novo capítulo na física das baixas temperaturas UFPE Recife - BR AS PRELIMINARES uperlab • 12 DE MARÇO DE 1910: • Primeira tentativa de transferir hélio do liquefator para um criostato: novo récorde de baixa temperatura, 1,1 K. – novo experimento planejado para quatro meses após. • 2 DE DEZEMBRO DE 1910: R(T) de Pt em temperaturas de hélio líquido. R (Pt) ~ cte., para T = 4,25 K >> Kelvin dançou !!! • 8 DE ABRIL DE 1911: transferir hélio para NOVO criostato termômetros a gás e de Au. Resistor de Pt (forma U em vidro) para medida de R(T) x T instalado UFPE Recife - BR AS PRELIMINARES O PRIMEIRO EXPERIMENTO COM Hg • 8 DE ABRIL DE 1910: • Bottom of the cryostat in which I-leike Kamerlingh Onnes and coworkers carried out the 8 April 1911 experiment that first revealed superconductivity. The original drawing is from reference 6, but colors have been added to indicate various cryogenic fluids within the intricate dewar alcohol (purpie), liquid air (blue), liquid and gaseous hydrogen (dark and light green), and liquid and gaseous helium (dark and light red). Handwritten by Gerrit Flim are labeis for the mercury and gold resistors (O Hg and O Au), the gas thermometer (Th), conponents at the end Çnia) of the transfer tube from the heliun, liquefier, and parts of the liquidhelium stirrer (Sb), which is also shown enlarged in several cross sections at right. UFPE Recife - BR uperlab A DESCOBERTA uperlab O PRIMEIRO EXPERIMENTO COM Hg • Os colaboradores: • Jacob Clay - técnico chefe. • Oscar Kesselring - hialotécnico. • Cornelis Dorsman - pesquisador. • Gilles Host - estudante: ficava em outra sala operando a ponte de Wheatstone e o galvonômetro UFPE Recife - BR AS PRELIMINARES O PRIMEIRO EXPERIMENTO COM Hg • 8 DE ABRIL DE 1910: UFPE Recife - BR uperlab AS PRELIMINARES: uperlab O PRIMEIRO EXPERIMENTO COM Hg • 8 DE ABRIL DE 1911: • Início: 7:00 h; HKO chega às 11:20 h quando hélio começa a circular (ele tinha outras coisas a fazer – HPK!) • Termômetro de Au: T = 140 K em 30 min. • Termômetro a gás: 5 K - “a válvula funcionou” - teste do agitador e medida da taxa de evaporação do hélio. • Holst: Medidas de R(4,3 K) de Au e Hg. UFPE Recife - BR AS PRELIMINARES: uperlab O PRIMEIRO EXPERIMENTO COM Hg • 8 DE ABRIL DE 1911: • Redução da pressão de vapor do hélio. Medida do calor específico hélio. P = 197 mmHg (0,26 atm), T ~ 3 K • Termômetro de Au: T = 140 K em 30 min. • Termômetro a gás: 5 K - “a válvula funcionou” - teste do agitador e medida da taxa de evaporação do hélio. • 16:00 h (at 4 pm says notebook!) - nova medida da resistência do Au e do Hg >>>>>>>>>>>>>>>>>>>>>>>>>>> UFPE Recife - BR AS PRELIMINARES: uperlab O PRIMEIRO EXPERIMENTO COM Hg • 3 K – “Kwik nagenoeg null” !!!! (Resistência do mercúrio praticamente zero @ 3 K. UFPE Recife - BR AS PRELIMINARES: uperlab O PRIMEIRO EXPERIMENTO COM Hg • O experimento prosegue até mais tarde: •HKO escreve: “Dorsman (who had controlled and measured the temperatures) really had to hurry to make the observation. The temperature had been surprisingly hard to control. Just before the lowest temperature (about 1.8 K) was reached, the boiling suddenly stoped and was replaced by evaporartion in which the visible liquid shrank. So a remarkably strong evaporation at the surface“. Sem perceber, o time de Leiden observou também a transição superfluida do hélio. No mesmo dia, pela primeira vez, duas transições quânticas foram observadas em um mesmo laboratório! UFPE Recife - BR A DESCOBERTA uperlab Nova experiência com Hg • As previsões de Heike (apresentadas três semanas após na Real Academia Holandesa de Artes e Ciências RAHAC) para resistência de Hg ultra puro: • 1) RPt(4,3 K) <<<< RPt(14 K), mas mensurável; • 2) RPt(T) deveria ainda não ser indeendente da temperatura; • 3) A temperaturas muito baixas RPt(T) deve ser nula! • AGORA VAMOS AS MEDIDAS !!! UFPE Recife - BR A DESCOBERTA uperlab Nova experiência com Hg • 23 DE MAIO DE 1911 : • Resolução da medida de resistividade ~ 30 nV !!!!! • R(T)/Ro a 3 K menor que 10-7. Ro resistência Hg cristalino a 0 K (0 C???). • Atingido 1.5 K para então explorar temperaturas entre 4,3 K e 3,0 K. Nenhuma resistência • Meados da tarde 4.00 K nenhuma manifestação de aumento de resistência. A 4.05 K ainda nada! UFPE Recife - BR A DESCOBERTA Nova experiência com Hg • A 4.12 K resitência começa a “aparecer”!!!! UFPE Recife - BR uperlab A DESCOBERTA uperlab Nova experiência com Hg • Anotações contradizem a teoria os “rapazes azuis”! • Relato de HKO na RAHAC: Para um pouco acima de 4.2 K foi observado que RPt(T) ainda era menor que 10-5 Ro, no entanto aumentando T somente 0,1 K RPt( 4,3 K) aumentou por um fator de aproximadamente 400. •Resultados comprovam expectativa de HKO! UFPE Recife - BR O DESENVOLVIMENTO • 1914 EXPERIÊNCIA COM MODO PERSITENTE UFPE Recife - BR uperlab uperlab UFPE Recife - BR uperlab UFPE Recife - BR uperla b Perfect conductivity Critical Current UFPE Recife - BR Diamagnetism perfeito Critical field O DESENVOLVIMENTO Leo V. Shubnikov (1901-1937) UFPE Recife - BR uperlab uperlab Dear Albino, Thank you very much for the congratulations and photos. Here are the answers to your questions. 2) Lev Vasilievich Shubnikov was arrested in 1937, accused in the attempt to organize a "counterrevolutionary“ strike and parished in gail. UFPE Recife - BR uperlab 1) Nothing. I just wanted to study the magnetic properties of bulk Type II superconductors, and vortices appeared as a solution of the Ginzburg-Landau equations. 3) My great-grandfather was an owner of a large and famous factory of sweets and candies, my grandfather died joung, and my father was a famous physician and never had higher titles than Vice-President of the Academy of Medical Sciences and Director of the Institute of Morphology. UFPE Recife - BR O fenômeno da supercondutividade uperla b Supercondutor tipo - I Magnetização Indução Diagrama de fase Supercondutor tipo - II Magnetização J.Indução Albino Aguiar - Diagrama de fase O fenômeno da supercondutividade: vórtice J. Albino Aguiar - uperla b Vórtices em supercondutoresDifração de neutrons Rede de Abrikosov (volumétrico) H Baixa T FL = 0 J uperla b Alta T Imagem do núcleo do vórtice (STM) J Rede de Abrikosov (filmes finos) J. Albino Aguiar - uperlab 5) This year I am too busy. However, in general I feel pretty reluctant to come to Brazil. The reason is that I am rather old, and …. Of course, I have nothing against the Brazilian scientists. Sincerely yours, Alex Abrikosov UFPE Recife - BR Vortex state in a mesoscopic flat disk with rough surface uperlab Mesoscopic regime : Sample size becomes comparable to superconducting penetration depth, l, and/or coherence length, x. Consequences: Vortex-surface interactions can become comparable to the inter-vortex interaction and the local flux density becomes intrinsically dependent on sample geometry (shape and size). UFPE Recife - BR uperlab UFPE Recife - BR uperlab • Andre Geim -2003 UFPE Recife - BR uperlab FROG MOVIE! UFPE Recife - BR O DESENVOLVIMENTO UFPE Recife - BR uperlab O DESENVOLVIMENTO uperlab HEIKE K A M E R L I N G H O N N E S Investigations into the properties of substances at low temperatures, which have led, amongst other things, to the preparation of liquid helium Nobel Lecture, December 11, 1913 Since you have done me the honour of describing to you my investigations into the properties of substances at low temperatures, which have also led me, amongst other things, to the preparation of liquid helium, I must first of all express my deepest thanks to your old and famous Academy for distinguishing me in this manner. This has happened at a time when the continuation of my work will make great demands upon me. Nothing could make me more able than your good will does to meet new problems with the same hopeful confidence with which, 30 years ago, I met difficulties now overcome. The main aim in investigations at low temperatures has greatly changed since then. When I first turned to this field of work the aim was still to liquefy statically the gases which up to then had not been mastered and to pour into open containers those gases which it is most difficult to liquefy. What has given a character of its own to the Leyden work from the very beginning is that I allowed myself to be led by Van der Waals’ theories, particularly by the law of corresponding states which at that time had just been deduced by Van der Waals. This law had a particular attraction for me because I thought to find thebasis for it in the stationary mechanical similarity of substances and from thispoint of view the study of deviations in substances of simple chemical structurewith low critical temperatures seemed particularly important. UFPE Recife - BR O DESENVOLVIMENTO Karl Walther Meißner (1882-1974) UFPE Recife - BR uperlab Robert Ochsenfeld (1901-1993) O DESENVOLVIMENTO uperlab Heinz London (1907-1970) e Fritz Wolfgang London11 (1900-1954). UFPE Recife - BR O DESENVOLVIMENTO Herbert Fröhlich (1905-1992) UFPE Recife - BR uperlab Lev D. Landau (1908-1968) O DESENVOLVIMENTO Vitaly L. Ginzburg (1916-2009) UFPE Recife - BR uperlab Alexei A. Abrikosov (1928- ) uperlab UFPE Recife - BR Vortex III, Crete (2003) uperlab Alexei Abrikosov Alexander Andreev Antonio Barone Vortex III, Crete (2003) UFPE Recife - BR uperlab Vortex III, Crete (2003) Alexei Abrikosov Alexander Andreev Antonio Barone Albino Aguiar UFPE Recife - BR uperlab Stockholm, 10 December, 2003 Princess Madeleine UFPE Recife - BR Alexei Abrikosov O DESENVOLVIMENTO UFPE Recife - BR Anthony James Leggett (1938- ) uperlab O DESENVOLVIMENTO uperlab ON SUPERCONDUCTIVITY AND SUPERFLUIDITY Nobel Lecture, December 8, 2003 By Vitaly L. Ginzburg P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow, Russia. INTRODUCTION First of all I would like to express my heartfelt gratitude to the Royal Swedish Academy of Sciences and its Nobel Committee for physics for awarding me the 2003 Nobel Prize in physics. I am well aware of how difficult it is to select no more than three Laureates out of the far greater number of nominees. So all the more valuable is this award. Personally, I have two additional motives for appreciating the award of the Prize. First, I am already 87, the Nobel Prize is not awarded posthumously, and posthumous recognition is not all that significant to me since I am an atheist. Second, the 1958 and 1962 Nobel Prizes were awarded respectively to Igor’ Evgen’evich Tamm and Lev Davidovich Landau. Outside of high school, the notion of a teacher is very relative and is quite often applied by formal criteria: for instance, it is applied to the supervisor in the preparation of a thesis. But I believe that the title real teacher can appropriately be given only to those who have made the greatest impact on your work and whose example you have followed. Tamm and Landau were precisely these kind of people for me. I feel particularly pleased, because in a sense I have justified their good attitude toward me. Of course, the reason lies not with the Prize itself, but with the fact that my receiving the award after them signifies following their path. UFPE Recife - BR O DESENVOLVIMENTO uperlab TYPE II SUPERCONDUCTORS AND THE VORTEX LATTICE Nobel Lecture, December 8, 2003 By Alexei A. Abrikosov Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439, USA. In 1950, Vitalii Ginzburg and Lev Landau published their famous paper on the theory of superconductivity [1]. The approach was based on the general theory of the second order phase transitions proposed by Landau in 1937 [2]. There Landau introduced the main variable, the so called “order parameter”which was finite below the transition and zero above it. Different phase transitions had different order parameters, and whereas it was evident for, e. g., the ferromagnetic transition, namely, the spontaneous magnetization, it was far less evident for the superconducting transition. Ginzburg and Landau had a stroke of genius, when they chose, as the order parameter some sort of wave function. At that time nobody knew about Cooper pairs, and about their Bose condensate, where all particles become coherent, i. e. described by the same wave function. This assumption was the basis of the new theory, which managed to solve the main contradiction of the old theory by Fritz and Heinz London [3], namely, the positive surface energy. Besides it made many useful predictions, such as the critical magnetic field of thin films, the critical current in thin wires etc. UFPE Recife - BR O DESENVOLVIMENTO uperlab SUPERFLUID 3-He:THE EARLY DAYS AS SEEN BY A THEORIST Nobel Lecture, December 8, 2003 By Anthony J. Leggett University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Ijl 61801-3080, USA. It is needless to say that I feel it a great honor and privilege to have been selected for the 2003 Nobel prize in physics for my theoretical work on superfluid 3He; I am particularly pleased to be sharing the award with Professors Ginzburg and Abrikosov, whom I have always looked up to as giants of the closely related fleld of superconductivity. The story of how, in roughly the twelve-month period July 1972–July 1973, we came to a theoretical understanding of the experimental data on what we now know as superfluid 3He is a sort of complex detective tale, involving many actors besides me; for reasons of time I will concentrate in this lecture on my own involvement, and will have to omit several important developments in which I had no direct role. UFPE Recife - BR O DESENVOLVIMENTO Newton Bernardes (1931-2007) UFPE Recife - BR uperlab O DESENVOLVIMENTO UFPE Recife - BR uperlab O DESENVOLVIMENTO John Bardeen John Bardeen John Bardeen (1908-1991) (1908-1991) (1908-1991) UFPE Recife - BR Leon Neil Cooper John Robert Schrieffer Leon Neil Cooper John Robert Schrieffer Leon Neil Cooper John Robert Schrieffer (1930- ) (1931- ) (1930- )(1930- ) (1931- )(1931- ) uperlab uperlab UFPE Recife - BR 2 PAGES !!! Phys. Rev. 106, 162 - 164 (1957) UFPE Recife - BR uperlab 02 PAGES !!! uperlab UFPE Recife - BR 30 PAGES !!! O DESENVOLVIMENTO Brian David Josephson (1940- ) UFPE Recife - BR uperlab O DESENVOLVIMENTO B. D. Josephson, Phys. Lett. 1, 251 (1962) UFPE Recife - BR uperlab O DESENVOLVIMENTO Bernd Theodor Matthias (1918-1980). UFPE Recife - BR uperlab O DESENVOLVIMENTO Johannes Georg Bednorz (1950- ) UFPE Recife - BR uperlab Karl Alexander Müller (1927- ) O DESENVOLVIMENTO UFPE Recife - BR uperlab O DESENVOLVIMENTO Paul Ching-Wu Chu (1941- ) UFPE Recife - BR Robert J. Cava uperlab O DESENVOLVIMENTO UFPE Recife - BR uperlab O DESENVOLVIMENTO Philip Warren Anderson (1923- ) UFPE Recife - BR uperlab SUPERCONDUTIVIDADE NO DF-UFPE • Projeto CNPq – 1972 •Marcílio Ferreira – San Diego (1986) • Albino Aguiar – Leiden (1986) • Sérgio Rezende • Maurício Coutinho-Filho • Ernesto Raposo UFPE Recife - BR uperlab SUPERCONDUTIVIDADE NO DF-UFPE • Erivaldo Montarroyos •Clécio C. De Souza Silva • Leonardo R. E. Cabral UFPE Recife - BR uperlab Vortex state in a mesoscopic flat disk with rough surface uperlab Mesoscopic regime : Sample size becomes comparable to superconducting penetration depth, l, and/or coherence length, x. Consequences: Vortex-surface interactions can become comparable to the inter-vortex interaction and the local flux density becomes intrinsically dependent on sample geometry (shape and size). UFPE Recife - BR uperlab Magnetization in mesoscopic Al disks (Geim et al. 97). UFPE Recife - BR uperlab UFPE Recife - BR Andre Konstantin Gein uperlab Vortex configurations, calculated by using either the Ginzburg-Landau theory or the London approach for triangles, squares, rectangles, disks and slabs, reveal that: • Vortex configurations obey the superconductor geometry for low total vorticity, and, • An hexagonal arrangement appears close to the center of the superconductor, for large systems and higher vorticity. UFPE Recife - BR uperlab L. R. E. Cabral and J. Albino Aguiar, PRB, 80 (2009), 214533. UFPE Recife - BR uperlab Nb/Al Multilayers: Nb layers d = 50 nm C. C. de Souza Silva, and J. Albino Aguiar, Physica B 284 (2000) 634. UFPE Recife - BR Al layers d = 20 nm Glass Vortices in mesoscopic superconductors Nb/Al Multilayers - Longitudinal field C. C. de Souza Silva, and J. Albino Aguiar, Physica B 284 (2000) 634. UFPE Recife - BR uperlab uperlab Nb/Al Multilayers - Transverse field C. C. de Souza Silva, and J. Albino Aguiar, Physica B 284 (2000) 634. UFPE Recife - BR uperlab Nb/Al Multilayers - Longitudinal field 30 20 10 0 -4 m (10 emu) C. C. de Souza Silva, and J. Albino Aguiar, Physica B 284 (2000) 634. T = 4,22 K -10 -20 -30 0,0 UFPE Recife - BR 0,5 1,0 Ha (kOe) 1,5 2,0 uperlab Nb/Al Multilayers - Longitudinal field 2,0 1,5 B (kG) C. C. de Souza Silva, and J. Albino Aguiar, Physica B 284 (2000) 634. T = 4,22 K 1,0 0,5 0,0 UFPE Recife - BR 0,0 0,5 1,0 Ha (kOe) 1,5 2,0 uperlab Nb/Al Multilayers - Longitudinal field UFPE Recife - BR uperlab Nb/Al Multilayers - Transverse field 800 T=5K 600 400 200 4 M (10 emu) C. C. de Souza Silva, and J. Albino Aguiar, Physica B 284 (2000) 634. 0 -200 -400 -600 0,0 UFPE Recife - BR 0,5 1,0 1,5 Ha (kOe) 2,0 2,5 3,0 uperlab Nb/Al Multilayers - Transverse field 14 12 Number of events M 1,66 10 8 6 4 2 5 10 15 20 25 3 M (10 emu) UFPE Recife - BR 30 35 40 Vortex state in a mesoscopic flat disk with rough surface uperlab Theoretical formalism • Mesoscopic flat disk with rough surface. TDGL solved using link variable method. Leading order in ϵ: η(∂ψ/∂t) = (−1/g)[(−i∇− A)・g (−i∇− A)ψ] + ψ(1 − |ψ|2), in Ω0. Boundary conditions: UFPE Recife - BR e* i nˆ. i A c b , on ∂ Ω0. Vortex state in a mesoscopic flat disk with rough surface uperlab Example of a surface z = g(x, y) generated randomly, which was used in the simulations for 20% roughness. UFPE Recife - BR Vortex state in a mesoscopic flat disk with rough surface uperlab Magnetic field Hs in which the first vortex entrance takes place for three different radii R = 4.5 x(T), R = 5.5 x (T), R = 6.5 x (T)) and for 0%, 5%, 10%, 15%, 20% roughness. UFPE Recife - BR Vortex state in a mesoscopic flat disk with rough surface uperlab Magnetization curve as a function of the external applied magnetic field H 0 for different values of the de Gennes extrapolation length b = 1, 2.5, 1.25, 0.88. UFPE Recife - BR Vortex state in a mesoscopic flat disk with rough surface uperlab Topology of the current density streamlines for R = 4.5 x(T), H0 = 1.013 Hc2 (T) and rugosity of 20%. Notice that we have five vortices at the center. For a flat disk of equivalent size, there should be a giant vortex state. UFPE Recife - BR Vortex state in a mesoscopic flat disk with surface deffects Disk with R = 6.5 x Number of deffects varies from 1 to 5 UFPE Recife - BR uperlab uperlab UFPE Recife - BR uperlab UFPE Recife - BR uperlab UFPE Recife - BR Vortices states in two band superconductors uperlab Crystal structure of MgB2. Boron atoms form stacks of honeycomb layers and magnesium atoms are in between the boron layers at the center of the hexagons. UFPE Recife - BR Vortices states in two band superconductors UFPE Recife - BR uperlab Vortices states in two band superconductors uperlab The Fermi surface of MgB2 from band structure calculation. Green and blue cylinders (hole-like) are the σ bands, and the blue (hole-like) and the red (electron-like) tubular networks are the π bands. (Reprinted with permission from Kortus et al [9]. Copyright 2001 by the American Physical Society. UFPE Recife - BR Vortices states in two band superconductors UFPE Recife - BR uperlab Vortices states two band superconductors uperlab 1 - Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors “Traditionally, superconductors are categorized as type I or type II. Type-I superconductors support only Meissner and normal states, while type-II superconductors form magnetic vortices in sufficiently strong applied magnetic fields. Recently there has been much interest in superconducting systems with several species of condensates, in fields ranging from condensed matter to high energy physics. Here we show that the classification into types I and II is insufficient for such multicomponent superconductors. We obtain solutions representing thermodynamically stable vortices with properties falling outside the usual type-I/typeII dichotomy, in that they have the following features: i) Pippard electrodynamics, ii) interaction potential with long-range attractive and short-range repulsive parts, iii) for an n-quantum vortex, a nonmonotonic ratio E(n) /n where E(n) is the energy per unit length, iv) energetic preference for nonaxisymmetric vortex states, “vortex molecules.” Consequently, these superconductors exhibit an emerging first order transition into a “semi-Meissner” state, an inhomogeneous state comprising a mixture of domains of two-component Meissner state and vortex clusters”. Egor Babaev and Martin Speight - PHYSICAL REVIEW B 72, 180502_R_ 2005 UFPE Recife - BR Vortices states in two band superconductors uperlab 2 -Type-1.5 Superconductivity ”We demonstrate the existence of a novel superconducting state in high quality twocomponent MgB2 single crystalline superconductors where a unique combination of both type-1 (l1/x1 < 2-1/2 = 0.71) and type-2 (l2/x2 > 2-1/2= 0.71) super-conductor conditions is realized for the two components of the order parameter. This condition leads to a vortexvortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamerlike vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations”. Victor Moshchalkov, Mariela Menghini, T. Nishio, Q. H, Chen, A.V. Silhanek, V. H. Dao, L. F. Chibotaru, N. D. Zhigadlo, and J. Karpinski, PRL 102, 117001 (2009) UFPE Recife - BR Vortices states in two band superconductors uperlab Magnetic decoration images of the vortex structure at T = 4.2 K and H = 1 Oe in (a) MgB2 and (b) NbSe2 single crystals. The scale bars in the images correspond to 10 _m. Notice that the density of vortices in the decoration experiments represents the internal field B rather than the applied field H. This leads to a different number of decorated vortices for NbSe2 and MgB2, even at the same applied field. UFPE Recife - BR Vortices states in two band superconductors uperlab (a) Experimental vortex locations in a selected part of the image shown in Fig. 1(a). The vortex configuration resulting from the numerical simulations in a two-component superconductor at low density is shown in (b) evidencing an inhomogeneous spatial distribution of vortices. In both cases, the regions enclosed by the dashed white line indicate voids of vortices caused by the inhomogeneous distribution. In (c) the vortex pattern obtained by a magnetic decoration of the NbSe2 crystal at 1 Oe is shown and (d) corresponds to the vortex pattern obtained by a numerical simulation of a type-2 superconductor. The white scale bars correspond to 10 _m. (e) and (f ) display the distribution of first neighbor distance, Pa, of the experimental and theoretical vortex structures, respectively. In the case of MgB2, Pa shows additional peaks at distances shorter and longer than the most probable separation (see the red and green arrows). The pair of vortices separated at the distances where the additional peaks are located are highlighted in (a) and (b) by red and green circles. The light blue circles correspond to pair of vortices separated by the most probable distance. UFPE Recife - BR Vortices states in two band superconductors uperlab (a) Magnetic decoration image in the MgB2 single crystal at H = 5 Oe. (b) Disordered Abrikosov lattice obtained at H= 5 Oe in the NbSe2 sample. The formation of vortex stripes is also reproduced in numerical simulations of a two-component type- 1.5 superconductor (c) in contrast to a homogeneous vortex distribution in a type-2 superconductor at the same vortex density (d). The scale bars in the images correspond to 10 microm. Inset of (b): Vortex density along lines parallel to the vortex stripe direction [yellow dashed lines in (a)] for MgB2 and NbSe2 vortex structures. The variation of the vortex density is calculated as a function of the distance measured along the direction perpendicular to the stripes [yellow arrows in (a) and (b)]. The curves are normalized by their respective average density. The results of a similar calculation performed on the simulated vortex structures are shown in the inset of (d). UFPE Recife - BR Vortices states in two band superconductors uperlab 3 - Attractive vortices Ernst Helmut Brandt and Shi-Ping Zhou - Physics 2, 22 (2009) Published March 16, 2009. Victor Moshchalkov et al.[1] argue that in the recently discovered two-band superconductor MgB2, the presence of two nearly independent order parameters yp and ys, corresponding to the two electronic bands that carry the superconductivity, may lead to novel effects related to the attraction of vortices. They showed that from the two-band GL functional follows a vortex– vortex interaction that is short-range repulsive and weakly long-range attractive, as was also found by Babaev [10]. Particularly fascinating effects should occur when the GL parameters of the p and s bands, and of the two corresponding superfluids, are kp lp/xp = 0.66 < 0.71 and ks ls/xs = 3.68 > 0.71, as they find from measured energy gaps, Fermi velocities, and plasma frequencies. MgB2 should thus have properties of both type-I and type-II superconductors simultaneously. The authors of Ref. [1] name this type-1.5 suPerconductivity. Figure 1 shows the suggested spatial profiles of y and B for vortices in type-I, II, and 1.5 superconductors; for the latter they suggest the existence of two different core widths, corresponding to the p and s components, as it is expected for complete absence of interband coupling. UFPE Recife - BR Vortices states in two band superconductors uperlab The predicted vortex attraction and potential minimum should occur in a wide range of materials parameters, in contrast to the very particular case of k ~ 1 / 2-1/2 mentioned above. This minimum stabilizes unconventional stripe- and gossamer-like vortex patterns, as observed also in magnetic films, colloids, polymers, gels, etc., see Ref. [11] for a short review. To check their prediction of type 1.5 behavior, Moshchalkov et al.[1] show images of vortex arrangements obtained by decoration experiments on field cooled MgB2 and, for comparison, NbSe2, and of computer simulations at very low inductions. Field cooling r0 (1 - T/Tc) 1/2, decreases from r0 = at T = Tc when the vortices nucleate, to a value several times l(0). For MgB2, Fig. 2(a) (experiment at H = 1 Oe) and ig. 2(b) (simulation) in Ref. [1] show chains of nearly equidistant vortices, and Fig. 3(a) and Fig. 3(c) show condensation of vortices into clusters. All these features are absent in the corresponding images for NbSe2 and thus indicate that in MgB2, vortices indeed have a potential with attractive tail and minimum. In conclusion, the ideas and results of Ref. [1] are highly interesting and will certainly stimulate further investigation into the fascinating field of two component superconductivity. One should advance the theories [12] and the measurement of their input parameters, and account for the coupling terms in their solution. One should investigate the singlet-triplet mixtures of pairing states near a halfmetal–superconductor interface, and a two-band BCS-type Hamiltonian to capture the essential features in hole-doped iron-based superconductors [13]. Note that during the decoration experiments in Ref. [1] the applied field is much less than the vortex penetration field (1 N)Hc1, where Hc1 is the lower critical field, and the vortices would thus mostly leave the specimen if they were not pinned. The main challenge will be finding experimental ways to separate the effects of pinning and vortex attraction. UFPE Recife - BR Vortices states in two band superconductors uperlab Intermediate state of a type-I superconductor. The normal domains are dark. Coexistence of triangular lattice of flux tubes and of laminar domains. Tantalum disk of ticknessd = 33 μm, diameter D = 5 mm, T = 1.2 K , Ba = 34 mT. (Courtesy U. Essmann). Optical microscope. UFPE Recife - BR Vortices states in two band superconductors uperlab In conclusion, the ideas and results of Ref. [1] are highly interesting and will certainly stimulate further investigation into the fascinating field of two component superconductivity. One should advance the theories [12] and the measurement of their input parameters, and account for the coupling terms in their solution. One should investigate the singlet-triplet mixtures of pairing states near a halfmetal– superconductor interface, and a two-band BCS-type Hamiltonian to capture the essential features in hole-doped iron-based superconductors [13]. Note that during the decoration experiments in Ref. [1] the applied field is much less than the vortex penetration field (1 N)Hc1, where Hc1 is the lower critical field, and the vortices would thus mostly leave the specimen if they were not pinned. The main challenge will be finding experimental ways to separate the effects of pinning and vortex attraction. UFPE Recife - BR Vortices states in two band superconductors uperlab Type-1.5 superconductors : Multicomponent superconductor which simultaneously has several magnetic properties of a type-I and a type-II superconductors. In a type-1.5 superconductor, the vortices repel each other (as in type-II superconductors) over short distances while they attract each other (as in type-I superconductors) over long distances. (V. V. Moshchalkov, et al, PRL 102, 17001(2009). UFPE Recife - BR Vortices states in two band superconductors uperlab Schematic of the spatial distribution of the superconducting order parameter jy(x)j and the field profile B(x) for two neighboring fluxons in (top) type-I, (middle) type-II, and (bottom) type-1.5 superconductors. The bottom sketch in each panel shows |y(x)| in a color plot with darker regions indicating the smaller order parameter, and the stray field emanating from the sample surface. (Illustration: Courtesy of V. V. Moshchalkov) UFPE Recife - BR Vortices states in two band superconductors SERIOUS CRITICISM FROM: E. H. Brandt. A.Gurevich. V. G. Kogan. UFPE Recife - BR uperlab Vortices states in two band superconductors uperlab Two band superconductor - Theoretical formalism: UFPE Recife - BR Vortices states in two band superconductors uperlab Previous Results: Superconducting disks - One band superc- (1,8)-state ductor H0 /Hc2 = 0.7 B. J. Baelus L. R. E. Cabral, and F. M. Peeters, PRB, 69 (2004) 0654506. UFPE Recife - BR Vortices states in two band superconductors uperlab Cooper pair density for a two band superconductor in a mesoscopic disk, R=5ξ10 and γ=0.0; 0.02 and 0.04 respectively. UFPE Recife - BR Vortices states in two band superconductors Jofre Gutierrez, et al., unpublished UFPE Recife - BR uperlab Vortices states in states in two band superconductors N = 40 N = 60 UFPE Recife - BR N = 50 N = 100 J. Albino Aguiar, et al., to be published (2012). uperlab Iemanjá Iemanjá – Iyemanjá, Yemanjá, Yemaya, uperlab Iemoja "Iemanjá" ou Yemoja, é um orixá africano, cujo nome deriva da expressão Iorubá "Yèyé omo ejá" ("Mãe cujos filhos são peixes”) identificada no jogo do merindilogum pelos odu ejibe e ossá, representado materialmente e imaterial pelo camdoblé, através do assentamento sagrado denominado Igbá yemanja. UFPE Recife - BR Iemanjá uperlab Em Cuba, Yemayá também possui as cores azul e branca, é uma rainha do mar negra, assume o nome cristão de La Virgen de la Regla e faz parte da Santeria como Santa padroeira dos portos de Havana. UFPE Recife - BR uperlab Chico Science Francisco de Assis França, mais conhecido pela alcunha de Chico Science (Olinda, 13 de março de 1966 – Recife, 2 de fevereiro de 1997) foi um cantor e compositor olindense, um dos principais colaboradores do movimento manguebeat em meados da década de 1990. Líder da banda Chico Science & Nação Zumbi, deixou dois discos gravados: Da Lama ao Caos e Afrociberdelia, tendo sua carreira precocemente encerradapor um acidente de carro numa das vias Que ligam Olinda e Recife. Seus dois álbuns foram incluídos na lista dos 100 melhores discos da música brasileira da revista Rolling Stone, elaborada a partir de uma votação com 60 UFPE jornalistas, produtores e estudiosos de música Recife - BR Laboratory of Superconductivity and Advanced Materials Post-doctoral position available ! Contact: Prof. J. Albino. Aguiar albino@df.ufpe.br UFPE Recife - BR uperlab uperlab VII Brazilian School of Superconductivity and Workshop on Frontiers of Superconductivity and Magnetism – Materials, Mechanisms and Applications Muro Alto-PE, Brazil, 08 to 12 December 2008 X Brazilian School of Superconductivity and Workshop on Frontiers of Superconductivity and Magnetism – Materials, Mechanisms and Applications 10 -15 December, 2012 UFPE Recife - BR Porto de Galinhas – PE – Brazil uperlab uperlab AXÉ IEMANJÁ! UFPE Recife - BR PLAY - A PRAIEIRA!!! uperlab Uma cerveja antes do almoço é muito bom, p´ra gente ficar pensando melhor! A beer just before lunch is excellent to make you think better! Chico Science – Olinda, March 13, 1966. UFPE Recife - BR Recife, February 2, 1977. Financial Support UFPE Recife - BR FACA uperlab uperlab Thank you for your attention! UFPE Recife - BR AS PERSPECTIVAS • NOVOS MATERIAIS • FLUXÔNICA • ELETRÔNICA SUPERCONDUTORA • SUPERCONDUTIVIDADE TIPO - 1,5 UFPE Recife - BR uperlab AS PERSPECTIVAS IX Brazilian School of Superconductivity and Workshop on Frontiers of Superconductivity and Magnetism – Materials, Mechanisms and Applications 10 -14 December, 2012 UFPE Recife - BR Porto de Galinhas – PE – Brazil uperlab 100 Anos de Supercondutividade OBRIGADO! UFPE Recife - BR uperlab