Paracoccidioides brasiliensis
Transcription
Paracoccidioides brasiliensis
ALISSON LEONARDO MATSUO Caracterização de proteinases, identificação de proteínas associadas à parede celular diferencialmente expressas e estudo preliminar de vesículas extracelulares de Paracoccidioides brasiliensis. Tese apresentada à Universidade Federal de São Paulo – Escola Paulista de Medicina, para obtenção do Título de Doutor em Ciências São Paulo 2007 ALISSON LEONARDO MATSUO Caracterização de proteinases, identificação de proteínas associadas à parede celular diferencialmente expressas e estudo preliminar de vesículas extracelulares de Paracoccidioides brasiliensis. Orientadora: Profa. Dra. Rosana Puccia Co-orientadora: Profa. Dra. Adriana K. Carmona Tese apresentada à Universidade Federal de São Paulo – Escola Paulista de Medicina, para obtenção do Título de Doutor em Ciências São Paulo 2007 Matsuo, Alisson Leonardo Caracterização de proteinases, identificação de proteínas associadas à parede celular diferencialmente expressas e estudo preliminar de vesículas extracelulares de Paracoccidioides brasiliensis / Alisson Leonardo Matsuo – São Paulo, 2007 xii, 165 fls Tese (Doutorado) Universidade Federal de São Paulo. Escola Paulista de Medicina. Programa de Pós-Graduação em Microbiologia e Imunologia. Título em inglês: Caracterization of proteinases, identification of differentially expressed associated cell wall proteins and preliminary studies of extracellular vesicles from Paracoccidioides brasiliensis 1. Paracoccidioides brasiliensis; 2. proteinases; 3. serino-tiol proteinase; 4. Lon proteinase; 5. parede celular; 6. vesículas/exossomos Trabalho realizado na Disciplina de Biologia Celular do Departamento de Microbiologia, Imunologia e parasitologia da Universidade Federal de São Paulo – Escola Paulista de Medicina com auxílio financeiro concedido pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). "Na maioria das vezes, um pepino é somente um pepino" Freud iv Dedico este trabalho às pessoas mais importantes da minha vida... ...à minha querida esposa Leda e ao nosso filhinho Rafael, pela presença constante, momentos alegres, paciência e apoio nas horas difíceis. Quando estou “incubado” no laboratório sempre lembro de vocês, principalmente dos sorrisos e das travessuras do Rafa. Amo vocês. ...aos meus pais Francisco e Lucia pela dedicação, apoio, educação, ensinamentos, compreensão e carinho. Se hoje cheguei até aqui é porque vocês me deram este privilégio. Admiro-os muito! Obrigado por tudo. ...à toda minha família em especial ao meu sobrinho Gustavo, aos meus irmãos Cleber e Daniel, meus cunhados Claudia, Elaine, Henrique e Ieda e aos meus sogros Kiiti e Alice, por comporem o tripé de nossa família e ajudar em momentos de necessidade. Tenho certeza que são pessoas com quem sempre poderei contar. v Agradecimentos Meu primeiro agradecimento é dedicado à minha orientadora Profa. Dra. Rosana Puccia, também conhecida como Chefa, ou simplesmente Rô. Pela confiança, amizade, paciência, honestidade e principalmente pelo meu desenvolvimento científico e correção dos meus erros português. Acho que hoje já consigo escrever “um pouco” melhor. À Profa. Dra. Adriana K. Carmona, minha co-orientadora, pela sua contribuição na minha formação científica, confiança, alto astral e simpatia. Ao Prof. Dr. Igor Correia de Almeida, pela oportunidade de intercâmbio na UTEP, pelas sugestões científicas e bom humor. Ao Prof. Dr. Ivarne Tersariol, pelos ensinamentos sobre enzimologia, contribuição científica e idéias malucas. A todos os professores dos departamentos de Microbiologia, Imunologia e Parasitologia, Biofísica e Bioquímica da UNIFESP, pelos ensinamentos, equipamentos e sugestões que ajudaram na minha formação. Em especial aos professores Travassos, Elaine, Zoilo, Sérgio, Cida, Olga, Clara e Juliano, os quais admiro e são excelentes pesquisadores. Aos meu amigos de laboratório Luizão, Kátia, Luciane, Wagner, Antonio, Milene, Graziela, Ernesto, Lívia, Milca, Thiago, Tânia, Flavia e Aguinaldo. Estes são meus irmãos científicos, pessoas com quem convivi e compartilhei a maior parte do meu tempo. Por isso agradeço pelos bons momentos, ajuda na hora do desespero, piadas com ou sem a menor graça, seminários e é claro por me aturarem. vi Aos secretários Marcelo, Marcinha e Mércia, que estão sempre nos ajudando com as burocracias, são muito eficientes e sempre sabem de tudo, até a matéria da capa de jornal do dia seguinte. Aos amigos de diversos laboratórios Rodrigo, Andrey, Thaysa, Xandão, Hebeler, Geisa, Fabi, Luiz, Fizão, Bel, Ellen, Bianca, Mário, Ricardo, Simone, Júnior, Cris, Roti, Patrícia, Rafael, Júlia, Teresa, Alberto, Fernando e Izaura por tornar a nossa vida dentro de um laboratório muito mais alegre, ás vezes conversar sobre outros assuntos além de resultados de experimentos faz muito bem. A compania de vocês nestes anos com certeza foi muito importante. A todos os funcionários da disciplina de Biologia Celular, em especial à Maria, Américo, Claudeci, Claudio, Antonio e Sebastiana pela dedicação, esforço e competência. Sem vocês o “andar não anda”. Obrigado por tudo. Aos amigos da minha turma de graduação Bio 32 pelos 4 anos de convivência e troca de experiência. Espero que se tornem grandes pesquisadores para um dia eu contar para meu filho que eu tive a oportunidade de estudar com vocês. Aos amigos do colegial, do clã e da faculdade Candiru, Danylo, Okano, César, Yassumassa, Allan, Ogro, Fabrício, Bariri, Dragão, Kpone, Xarope, Ivan, Carlitos, Luciano, Zé, Emperor, Henrique, Rodrigo, Marcelo, Shyvaia, Reclamador, Truz, vii Marcinho, Vagnão e Guto pelos momentos engraçados, viagens, bebedeiras, momentos inusitados e alegria. Esses são meus amigos e com certeza contribuíram para a formação da minha pessoa, meu caráter e até mesmo influenciaram na minha personalidade. A segunda família. Às bandas Pedreiros do Apocalipse e Rockcídio das quais sou integrante. Através da música esqueço de todos os meus problemas, amarguras, tristezas e me sinto muito mais confiante para enfrentar tudo. Também gostaria de agradecer ao Palmeiras, o melhor time do mundo, pelas alegrias e títulos conquistados que me acompanham desde o nascimento. Certamente ele não anda “bem das pernas” nos últimos anos, mas tenho certeza que voltará a ganhar dezenas de títulos mundo afora. À FAPESP e CNPq pelo financiamento deste trabalho. viii LISTA DE ABREVIATURAS BSA: albumina sérica bovina ELISA: “enzyme-linked immunosorbent assay” Con-A: concanavalina A DO: densidade ótica PMSF: fluoreto de fenil-metil-sulfonil F12: meio mínimo de cultura IFN-γ: intérferon gama IL: interleucina NO: óxido nítrico PBS: tampão salino tamponado com fosfato PCM: paracoccidioidomicose ATP: 5’-trifosfato de adenosina Npys: “S-3-nitro-2-pyridinesulfenyl” Abz: ácido orto-aminobenzóico EDDnp: 2,4-dinitrofeniletilenodiamina GalMan: galactomanana HSP: “heat shock protein” pHMB: para hidroximercuriobenzoato EDTA: ácido etilenodiamino tetra-acético E-64: “4-[(2S,3S)-3-carboxyoxiran-2-ylcarbonyl-L-leucylamido(4-guanidino)butane” IPTG: isopropil-tiol-galactopiranosídeo ix LacZ: β-galactosidase min: minuto nt: nucleotídeo mRNA: RNA mensageiro PCR: reação de polimerização em cadeia SDS: dodecil sulfato de sódio SDS-PAGE: eletroforese em gel de poliacrilamida sec: segundos TBE: tampão tris-borato-EDTA TEMED: N,N,N,N´-tetrametilenodiamina UV: ultravioleta PbST: serino-tiol proteinase extracelular de P. brasiliensis x ÍNDICE LISTA DE ABREVIATURAS ix INTRODUÇÃO 1 1.1 Aspectos gerais sobre o Paracoccidioides brasiliensis 1 1.2 Paracoccidioidomicose humana 4 1.3 Parede celular, transição e virulência 10 1.4 Proteinases de P. brasiliensis 17 OBJETIVOS 29 CAPÍTULO 1: Proteinases de Paracoccidioides brasiliensis: serino-tiol 30 proteinase extracelular e Pb Lon mitocondrial. 1.1 Artigo: Modulation of the exocellular serine-thiol 32 proteinase activity of Paracoccidioides brasiliensis by neutral polysaccharides 1.2 Artigo: C-Npys (S-3-nitro-2-pyridinesulfenyl) and 34 peptide derivatives can inhibit a serine-thiol proteinase activity from Paracoccidioides brasiliensis 1.3 Artigo: The PbMDJ1 gene belongs to a conserved MDJ1/LON locus in thermodimorphic pathogenic fungi and encodes a heat shock protein that localizes to both the mitochondria and cell wall of Paracoccidioides brasiliensis xi 37 CONCLUSÕES: Capítulo 1 39 CAPÍTULO 2: Moléculas secretadas de Paracoccidioides 42 brasiliensis: proteínas associadas à parede celular diferencialmente expressas e resultados preliminares sobre vesículas extracelulares INTRODUÇÃO 43 2.1 Manuscrito: Proteomic analysis of differentially 49 expressed cell wall-associated proteins from the human pathogen Paracoccidioides brasiliensis 2.2 Moléculas secretadas de Paracoccidioides brasiliensis: 80 resultados preliminares sobre vesículas extracelulares Materiais e métodos 81 Resultados e Discussão 88 CONCLUSÕES: capítulo 2 102 REFERÊNCIAS BIBLIOGRÁFICAS 104 ANEXO 1 117 ANEXO 2 121 xii Introdução 1.1 Aspectos gerais sobre o Paracoccidioides brasiliensis Paracoccidioides brasiliensis é o fungo dimórfico térmico causador da paracoccidioidomicose (PCM) humana. A PCM é uma micose sistêmica granulomatosa que pode ser letal se não tratada adequadamente. O fungo foi originalmente descrito por Adolpho Lutz (Figura 1) em 1908, quando isolou o fungo de lesões orais e de linfonodo cervical no Instituto Biológico de São Paulo (Brasil). Observando os exames histológicos de um de seus pacientes, declarou que a ausência de esférulas com esporos no seu interior diferenciava-os de especimens característicos de coccidioidomicose, descrita previamente na Argentina por Posadas em 1892 (Posadas A., 1892). Mesmo alguns anos após a descoberta, o P. brasiliensis era comumente confundido com o fungo Coccidioides immitis, justificando seu nome, já que o prefixo para significa “similiar a”. Análises de sequências do gene do RNA ribossomal revelaram que os fungos causadores de micoses granulomatosas Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis e P. brasiliensis estão filogeneticamente relacionados e pertencem à mesma família (Bialek et al., 2000; Peterson et al., 1998). Atualmente o P. brasiliensis é classificado como Eukaryota do reino Fungi, filo Ascomycota, subfilo Pezizomicotina, classe Eurotiomycetes, ordem Onygenales, família Onygenaceae, gênero Paracoccidioides e espécie brasiliensis. 1 Figura 1. Retrato de Adolfo Lutz Em condições ambientais (25oC), o fungo cresce na fase miceliana, na qual se apresenta como hifas delgadas de 1 a 3 µm, possuindo como formas reprodutivas os aleuroconídeos, artroconídeos, artroaleuroconídeos e clamidosporos intercalares (Restrepo-Moreno, 1994). Os conídeos são unicelulares, porém quando incubados a 37oC ou alojados nos pulmões (McEwen et al., 1987) transformam-se em leveduras multinucleadas (Figura 2). As leveduras do fungo são esféricas ou ovais de 4 – 30 µm de diâmetro, com paredes refringentes, múltiplos brotamentos (Lacaz, 1994), múltiplos vacúolos, corpos lipídicos e um grande número de mitocôndrias (Kashino et al., 1987). A forma sexuada ainda não é conhecida e recentemente o P. brasiliensis foi classificado como haplóide ou aneuplóide (Almeida et al., 2006). Estimativas mostram que o genoma haploide varia entre 26 a 35 Mb, distribuído em 4 a 5 bandas cromossômicas de 2 a 10 Mb (Feitosa et al., 2000; Almeida et al., 2006). 2 Figura 2. Dimorfismo do P. brasiliensis Evidências experimentais indicam que o tatu é um reservatório natural do P. brasiliensis (revisão em Restrepo et al., 2001). O fungo foi isolado de duas espécies diferentes (Figura 3), o Dasypus novemcintus (Bagagli et al., 1998) e o Cabassou centralis (Corredor et al., 2005). Em áreas hiper-endêmicas da PCM, o fungo foi isolado em cerca de 75 a 100% dos tatus de nove bandas (Bagagli et al., 1998; 2003; Restrepo et al., 2000). Evidências experimentais confirmaram que o P. brasiliensis isolado de pacientes e tatus possuem o mesmo perfil molecular, antigênico e de virulência, sugerindo que os mesmos isolados têm a capacidade de infectar o homem e o animal (Sano et al., 1999; Hebeler-Barbosa et al., 2003). Infecções em animais domésticos e selvagens também já foram descritas (Ricci et al., 2004; Garcia et al., 1993; Grose e Tramsitt, 1965; Johnson e Lang, 1977). 3 Dasypus novemcinctus Cabassou centralis Figura 3. Espécies de tatus de onde foi isolado P. brasiliensis. Um amplo estudo de multilocus, para o qual foram comparadas seqüências de oito regiões de 5 locus diferentes em 65 isolados de P. brasiliensis provenientes de diversas áreas endêmicas da América Latina, classificou-os em 3 espécies filogeneticamente distintas, a saber S1, PS2 e PS3 (Matute et al., 2006). O grupo S1 foi composto por 38 isolados do Brasil, Peru, Venezuela, Argentina e Paraguai, para os quais foram apontadas diversas evidências de reprodução sexuada. O grupo filogenético PS2 compreendeu 6 isolados, 5 brasileiros e 1 venezuelano, e sua especiação ocorreu mais provavelmente pela incapacidade da transmissão genética com o grupo S1 do que pelo isolamento geográfico, uma vez que se situam nos mesmos países. O último grupo, PS3, constituído por 21 isolados colombianos, foi considerado uma linhagem evolucionária independente provavelmente causada pelo isolamento geográfico. 1.2 Paracoccidioidomicose humana 4 Durante as décadas de 30 e 40 houve um aumento de novos casos no Brasil de PCM, principalmente com lesões cutâneas e mucosas, quando ficou conhecida como blastomicose brasileira ou blastomicose sul-americana. Observações mais detalhadas confirmaram que a PCM não era limitada a lesões mucocutâneas e de pele, mas sim uma doença com amplo espectro de manifestações clínicas e patológicas (revisão em Lacaz, 1994). A PCM ocorre principalmente no Brasil, Argentina, Venezuela e Colômbia (Figura 4), onde é endêmica em áreas rurais, com temperaturas em torno de 18 a 25 oC, elevado índice pluviométrico (800 a 2000 mm por ano), altitude entre 50 a 1.300 metros e predomínio de florestas nativas (Bagagli et al., 1998). Também há relatos de PCM na Europa, nos Estados Unidos, África, Ásia e Oriente Médio, porém nesses casos todos os pacientes viveram por anos em áreas endêmicas da América Latina. Não há registros de casos em Belize, Nicarágua, Guiana, Guiana Francesa, Suriname, Chile ou na maioria das ilhas caribenhas (Wanke e Londero, 1994). Estima-se que cerca de 10 milhões de pessoas estejam infectadas e que a incidência anual da doença ativa em áreas endêmicas seja de 1 a 3 indivíduos para cada 100.000 habitantes (San-Blas et al., 2002). Entre 1980 e 1995, a PCM destacou-se como a 8a causa de mortalidade por doenças infecciosas e parasitárias de caráter crônico e apresentou a mais elevada taxa de morbidade entre as micoses sistêmicas no Brasil (Coutinho et al., 2002). 5 Figura 4. Regiões endêmicas da paracoccidioidomicose (retirado de Shikanai-Yasuda et al., 2006) A infecção do hospedeiro humano ocorre através da inalação de conídeos do fungo que se instalam nos pulmões, onde se transformam em leveduras que causam a infecção (McEwen et al., 1987). As lesões podem regredir com a destruição do fungo, regredir com focos de fungos quiescentes que podem causar a doença posteriormente, ou progredir imediatamente com o desenvolvimento dos sintomas da PCM. Na maior parte dos casos há uma infecção sub-clínica com cura espontânea (revisão em Lacaz, 1994), sugerindo uma predisposição genética para a progressão da doença (Brummer et al., 1993). No Brasil sabe-se que o risco de desenvolver a PCM é 4,3 vezes maior em indivíduos portadores de antígeno HLA-B40 (Lacerda et al., 1988); na Colômbia, predominam pacientes com antígenos HLA-A9 e HLA-B13 (Restrepo et al., 1983). De acordo com registros médicos, a doença ativa manifesta-se na forma aguda (juvenil ou linfática) em 5 a 10% dos casos, ou na forma crônica (tipo adulto ou 6 pulmonar) na maioria dos indivíduos. A PCM juvenil progride rapidamente, atingindo o sistema retículo endotelial de adultos jovens (baço, fígado, linfonodos e medula óssea). A PCM adulta progride lentamente, é prevalente em homens de 30 – 60 anos, e pode ser uni ou multifocal. A disseminação para outros órgãos ocorre pela via hematogênica e/ou linfática. A baixa incidência da PCM em mulheres (13 vezes menor) está possivelmente ligada com a presença do 17 β-estradiol, que é um inibidor da transformação de micélio para levedura in vitro (Clemons et al., 1989). Diferenças na evolução da PCM devem ter relação com a existência de isolados do P. brasiliensis apresentando variação no grau de virulência e de sua interação com fatores inerentes ao hospedeiro, como idade, sexo, raça, grau de nutrição e especialmente o status imunológico. Modelos experimentais de camundongos isogênicos foram selecionados quanto à susceptibilidade para infecção com P. brasiliensis isolado Pb18 (revisão em Calich et al., 1998). Em infecções intratraqueais e intraperitoniais, os animais da linhagem A/Sn foram os mais resistentes, já que apresentaram um padrão de imunidade predominante para o tipo Th-1. Camundongos B10.A, e em menor grau Balb/c, foram susceptíveis à infecção, observando-se neles uma resposta imune Th-2 orientada, onde prevalesceram altos títulos de anticorpos, imunidade celular comprometida e produção insuficiente de IFN-γ (Calich et al., 1985, 1994; Cano et al., 1995). A depressão da imunidade mediada por células está fortemente relacionada à progressão da doença (Mota et al., 1985). A defesa do organismo é mediada pela formação de granulomas compostos de células gigantes e epitelióides com a presença de polimorfonucleares e leucócitos próximos ao fungo (Franco et al., 1987). Em pacientes 7 com infecções tênues, observam-se granulomas compactos com reduzido número de fungos, enquanto em pacientes com sintomas graves, pode-se observar granulomas frouxos e um influxo celular de polimorfonucleares, macrófagos e células mononucleares com capacidade reduzida de combater o fungo (Bernard et al., 1994). Estudos realizados in vitro com macrófagos mostraram que o P. brasiliensis é capaz de se multiplicar intracelularmente, destruir o macrófago e liberar inúmeras células leveduriformes (Brummer et al., 1989). Porém macrófagos ativados com IFN-γ possuem a capacidade de inibir a replicação do fungo em 65 a 95% dos casos (Moscardi-Bacchi et al., 1994). Estudos mais recentes mostram que macrófagos ativados com IFN-γ e TNF-α são capazes de produzir óxido nítrico (NO), que pode levar à morte do fungo em concentrações ideiais (Nascimento et al., 2002). Além disso, os macrófagos e monócitos são capazes de produzir TNF-α, que é uma citocina envolvida no recrutamento e ativação de células inflamatórias e na formação do granuloma (Kindler et al., 1989). Recentemente foi demonstrado que monócitos ativados com essa citocina são capazes de liberar H2O2 e causar a destruição do fungo (Carmo et al., 2006). Os polimorfonucleares constituem outro tipo celular que tem efeito fungicida e fungistático aumentado por IFNγ e GM-CSF (Kurita et al., 2000). A hiperreatividade da imunidade humoral em pacientes com PCM ocorre principalmente nas formas disseminadas e severas. Cerca de 90% dos pacientes com sintomas clínicos possuem anticorpos específicos das classes IgG, IgM e IgA em 98, 45 e 33% dos casos, respectivamente (Biagioni et al., 1984). Pacientes com PCM apresentam ativação policlonal de células B, como ocorre normalmente em outras doenças infecciosas (Ortiz-Ortiz et al., 1980; Galvão-Castro et al., 1994; Chequer-Bou-Habib et 8 al., 1989). O papel das imunoglobulinas na PCM ainda não está totalmente esclarecido, e elas possivelmente não são relevantes para proteção nos estágios avançados da doença, quando os títulos de anticorpos contra antígenos fúngicos são elevados (Restrepo et al., 1982). Porém foi verificada uma alta disseminação do fungo em animais que produzem baixas taxas de anticorpos, indicando que a imunidade humoral estaria participando ativamente na contenção da doença (Carvalhaes et al., 1986). Também é importante ressaltar que experimentos de imunização passiva utilizando anticorpos monoclonais anti-gp70 (Mattos Grosso et al., 2003), em estágios iniciais da infeção, ou anti-gp43 (Buissa-Filho et al., manuscrito em preparação) em camundongos com a doença estabelecida, impediram quase completamente a formação de granulomas no pulmão. O tratamento da PCM é prolongado por anos de terapia. São utilizados os derivados de azol, além das sulfonamidas, e anfotericina B (Mendes et al., 1994). O primeiro derivado azólico, cetoconazol, demonstrou uma eficácia de 90% e seu mecanismo de ação está relacionado à inibição da síntese de ergosterol de membrana ao ligar-se em enzimas relacionadas ao citocromo P450, porém apresenta efeitos colaterais como anorexia, náusea, vômito e diminuição dos níveis de testosterona. Outros derivados como itraconazol ou fluconazol parecem ter uma eficácia semelhante ao cetoconazol, porém com menos adversidades. A anfotericina B foi a droga mais utilizada durante muitos anos. É um composto poliênico capaz de se ligar ao ergosterol da membrana fúngica alterando sua permeabilidade, mas atualmente só é utilizado em casos graves ou de resistência a outras drogas, porque os efeitos colaterais são muito acentuados, notadamente nos rins e fígado. As sulfonamidas foram utilizadas pela primeira vez em 1940, quando a PCM era considerada uma doença incurável. Essa classe de antibióticos 9 age como antagonista metabólico competitivo do ácido para-aminobenzóico, interfere na síntese do ácido fólico e consequentemente na produção de DNA. Seus derivados ainda são utilizados quando combinados com outras drogas por causa do baixo custo e eficácia. A cura da PCM é caracterizada pela falta de anticorpos circulantes contra antígenos específicos de P. brasiliensis. Deve-se estender a manutenção do tratamento por um ano após a negativação dos testes sorológicos e o paciente deve ser reavaliado periodicamente. A remissão e as sequelas de fibrose pulmonar são frequentes na PCM (revisão em Brummer et al., 1993). 1.3 Parede celular, transição e virulência A transição do P. brasiliensis de micélio para levedura (Figura 5) é um requerimento essencial para a ocorrência da PCM e de outras doenças causadas por fungos dimórficos (Namecek et al., 2006). A diferenciação morfológica que o fungo sofre no hospedeiro, por outro lado, é consequência de um conjunto de alterações bioquímicas e fisiológicas desencadeadas pelo aumento de temperatura, a qual estimula uma adaptação no padrão transcricional (Nunes et al., 2006) e/ou regulatório em geral de genes e proteínas. 10 Figura 5. Transição do P. brasiliensis de micélio para levedura após aumento de temperatura de incubação de 26 oC para 36 oC pelos tempos indicados (adaptado de Goldman et al., 2003). As proteínas de choque térmico (Hsps) formam uma grande classe de moléculas relacionadas à variação de temperatura, porém também podem eventualmente ser induzidas por estresse nutricional, osmótico, oxidativo e por substâncias tóxicas (revisão em Walter e Buchner, 2002). Em P. brasiliensis já foram caracterizadas algumas proteínas de choque térmico, a saber, Hsp70 (Diez et al., 2002), Hsp60 (Izacc et al., 2001), Hsp100 ou ClpB (Jesuíno et al., 2002), Mdj1 (Batista et al., 2006) e Lon (Barros e Puccia, 2001). Os eventos moleculares que podem afetar a transição são pouco conhecidos até o momento, principalmente pela falta de um sistema padronizado de transformação do fungo, que ocorreu apenas recentemente (Almeida et al., 2007). Contudo estudos abrangentes tentando detectar proteínas e genes envolvidos no dimorfismo ou relacionados à virulência estão sendo realizados na última década. Trabalhos prévios identificaram algumas proteínas (Cunha et al., 1999; Salem-Izacc et al., 1997) e genes (Silva et al., 1999; Venâncio et al., 2002) diferencialmente expressos nas duas fases do fungo. Atualmente há 2 grandes bancos de sequências expressas (ESTs) de P. 11 brasiliensis. O primeiro foi desenvolvido pelo grupo paulista liderado por Goldman e colaboradores (2003), que identificaram 4.692 genes do isolado Pb18 recém-isolado de baço de camundongo B10.A infectado intraperitonealmente. O segundo foi produzido por grupos do centro-oeste brasileiro liderados pelas pesquisadoras Maria Sueli Felipe e Célia Maria A. Soares, que detectaram 6.022 genes expressos nas fases miceliana e leveduriforme do isolado Pb01 (Felipe et al., 2003 e 2005). Uma utilização imediata das sequências identificadas de P. brasiliensis foi detectar transcritos diferencialmente expressos na transição de micélio para levedura, que é fundamental para o estabelecimento da infecção. Para tal, foram utilizadas genotecas de subtração, macro e microarray, além de comparações in silico (Marques et al., 2004; Felipe et al., 2005; Nunes et al., 2005; Ferreira et al., 2006). Numa tentativa de identificar genes envolvidos com o processo de infecção, Tavares e colaboradores (2007) estudaram a transcrição gênica de 1.152 genes selecionados após 6 horas de co-cultura do Pb01 com macrófagos peritoneais murinos. Nesse período, 90% das células estavam internalizadas ou aderidas aos fagócitos. Utilizando hibridização em microarray, verificou-se que 152 transcritos aumentaram pelo menos 2 vezes quando comparados ao controle crescido in vitro. Diversos genes relacionados ao estresse oxidativo sofreram aumento do acúmulo de mRNA, como por exemplo a superóxido dismutase 3, Hsp60 e QCR8 (subunidade do citocromo oxidase c.) Em outro estudo sobre a expressão diferencial de genes de P. brasiliensis em condições de infecção, Bailão e colaboradores (2006) analisaram duas populações de cDNA por subtração. Uma delas, proveniente de fígado de camundongos infectados, revelou que mRNAs de genes ligados à defesa celular, produção de melanina e aquisição de ferro 12 estavam aumentados. Em outra análise, o fungo foi colocado brevemente na presença de sangue humano, onde se observou que genes principalmente relacionados ao remodelamento e síntese da parede foram detectados em maior abundância. Como consequência da transformação dimórfica, um importante compartimento celular que sofre diversas modificações, das quais algumas são conhecidas, é a parede celular. A parede celular era considerada um compartimento estático e basicamente estrutural, porém hoje se sabe que é uma estrutura dinâmica composta de glicoproteínas, proteínas, lipídeos e principalmente polissacarídeos do tipo quitina e glucanas (de Groot 2005). No P. brasiliensis, grande parte das 1,3-glucanas da parede fúngica sofrem uma alteração da conformação β, na fase miceliana, para α, na levedura. Além dessa conversão, a levedura possui maior quantidade relativa de quitina (média de 43%), e menor concentração de proteínas (média de 11%), quando comparada ao micélio que contém em média de 13 e 33% respectivamente. Em ambas as formas, os lipídeos respondem por uma média de 8% e as glucanas por média de 42% da parede celular (Kanetsuna et al., 1969). Em termos glucanas, estima-se que a fase leveduriforme possui cerca de 83% de α-1,3-glucana e 17% de β-1,3-glucana, enquanto a fase miceliana contém 100% de β-1,3-glucana. As β-1,3-glucanas são receptores de dectina-1 (Brown e Gordon, 2003) e são, portanto, inflamatórias (Silva e Fazioli, 1985; Figueiredo et al., 1993). Em H. capsulatum, cepas contendo o gene que codifica a α-1,3-glucana sintase mutado ou seu RNA interferido tiveram sua virulência atenuada (Rappleye et al., 2004). Nesse fungo, foi demonstrado que a α-1,3-glucana localiza-se na camada mais externa da parede recobrindo a camada de β-1,3-glucana, o que bloqueia a ligação da dectina-1 e inibe em 5 vezes a produção de TNF-α por células fagocíticas, com a consequente 13 redução da eficácia da resposta imune (Rappley et al., 2007). No P. brasiliensis, pelo menos parte da β-1,3-glucana pode estar acessível na superfície (Diniz et al., 2004). No P. brasiliensis, além das alterações nas glucanas, foi observado um aumento significativo de 3 vezes mais quitina na fase leveduriforme que no micélio. A quitina é um importante componente estrutural da parede celular dos fungos. Em P. brasiliensis já foram identificadas 4 quitinas sintases (Niño-Vega et al., 2000). Em C. albicans existem 4 genes para quitina sintase, sendo um deles essencial (Munro et al., 2001). Mutantes de C. albicans contendo os outros 3 genes de quitina sintase deletados foram mais susceptíveis a agentes que estressam a parede celular, como por exemplo o calcofluor, e apresentaram divisão celular deficiente, especialmente na formação de um septo íntegro (Munro et al., 2007). Recentemente foi demonstrado que uma lectina de P. brasiliensis, conhecida como paracoccina, foi capaz de interagir com a quitina da parede celular. Anticorpos reativos com essa proteína foram capazes de reduzir o crescimento do fungo in vitro, que apresentou colônias menores e células menos agregadas quando comparadas ao controle. A presença destes anticorpos também alterarou o padrão da distribuição da quitina na parede celular, sugerindo que a interação da paracoccina com quitina é um evento importante na organização da parede e consequentemente no crescimento fúngico (Ganiko et al., 2007). Poucas moléculas do P. brasiliensis têm sido apontadas como fatores de virulência com alguma base experimental, a saber, a glicoproteína gp43 (Puccia et al., 1986), melanina (Gomez et al., 2001), uma serino-tiol proteinase extracelular (Carmona et al., 1995) e adesinas de 19 e 32 kDa (Gonzales et al., 2005), 30 kDa (Andreotti et al., 2005) e a gliceraldeído-3-fosfato desidrogenase (GADPH) (Barbosa et al., 2006), que 14 possuem habilidade de ligação a proteínas associadas à matriz extracelular. Ensaios utilizando células de P. brasiliensis pré-incubadas com anticorpos policlonais antiGADPH ou com GADPH recombinante inibiram a aderência e internalização do fungo por pneumócitos. A lacase é a enzima responsável pela síntese de melanina, a qual é um fator de virulência reconhecido em Cryptococcus neoformans (Kwon-Chung et al., 1982) e foi também encontrada em P. brasiliensis (Gomez et al., 2001). Estudos recentes demonstraram que células de P. brasiliensis melanizadas são 3,5 vezes menos internalizadas por macrófagos e possuem menor susceptibilidade a várias drogas antifúngicas como anfotericina B, fluconazol, cetoconazol e itraconazol (da Silva et al., 2006). A gp43 é o antígeno majoritário do fungo (Puccia e Travassos, 1991) e protetor da PCM murina (Taborda et al., 1998; Pinto et al., 2000). Além de induzir resposta imune humoral a gp43 contém epitopos que suscitam uma resposta imune celular de hipersensibilidade tardia (Rodrigues et al., 1994; Saraiva et al., 1996). Taborda et al. (1998) mostraram que camundongos imunizados com a gp43 nativa produzem uma resposta T-CD4+ do subtipo Th1 capaz de liberar IFN-α e IL-2, porém não IL-4 ou IL-5. Através de ensaios de linfoproliferação com animais imunizados com a gp43, os autores identificaram o epitopo imunodominante da resposta imune celular em um peptídeo interno de 15 aminoácidos, denominado P10. Animais imunizados com a gp43 nativa, o gene PbGP43 e o peptídeo P10 mono ou tetravalente (M10) foram protegidos contra subsequente desafio intratraqueal por leveduras virulentas do P. brasiliensis (Taborda et al., 1998 e 2003; Pinto et al., 2000), sugerindo sua utilidade como vacina. Além disso, o 15 peptídeo P10 tem utilidade terapêutica comprovada em modelo animal (Marques et al., 2006). A gp43 é capaz de modular a infecção experimental em camundongos. Estudos in vivo monstraram um aumento da infecção intratesticular de hamster quando os animais foram infectados com P. brasiliensis previamente recoberto com laminina murina (Vicentini et al., 1994; Lopes et al., 1994). Essa ligação in vivo e in vitro foi inibida com anticorpos monoclonais anti-gp43 (Gesztesi et al., 1996). Recentemente foi evidenciada a interação da gp43 com a fibronectina, um outro componente asssociado à matriz extracelular (Mendes-Giannini et al., 2006). Nosso grupo constatou um extenso polimorfismo no exon 2 do gene PbGP43 (Morais et al., 2000), principalmente entre as posições 578 e 1160. As seqüências mais polimórficas foram encontradas no Pb2, Pb3 e Pb4, as quais codificam uma proteína básica com pI em torno de 8,0. Essas seqüências são filogeneticamente distantes das demais, incluindo aquela de Pb18, o que contribuiu para a classificação desses isolados no grupo filogenético PS2 (Matute et al., 2006). Um trabalho posterior do nosso grupo investigou a virulência de isolados pertencentes a grupos genotípicos de PbGP43 distintos em camundongos B10.A pelas vias intraperitoneal, intratraqueal e endovenosa (Carvalho et al., 2005). Os camundongos infectados com Pb2, Pb3 e Pb4 sofreram uma infecção branda e regressiva, com baixo índice de mortalidade, em contraste com os demais, inclusive Pb18; Pb12 foi o mais agressivo. Em infecções posteriores com Pb3, Pb18 e Pb12 adaptados in vivo, verificou-se que Pb3 induziu um tipo de resposta imune com crescente produção de IFN-γ e predomínio de IgG2a e 2b, e IgG3 anti-gp43, ao contrário de Pb18, que induziu anti-gp43 dos tipos IgG1 e IgA, predominantemente, e 16 níveis decrescentes de IFNγ. Camundongos infectados intratraquealmente com Pb12 não produziram IFN-γ detectável (Carvalho et al., dados não publicados). 1.4 Proteinases de P. brasiliensis Enzimas proteolíticas podem desempenhar um importante papel na virulência de bactérias (Finlay et al., 1989), protozoários (McKerrow et al., 1993) e fungos patogênicos (Ogrydziak, 1993). Proteinases extracelulares de fungos saprófitas como A. niger e N. crassa são secretadas principalmente para a nutrição. Fungos patogênicos, no entanto, parecem ter adaptado funções especializadas para essas hidrolases durante a infecção, como por exemplo, desestruturar a membrana celular para facilitar a adesão e invasão do hospedeiro como demonstrado em plantas (Chaffin et al., 1998) e em insetos (Smithson et al., 1995), ou causar danos a células e moléculas do sistema imune (Salyers et al., 1994). A família das SAPs (aspartil proteinases secretadas), constituída de 10 genes de C. albicans, é a melhor caracterizada entre os fungos patogênicos. Através de estudos de diversas naturezas, demonstrou-se que as SAPs 1, 2 a 3 estão ativamente envolvidas em infecções nas mucosas, enquanto as SAPs 4, 5 e 6 são ativas especialmente nas infecções sistêmicas (revisão em Naglik et al., 2003). Todas as proteinases catalisam a hidrólise de ligações peptídicas (CO-NH) de proteínas, todavia apresentam diferentes mecanismos de ação e especificidade (Barrett et al., 1991). As proteinases são classificadas com base no seu mecanismo catalítico e não pela estrutura tridimensional, especificidade por substratos ou função fisiológica. De acordo com a natureza dos aminoácidos do sítio catalítico as proteinases pedem ser divididas em 5 classes: serino, aspartil, cisteíno, treonino e metalo proteinases, além de 9 17 proteinases com mecanismo catalítico desconhecido (Rawlings et al., 2006). Os inibidores específicos mais comuns utilizados para classificar as proteases são: PMSF (fluoreto de fenilmetanosulfonila) para as serino, pepstatina para as aspartil, E-64 (transepoxisuccinil-leucilamido(4-guanidino)butano) para as cisteíno e EDTA (ácido etilenodiaminotetracético) para as metalo proteinases. As serino proteinases são as mais abundantes, e na maioria dos casos seu mecanismo catalítico caracteriza-se pela presença da tríade catalítica no sítio ativo da enzima, composto por histidina, serina e ácido aspártico. O grupamento –OH da serina age como nucleófilo e ataca o grupo carbonila na ligação peptídica do substrato. O par de elétrons do nitrogênio da histidina faz a captação do hidrogênio do grupo –OH da serina (Figura 6). Em conjunto, o grupo carboxila do ácido aspártico forma pontes de hidrogênio com a histidina, fazendo o par de elétrons muito mais eletronegativo para que ocorra a hidrólise da ligação peptídica (Hedstrom, 2002). Dentro da classe das serino proteinases há 68 famílias, das quais a quimotripsina (S1) e a subtilisina (S8) são as mais numerosas (Rawlings et al., 2006). 18 Figura 6. Mecanismo catalítico geral das serino proteinases (retirado de http://employees.csbsju.edu/hjakubowski/classes/ch331/catalysis/serprotease3.gif) As proteinases da família da quimotripsina são endopeptidases subdivididas em tripsina-like, quimotripsina-like e elastase-like, as quais clivam os substratos após os seguintes aminoácidos na posição P1 (nomenclatura de Schechter e Berger, 1967): arginina/lisina, hidrofóbicos e alanina, respectivamente. A maioria dessas proteinases possui um peptídeo sinal para exportação e uma região N-terminal que necessita ser clivada para a enzima ficar ativa. Inúmeras funções biológicas de proteinases já foram identificadas, como por exemplo, digestão de alimentos, resposta imune mediada por IgA 19 (enzimas como a triptase e quimase presentes em mastócitos) e até mesmo na sinalização dorso-ventral de drosófila (Rawlings et al., 2006). Pensava-se que as subtilisinas fariam parte da família da quimotripsina, porém análises de sequência (Smith et al., 1966) e estruturais (Wright et al., 1969) mostraram diversas diferenças. A maior parte das subtilisinas são endopeptidades com pH ótimo neutro ou alcalino, termoestáveis e não-específicas. A clivagem ocorre após um aminoácido hidrofóbico, sendo a caseína comumente utilizada como substrato em ensaios de clivagem (Rawlings et al., 2006). Em fungos e bactérias, grande parte das subtilisinas estão envolvidas com nutrição, porém já foram descritos membros dessa família implicados em virulência, por exemplo a cspA de Streptococcus (Harris et al., 2003). Dentro das subtilisinas encontra-se um grupo com uma característica peculiar, especificamente a susceptibilidade à inibição por mercuriais. Nesse caso, as moléculas de Hg ligam-se a um resíduo de cisteína próximo ao sítio catalítico, como é o caso da proteinase K (Muller e Saenger, 1993) e da cerevisina (Kominami et al., 1981). Foi demonstrado por cristalografia de raio-x que a ligação do mercúrio ao grupamento tiol da cisteína ocasiona uma mudança estrutural no anel imidazólico da histidina do sítio catalítico (como indicado na Figura 7) provocando alta inibição da atividade hidrolítica (Muller e Sanger, 1993). 20 Figura 7. Mudança estrutural no anel imidazólico da histidina no sítio catalítico da proteinase K provocado por mercuriais (Muller e Sanger, 1993). Em P. brasiliensis, foram detectadas proteinases citosólicas descritas nas duas fases do fungo (San-Blas et al., 1998). Verificou-se que a atividade enzimática de extratos totais foi maior na fase miceliana, aparentemente com preponderância de serino proteinases devido à alta inibição por PMSF e pH ótimo alcalino. Todavia a preparação enzimática também foi parcialmente inibida por iodocetamida, EDTA e ortofenantrolina, indicando a presença de cisteíno e metalo proteinases. Em 2005, Parente e colaboradores analisaram o transcriptoma de P. brasiliensis quanto à presença de genes de proteinases. Foram detectadas 15 proteinases ATP-independentes, 12 ATPdependentes, 22 subunidades do proteassomo e 4 proteinases relacionadas com a desubiquitinação. As proteinases ATP-independentes subdividiram-se em 5,6% de aspartil proteinases, 11,3% cisteíno proteinases, 22,6% de metaloproteinases, 18,8% de serino proteinases e 41,5% de subunidades do proteossomo. Apenas uma protease da família S8 das subtilinas de P. brasiliensis foi sequenciada e depositada no GenBank 21 (AAP83193) pelo grupo da Professora Célia M. A. Soares. Essa proteinase chama a atenção porque seu mRNA foi diferencialmente expresso em leveduras expostas ao soro e em células isoladas de fígado infectado (Bailão et al., 2006). Não parece, no entanto, corresponder à PbST (Matsuo et al., 2007, artigo 2). Uma serino-tiol proteinase extracelular de P. brasiliensis tem sido caracterizada em nosso laboratório em colaboração com o Departamento de Biofísica da UNIFESP, especialmente com a Professora Adriana K. Carmona. Pensava-se que a atividade enzimática em sobrenadante de cultura de P. brasiliensis crescido na fase leveduriforme era proveniente da gp43 (Puccia et al., 1991), a qual é a proteína secretada mais abundante. Porém cromatografias de afinidade em coluna contendo monoclonal anti-gp43 revelaram que a atividade não era retida na coluna (Carmona et al., 1995; Puccia et al., 1999). Puccia e colaboradores (1998) observaram que a atividade proteolítica estava diretamente ligada ao aumento do pH extracelular da cultura, onde o pico de atividade ocorreu em pH 7.7 com o fungo crescendo em fase logarítmica. Para caracterizar essa atividade, Carmona e colaboradores (1995) testaram diversos substratos peptídicos sintéticos com supresssão intramolecular de fluorescência do tipo Abz/EDDnp (ácido orto-aminobenzóico e 2,4-dinitrofeniletilenodiamina) (Chagas et al., 1992). O substrato originalmente clivado foi Abz-MKRLTL-EDDnp, para o qual houve uma clivagem única entre os aminoácidos leucina e treonina. A partir deste, outros foram sintetizados para determinar a importância de P2 e P3 (nomenclatura de Schechter e Berger, 1967). O melhor substrato foi Abz-MKALTL-EDDnp, para o qual a troca da arginina pela alanina aumentou a atividade catalítica 5 vezes, com pH ótimo em torno de 9. A classificação da proteinase foi realizada através de inibidores especificificos: houve inibição irreversível 22 por PMSF (serino proteinases) e inibição reversível utilizando agentes redutores por pHMB e acetato de mercúrio. Outras classes de inibidores como EDTA (metalo), pepstatina (aspartil) e E-64 (cisteíno) não tiveram efeito. Por isso a atividade enzimática foi atribuída a uma serino proteinase contendo um grupo tiol livre (Carmona et al., 1995), a qual denominamos PbST. Para estimar a massa molecular da proteinase, foram realizados ensaios de zimograma com gelatina e “overlay” com gel de agarose contendo o substrato sintético Abz-MKALTLQ-EDDnp. Em ambos os casos foi observada uma atividade hidrolítica difusa em torno de 43 a 69 kDa, a qual foi inibida totalmente por PMSF e parcialmente por p-HMB, provavelmente pela presença de um agente redutor no tampão de amostra (Puccia et al., 1999). A importância desta proteinase deve-se à clivagem seletiva de substratos proteicos. Enquanto a maioria das subtilisinas é promíscua, a PbST possui a capacidade de clivar componentes asssociados à matriz extracelular como laminina, fibronectina, colágeno tipo IV e proteoglicanos. Porém não foi detectada atividade sobre colágeno tipo I, fibrinogênio bovino, imunoglobulina G humana, albumina bovina, gp43 e nem mesmo caseína (Puccia et al., 1998). Por esse motivo especula-se que a PbST possa ser importante na disseminação do P. brasiliensis para outros órgãos durante a infecção. A purificação da PbST ativa tem sido impedida por ocorrer em baixas concentrações protéicas e ter tendência à autólise e à agregação com componentes polissacarídicos de alto peso molecular (Carmona et al., 1995). Esse componente de alta massa molecular refere-se à peptidogalactomana cuja estrutura foi analisada em nosso laboratório (Puccia et al., 1986). Por muito tempo a atividade proteolítica foi concentrada 23 e fracionada a partir de filtrado de cultura saturado com sulfato de amônio, por interação hidrofóbica em coluna de Phenyl Superose (Amersham Pharmacia), porém a banda da protease nunca foi detectada com exatidão. Também tentou-se obter informações sobre sequências internas da PbST pois são de fundamental importância para a aplicação de uma estratégia direta de síntese de oligonucleotídeos e obtenção de produtos de PCR correspondentes ao seu gene. Previamente no laboratório foram obtidas informações sobre a seqüência interna de aminoácidos e do N-terminal de um componente de 55 kDa, supostamente a PbST (Puccia et al., 1999), enriquecida por cromatografia em concanavalina A. O perfil peptídico e a comparação com bancos de dados indicou a presença de sequências homólogas à catalase, além de peptídeos da gp43 e concanavalina A (dados não publicados). Ou seja, as condições de purificação e eletroforese utilizadas propiciaram a formação, em preparações concentradas, de um agregado de catalase, gp43 e da própria concanavalina A, migrando em 55 kDa. A atividade proteolítica estava incluída nesse agregado ou co-migrou com ele, porém a proteinase estava aparentemente em quantidade insuficiente para ser detectada. Na tentativa de identificar um fragmento do gene da PbST por PCR utilizando oligonucleotídeos degenerados para domínios conservados dos sítios catalíticos de subtilisinas, foi clonado e sequenciado ao acaso um gene homólogo ao da proteinase Lon (Barros e Puccia, 2001). O gene em P. brasiliensis, denominado PbLON, é constituído de 3.369 pb com 2 introns na porção 3’, e origina uma proteína predita de 1.063 aminoácidos que contem um sinal de importe mitocondrial na região N-terminal. Possui identidade com os genes LON de S. cerevisiae (73%), Homo sapiens (62%) e E. coli (56%). O gene completo foi clonado a partir de um fragmento genômico SmaI de 24 aproximadamente 6,5 kb, o qual contem adicionalmente um fragmento 5’ do gene homólogo ao MDJ1 de S. cerevisiae em direção oposta. Os genes PbLON e PbMDJ1 compartilham a região 5’ intergênica, na qual Batista e colaboradores (2006) mapearam 3 regiões putativas para elementos de choque térmico e um domínio ARE ligante de AP-1, que é um fator de transcrição envolvido na indução de genes relacionados ao estresse oxidativo em fungos (Wu et al., 1994; Grant et al., 1996). Em P. brasiliensis, a proteinase PbLon está localizada exclusivamente na mitocôndria (Batista et al., 2006, artigo 3), onde as proteínas estão sendo constantemente atacadas por radicais livres devido ao metabolismo aeróbico, drogas ou condições adversas do hospedeiro. Estudos recentes demonstraram que a transcrição do gene PbLON aumentou 5 vezes em condições de estresse oxidativo e provavelmente está relacionada com a homeostase mitocondrial promovendo a degradação seletiva de proteínas danificadas (Batista et al., 2007). A proteinase Lon está inserida em uma família própria (S16) constituída por endopeptidases ATP-dependentes. A primeira Lon foi descoberta em E. coli por Swamy e Goldberg (1981) e denominada proteinase La. Está presente em todos os tipos de organismos e o sítio catalítico é formado por uma serina e uma lisina (Besche e Zwickl 2004; Botos et al., 2004). Em E. coli, Lon é formada por 6 unidades idênticas de aproximadamente 87 kDa e em S. cerevisiae é formada por 7 unidades de 117 kDa com localização intramitocondrial (Stahlberg et al., 1999). Cada unidade possui 4 domínios (Figura 8): na região N-terminal há o sítio para importe mitocondrial; na região central ocorre a ligação e hidrólise do ATP (Fischer et al., 1994) e a discriminação do substrato pelo domínio SSD (Smith et al., 1999); na região C-terminal localiza-se o sítio catalítico 25 (Amerik et al., 1991). A proteinase é expressa constitutivamente, mas sua expressão pode aumentar após choque térmico (Van Dyck et al., 1994). Figura 8. Desenho esquemático dos “motifs” da proteinase Lon A principal função da Lon é degradar proteínas de meia-vida curta que estão envolvidas em diversos processos biológicos e proteínas anormais que agregariam na ausência da proteinase ou do sistema de chaperoninas DnaK (revisão em Tsilibaris et al., 2006). O mecanismo pelo qual Lon reconhece os substratos ainda não é totalmente entendido. Apesar de reconhecer preferencialmente certos amino ácidos ou domínios (Griffith et al., 2004; Ishii et al., 2001), nenhum “motif” consenso ou combinações de “motifs” foram identificados. A discriminação de substratos parece ocorrer através da estrutura, ou seja, proteínas alvo de meia-vida curta e anormais não estariam em sua conformação globular (Jubete et al., 1996; Van Melderen et al., 1996). Em eucariotos, a deleção ou desregulação do gene LON leva a defeitos celulares. S. cerevisiae mutante para o gene apresenta deficiência quando crescido em condições aeróbicas e não cresce em meio de cultura com fonte de carbono não-fermentável; apresenta inclusões elétrondensas na matriz mitocondrial devido ao acúmulo de proteínas mitocondriais e deleções no mtDNA (Van Dyck et al., 1999). Em células de mamíferos a proteinase degrada proteínas oxidadas e está implicada na disfunção mitocondrial relativa à idade (Bota et al., 2002). Além disso, reduções nos níveis de Lon prejudicam a divisão celular e levam à 26 necrose, sendo que a depleção total leva à apoptose (Bota et al., 2005). A proteinase também pode estar envolvida com regulação gênica (Langer e Neupert, 1996; Fu et al., 1997) e virulência em bactéria (Robertson et al., 2000; Boddicker e Jones et al., 2004). A PbMdj1 faz parte da família das proteínas com domínio J, que compartilham identidade entre 35 a 59%. Em E. coli, a molécula típica possui um domínio J constituído de 70 aminoácidos, seguido de um segmento ligante de zinco rico em glicina e uma região C-terminal pouco conservada (Szabo et al., 1996). As proteínas J são subdivididas em 3 tipos: o tipo I contém todos os domínios conservados em E. coli, o tipo II não contém a região ligadora de zinco, e o tipo III possui apenas um domínio J em qualquer região da proteína (Fliss et al., 1999). Seu papel principal é regular a atividade das Hsp70 cognatas, localizadas em diversos compartimentos celulares (Revisão em Walsh et al., 2004). Em S. cerevisiae, Mdj1 é a única DnaJ mitocondrial do tipo I e é essencial na biogênese da mitocôndria funcional (Rowley et al., 1994). O sistema Ssc1 (Hsp70 mitocondrial) / Mdj1 (Hsp 40 mitocondrial) está envolvido na manutenção da configuração correta das proteínas mitocondriais ou da solubilidade das proteínas desnaturadas que serão degradadas pela proteinase Lon e outras proteinases ATPdependentes (Figura 9) (Wagner et al., 1994; Savel’ev et al., 1998). 27 Figura 9. Rede de chaperones da matriz mitocôndrial de S. cerevisiae (retirado de Voos et al., 2002) 28 Objetivos • Em relação à proteinase serino-tiol extracelular de P. brasiliensis (PbST), os objetivos foram purificar e identificar a proteína, estudar sua modulação com açúcares e estudar a inibição por compostos (2,4-dinitrophenyl)ethylenediamine (Npys) acoplados com substratos peptídicos. • Em relação à PbLon, objetivamos fazer a expressão heteróloga, purificação da proteína PbLon recombinante, obtenção de anticorpos e localização celular. Um estudo sobre a especificidade da enzima com substratos peptídicos foi previsto se a expressão heteróloga resultasse em proteinase ativa. • Objetivos posteriores do projeto incluíram: a) a caracterização preliminar de vesículas extracelulares do fungo, as quais poderiam conter a PbST. b) a análise proteômica da expressão diferencial de proteínas associadas à parede celular. Uma introdução específica e um racional para esses objetivos estão apresentados no capítulo 2 desta tese. 29 Capítulo 1 Proteinases de Paracoccidioides brasiliensis: serino-tiol extracelular (PbST) e PbLon mitocondrial 30 Proteinase serino-tiol extracelular de P. brasiliensis (PbST) 31 Artigo 1: Modulation of the exocellular serine-thiol proteinase activity of Paracoccidioides brasiliensis by neutral polysaccharides. Alisson L. Matsuo, Ivarne L. Tersariol, Silvia I. Kobata, Luiz R. Travassos, Adriana K. Carmona e Rosana Puccia Microbes and Infection 2006, Vol 8 (1) 84-91 32 Racional A serino-tiol proteinase de P. brasiliensis (PbST) tem sido caracterizada em nosso laboratório em colaboração com o Departamento de Biofísica da UNIFESP, como detalhado na Introdução geral. Desde as primeiras tentativas de purificação da enzima a partir de sobrenadantes de cultura (Carmona et al., 1995), ficou nítido que a proteinase agrega-se com componentes glicosilados secretados pelo fungo. Por outro lado, a atividade proteolítica é retida em coluna de concanavalina A, possivelmente carregada por componentes glicosilados com os quais se associa. No trabalho apresentado a seguir, foi estudado o efeito modulatório de polissacarídeos sobre a PbST. Primeiramente tentouse observar um efeito por glicosaminoglicanos, visto que este composto está contido na matriz extracelular e tem a capacidade de modular cisteíno proteinases, porém o resultado foi negativo. Todavia quando se testou dextrana, na verdade como controle, foi observada uma intensa modulação da afinidade da enzima pelo substrato, o que ocorreu posteriormente também com açúcares neutros derivados de uma preparação de mannana de S. cerevisiae e de galactomanana do sobrenadante de P. brasiliensis. Os dados de modulação de atividade proteolítica com açúcares neutros são originais e têm uma possível relevância no controle da atividade da PbST in vivo. 33 Microbes and Infection 8 (2006) 84–91 www.elsevier.com/locate/micinf Original article Modulation of the exocellular serine-thiol proteinase activity of Paracoccidioides brasiliensis by neutral polysaccharides Alisson L. Matsuo a,1, Ivarne I.L. Tersariol b,1, Silvia I. Kobata c, Luiz R. Travassos a, Adriana K. Carmona c, Rosana Puccia a,* a Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Biologia Celular, UNIFESP, Rua Botucatu, 862, oitavo andar, São Paulo, SP 04023-062, Brazil b Centro Interdisciplinar de Investigação Bioquímica da Universidade de Mogi das Cruzes, Mogi das Cruzes, SP, Brazil c Departamento de Biofísica da Universidade Federal de São Paulo, São Paulo, SP, Brazil Received 21 March 2005; accepted 31 May 2005 Available online 08 August 2005 Abstract Our group characterized an exocellular serine-thiol proteinase activity in the yeast phase of Paracoccidioides brasiliensis (PbST), a dimorphic human pathogen. The fungal proteinase is able to cleave in vitro, at pH 7.4, proteins associated with the basal membrane, such as human laminin and fibronectin, type IV collagen and proteoglycans. In the present study, we investigated the influence of glycosaminoglycans (GAGs) and neutral polysaccharides upon the serine-thiol proteinase activity by means of kinetic analysis monitored with fluorescence resonance energy transfer (FRET) peptides using the substrate Abz-MKALTLQ-EDDnp (Abz = ortho-aminobenzoic acid; EDDnp = ethylenediaminedinitrophenyl). Only neutral polysaccharides exhibited patterns of interaction with the proteinase, while sulfated GAGs had no effect. Incubation with neutral polysaccharides resulted in a powerful modulation of the enzyme activity, intensely changing the enzyme kinetic parameters of catalysis and affinity for the substrate. Commercial dextran at the highest concentration of 20 µM increased 6.8-fold the enzyme affinity for the substrate. In the presence of 8 µM of purified baker’s yeast mannan, the apparent KM of the enzyme increased about 5.5-fold, reflecting a significant inhibition in binding to the peptide substrate. When an exocellular galactomannan (GalMan) complex isolated from P. brasiliensis was added to the reaction mixture at 400 nM, the apparent KM and VMAX decreased about threefold. Moreover, GalMan was able to protect the enzymatic activity at high temperatures, but it caused no effect on the optimum cleavage pH. Our results show a novel modulation mechanism in P. brasiliensis, where a fungal polysaccharide-rich component can stabilize a serine-thiol proteolytic activity, which is possibly involved in fungal dissemination. © 2005 Elsevier SAS. All rights reserved. Keywords: Paracoccidioides brasiliensis; Serine-thiol activity; Neutral polysaccharides; Modulation 1. Introduction Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the dimorphic fungus Paracoccidioides brasilien- Abbreviations: Abz, ortho-aminobenzoic acid; AUF, arbitrary units of fluorescence; EDDnp, ethylenediaminedinitrophenyl; FPLC, fast performance liquid chromatography; GAGs, glycosaminoglycans; GalMan, galactomannan; PbST, exocellular serine-thiol activity from P. brasiliensis; PCM, paracoccidioidomycosis; p-HMB, sodium 7-hydroxymercuribenzoate; PMSF, phenyl-methylsulfonyl fluoride. * Corresponding author. Tel.: +55 11 5084 2991; fax: +55 11 5571 5877. E-mail address: rosana@ecb.epm.br (R. Puccia). 1 Alisson L. Matsuo and Ivarne L.S. Tersariol contributed equally to this work. 1286-4579/$ - see front matter © 2005 Elsevier SAS. All rights reserved. doi:10.1016/j.micinf.2005.05.021 sis. Acute and sub-acute PCM affect both sexes, progress rapidly, and the fungi disseminate through the lymphatic system. Chronic forms are the most common; they predominantly affect male adults, starting as a lung granulomatous infection and eventually involving other organs [1]. The disease is restricted to Latin America, where P. brasiliensis has also been isolated from the soil and from organs of nine-banded armadillos [2]. The fungus penetrates the human body through inhalation of propagules, which can only establish infection once they undergo phase transition to yeasts in the pulmonary alveolar epithelium [3,4]. The disease can be fatal if not treated adequately. We have previously characterized a subtilisin-like, SHdependent serine proteinase activity in culture fluids of P. bra- A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 siliensis grown in the yeast phase [5]. The enzyme is able to hydrolyze fluorescence resonance energy transfer (FRET) peptides flanked by ortho-aminobenzoic acid (Abz) and ethylenediaminedinitrophenyl (EDDnp), homologous to MKRLTL. Cleavage occurs on the Leu–Thr bond, at an optimum alkaline pH, and is irreversibly inhibited by PMSF, mercuric acetate and p-HMB (sodium 7-hydroxymercuribenzoate). Hydrolysis of synthetic peptides and proteins involves an enzyme of high specific activity, which is however unstable and lost after several chromatographic steps aiming at its purification. Additionally, it tends to aggregate with glycosylated extracellular fungal components [5]. Early chromatographic analysis of culture filtrates showed that the enzyme activity was eluted in a single peak from an anionexchange Resource Q column followed by gel filtration [5]. The active fractions, however, yielded several bands in SDSPAGE stained gels. We then observed that chromatography of culture fluid supernatants pretreated with (NH4)2SO4 at 40% saturation in Phenyl Superose resulted in concentration of the proteolytic activity in two eluted fractions [6]. When these fractions were analyzed by electrophoresis and in situ hydrolysis of both gelatin (zymogram) and Abz-MKALTLQEDDnp incorporated into buffered agarose overlays, the serine-thiol exocellular activity appeared as a diffuse and heterogeneous band in SDS-PAGE gels. It localized to a region between 69 and 43 kDa, but could not be correlated with any silver-stained component. The most relevant characteristic of the serine-thiol proteinase activity of P. brasiliensis is its capacity of selectively cleaving, in vitro, laminin, fibronectin, type IV collagen and proteoglycans [7]. Since these components are associated with the basal membrane, such hydrolytic activity could play a significant role in tissue invasion by the fungus. There are a few reports on the modulation by complex and negatively charged carbohydrates, more specifically glycosaminoglycans (GAGs), of the activity of proteolytic enzymes [8]. In the present work we describe a novel type of proteinase regulation by neutral polysaccharides using the Abz-MKALTLQEDDnp substrate. 2. Materials and methods 2.1. Fractionation of the serine-thiol proteinase activity P. brasiliensis strain 339 (originally provided by Dr. Angela Restrepo-Moreno, Medellin, Colombia) was cultivated with shaking at 36 °C in a modified YPD medium (0.5% of dialyzed, < 10 kDa, Bacto-yeast extract, 0.5% casein peptone and 1.5% glucose, pH 6.5). The culture supernatant was collected by paper filtration at the peak of the proteinase activity against Abz-MKALTLQ-EDDnp, when the culture fluid pH was about 7.0 [7]. Ammonium sulfate was gradually added to 40% saturation (1.7 M) and the supernatant centrifuged (16,300 × g, 30 min) to discard eventual precipitates. Aliquots of the supernatant containing ammonium sulfate (50 ml) 85 were fractionated by fast performance liquid chromatography (FPLC) (FPLC System - Pharmacia) in a Phenyl Superose HR 5/5 (Pharmacia/LKB) column equilibrated with 1.7 M ammonium sulfate in 50 mM sodium phosphate buffer, pH 7.0 [6] and eluted with 50 mM sodium phosphate into 0.5 mlfractions. The proteolytic activity was measured (10 µlaliquots) against Abz-MKALTLQ-EDDnp, as described previously [5]. The fractions were analyzed in silver-stained SDSPAGE gels [9,10]. 2.2. Purification of yeast mannan The procedure of Gorin and Spencer [11] described in detail by Travassos et al. [12] was used. Briefly, Saccharomyces cerevisiae cultures were autoclaved for 30 min. Supernatants were precipitated with 3 volumes of ethanol after adding 1% of sodium acetate. The precipitate and the mass of cells were suspended in 20% aqueous KOH and extracted for 2 h at 100 °C in a water bath. The suspension was neutralized with glacial acetic acid and the supernatant was evaporated to 100–150 ml, then precipitated with ethanol. The solubilized precipitate was precipitated with Fehling’s solution at 4 °C. The copper complexes were treated with Amberlite 1R-120 for 1 h at room temperature and the solution pooled with distilled water washings of the beads were precipitated with 4 ml of ethanol with drops of HCl. The final mannan preparation contained more than 98% carbohydrate with less than 1% protein, and no contamination with alkali-soluble glucan. Yeast mannan obtained by hot alkali extraction and Fehling precipitation has a molecular size of 20–60 kDa, averaging 40 kDa [13]. Milder methods used to prepare mannoproteins provide complexes of 133 kDa. Molecular sizes are determined in filtration columns calibrated with dextran of different sizes. Our calculations to determine the kinetic parameters used the average mannan size of 40 kDa. 2.3. Purification of the P. brasiliensis galactomannan complex Phenyl Superose fractions containing the GalMan complex previously described [14] were pooled and fractionated by FPLC (ÄKTA purifier – Amersham Pharmacia Biotech) through a reverse-phase Sephasil Protein C4 (Amersham Biosciences) equilibrated with 0.1% trifluoracetic acid (TFA) and eluted with 30 ml of a 0–90% acetonitrile gradient in 0.1% TFA into 0.5-ml fractions. Fifty-one fractions were dried in a speed-vacuum and resuspended in 100 µl of 50 mM Tris, pH 8.0, for SDS-PAGE analysis. The GalMan complex was predominantly eluted in fraction 14, as shown by the presence of a broad and heavily silver-stained component migrating slowly in SDS-PAGE gels [14]. This procedure was repeated several times, and the GalMan was pooled, lyophilized and further purified by FPLC (ÄKTA purifier) in a Superose 12 (Amersham Biosciences) column equilibrated and eluted with 50 mM Tris–HCl, 0.15 M NaCl, pH 7.0. Total carbohydrate contents of the peak fractions were quantified using the phenyl-sulfuric acid method described by Dubois et al. [15]. 86 A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 2.4. Proteolytic assays The effect of polysaccharides on the exocellular serinethiol proteinase activity of P. brasiliensis against AbzMKALTLQ-EDDnp was determined in a thermostatic Hitachi F-2000 spectrofluorometer (kex = 320 nm; kem 420 nm). Kinetic parameters were determined by measuring the initial rate of hydrolysis at various substrate concentrations in the presence or absence of different polysaccharide concentrations. We tested the effect of GAGs (heparin, heparan sufate and chondroitin) and neutral polysaccharides (dextran, yeast mannan and P. brasiliensis GalMan complexes). The reactions were carried out at 37 °C in 10 mM Tris–HCl (pH 8.0). Progress of the reaction was continuously monitored by fluorescence record of the released product. Analysis of the data obtained was performed by nonlinear regression using the GraFit 3.0 computer program (Erithacus Software Ltd.). The modulatory effect of dextran and GalMan complexes on the proteolytic activity of the enzyme was calculated following Eq. (1), where S is Abz-MKALTLQ-EDDnp, NP is the polysaccharide, KS is the substrate dissociation constant, KN is the apparent polysaccharide dissociation constant, ␣ is the parameter of KS perturbation, and b is the parameter of VMAX (kcat) perturbation. v= Ks 冉 冉 Vmáx × [S] 1+ 1+ [NP ] Kn 冊 b × [NP ] ␣ × Kn 冉 冊 冉 1+ + [S] 1+ [NP ] ␣ × Kn 冊 冊 (Eq. 1) b × [NP ] ␣ × Kn Since the interaction between mannan and PbST resulted in a powerful inhibition of the enzyme activity, the modulatory effect of yeast mannan on the proteolytic activity of the enzyme was analyzed by nonlinear regression according to Eq. (2) and by linear regression according to Eq. (4), where K′ is the observed substrate dissociation constant in the presence of mannan and KMan is the true mannan-protease dissociation constant; M is mannan and ␣ is the cooperative parameter for binding of the second mannan to enzyme. v= Vmax · [S] 冉 KS 1 + 冉 2 · [M ] K′ = KS · 1 + 1 K′ = 1 2 ␣ · KMan + K Man 2 · [M] KMan [M ] ␣ · K M an 2 + · [M ] + 2 [M] ␣ · KMan 冊 or in the presence of 300 nM of GalMan at 50 °C in 10 mM Tris–HCl buffer (pH 8.0). The reactions were carried out in the presence of 0.24 µM of Abz-MKALTLQ-EDDnp, which is 10-fold below the KS value. The progress of the reaction was continuously monitored by fluorescence measurement of the released product. The obtained exponential decay curves were best fitted to the first-order relationship shown in Eq. (5), P = P∞共 1 − e -kobs.t 兲 (Eq. 5) where P and P∞ are the product concentrations at a given time and at infinite time, respectively; kobs is the observed first-order rate of temperature-induced enzyme inactivation. 2.6. Protein and carbohydrate contents Protein contents were estimated by a modification of the method described by Bradford [16], using bovine serum albumin as standard. Total carbohydrates were quantified by the method of Dubois et al. [15], using mannan as standard. 3. Results We studied the influence of polysaccharides upon the endopeptidase activity of a fungal serine-thiol proteinase using the Abz-MKALTLQ-EDDnp substrate. When culture supernatants of P. brasiliensis B-339 were fractionated in a Phenyl Superose column, the peptidase activity capable of hydrolyzing Abz-MKALTLQ-EDDnp was predominantly eluted in fraction 3. This fraction showed few protein/glycoprotein silver-stained bands, as seen in the profile of Fig. 1, which (Eq. 2) + [S] 冊 2 (Eq. 3) (Eq. 4) [M ] 2.5. Effect of GalMan on the temperature-induced inactivation of the PbST activity The kinetics of thermal inactivation of the PbST activity over Abz-MKALTLQ-EDDnp was evaluated in the absence Fig. 1. Serine-thiol proteinase preparation. Silver-stained 10% SDS-PAGE gel showing the fractionation of a P. brasiliensis culture supernatant (sup, in 40% ammonium sulfate) through a Phenyl Superose column eluted with 50 mM sodium phosphate, pH 7.0. The hydrolytic activity of each fraction (3–6) was measured in a 10 µl-aliquot against Abz-MKALTLQ-EDDnp and the results are shown as arbitrary units of fluorescence (AUF). Fraction 3 of this experiment, which contained the activity peak, was used as enzyme source (PbST). The position of molecular mass markers (in kDa) is shown on the left. A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 also shows that most of the supernatant components were eluted in fractions 4 and 5. Therefore, we used fraction 3 as enzyme source (PbST) in the experiments shown below. Enzymatic cleavage of Abz-MKALTLQ-EDDnp was due to the exocellular serine-thiol proteinase activity of P. brasiliensis contained in fraction 3, since the hydrolysis was specifically inhibited by p-HMB and PMSF, as previously reported [5]. It is of note that total purification of the active proteinase has never been achieved due to aggregation to other fungal components and/or loss of enzymatic activity after several chromatographic steps. Negatively charged GAGs, namely heparin, chondroitin and heparan sulfate, did not affect the rate of AbzMKALTLQ-EDDnp hydrolysis when added at a concentration range of 0–100 µM (not shown). In addition, PbST did not bind to heparin-Sepharose (not shown), suggesting that the enzyme does not interact with GAGs. Surprisingly, in the presence of dextran (Sigma, average molecular mass of 100–200 kDa, where Mr = 100 kDa was used in the calculations), a neutral polysaccharide initially used as control, there was a significant alteration in the kinetic parameters of PbST (Fig. 2). The VMAX value for the hydrolysis of Abz-MKALTLQ-EDDnp decreased significantly as a function of dextran concentration (Fig. 2A). Dextran also caused a marked increase in the enzyme affinity for this substrate, evidenced by a sharp decrease in the KS value, which Fig. 2. Modulatory effect of dextran on the Abz-MKALTLQ-EDDnp hydrolysis by PbST. The apparent VMAX (VMAX app), recorded as AUF per min (A), and the apparent affinity constants (Ks app) (B) were calculated for the reactions carried out in the presence of increasing amounts of dextran. 87 dropped from 2.4 ± 0.2 to 0.35 ± 0.04 µM at the highest dextran concentration of 20 µM (Fig. 2B). The effect of dextran on PbST can be described as a hyperbolic mixed type inhibition according to Eq. (1) (Section 2), where the efficiency of substrate hydrolysis was estimated by changing either the KM (parameter ␣) or the VMAX (parameter b). These data were fitted to the equation using nonlinear regression, and the values for the constants were determined. The results revealed that dextran bound to free PbST (E) with a dissociation constant of KDX = 2.7 ± 0.3 µM, whereas the parameter obtained for binding to the enzyme–substrate complex (ES) was ␣KDX = 0.35 ± 0.04 µM (parameter ␣ = 0.13 ± 0.01). The data also showed that the interaction between dextran and the serine-thiol proteinase resulted in a 3.6-fold decrease in the enzyme VMAX (b = 0.28 ± 0.03) and in an almost 2.2-fold increase in its catalytic activity (b/␣ = 2.2). We then tested the effect of purified baker’s yeast mannan, since mannan structures are commonly found in fungal glycoconjugates. Interestingly, the interaction between mannan and PbST resulted in a powerful inhibition of the enzyme activity. The effect of mannan upon PbST can be described as a parabolic competitive type inhibition according to Eqs. (2)–(4) of Section 2. The data show that two molecules of mannan bound to the enzyme and that the first inhibitor changed the intrinsic dissociation constant of the vacant one by factor ␣. The influence of mannan upon the substrate dissociation constant can be observed in Fig. 3A. Basically, the mannan–proteinase interaction did not affect the catalytic constant of Abz-MKALTLQ-EDDnp; the presence of mannan excluded substrate binding at the active site, suggesting that the enzyme is capable of binding two molecules of mannan competitive inhibitor in a parabolic manner. It was observed that binding of the first mannan induced structural changes in the enzyme that facilitated binding of the second mannan inhibitor (Fig. 3B). These data were fitted to Eq. (2) using nonlinear regression, and the values for the constants were determined. The results show that the first molecule of mannan bound to free PbST (E) with a dissociation constant of KMan = 11.4 ± 0.9 µM. The second mannan molecule bound to the mannan–proteinase complex (EI) with a dissociation constant of ␣KMan = 2.1 ± 0.2 µM (␣ parameter = 0.18 ± 0.02). Therefore, binding of two molecules of mannan to the enzyme was not random and independent, but occurred in a cooperative manner: binding of the first molecule of mannan (KMan = 11.4 ± 0.9 µM) resulted in a 5.5fold increase in the affinity of the enzyme for ligation of the second mannan (␣KMan = 2.1 ± 0.2 µM). It is noteworthy that high performance liquid chromatography (HPLC) and mass spectrometry analyses previously showed that Leu–Thr is the only peptide bond cleaved in AbzMKALTLQ-EDDnp by PbST [5]. We presently observed by HPLC analysis that the presence of either mannan or dextran did not change the cleavage pattern of this peptide by the proteinase activity (not shown). The modulatory effect of dextran and mannan upon the serine-thiol proteinase activity of P. brasiliensis prompted us 88 A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 Fig. 3. Inhibitory effect of baker’s yeast mannan on the Abz-MKALTLQEDDnp hydrolysis by PbST. The apparent affinity constants (Ks app) (A) and 1/K′ were calculated for the reactions carried out in the presence of increasing amounts of dextran. to investigate the effect of an endogenous fungal galactomannan (GalMan) complex originally described by Puccia et al. [14]. This component is commonly found in the supernatant fluids of P. brasiliensis cultures and migrates slowly in SDS- PAGE gels, forming a diffuse smear due to its high degree of glycosylation (see fractions 4 and 5, Fig. 1). In order to purify this component, we pooled Phenyl Superose fractions 4 and 5 and fractionated them in a Sephasil C4 reversed-phase column. After this kind of chromatography (not shown), the largest peak (fraction 14) concentrated a slow-migrating, broad component corresponding to the GalMan complex (see profile in “F14”, Fig. 4B). We then submitted a pool of fractions 14 from independent chromatographic runs to gel filtration in a Superose 12 column (Fig. 4A) in order to isolate GalMan from a minor 50-kDa component (Fig. 4B). The GalMan complex was mostly excluded in the void volume, which corresponded to fractions 8–11, as verified by calibration of the column with dextran blue (Sigma) and dextran T70 (Pharmacia). GalMan was eluted from Superose 12 in fraction 10, which also contained the total carbohydrate peak (0.375 mg ml–1). This fraction was therefore used in the subsequent experiments, at the estimated average molecular mass of 100 kDa, which was the value used to calculate the kinetic parameters. Fig. 5A shows that the P. brasiliensis GalMan complex caused a marked increase in the PbST affinity for AbzMKALTLQ-EDDnp, which was evidenced by the decrease in the Ks value. The presence of GalMan caused a threefold decrease in the enzyme KM (␣ = 0.33 ± 0.03), i.e. from 2.4 ± 0.2 to 0.78 ± 0.08 µM. On the other hand, the interaction of GalMan with PbST resulted in a 3.1-fold decrease in the enzyme VMAX (b = 0.32 ± 0.03), as seen in Fig. 5B. These data were fitted to Eq. (1) (Section 2), and the values for the constants were determined using nonlinear regression. The results showed that GalMan bound to free PbST (E) with a high affinity dissociation constant of KGM = 94 ± 7 nM, while binding to the enzyme–substrate complex (ES) resulted in an ␣KGM = 30 ± 2 nM (␣ = 0.33 ± 0.03). The effect of GalMan on the optimum pH of PbST was analyzed by monitoring the enzyme-catalyzed hydrolysis of the fluorogenic substrate Abz-MKALTLQ-EDDnp. As shown Fig. 4. Purification of P. brasiliensis GalMan. A, Elution profile (A215) of a gel filtration chromatography in Superose 12 (FPLC) of a pool of fractions 14 (F14, 4B) recovered from a Sephasil Protein C4 reverse-phase column (details in the text). B, Silver-stained 10% SDS-PAGE profile of the peak fractions seen in A (8–12). Total carbohydrate (Tcarb) corresponding to each fraction is indicated in mg ml–1. The position of molecular mass markers (in kDa) is shown on the left. Fraction 10 was used in the subsequent experiments. A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 89 Fig. 7. Protective effect of P. brasiliensis GalMan (300 nM) on the AbzMKALTLQ-EDDnp hydrolysis by PbST at 50 °C. 4. Discussion Fig. 5. Effect of P. brasiliensis GalMan complex on the Abz-MKALTLQEDDnp hydrolysis by PbST. The apparent VMAX (VMAX app), recorded as AUF per min (A), and the apparent affinity constants (Ks app) (B) were calculated for the reactions carried out in the presence of increasing amounts of dextran. in Fig. 6, when the enzyme was assayed in the presence of 300 nM GalMan, no significant effect on the enzyme pH response was observed. On the other hand, the presence of GalMan caused a threefold decrease in the first-order rate of the serine-thiol proteinase inactivation at 50 °C, since the kobs value dropped from 11.1 ± 0.6 to 3.6 ± 0.2 ms−1 (Fig. 7). Fig. 6. Lack of effect of P. brasiliensis GalMan preparation (300 nM) on the Abz-MKALTLQ-EDDnp hydrolysis by PbST at different pH values. The results of the present work show the modulation by neutral polysaccharides of a fungal endopeptidase activity in vitro. Binding of neutral polysaccharides to the extracellular serine-thiol proteinase (PbST) secreted by the human pathogen P. brasiliensis [5] changed its kinetic parameters of hydrolysis of the fluorogenic substrate Abz-MKALTLQEDDnp. We found two different effects: commercial dextran and an endogenous galactomannan (GalMan) complex markedly increased the enzyme affinity for the substrate, while baker’s yeast mannan inhibited the PbST activity. The GalMan component did not affect the optimum pH of the enzyme, whereas the presence of mannan or dextran did not change the enzyme cleavage point of the substrate Abz-MKALTLQEDDnp (L/T), suggesting that the interaction with these polysaccharides does not alter the enzyme specificity. Any effect on the enzyme–carbohydrate interaction caused by contaminants present in the enzyme preparation would be irrelevant due to the range of carbohydrate concentrations used in the reactions. Previous unpublished results from our group suggested a possible protective role of the GalMan complex on the PbST activity. A concanavalin A-bound preparation of the enzyme, which also co-purified GalMan and a 55-kDa glycoprotein, seemed to be less labile than the active fractions obtained after anion-exchange and gel filtration chromatography [5]. The 55-kDa glycoprotein was later sequenced and found to be homologous to catalases (unpublished results). We therefore empirically associated stability of PbST with either GalMan or catalase, or with both. Our present data show that the P. brasiliensis GalMan component indeed protects the peptidase activity of PbST at high temperatures. At 37 °C, GalMan modulated the enzyme at the nanomolar range (KGM = 94 nM and aKGM = 30 nM), preserving its catalytic activity (b/␣ = 1.0) by increasing affinity (threefold) for the substrate, but decreasing the catalysis velocity (3.1-fold). Dextran affected the PbST activity similarly, however at the µM concentration range (KDX = 2.7 µM) and with an increase in the catalytic activity (b/␣ = 2.2). The GalMan component was previously characterized among other concanavalin A-eluted components of the super- 90 A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 natant fluids of P. brasiliensis yeast phase cultures [14]. Further analysis using a chemically defined medium to grow the yeast phase rendered a carbohydrate rich (88%) exocellular component containing two types of residues: a-Manp and b-Galf (unpublished results). Nuclear magnetic resonance (NMR) studies showed that the polysaccharide has an a-1,6linked mannopyranan main chain and a-1,2/a-1,3-linked Manp side chains with terminal nonreducing units of a-Manp and b-Galf (50% of the side chains), (1,3), (1,6), and (1,4)linked to mannopyranosyl units [17]. Structural differences in the P. brasiliensis GalMan and baker’s yeast mannan might explain the opposite, inhibitory effect on enzyme activity caused by the latter. Baker’s yeast mannan is composed solely of mannopyranosyl units both in the backbone and in the side chains, which contain up to four residues linked either a-1,2 or a-1,3. The size of the chains can vary with the glycoprotein: high mannose short chains bear 8–14 mannose residues, while longer chains will carry 20–200 residues [18]. The mannan preparation used in the present work was extracted from whole cells of S. cerevisisae and was therefore rather heterogeneous. We have previously observed that the serine-thiol proteinase activity secreted by the human pathogen P. brasiliensis is able to cleave tumor and cartilage decorin, aggrecan and versican. In the present work we observed that heparin, heparan sulfate and chondroitin do not interact with this proteinase. On the other hand, there is accumulating data on the interference of highly sulfated GAGs, especially heparin and heparinlike, in the activity of various classes of proteinases (reviewed in [8]). They include papain [19], cathepsin B [20], cathepsin G [21], neutrophil elastase [22], chymase [23], collagenolytic activity of cathepsins [24,25] and tryptase [26]. The mechanisms involved in modulation of the protease activities by GAGs have been attributed to their ability to a) change protein conformation upon binding, which leads to a change in the catalytic activity or to a decreased rate of inhibition by natural inhibitors, b) protect against pH inactivation or c) expose binding regions in the target proteins (reviewed in [8]). On the other hand, electrostatic interactions are probably essential but not sufficient to govern binding specificity of GAGs with proteinases and its consequences on their activity: the glycosidic linkage, type of saccharide and molecular weight also determine the fine specificities of the interaction [25,27]. The protection of proteins against dehydration and denaturation has been achieved in several instances through the interaction with carbohydrates. A notorious example is that of neutral disaccharides, mainly sucrose and trehalose. In aqueous solution the major mechanisms may involve watertrehalose H-bond replacement, protein coating by a trapped water layer and inhibition of conformational fluctuations [28]. A study on the trypsin interaction with trehalose showed that protein preservation was directly related to the number of hydrogen bonds formed [29]. Several sugars are able to prevent protein unfolding but its functional inactivation depends on the nature of the sugar [30]. Dextran, for instance, fails to inhibit dehydration-induced lysozime unfolding because it does not H-bond adequately to the protein [31]. Seemingly, the interaction of carbohydrates with enzymes can protect the integrity of protein structure even in adverse conditions of heat shock, dehydration and presence of chaotropic agents, but also it may modulate their activity by restricting conformational states directly related with the catalytic reaction. In the present work we have examined the modulation by neutral polysaccharides of a fungal protease. At first hand, we would expect H-bonding as the generalized interaction between carbohydrate and protein to be quantitatively different while using dextran, yeast mannan and galactomannan. They could either stimulate or inhibit protease activity, or even have no effect. In principle, specific recognition of sugar units by a lectin type interaction was not foreseen for the serinethiol protease. In the case of mannan, there are several mammalian lectins and a mannan binding protein (MBL), which are involved in the host innate defense mechanisms (reviewed in [32,33]). The specificity of carbohydrate recognition of MBL relies on the identity of the monosaccharide (mannose), and on the fine structure and length (pattern) of the oligosaccharide side chains. The serine-thiol proteinase interacts with polysaccharides although there is no evidence for a lectin-like recognition. They could form H-bonding with the enzyme varying quantitatively and even involving different sites according to their structure and hydration. In the case of the galactomannan, we could speculate that the mechanism of secretion of the serinethiol proteinase in P. brasiliensis and its cellular trafficking may depend on the fungal polysaccharide for presentation at the cell surface and release into the medium. Before and after secretion, the PbST and GalMan could aggregate for a more stable conformation allowing the enzyme to increase its affinity for the substrate. A threefold decrease in VMAX would be important to prevent rapid autolysis until the protease found the specific substrate. In consequence, the enzyme could degrade components of the membrane more successfully, leading to a more efficient fungal dissemination. Acknowledgments Research and fellowships were financed by FAPESP, PRONEX/CNPq and CNPq. The peptide substrate AbzMKALTLQ-EDDnp used in this work was produced at the Department of Biophysics at UNIFESP and kindly provided by Dr. Maria Aparecida Juliano. References [1] [2] M. Franco, M.T. Peracoli, A. Soares, R. Montenegro, R.P. Mendes, D.A. Meira, Host–parasite relationship in paracoccidioidomycosis, Curr. Top. Med. Mycol. 5 (1993) 115–149. A. Restrepo, J.G. McEwen, E. Castañeda, The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med. Mycol. 39 (2001) 233–241. A.L. Matsuo et al. / Microbes and Infection 8 (2006) 84–91 [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] J.G. McEwen, V. Bedoya, M.M. Patino, M.E. Salazar, A. Restrepo, Experimental murine paracoccidiodomycosis induced by the inhalation of conidia, J. Med. Vet. Mycol. 25 (1987) 165–175. G. San Blas, G. Nino-Vega, T. Iturriaga, Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics, Med. Mycol. 40 (2002) 225–242. A.K. Carmona, R. Puccia, M.C. Oliveira, E.G. Rodrigues, L. Juliano, L.R. Travassos, Characterization of an exocellular serine-thiol proteinase activity in Paracoccidioides brasiliensis, Biochem. J. 309 (1995) 209–214. R. Puccia, M.A. Juliano, L. Juliano, L.R. Travassos, A.K. Carmona, Detection of the basement membrane-degrading proteolytic activity of Paracoccidioides brasiliensis after SDS-PAGE using agarose overlays containing Abz-MKALTLQ-EDDnp, Braz. J. Med. Biol. Res. 32 (1999) 645–649. R. Puccia, A.K. Carmona, J.L. Gesztesi, L. Juliano, L.R. Travassos, Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleavage of components associated with the basement membrane, Med. Mycol. 36 (1998) 345–348. I.L. Tersariol, D.C. Pimenta, J.R. Chagas, P.C. Almeida, Proteinase activity regulation by glycosaminoglycans, Braz. J. Med. Biol. Res. 35 (2002) 135–144. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685. W. Ansorge, Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate, J. Biochem. Biophys. Methods 11 (1985) 13–20. P.A. Gorin, J.F.T. Spencer, Proton magnetic resonance spectroscopy. An aid in identification and chemo-taxonomy of yeasts, Adv. Appl. Microb. 13 (1970) 25–89. L.R. Travassos, P.A. Gorin, K.O. Lloyd, Comparison of the rhamnomannans from the human pathogen Sporothrix schenckii with those from the Ceratocystis species, Infect. Immun. 8 (1973) 685–693. T. Nakajima, C.E. Ballou, Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation, J. Biol. Chem. 249 (1974) 7679–7684. R. Puccia, S. Schenkman, P.A. Gorin, L.R. Travassos, Exocellular components of Paracoccidioides brasiliensis: identification of a specific antigen, Infect. Immun. 53 (1986) 199–206. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 131–137. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 254. L.R. Travassos, C.P. Taborda, L.K. Iwai, E. Cunha Neto, R. Puccia, in: J.E. Domer, G.S. Kobayashi (Eds.), Human Fungal Pathogens, Springer-Verlag Berlin, Heidelberg, 2004, pp. 279–296. M.A. Kukuruzinska, M.L. Bergh, B.J. Jackson, Protein glycosylation in yeast, Annu. Rev. Biochem. 56 (1987) 915–944. 91 [19] P.C. Almeida, I.L. Nantes, J.R. Chagas, C.C. Rizzi, A. Faljoni-Alario, E. Carmona, L. Juliano, H.B. Nader, I.L. Tersariol, Cysteine proteinase activity regulation. A possible role of heparin and heparin-like glycosaminoglycans, Biol. Chem. 276 (2001) 944–951. [20] J. Ermolieff, J. Duranton, M. Petitou, J.G. Bieth, Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation, Biochem. J. 330 (1998) 1369–1374. [21] B. Faller, M. Cadene, J.G. Bieth, Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin, Biochemistry 32 (1993) 9230–9235. [22] L. Lindstedt, M. Lee, P.T. Kovanen, Demonstration of a two-step reaction mechanism for the inhibition of heparin-bound neutrophil elastase by alpha 1-proteinase inhibitor, Atherosclerosis 155 (2001) 87–97. [23] Z. Li, W.S. Hou, D. Bromme, Chymase bound to heparin is resistant to its natural inhibitors and capable of proteolyzing high density lipoproteins in aortic intimal fluid, Biochemistry 39 (2000) 529–536. [24] Z. Li, Y. Yasuda, W. Li, M. Bogyo, N. Katz, R.E. Gordon, G.B. Fields, D. Bromme, Collagenolytic activity of cathepsin K is specifically modulated by cartilage-resident chondroitin sulfates, J. Biol. Chem. 279 (2004) 5470–5479. [25] J. Hallgren, S. Lindahl, G. Pejler, Regulation of collagenase activities of human cathepsins by glycosaminoglycans, J. Mol. Biol. 345 (2005) 129–139. [26] D. Ledoux, D. Merciris, D. Barritault, J.P. Caruelle, Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase, FEBS Lett. 537 (2003) 23–29. [27] D. Ledoux, D. Merciris, D. Barritault, J.P. Caruelle, Heparin-like dextran derivatives as well as glycosaminoglycans inhibit the enzymatic activity of human cathepsin G, FEBS Lett. 537 (2003) 23–29. [28] R.D. Lins, C.S. Pereira, P.H. Hunenberger, Trehalose–protein interaction in aqueous solution, Proteins 55 (2004) 177–186. [29] E.C. Lopez-Diez, S. Bone, The interaction of trypsin with trehalose: an investigation of protein preservation mechanisms, Biochim. Biophys. Acta 1673 (2004) 139–148. [30] M. Sola-Penna, A. Ferreira-Pereira, A.P. Lemos, J.R. MeyerFernandes, Carbohydrate protection of enzyme structure and function against guanidinium chloride treatment depends on the nature of carbohydrate and enzyme, Eur. J. Biochem. 248 (1997) 24–29. [31] S.D. Allison, B. Chang, T.W. Randolph, J.F. Carpenter, Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding, Arch. Biochem. Biophys. 365 (1999) 289–298. [32] J.S. Presanis, M. Kojima, R.B. Sim, Biochemistry and genetics of mannan-binding lectin (MBL), Biochem. Soc. Trans. 31 (2003) 748– 752. [33] J.K. van de Wetering, L.M. van Golde, J.J. Batenburg, Collectins: players of the innate immune system, Eur. J. Biochem. 271 (2004) 1229–1249. Artigo 2: C-Npys (S-3-nitro-2-pyridinesulfenyl) and peptide derivatives can inhibit a serine-thiol proteinase activity from Paracoccidioides brasiliensis. Alisson L. Matsuo, Adriana K. Carmona, Luiz S. Silva, Carlos E. Cunha, Ernesto S. Nakayasu, Igor C. Almeida, Maria A. Juliano e Rosana Puccia Biochemical and Biophysical Research Communications 2007, Vol 355 (4) 1000-1005 34 Racional Diversas proteinases extracelulares de microorganismos patogênicos estão relacionadas com invasão e disseminação pela degradação de componentes da matriz extracelular. A importância no estudo da proteinase PbST de P. brasiliensis deve-se principalmente à sua seletividade para proteínas associadas à matriz extracelular. Determinar inibidores específicos constituiu-se em uma ferramenta importante para o estudo de proteinases e também para uso terapêutico. Nesse sentido, a inibição da PbST por compostos mercuriais levou-nos a testar o poder inibitório do composto C(Npys) acoplado com o peptídeo MKRLTL, que é substrato da enzima. C(Npys) foi inicialmente usado como protetor na síntese de peptídeos e posteriormente como inibidor de cisteíno proteinases, pois tem a capacidade de reagir com grupos tiois livres. O trabalho que se segue mostra que notadamente o composto Bzl-C(Npys)KRLTL-NH2 apresentou uma elevada capacidade inibitória da PbST, a qual foi completamente revertida com ditiotreitol. O inibidor não foi tóxico em cultura de células, oferecendo uma alternativa de inibição in vivo, notadamente se a especificidade para PbST for comprovada. 35 Biochemical and Biophysical Research Communications 355 (2007) 1000–1005 www.elsevier.com/locate/ybbrc C-Npys (S-3-nitro-2-pyridinesulfenyl) and peptide derivatives can inhibit a serine-thiol proteinase activity from Paracoccidioides brasiliensis Alisson L. Matsuo a, Adriana K. Carmona b, Luiz S. Silva a, Carlos E.L. Cunha b, Ernesto S. Nakayasu c, Igor C. Almeida c, Maria A. Juliano b, Rosana Puccia a,* a Department of Microbiology, Immunology and Parasitology, Cell Biology Division, Federal University of São Paulo, São Paulo, SP 04023-062, Brazil b Department of Biophysics, Federal University of São Paulo, São Paulo, SP 04044-062, Brazil c Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA Received 30 January 2007 Available online 23 February 2007 Abstract The inhibitory capacity of C-Npys (S-[3-nitro-2-pyridinesulfenyl]) derivatives over thiol-containing serine proteases has never been tested. In the present work we used an extracellular serine-thiol proteinase activity from the fungal pathogen Paracoccidioides brasiliensis (PbST) to describe a potent inhibitory capacity of Bzl-C(Npys)KRLTL-NH2 and Bzl-MKRLTLC(Npys)-NH2. The assays were performed with PbST enriched upon affinity chromatography in a p-aminobenzamidine (pABA)-Sepharose column. Although PbST can cleave the fluorescence resonance energy transfer peptide Abz-MKRLTL-EDDnp between L–T, the C(Npys) derivatives were not substrates nor were they toxic in a cell detachment assay, allowing therapeutic use. The best inhibitor was Bzl-C(Npys)KRLTL-NH2 (Ki = 16 nM), suggesting that the peptide sequence promoted a favorable interaction, especially when C(Npys) was placed at a further position from the L–T bond, at the N-terminus. Inhibition was completely reverted with dithioerythritol, indicating that it was due to the reactivity of the C(Npys) moiety with a free SH– group. 2007 Elsevier Inc. All rights reserved. Keywords: Paracoccidioides brasiliensis; Serine-thiol proteinase; Npys Extracellular proteinases can facilitate the process of invasion and dissemination of microorganisms through the human tissues by degrading extracellular-associated proteins [1]. Our group has previously characterized an Abbreviations: Abz, ortho-aminobenzoic acid; AUF, arbitrary units of fluorescence; Bzl, benzoyl; Boc, tert-butyloxycarbonyl; C(Npys), S-(3nitro-2-pyridinesulfenyl); E-64, (L-trans-expoxysuccinyl-leucylamido[4guanidino butane]); EDDnp, N-(2,4-dinitrophenyl)ethylenediamine; FRET, fluorescence resonance energy transfer; pABA, p-aminobenzamidine; PbST, exocellular serine-thiol activity from Paracoccidioides brasiliensis; PCM, paracoccidioidomycosis; p-HMB, sodium 7-hydroxymercuribenzoate; PMSF, phenylmethylsulfonyl fluoride. * Corresponding author. Present address: Disciplina de Biologia Celular, UNIFESP, Rua Botucatu, 862, oitavo andar, São Paulo, SP 04023-062, Brazil. Fax: +55 11 5571 5877. E-mail address: rosana@ecb.epm.br (R. Puccia). 0006-291X/$ - see front matter 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2007.02.070 extracellular subtilisin-like serine proteinase activity in the yeast phase of the human pathogen Paracoccidioides brasiliensis [2]. This activity is able to selectively degrade, in vitro, murine laminin, human fibronectin, type IV-collagen, and proteoglycans, while common proteins like bovine serum albumin (BSA) or casein are not cleavable substrates [3]. The proteinase is able to hydrolyze fluorescence resonance energy (FRET) peptides homologous to MKRLTL, which are flanked by Abz (ortho-aminobenzoic acid) and EDDnp (N-[2,4-dinitrophenyl]ethylenediamine). Cleavage occurs between the Leu–Thr bond at an optimum alkaline pH and is inhibited by PMSF, mercuric acetate, and p-HMB (sodium 7-hydroxymercuribenzoate), but not by E-64 [2]. Therefore, the enzymatic activity has been classified as a thiol-containing subtilisin-like serine proteinase (PbST, for P. brasiliensis serine-thiol proteinase) A.L. Matsuo et al. / Biochemical and Biophysical Research Communications 355 (2007) 1000–1005 belonging to the group of proteinase K. In addition, we have recently described a novel type of regulation of the PbST activity against Abz-MKALTLQ-EDDnp by neutral polysaccharides, including a fungal extracellular galactomannan, which might help stabilize the enzyme [4]. Paracoccidioides brasiliensis is a dimorphic fungus that causes paracoccidioidomycosis (PCM), a potentially lethal systemic mycosis with multiple clinical forms that is prevalent in South America [5]. The fungus grows in the infective mycelial phase at environmental temperatures below 26 C and in the yeast pathogenic phase at body temperatures of about 37 C. PCM is a granulomatous mycosis that starts in the lungs and tends to disseminate rapidly through the lymphatic system in juvenile (acute and subacute) forms. In adult (chronic) forms, active disease affects especially the lungs, however dissemination to the cutaneous, mucocutaneous tissues or other organs is likely to occur through the blood and lymphatic route. In this context, PbST is a potential virulence factor that could contribute to fungal spread to surrounding and/or distant tissues. The S-(3-nitro-2-pyridinesulfenyl) group—C(Npys)— has originally been used for protection in peptide synthesis [6] and later demonstrated to be effective in the design and synthesis of thiol proteinase irreversible inhibitors [7]. These compounds have been found to be highly specific to cysteine proteinases due to their capacity of selectively reacting with free thiol groups to form unsymmetrical disulfide bonds [8] and their inability to inhibit serine or acid proteinases [7]. A variety of cysteine proteinase inhibitors have been developed such as diazomethyl ketones, halomethyl ketones, and epoxides [9]. However, they are strong electrophilic reagents and may alkylate non-targeted enzymes and other biomolecules in vivo [10], preventing any therapeutic use. The C(Npys) compounds represent an alternative to overcome this problem, considering that they promote the formation of disulfide bonds without non-specific alkylation, but still keep the ability of being specific inhibitors. The inhibitory capacity of C(Npys) derivatives over thiol-containing subtilisins has never been tested. In the present work, we used PbST to describe a potent inhibitory capacity of two peptides derived from MKRLTL coupled with the C(Npys) group. Materials and methods Isolation of the serino-thiol proteinase activity. Culture supernatants containing PbST activity against Abz-MKALTLQ-EDDnp were obtained from P. brasiliensis B-339 as previously described [3,4] and buffered to a final concentration of 50 mM Tris–HCl, pH 8.0, containing 1.0 M NaCl, which did not alter the initial proteolytic activity. Aliquots (40 ml) were chromatographed, using a peristaltic pump, in an affinity column of p-aminomethylbenzamidine (pABA)-Sepharose (Pharmacia/ LKB) previously equilibrated in the same buffer. After a washing step with 10 volumes of the same buffer, bound compounds were eluted with 50 mM glycine, pH 3.0, into 1.0 mL fractions immediately neutralized 1001 with Tris–HCl. The fractions were analyzed for proteolytic activity against Abz-MKALTLQ-EDDnp, as described below, and against fibronectin (FN, 2 lg) as described by Puccia et al. [3]. Activity was assayed in 50 mM Tris–HCl, pH 8.0. Fibronectin was purified from sera donated from healthy individuals by chromatography in gelatinSepharose (Amersham Biosciences, GE Healthcare), as described [11]. Protein contents were visualized in Coomassie blue and/or silver-stained SDS–PAGE gels [12]. Peptide synthesis. The FRET substrate Abz-MKALTLQ-EDDnp was synthesized using the solid phase synthesis method [13] according to the Fmoc procedure. An automated bench-top simultaneous multiple solidphase peptide synthesizer (PSSM 8 system; Shimadzu) was used in the synthesis. The inhibitor peptides Bzl-MKRLTLC(Npys)-NH2 and BzlC(Npys)KRLTL-NH2 were prepared by the solid phase methodology using Boc-amino acids according to the general procedure described previously [14]. All the peptides were purified by semi-preparative h.p.l.c. using an Econosil C-18 column. The molecular mass and purity were checked by amino acid analysis and by mass spectrometry using a matrix assisted laser-desorption ionization-time-of-flight-mass spectrometer (MALDI-TOF-MS) TOFSpec E instrument (Micromass, Manchester, Waters, UK). Enzymatic assays. The proteolytic activity of PbST against AbzMKALTLQ-EDDnp was determined at 37 C in 50 mM Tris–HCl, pH 8.0, in a Hitachi F-2000 spectrofluorometer (excitation = 320 nm; emission = 420 nm), as described previously [2]. The effect of Boc-C(Npys), BzlMKRLTLC(Npys)-NH2 and Bzl-C(Npys)KRLTL-NH2 in the enzymatic activity was determined using the same procedure, after 5 min of pre-incubation with the enzyme preparation. Kinetic parameters were determined by measuring the initial rate of hydrolysis at various inhibitor concentrations and the residual activity was evaluated. Fluorescence emission was continuously measured and inhibition constant values (Ki) were obtained using the GraFit 3.0 computer program (Erithacus Software Ltd.). Cell detachment assays. LLC-MK2 cells were expanded overnight in 24-well culture plates (2 · 104 cells/mL/well) at 37 C, in a 5% CO2 chamber. The cells were maintained in DMEM (Dulbecco’s modified Eagle’s medium, Gibco) containing 0.37% NaHCO3 and 10% FBS. The plastic-attached cells were washed five times with 0.5 mL of phosphatebuffered saline (PBS), then incubated for 5, 10, 15, 20, 30, 45 or 60 min with 200 lL of PBS/0.05 M EDTA containing 10 lL of PbST preparation (fraction 4, Fig. 1) previously inactivated or not by incubation with C(Npy) inhibitors for 10 min at 37 C. Controls were assayed in the absence of enzyme. Classical inhibitors were used to characterize the activity at the following excess concentrations: 2 mM PMSF, 1 mM pHMB, 0.13 mM E-64, and 13 lM pepstatin. The tests were performed in the presence of EDTA, which inhibits metallo proteinases. Cells were harvested and counted in a Neubauer chamber using Trypan blue staining for viability. The experiments were carried out in triplicates and statistical analyses were performed using the one-tailed distribution Student’s t-test. In-gel protein digestion and LC–MS/MS analysis. Proteins fractionated by SDS–PAGE were silver-stained using the Vorum method [15]. In-gel protein digestion was performed as described [16]. Resulting peptides were recovered from the gel and desalted in a Poros R2-50 (Applied Biosystems) zip-tip, dried in a vacuum centrifuge, dissolved in 30 lL of 0.1% formic acid (FA), and subjected (1 lL) to liquid chromatography-mass spectrometry (LC–MS) analysis. LC was performed in a PepMap reversed-phase column (15 cm · 75 lm, 3-lm C18, LC Packings, Dionex) coupled to an Ultimate (LC Packings, Dionex) nanoHPLC. Bound peptides were eluted with 5–42.5% acetonitrile/0.1% FA over 30 min and directly analyzed in a Q-tof 1 (Micromass, Waters) mass spectrometer. Spectra in positive-ion mode were collected in the 400–1800 m/z range, and each peptide was fragmented (MS/MS) for 3 s in the 50–2050 m/z range. MS data were converted into peak lists (PKL format) and analyzed by the Phenyx (GeneBio) and Mascot (Matrix Science) softwares through the NCBInr and P. brasiliensis protein and nucleotide sequences from GenBank. Peptides with no match in these databases were subjected to de novo sequencing using the MassLynx v4.0 software (Waters). 0 10 81 75 20 0 0 (AUF/min) 0 A.L. Matsuo et al. / Biochemical and Biophysical Research Communications 355 (2007) 1000–1005 60 1002 In FT 2 3 4 5 6 73 47 29 200 FN 0 5’ 10’ 15’ 30’ 200 Fig. 1. Isolation of PbST by chromatography in a pABA-Sepharose column. Upper panel: silver-stained 10% SDS–PAGE gel showing the profile of culture supernatant (10 ll) from P. Brasiliensis yeast cells before (In) and after (FT) chromatography. Eluted fractions are numbered. The hydrolytic activity against Abz-MKALTLQ-EDDnp produced by a 10 llaliquot of each fraction is shown as arbitrary units of fluorescence per minute (AUF/min). The results are not presented in terms of specific activity due to the low protein contents. The hydrolytic activity against fibronectin (FN) correspondent to incubation with each fraction at 37 C for 30 min is shown in a Coomassie blue-stained 8% SDS–PAGE gel. A time-course of FN cleavage after incubation for 5, 10, 15, and 30 min with peak fraction 4 (10 ll) is also depicted. The positions of molecular mass markers (kDa) and of one of the FN chain are shown on the left. Results and discussion In previous publications we characterized the PbST activity using preparations of P. brasiliensis supernatants enriched by either ion exchange/gel-filtration chromatography [2,3] or hydrophobic phenyl-Superose columns [4,17]. To date, we have tried to purify the proteinase using many different chromatographic methods (not published), however total purification of the active proteinase has never been achieved due to aggregation to other fungal components and/or loss of enzymatic activity after several chromatographic steps. Presently, a cell-free supernatant from P. brasiliensis B339 yeast-cell culture bearing PbST proteolytic activity was fractionated in a pABA-Sepharose column. The p-aminobenzamidine (pABA) compound is a commercially available competitive inhibitor of trypsin that binds to the specificity cleavage pocket of the enzyme [18]. We observed that the PbST activity capable of hydrolyzing the FRET peptide substrate Abz-MKALTLQ-EDDnp was bound to the column and predominantly eluted in fractions 4 and 5, as seen in Fig. 1. These fractions also concentrated the proteolytic activity towards fibronectin found in total supernatants, as suggested by extensive degradation of the protein resulting from incubation with fractions 4 or 5 (Fig. 1). A time-course assay showed that the proteolytic activity contained in fraction 4 (PbST-4) was so strong that after only 5 min of incubation protein degradation was already evident (Fig. 1, bottom). Enzymatic cleavage of Abz-MKALTLQ-EDDnp or human fibronectin was due to PbST, since hydrolysis was specifically inhibited by p-HMB and PMSF (not shown), as previously reported [2]. In our experimental conditions, the activity against Abz-MKALTLQ-EDDnp was fully bound to the column and was recovered in the eluted fractions at a yield of about 65%. In addition, PbST-4 was not active against casein or BSA (not shown), as previously described [3]. The chromatographic profile in SDS–PAGE silver-stained gels showed that fractions 4 and 5 had a predominant 55 kDa component (Fig. 1), among others that appeared after longer development times of silver-stained gels. Preparation PbST-4 could be kept at 4 C for about 7 days before activity started to gradually decrease. Previously, we have been able to detect in situ activity of PbST in SDS–PAGE gels [17]. The PbST activity was revealed as a broad smeared band migrating between 43 and 68 kDa in gelatin zymograms or using an AbzMKALTLQ-EDDnp-agarose overlay. It is uncertain whether the proteinase molecular mass is around 50 kDa or if migrates as such due to aggregation in our electrophoretic conditions, where the samples were denatured at low SDS concentration and without boiling. Presently, pABA preparation PbST-4 was tested in gelatin zymograms, but a proteolysis band has not been detected, possibly because pABA-isolated PbST was unstable after electrophoresis. We then chose to carry out an LC–MS/MS analysis of the whole PbST-4 preparation and also of individual main gel bands present in overloaded gels. We consistently identified NADP-dependent glutamate dehydrogenase (correspondent to the 55-kDa band), LPD1 (lipoamide dehydrogenase), and chitinase based on the high number of tryptic peptides bearing over 10 amino acids identical to peptides found in the NCBInr and GenBank database containing fungal proteins. The identified proteins should contain motifs that were recognized by pABA or they were unspecifically bound to the resin as aggregates. Although a couple of peptides would match those of subtilisins, the number of identical amino acids was not enough to guarantee reliable protein identification. One difficulty to analyze generated peptides is the lack of complete genome information for P. brasiliensis, although there are two GenBank databases of partial translated sequences [19,20]. It is important to point out that there is a 481-amino acid P. brasiliensis subtilase of the S8 family deposited in the GenBank (Accession No. AAP83193). However, our present analysis suggests that PbST does not correspond to this proteinase, since identical peptides have not been identified. We used pABA-eluted PbST-4 to evaluate the inhibitory effect of peptides derived from MKRLTL coupled with A.L. Matsuo et al. / Biochemical and Biophysical Research Communications 355 (2007) 1000–1005 C(Npys). A general mechanism of action of C(Npys)-peptides is schematically represented in Fig. 2, which shows that a peptide sequence containing C(Npys) can block a free thiol group, liberating Npys. We presently synthesized two analogous peptides, namely Bzl-MKRLTLC(Npys)NH2 and Bzl-C(Npys)KRLTL-NH2, which bear the C(Npys) group, respectively, at the C- and N-terminus. A third compound, Boc-Cys(Npys), was used to test the inhibitory capacity of C(Npys) devoid of a peptide sequence. We observed that the three compounds inhibited the enzymatic activity against Abz-MKALTLQ-EDDnp [17] at different levels (Table 1). The best inhibitory activity was seen with Bzl-C(Npys)KRLTL-NH2 (Ki = 16 nM), where the C(Npys) group was placed at the N-terminus substituting the original methionine residue. The peptide bearing C(Npys) at the C-terminus was one order of magnitude less effective (Ki = 160 nM), whereas the BocC(Npys) compound was a weaker inhibitor (Ki = 1.7 lM). These results indicated that the peptide sequence promotes a favorable interaction increasing the magnitude of inhibition, especially when C(Npys) was placed at a further position from L–T, at the N-terminus. The inhibitory effect of all tested peptides was completely reverted with 5 mM dithioerythritol, indicating that it was due to the reactivity of the C(Npys) moiety with a free SH– group of the proteinase (Fig. 2). It is noteworthy that the inhibitor peptides have not been cleaved by the proteinase activity, as revealed by h.l.p.c. analysis (not shown). We have previously reported on the PbST capacity to cleave components associated with the basement membrane [3]. Presently, we have not been able to test the inhibitory capacity of C(Npys) peptides on the cleavage of fibronectin visualized in SDS–PAGE gels (as in Fig. 1) because they altered fibronectin resolution. Therefore, we developed a cell detachment assay for this purpose. We tested PbST ability to detach cells of the LLC-MK2 lineage from plastic dishes, which is generally achieved using trypsin. Cell detachment depends on cleavage of extracellular matrix components or of surface integrins that directly interact with them. Fig. 3A shows that PbST-4 was able to detach LLC-MK2 at increased rates over time, which reached a plateau corresponding to approximately 50% of total cells detached after 20 min. Consequently, this incubation time was chosen for the inhibition experiments shown below. All experiments were carried out in triplicates and harvested cells were 70–80% viable. It is worth mentioning for comparison that 2.5 mg/mL of trypsin 1003 Table 1 Inhibition of PbST activity by Boc-C(Npys) and its derivatives bound to the sequence MKRLTL Compound Ki (M) Boc-C(Npys) Bzl-MKRLTLC(Npys)-NH2 Bzl-C(Npys)KRLTL-NH2 1.7 · 10 1.6 · 10 1.6 · 10 6 7 8 can detach all the cells (90–95% viable) in 5 min (not shown). Fig. 3B shows that the detachment activity was due to PbST, considering that pre-incubations with E-64 and pepstatin (or EDTA contained in the PBS) did not affect the activity, whereas p-HMB and PMSF totally abolished it (Fig. 3B). In order to evaluate the inhibitory capacity of C(Npys) peptides in the cell detachment activity of PbST-4, the experiments were performed with the enzyme preparation previously incubated or not (control) with 6 or 12 lM of each peptide for 20 min at 37 C. Fig. 3C shows that both Bzl-C(Npys)KRLTL-NH2 and Bzl-MKRLTLC(Npys)NH2 exhibited statistically significant inhibitory effects, in a dose-dependent fashion. Bzl-C(Npys)KRLTL-NH2 was a better inhibitor than Bzl-MKRLTLC(Npys)-NH2, in agreement with the Ki results seen in Table 1. BocCys(Npys) showed no statistically significant effect at the concentrations tested, probably due to its lower binding affinity, as suggested from the results in Table 1. This is the first time C(Npys) compounds are used to inhibit a thiol-containing subtilisin. It remains to be tested whether these compounds would effectively decrease P. brasiliensis virulence in vivo. For that purpose, C(Npys) might be bound to peptides of the D-anomericity, for e.g., to avoid proteolysis by local endopeptidases. The results presented here elegantly show that PbST activity can be blocked with compounds interfering with a free cysteine, confirming that it belongs to the subtilisin S8 family of serine proteinases, from which proteinase K from Tritirachium album is the best studied member [21]. By analogy with the members of this group [22], we speculate that there is a thiol group lying near the imidazole of the histidine from the Ser-His-Asp catalytic triad. The presence of such a residue does not change the catalytic activity of subtilisin Savinase, although it makes it susceptible to mercurials [23]. In proteinase K, the thiol group (Cys78) is buried in the molecule and covalently binds to the first Hg+ molecule, which disrupts the catalytic triad by changing the imidazole conformation [24]. A second Hg+ complexes non-covalently with His72, Cys78 and Thr76, Fig. 2. Schematic representation of the mechanism of inhibition of thiol proteinases by Cys(Npys). 1004 A.L. Matsuo et al. / Biochemical and Biophysical Research Communications 355 (2007) 1000–1005 Cells/field A 10 9 8 7 6 5 4 3 2 1 0 0 10 20 30 40 50 60 70 time (min) B 120 100 * 80 60 40 * 20 * 0 Control * * PMSF p-HMB * E-64 pepstatin 6 12 C- 6 12 N- 6 12 µM Boc- Fig. 3. Evaluation of PbST inhibition in a cell detachment assay. (A) Time-course of cell detachment when incubated with PbST-4 (10 lL, fraction 4, Fig. 1). (B) Percentage of cell detachment when compared to the control (100%), as counted after 20 min of incubation with PbST-4 in the presence of either standard proteinase inhibitors or Bzl-MKRLTLC(Npys)-NH2 (C-), Bzl-C(Npys)KRLTL-NH2 (N-) and Boc-Cys(Npys) (Boc-) at the indicated concentrations. Incubation of cell cultures with equivalent concentrations of the inhibitors alone has not resulted in cell detachment or loss of cell viability (not shown). Statistically significant values (p < 0.05) are indicated with an asterisk. decreasing substrate-binding affinity. However, 100% inhibition by mercurials is never achieved, possibly due to flexibility of the molecule [24]. In contrast to proteinase K, PbST is selective regarding substrate specificity and is inhibited 100% by p-HMB [2]. On the other hand, proximity of the thiol group to the catalytic triad would explain why the C(Npys)-peptide derivatives are better inhibitors than Boc-C(Npys), considering that the peptide used here fits in the substrate pocket to target the inhibitor. [4] [5] [6] Acknowledgments [7] We thank Dr. Ivarne Tersariol for critical review of the manuscript. This work and fellowships involved were supported fully or partially by grants from FAPESP, PRONEX/CNPq, CNPq, and NIH/NCRR (Grant No. 5G12RR008124). References [1] M. Monod, S. Capoccia, B. Lechenne, C. Zaugg, M. Holdom, O. Jousson, Secreted proteases from pathogenic fungi, Int. J. Med. Microbiol. 292 (2002) 405–419. [2] A.K. Carmona, R. Puccia, M.C.F. Oliveira, E.G. Rodrigues, L. Juliano, L.R. Travassos, Characterization of an exocellular serinethiol proteinase activity in Paracoccidioides brasiliensis, Biochem. J. 309 (1995) 209–214. [3] R. Puccia, A.K. Carmona, J.L. Gesztesi, L. Juliano, L.R. Travassos, Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleav- [8] [9] [10] [11] [12] [13] age of components associated with the basement membrane, Med. Mycol. 36 (1998) 345–348. A.L. Matsuo, I.L. Tersariol, S.I. Kobata, L.R. Travassos, A.K. Carmona, R. Puccia, Modulation of the exocellular serine-thiol proteinase activity of Paracoccidioides brasiliensis by neutral polysaccharides, Microbes Infect. 8 (2006) 84–91. G. San Blas, G. Niño-Vega, T. Iturriaga, Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics, Med. Mycol. 40 (2002) 225–242. R. Matsueda, R. Walter, 3-nitro-2-pyridinesulfenyl (Npys) group—a novel selective protecting group which can be activated for peptidebond formation, Int. J. Pept. Protein Res. 16 (1980) 392–401. R. Matsueda, H. Umeyama, E. Kominami, N. Katunuma, Design and synthesis of cathepsin-B inhibitors by an affinity labeling approach, Chem. Lett. (1988) 1857–1860. M.S. Bernatowicz, R. Matsueda, G.R. Matsueda, Preparation of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine and its use for unsymmetrical disulfide bond formation, Int. J. Pept. Protein Res. 28 (1986) 107–112. D.H. Rich, in: A.J. Barret, G. Salvesen (Eds.), Proteinase inhibitors, Elsevier Science Publishers, 1986, p. 153. R. Matsueda, H. Umeyama, R.N. Puri, H.N. Bradford, R.W. Colman, Potent affinity labeling peptide inhibitors of calpain, Chem. Lett. (1990) 191–194. E. Dejana, M. Corada, Adhesion protocols, in: J.M. Walker (Ed.), Methods in Molecular Biology, Editora Humana, 1990, pp. 119–124. U.K. Laemmli, Cleavage of structural proteins during assembly of head of bacteriophage-T4, Nature 227 (1970) 680–685. M. Hirata, K. Nemoto, A. Hirata, Solubility of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl-ester forming a complex with L-phenylalanine methyl-ester in aqueous system, J. Chem. Eng. 27 (1994) 72–76. A.L. Matsuo et al. / Biochemical and Biophysical Research Communications 355 (2007) 1000–1005 [14] G. Barany, R.B. Merrifield, The Peptides: Analysis, Synthesis and Biology, Academic Press, New York, 1980. [15] E. Mortz, T.N. Krogh, H. Vorum, A. Gorg, Improved silver staining protocols for high sensitivity protein identification using matrixassisted laser desorption/ionization-time of flight analysis, Proteomics 1 (2001) 1359–1363. [16] A. Shevchenko, M. Wilm, O. Vorm, M. Mann, Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels, Anal. Chem. 68 (1996) 850–858. [17] R. Puccia, M.A. Juliano, L. Juliano, L.R. Travassos, A.K. Carmona, Detection of the basement membrane-degrading proteolytic activity of Paracoccidioides brasiliensis after SDS–PAGE using agarose overlays containing Abz-MKALTLQ-EDDnp, Braz. J. Med. Biol. Res. 32 (1999) 645–649. [18] A. Kanamori, N. Seno, I. Matsumoto, Preparation of high-capacity affinity adsorbents using formyl carriers and their use for lowperformance and high-performance liquid affinity-chromatography of trypsin-family proteases, J. Chromatogr. 363 (1986) 231–242. [19] G.H. Goldman, E.D. Marques, D.C.D. Ribeiro, L.A.D. Bernardes, A.C. Quiapin, P.M. Vitorelli, M. Savoldi, C.P. Semighini, R.C. Oliveira, L.R. Nunes, L.R. Travassos, R. Puccia, W.L. Batista, L.E. Ferreira, J.C. Moreira, A.P. Bogossian, F. Tekaia, M.P. Nobrega, F.G. Nobrega, M.H.S. Goldman, Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: Iden- [20] [21] [22] [23] [24] 1005 tification of putative homologues of Candida albicans virulence and pathogenicity genes, Eukaryot. Cell. 2 (2003) 34–48. M.S.S. Felipe, R.V. Andrade, F.B.M. Arraes, A.M. Nicola, A.Q. Maranhao, F.A.G. Torres, I. Silva-Pereira, M.J. Pocas-Fonseca, E.G. Campos, L.M.P. Moraes, P.A. Andrade, A.H.F.P. Tavares, S.S. Silva, C.M. Kyaw, D.P. Souza, P. Network, M. Pereira, R.S.A. Jesuino, E.V. Andrade, J.A. Parente, G.S. Oliveira, M.S. Barbosa, N.F. Martins, A.L. Fachin, R.S. Cardoso, G.A.S. Passos, N.F. Almeida, M.E.M.T. Walter, C.M.A. Soares, M.J.A. Carvalho, M.M. Brigido, Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells, J. Biol. Chem. 280 (2005) 24706–24714. A. Pahler, A. Banerjee, J.K. Dattagupta, T. Fujiwara, K. Lindner, G.P. Pal, D. Suck, G. Weber, W. Saenger, Three-dimensional structure of fungal proteinase K reveals similarity to bacterial subtilisin, EMBO J. 3 (1984) 1311–1314. R.J. Siezen, J.A. Leunissen, Subtilases: the superfamily of subtilisinlike serine proteases, Protein Sci. 6 (1997) 501–523. A. Muller, W. Saenger, Studies on the inhibitory action of mercury upon proteinase K, J. Biol.Chem. 268 (1993) 26150–26154. L.M. Bech, S. Branner, S. Hastrup, K. Breddam, Introduction of a free cysteinyl residue at position 68 in the subtilisin Savinase, based on homology with proteinase K, FEBS Lett. 297 (1992) 164–166. Proteinase Lon mitocondrial 36 Artigo 3: The PbMDJ1 gene belongs to a conserved MDJ1/LON locus in thermodimorphic pathogenic fungi and encodes a heat shock protein that localizes to both the mitochondria and cell wall of Paracoccidioides brasiliensis. Wagner L. Batista, Alisson L. Matsuo, Luciane Ganiko,Tânia F. Barros, Thiago R. Veiga, Edna Freymuller e Rosana Puccia Eukaryotic Cell 2006, Vol 5 (2) 379-390 37 Racional Em nosso laboratório, o gene PbLON foi clonado acidentalmente quando buscávamos clonar o gene da PbST. Durante a caracterização do seu locus, foi encontrado em direção oposta o gene da PbMDJ1 compartilhando com PbLON a região 5’ intergênica. Ambos os genes codificam proteínas com direcionamento mitocondrial, as quais em leveduras têm uma relação funcional, já que a Mdj1 participa do complexo formado pela Lon e a proteína desnaturada alvo de proteólise. Neste trabalho verificou-se que o locus LON/MDJ1 é conservado entre os Ascomicetos e que a PbMdj1 tem uma localização extramitocondrial na parede celular de leveduras do P. brasiliensis, enquanto a PbLon fica restrita à mitocôndria. 38 EUKARYOTIC CELL, Feb. 2006, p. 379–390 1535-9778/06/$08.00⫹0 doi:10.1128/EC.5.2.379–390.2006 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Vol. 5, No. 2 The PbMDJ1 Gene Belongs to a Conserved MDJ1/LON Locus in Thermodimorphic Pathogenic Fungi and Encodes a Heat Shock Protein That Localizes to both the Mitochondria and Cell Wall of Paracoccidioides brasiliensis Wagner L. Batista,1 Alisson L. Matsuo,1 Luciane Ganiko,1† Tânia F. Barros,1‡ Thiago R. Veiga,1 Edna Freymüller,2 and Rosana Puccia1* Department of Microbiology, Immunology and Parasitology1 and Center of Electron Microscopy,2 Federal University of São Paulo, Rua Botucatu 862, 04023-062 São Paulo, SP, Brazil Received 30 September 2005/Accepted 18 November 2005 J-domain (DnaJ) proteins, of the Hsp40 family, are essential cofactors of their cognate Hsp70 chaperones, besides acting as independent chaperones. In the present study, we have demonstrated the presence of Mdj1, a mitochondrial DnaJ member, not only in the mitochondria, where it is apparently sorted, but also in the cell wall of Paracoccidioides brasiliensis, a thermodimorphic pathogenic fungus. The molecule (PbMdj1) was localized to fungal yeast cells using both confocal and electron microscopy and also flow cytometry. The antirecombinant PbMdj1 antibodies used in the reactions specifically recognized a single 55-kDa mitochondrial and cell wall (alkaline -mercaptoethanol extract) component, compatible with the predicted size of the protein devoid of its matrix peptide-targeting signal. Labeling was abundant throughout the cell wall and especially in the budding regions; however, anti-PbMdj1 did not affect fungal growth in the concentrations tested in vitro, possibly due to the poor access of the antibodies to their target in growing cells. Labeled mitochondria stood preferentially close to the plasma membrane, and gold particles were detected in the thin space between them, toward the cell surface. We show that Mdj1 and the mitochondrial proteinase Lon homologues are heat shock proteins in P. brasiliensis and that their gene organizations are conserved among thermodimorphic fungi and Aspergillus, where the genes are adjacent and have a common 5ⴕ region. This is the first time a DnaJ member has been observed on the cell surface, where its function is speculative. brasiliensis yeast versus mycelium, or undergoing phase transition in vitro, making use of microarrays, suppression subtraction hybridization, real-time reverse transcriptase (RT) PCR, and in silico analyses (14, 15, 27, 33). Considering that these analyses have been undertaken with P. brasiliensis transforming to the yeast phase upon temperature increase, differentially regulated heat shock protein homologues have indeed been detected, especially in the initial hours of temperature change (15, 33). Some of them, however, seem to be necessary for growth in the yeast phase, e.g., the HSP70 and HSP60 genes in P. brasiliensis that have been previously characterized (18, 41). We have characterized a LON gene homologue from P. brasiliensis (PbLON) (2). Lon proteins are conserved ATPbinding, heat-inducible serine proteinases. They form highmolecular-mass complexes of homo-oligomers, which in Saccharomyces cerevisiae contain the stoichiometry of seven subunits of 117 kDa (46). The yeast Lon, also called PIM1, is synthesized as a pre-proenzyme precursor in the cytosol and then is sorted to the mitochondrial matrix where it is processed (54). It controls proteolysis by mediating cleavage of misfolded or unassembled matrix proteins and has an essential role in the maintenance of mitochondrial DNA integrity and mitochondrial homeostasis (51). Lon is also a DNA-binding protein (26) and is essential for cell survival in humans (4). In P. brasiliensis, PbLon consists of 1,063 residues containing a mitochondrial import signal, a conserved ATP-binding site, and a serine catalytic motif (2). Its open reading frame (ORF) is within a 3,369-bp fragment interrupted by two introns lo- Paracoccidioides brasiliensis is the fungal species responsible for paracoccidioidomycosis (PCM), which is endemic in certain areas of Latin America. PCM is one the four deep-seated granulomatous mycoses caused by thermodimorphic fungi that also include Histoplasma capsulatum, Blastomyces dematitidis, and Coccidioides immitis. These fungal species are phylogenetically related, according to sequence analysis of the ribosomal RNA gene locus (3, 36), and have been classified as Ascomycetes of the Onigenaceae family. P. brasiliensis grows as a multibudding yeast when in parasitism or cultivated at 37°C and as a mycelium when incubated at temperatures below 28°C. The fungus is multinucleated, and its sexual form is still unknown. Genetic manipulation in this species is only starting to be attempted (23). The human host most frequently acquires the fungus by inhalation of mycelial particles, but infection can be established only after transition to the yeast parasitic phase takes place (28). A number of biochemical processes are associated with fungal adaptation to the host’s environment and temperature, and many of them are probably responsible for phase transition and/or phase maintenance. Different groups have recently addressed the overall scenario of gene expression in P. * Corresponding author. Mailing address: Rua Botucatu 862, oitavo andar, 04023-062 São Paulo, SP, Brazil. Phone: (55) 11 5084 2991. Fax: (55) 11 5571 5877. E-mail: rosana@ecb.epm.br. † Present address: University of Texas at El Paso, El Paso, Tex. ‡ Present address: Department of Clinical and Toxicological Analyses, Federal University of Bahia, Bahia, BA, Brazil. 379 380 BATISTA ET AL. cated in the 3⬘ segment; an MDJ1-like gene was partially sequenced in the opposite direction but sharing with PbLON a common 5⬘ untranslated region (2). This chromosomal organization might be functionally relevant, since Mdj1p is a type I DnaJ molecule located in the yeast mitochondrial matrix and is essential for substrate degradation by Lon and other stressinducible ATP-dependent proteinases (39, 53). In bacteria, DnaJ alone and/or the DnaJ/DnaK complex determine the fate of nonnative substrates to be cleaved by Lon (17). DnaJ members (more recently referred to as J-domain proteins) belong to the Hsp40 family of molecular chaperones and localize to various cellular compartments, where their primary role is to regulate the activity of their cognate Hsp70 homologues (55). In the bacterial DnaK (Hsp70)/DnaJ/GrpE complex, a transient association of DnaJ stimulates the ATPase activity of DnaK, prompting substrate binding, while GrpE exchanges nucleotides (ADP/ATP), with the consequent substrate dissociation (12). This complex prevents aggregation of nonnative proteins, thus facilitating their folding by Hsp60 (22). In S. cerevisiae, Mdj1 is essential for the biogenesis of functional mitochondria, but it is not involved in protein translocation into the matrix (reviewed in reference 52). Typically, DnaJ members are constituted of a structurally conserved J domain located near the N-terminal end, followed by a glycine/ phenylalanine-rich segment (G/F domain) and four repetitions of a zinc-binding CXXCXGXG motif (55). The J domain and the G/F segment are essential for interaction with DnaK, while the zinc finger-like motif contains elements for binding nonnative substrates (49) and also displays thiol-disulfide oxidoreductase activity (50). In S. cerevisiae, 22 J-domain proteins (types I, II, and III) have been found in the genome; their subcellular localizations are attributed to the cytoplasm, nucleoplasm, mitochondria, and endoplasmic reticulum (55). We have presently characterized the P. brasiliensis PbMDJ1 gene and verified that the PbLON/PbMDJ1 locus is conserved among the dimorphic pathogenic fungi besides Aspergillus nidulans and A. fumigatus. We show that PbLON and PbMDJ1 encode mitochondrial heat shock proteins; however, PbMdj1 has also been found in the cell wall of P. brasiliensis. The finding of a DnaJ member on the cell surface is a novel observation. MATERIALS AND METHODS Fungal strains and culture conditions. We used P. brasiliensis isolates B-339 and 18, provided by Angela Restrepo (Colombia) and Zoilo P. Camargo (Brazil), respectively. More details about the fungal isolates can be found elsewhere (29). Cultures were maintained at 36°C (yeast phase) in solid modified YPD (0.5% casein peptone, 0.5% yeast extract, 1.5% glucose, pH 6.3). Isolation of total DNA and RNA. For DNA extraction, strain B-339 was expanded for 10 days at 36°C in liquid modified YPD under agitation. Total DNA was extracted from a 10-ml pellet of nitrogen-frozen cells that were disrupted in a mortar and then briefly in a pestle, as described previously (11). Total RNA was isolated from fresh cells mechanically disrupted by vortexing with glass beads for 10 min in the presence of TRIzol reagent (Invitrogen), according to the instructions provided by the manufacturer. Contaminating DNA in these preparations was digested with RNase-free DNase I (Promega), as described previously (15). The efficiency of hydrolysis was tested by PCR with primers of the PbGP43 gene (11). For analysis of gene expression in cells undergoing heat shock at 42°C, yeast cells growing logarithmically at 36°C under shaking in modified YPD were transferred to 42°C for 30 and 60 min. Cloning of the 3ⴕ end of PbMDJ1. We followed the strategy of 3⬘ rapid amplification of cDNA ends to clone the 3⬘ end of the PbMDJ1 cDNA, using the SuperScript II RNase H RT kit (Invitrogen), because at that time the PbMDJ1 expressed sequence tag (EST) had not yet been found in the P. brasiliensis EST EUKARYOT. CELL bank (15). The positions of the primers can be seen in Fig. 1A. The first strand of the total cDNA pool was obtained from total RNA (2.5 g) extracted from strain B-339 yeast cells previously heat shocked for 60 min at 42°C. The template was incubated (10 l, final volume) with a 1 M concentration of a poly(T)containing cassette primer (511, 5⬘-GACTCGAGTCGACATCGT17-3⬘) at 65°C (5 min), cooled in ice, mixed with synthesis buffer (final concentrations of 0.05 M Tris-HCl [pH 8.3], 0.075 M KCl, 3 mM MgCl2, 0.01 M DDT, 1 mM [each] deoxynucleoside triphosphate, 2 U/l of RNAseOUT, and 10 U/l of SuperScript II RT), and incubated at 55°C (50 min) and then at 85°C (5 min). Template RNA was removed with 0.1 U/l of RNase for 20 min at 37°C. Negative controls were incubated in the absence of RT. The second strand was obtained from total cDNA (1 1 of the above reaction product) with an internal sense primer (B4, 5⬘-TGGTGGTGGGTTCTCTGC-3⬘) under standard PCR conditions at an annealing temperature of 52°C. We used Platinum Taq polymerase (Invitrogen) and an antisense cassette primer (512, 5⬘-GACTCGAGT CGACATCG-3⬘) for amplification of the double-stranded PbMDJ1 fragment. The final product was used as a template in a second round of PCR primed with antisense primer 512 and nested sense primer G5 (5⬘-TGCCTTTGCGGGTGG TTC-3⬘). Sequencing information from the resulting 1,161-bp amplicon was used to design primers located at the 3⬘ end (antisense 2A7, 5⬘-TACCATTTTTTG CCTGCC-3⬘), which enabled PCR amplification of the whole genomic PbMDJ1 gene using genomic DNA as a template. A cDNA segment of the 5⬘ region, used later for heterologous expression, was amplified by RT-PCR carried out with total RNA (1 g) and the ThermoScript RT-PCR System (Gibco BRL). The first cDNA strand was amplified with the internal antisense primer E4 (5⬘-GCCGCA CGAGGAACAGG-3⬘), according to the supplier’s recommendations. A PCR product of 757 bp was then obtained with primers B3 (sense, 5⬘-CTCCCG GCTCGTCTCCTG-3⬘) and A7 (antisense, 5⬘-CCGCTTTGTACCCTGTTT-3⬘), with the first-strand reaction product as a template. Sequence comparison between DNA and cDNA fragments enabled the precise localization of two introns. Negative controls for 3⬘ rapid amplification of cDNA ends and RT-PCRs were incubated in the absence of RT. DNA fragments were recovered from agarose gels using either the Nucleiclean kit (Sigma) or the Concert gel extraction system (Gibco BRL). Purified amplicons were cloned into the pGEM-T easy vector (Promega) for maintenance and sequencing. Nucleotide sequencing was carried out in the facilities of the Center of Human Genome at the São Paulo University. Sequences were compared with those of the National Center for Biotechnology Information through the GenBank database and the BLAST network service and analyzed with the EditSeq, Seqman, Megalign, and Protean programs of the Lasergene System (DNAstar Inc.). Northern blotting. Standard conditions were used for electrophoresis and Northern blotting (38), carried out with 25 g of total RNA per lane. Hybridizations with [␣-32P]dCTP-labeled probes were done in nylon Hybond-N membranes (Amersham) under high-stringency conditions with a B3/2A7 DNA fragment of PbMDJ1 (Fig. 1A) and a PbLON amplicon of 850 bp (from nucleotide [nt] 536 to nt 1386). The probes were labeled using the RadPrime DNA labeling system (Gibco BRL) as specified by the manufacturer and separated from free nucleotides in a molecular biology-grade Sephadex G-50 column (Pharmacia). The membranes were hybridized with the labeled probes (1 ⫻ 106 cpm/ml) at 42°C overnight in 50% formamide, 6⫻ SSC (1⫻ SSC is 0.15 M NaCl, 0.015 M sodium citrate), 5⫻ Denhardt’s solution, 0.5% sodium dodecyl sulfate (SDS), and 100 g/ml of salmon sperm DNA; washed one time with SSC–0.1% SDS (20 min, 42°C) and three times with 0.2⫻ SSC–0.1% SDS (20 min, 68°C); covered with Vitafilm (Goodyear); and exposed to an X-ray film (X-Omat; Kodak) at ⫺70°C with an intensifying screen. Protein extraction. Total cell extracts of P. brasiliensis were obtained through glass bead disruption (8). For isolation of total mitochondrial fractions, we adapted for P. brasiliensis the method described by Suzuki et al. (48) for S. cerevisiae. In order to accomplish cell lysis under mild conditions, nitrogen-frozen yeast cells were mechanically disrupted in a mortar until they formed a fine white powder, which was subsequently thawed in BB buffer (0.6 M sorbitol, 20 mM HEPES, pH 7.4) and sonicated for 5 min, alternating 15-s pulses with 15 s in ice. Cell debris were pelleted by centrifugation (1,500 ⫻ g, 5 min) and the ice-cooled supernatant was centrifuged at 1,200 ⫻ g for 10 min to precipitate the mitochondrial fraction (brownish pellet), which was then rinsed with BB and centrifuged (1,500 ⫻ g, 5 min). The supernatant was subjected to the same procedure two times, the resulting brownish pellets were pooled and washed two times with BB and suspended in 0.2 ml of BB, and the protein concentration was estimated by spectrometry in an aliquot diluted 100 times in 0.6% SDS (an A280 of 0.2 corresponds to 10 mg/ml of mitochondrial proteins). Total mitochondrial protein preparations were kept at ⫺70o in 20% glycerol–1 mg/ml bovine serum albumin (BSA). A -mercaptoethanol cell wall extract was obtained from intact cells as described previously (9). P. brasiliensis yeast cells grown under shaking for 10 days VOL. 5, 2006 PbMdj1 LOCALIZES TO THE MITOCHONDRIA AND CELL WALL 381 FIG. 1. (A) Schematic representation of PbMDJ1, highlighting the localization of the primers and probes used in this work. Introns were localized from nt 205 to 313 and nt 1552 to 1683. (B) Schematic representation of PbMdj1 showing the localization of conserved domains. Kyte-Doolittle hydrophilicity plots (Protean module; DNAstar Inc.) of fungal Mdj1-like sequences are as follows: Pb, P. brasiliensis (AF334811); Bd, B. dermatitidis (http://genome.wustl.edu/BLAST/blasto_client.cgi); Hc, H. capsulatum (http://genome.wustl.edu/BLAST/histo_client.cgi); Ci, C. immitis (http://www.broad.mit.edu/annotation/fungi/coccidioides_immitis); An, A. nidulans (EAA57980); Cn, C. neoformans (EAL21819); Ca, C. albicans (EAK92195); Sc, S. cerevisiae (CAA82189); Ec, Escherichia coli (BA000007). The boxes indicate the predicted mitochondrial target sequence (MT) and the J domain. The dots localize the Zn2⫹ finger domains. Horizontal bars indicate the location of mouse T-cell epitopes with a minimum of 12 amino acids, as predicted by the Sette major histocompatibility complex motif (Protean module; DNAstar Inc). Percentages of identity with PbMdj1, as calculated with the MegAlign module of the DNAstar program, are given at right. (cell viability, ⬎85%) in modified YPD were pelleted by centrifugation (1,500 ⫻ g, 15 min) and rinsed three times with an excess volume of phosphate-buffered saline (PBS). Washed cells (12 ml of wet pellet) were suspended in 30 ml of 20 mM ammonium carbonate (pH 8.6)–1% -mercaptoethanol–1 mM phenylmethylsulfonyl fluoride and agitated for 1 h at 36°C. The released soluble components were separated from the cells by centrifugation, dialyzed in H2O, and concentrated to 1.5 ml by lyophilization (about 8 mg/ml of total protein). The treatment did not affect cell integrity, as verified by microscopy of the treated cells. Protein contents were estimated using BSA as a standard (5). Expression of PbMdj1 and PbLon in bacteria. Expression of PbMdj1 and PbLon in bacteria was achieved with the pHIS1 and pHIS3 vectors (40). A 757-bp cDNA fragment of the 5⬘ region of PbMDJ1, obtained by RT-PCR with primers B3/A7 (Fig. 1A; see description above), was excised from pGEM-T with EcoRI/SpeI and subcloned in the same sites of pHIS3 in frame with the sequence encoding a His6 tag. The resulting construct was called pHISMdj1. For expression of PbLon, an 845-bp BamHI/HindIII intron-free 5⬘ gene fragment was excised from a pUCSmaI plasmid containing the entire PbLON genomic sequence (2) and subcloned into the same sites of pHIS1 to generate a pHISLon expression plasmid. Vector pHIS1 expresses heterologous proteins bearing His6 in both the N and C termini. Plasmids pHISMdj1 and pHISLon were used to transform Escherichia coli DH5␣ for maintenance and amplification, where positive clones were selected for resistance to ampicillin. Correct in-frame ligation was checked by endonuclease restriction and sequencing. Selected plasmids were inserted into E. coli BL21/pLysS (Novagen) for IPTG (isopropyl--D-thiogalactopyranoside)-induced protein expression. For purification of recombinant PbMdj1 (rPbMdj) and rPbLon, individual bacterial clones were cultivated overnight at 37°C under shaking in LB medium containing 100 g/ml of ampicillin and 37 g/ml of chloramphenicol. An aliquot of this initial culture was diluted 1:100 in fresh medium and grown until it reached an A600 of 0.6. At this point, protein expression was induced for 3 h with 0.5 M IPTG. Bacterial cell pellets obtained by centrifugation (10,000 ⫻ g, 5 min) were suspended in 50 mM Tris-HCl (pH 7.0)–0.2 M NaCl–10% sucrose–1 mM phenylmethylsulfonyl fluoride and disrupted by sonication for 5 min (15-s pulses alternated with 15 s in ice). Precipitates were pelleted by centrifugation (10,000 ⫻ g, 5 min), suspended in 100 mM NaH2PO4–10 mM Tris-HCl, pH 8.0, containing 8 M urea, and centrifuged, and the supernatant was chromatographed in Ni-nitrilotriacetic acid (NTA) columns (QIAGEN), according to the manufacturer’s instructions. rPbMdj1 and rPbLon fractions eluted at pH 4.5 were pooled for further use. Fractions eluted at pH 6.3 and 5.9 were discarded. Rabbit immunization, antibody purification, and Western immunoblotting. Approximately 300 g of Ni-NTA-eluted rPbMdj1 and rPbLon were fractionated in preparative SDS-polyacrylamide gel electrophoresis (PAGE) gels (21) and stained briefly with Coomassie blue. The correspondent bands were cut off the polyacrylamide gels, homogenized in PBS, and injected subcutaneously at several spots on the shaved backs of rabbits. The same procedure was followed 40 days later; 25 days after this booster, the rabbits were bled and the serum was separated, tested, and aliquoted at ⫺20°C. The rabbits were also bled before immunization to obtain preimmune sera. Polyclonal rabbit immunoglobulin G (IgG) anti-rPbMdj1 and anti-rPbLon were purified from both preimmune and immune sera in protein A-Sepharose (Pharmacia), checked for purity in SDSPAGE gels, pooled, dialyzed in PBS, aliquoted, and frozen at ⫺20°C. The IgG concentration was estimated by spectrometry at A280. For purification of affinitypurified antibodies, rPbMdj or rPbLon eluted from Ni-NTA columns (150 g, as estimated in SDS-PAGE gels) were immobilized onto nitrocellulose membranes (0.45 m) (Amersham) over an area of 12 cm2, which was then quenched with 5% skim milk in PBS (overnight at 4°C) and rinsed with PBS for 10 min under shaking. The membranes were incubated for 1 h in ice with total immune sera (1 ml) and/or immune IgG diluted 1:1 (vol/vol) in PBS. The membranes were 382 BATISTA ET AL. thoroughly rinsed with PBS–0.5 M NaCl, and the bound antibodies were eluted with 50 mM glycine, pH 3.0 (500 l), which was immediately neutralized with 1 M Tris-HCl, pH 9.0. The protein profile of the eluted material in silver-stained SDS-PAGE gels indicated the presence of a major IgG band. Preimmune sera and/or IgG fractions were processed similarly. IgG and affinity purified aliquots were kept at ⫺20°C. Western immunoblot reactions with sera from hyperimmune rabbits or patients with PCM were carried out for 3 h at room temperature under shaking, after which the membranes were washed six times with 0.1% Tween 20 in PBS and incubated for 1 h at room temperature with goat anti-rabbit or horse anti-human Ig conjugated to peroxidase (Sigma). The reactions were developed with an enhanced chemiluminescence kit (Amersham Pharmacia). Confocal analysis. P. brasiliensis yeast cells growing in aerated liquid cultures in logarithmic phase (viability, ⬎90%) were collected, washed twice in modified YPD, and adjusted to a concentration of 2 ⫻ 106 to 3 ⫻ 106 viable cells/ml. Washed cells were initially incubated with a 20 nM concentration of MitoTracker Red CMXRos probe (Molecular Probes) for 20 min at 36°C, in order to stain for active mitochondria, and then rinsed three times with PBS and fixed in cold methanol for 30 min in the dark. The MitoTracker Red-labeled cells were incubated with 3% (wt/vol) BSA in PBS (blocking buffer) for 16 h at 4°C, washed three times with PBS, and then incubated with either 100 g/ml of IgG or 60 g/ml of affinity-purified antibodies from polyclonal rabbit anti-rPbMdj and anti-rPbLon for 4 h at room temperature. Control reactions used preimmune IgG. The cells were then incubated for 1 h in the dark with 7.5 g/ml of fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG (Jackson ImmunoResearch, West Grove, PA) in blocking buffer. Between each incubation step with antibodies, the fungal cells were washed six times with PBS. A drop of 10 l of each suspension was mounted on glass slides with Vectashield mounting medium (VECTOR Laboratories, Inc., Burlingame, CA), and the slides were sealed with nail polish. Labeling was analyzed using a laser scanning confocal microscope, LSM-510 NLO (Carl Zeiss, Jena, Germany). Electron microscopy. P. brasiliensis yeast cells growing in logarithmic phase (viability, ⬎90%) under aerated conditions were collected by centrifugation, washed twice with 0.1 M sodium cacodylate buffer, pH 7.2, and fixed with 2% (wt/vol) formaldehyde and 2.5% (vol/vol) glutaraldehyde in cacodylate buffer for 3.5 h at room temperature under agitation (47). Yeast cells were stored in fixative at 4°C until use. Cell pellets were solidified in 2.5% (wt/vol) agarose and sliced at a thickness of approximately 1 to 2 mm. Cell slices were postfixed with 1% potassium ferrocyanide-reduced osmium tetroxide (1%) in cacodylate buffer for 1 h at room temperature under shaking (56). After two washes with ultrapure water, the cell slices were transferred to 1% aqueous uranyl acetate for 1 h in the dark. Finally, the cell pellets were washed twice in water, dehydrated, and embedded in Spurr resin (Electron Microscopy Sciences). Ultrathin sections (70 to 120 nm) were collected on Formvar/carbon-coated nickel grids, treated for 15 min with saturated sodium meta-periodate, freshly prepared, and washed five times with ultrapure water. The preparation was quenched with 5% (vol/vol) acetylated BSA (cBSA) (Aurion) in PBS for 1 h and incubated for 30 min with a drop of 0.1 M glycine in PBS. The grids were washed three times with PBS containing 1% cBSA and 0.5% Tween 20 (buffer A) and incubated overnight with 60 g/ml of rabbit anti-rPbMdj1 IgG in 1% cBSA-PBS (buffer B) in a moist chamber at 4°C. After five washes with buffer A, the grids were incubated with 12-nm colloidal gold–AffiniPure goat anti-rabbit IgG (Jackson ImmunoResearch) at 1:30 in buffer B for 1 h. The washing step was repeated, followed by three rinses in PBS and a fixing step with 2.5% glutaraldehyde in PBS for 5 min. The grids were washed five times with ultrapure water and dried. The ultrathin sections were then contrasted with 2% uranyl acetate and lead citrate. Control grids were incubated with rabbit preimmune IgG (60 g/ml). The sections were examined in a JEOL 1200 EX-II electron microscope. Flow cytometry (FACS) analysis. For fluorescence-activated cell sorter (FACS) analysis, P. brasiliensis yeast cells were prepared as described by Soares et al. (43), with modifications. Fungal cells were cultivated for 5 days at 36°C in modified YPD under shaking (viability, ⬎90%), collected by centrifugation, rinsed, suspended in PBS, and left to rest for 3 min, when clumped cells tend to sediment by gravity. The supernatant was collected, adjusted to 1 ⫻ 106 cells/ml, and fixed for 1 h at room temperature with an equal volume of 4% (vol/vol) paraformaldehyde in PBS, pH 7.2. Fixed cells were precipitated by centrifugation (1 min at 5,600 ⫻ g), rinsed three times with filtered PBS, and incubated for 30 min in 150 mM NH4Cl to block free amine groups. Quenching was carried out for 1 h at room temperature, with shaking, in PBS containing 1% BSA (blocking buffer). The cells were then incubated overnight at 4°C with rabbit IgG antirPbMdj1 (200 g/ml in blocking buffer) or with the same concentration of rabbit preimmune IgG. Following five rinses with PBS, the fungal cells were incubated in the dark for 1 h at room temperature in FITC–polyclonal anti-rabbit IgG EUKARYOT. CELL (Jackson ImmunoResearch) at 15 g/ml (1:100) in blocking buffer. Labeled cells were rinsed five times in PBS, suspended in the same buffer (1 ml), and analyzed in a Calibur FACS (Becton Dickinson, Mountain View, CA). A total of 10,000 cells were analyzed for fluorescence at 492 to 520 nm. Unlabeled control cells were previously analyzed for autofluorescence, relative cell size, and granularity. Effect of anti-rPbMdj1 on in vitro growth of P. brasiliensis. The effect of polyclonal anti-rPbMdj1 IgG on in vitro growth of P. brasiliensis yeasts was tested in strain 18 cells growing at 36°C for 5 days (viability, ⬎90%) in modified YPD under agitation. The cells were collected, rinsed in culture medium, and individuated by being passed through a 25-mm needle. The assay was performed as described by Rodrigues et al. (37), with modifications, in a 96-well culture plate using 100 to 500 viable yeast cells per well in modified YPD containing 0.5 mg/ml of ampicillin. The cells were incubated for 48 to 72 h at 36°C in the presence or absence of different concentrations (25 to 200 g/ml) of either anti-rPbMdj1 or preimmune IgG. After this incubation period, the same concentration of antibodies was added again and the cultures were further incubated for 3 to 4 days. The number of CFU and the cell morphology were observed in an inverted microscope (Olympus CK40). RESULTS The PbMDJ1 ORF lies within a 1,897-bp fragment (GenBank accession number AF334811), where two introns were localized (Fig. 1A). The deduced PbMdj1 protein contains 551 amino acids and has a deduced molecular mass of 58.7 kDa and a basic isoelectric point of 8.9. In the sequence we can recognize the J domain and the glycine/phenylalanine-rich and zinc finger domains (Fig. 1B), which are characteristic of type I J-domain proteins. Although we found six potential glycosylation sites (Asp-X-Ser/Thr) in PbMdj1, apparently none is substituted with endoglycosidase H-sensitive oligosaccharide chains (not shown), suggesting that the molecule does not go through the secretory pathway. The computer program TargetP (http://www.cbs.dtu.dk/services/TargetP/ [30]) predicted a mitochondrial targeting peptide within the 28 first amino acid residues (2.94 kDa). A comparison among fungal Mdj1 homologues indicated a high percentage of identity (85%) with sequences from the dimorphs B. dermatitidis and H. capsulatum, which can be visualized by the similarities in the hydrophilicity profiles (Fig. 1B). The J domain is the most conserved region among the Mdj1 homologues analyzed. It contains four characteristic helixes (reviewed in reference 20) and a highly conserved HPD tripeptide between helixes II and III, which is essential for the DnaJ/Hsp interaction (35). In the C-terminal half of PbMdj1 there is one predicted T-cell mouse epitope with a minimum of 12 residues (LYTAQIPLTTALL) between amino acids 379 and 391 (Fig. 1B), which is conserved in the homologues from B. dermatitidis and H. capsulatum. We observed an extremely conserved gene organization of MDJ1 and LON among members of the Eurotiomycetes family, i.e., P. brasiliensis, B. dermatitidis, H. capsulatum, C. immitis, A. nidulans, and A. fumigatus. The number and position of the introns are conserved, although their sizes and sequences may differ (Fig. 2). MDJ1 from Neurospora crassa and Fusarium graminearum have the same intron numbers and positions as in P. brasiliensis, while their LON gene has only one 3⬘ intron. In Cryptococcus neoformans, both genes bear several small introns. The most interesting finding of our comparative analysis was the fact that the whole MDJ1/LON locus is conserved in Eurotiomycetes species, where the genes are adjacent, inversely oriented, and separated by a common 5⬘ region ranging between 400 and 485 nt (Fig. 2). In these species, a BroA (Bro1) gene homologue is found adjacent to MDJ1, in the same di- VOL. 5, 2006 PbMdj1 LOCALIZES TO THE MITOCHONDRIA AND CELL WALL 383 FIG. 2. Phylogenetic tree of fungal Mdj1 sequences according to the Clustal W program. Besides the fungal sequences indicated in the legend to Fig. 1, we included those of A. fumigatus (EAL93469), N. crassa (EAA32959), F. graminearum (EAA76137), S. pombe (CAB09769), C. glabrata (CAG60838), and Homo sapiens (AF061749). A phylogenetic tree of the correspondent Lon sequences showed similar distributions. On the right, schematic representations of the chromosomal organization and gene direction in the MDJ1/LON locus of the species that bear these genes in the same chromosome. The distances separating the genes (interrupted line) in N. crassa, F. graminearum, and C. glabrata are, respectively, 236,960 kb, 1,982,719 kb, and 19,091 kb. rection. In S. cerevisiae, BroA encodes a cytoplasmic protein involved in the sorting of membrane proteins into the lumenal vesicles of endosomal multivesicular bodies (34). We expressed a His-tagged N-terminal region of PbMdj1 (252 amino acids, 25.8 kDa), which included the entire J domain, the Gly/Phe-rich region, and two zinc finger domains. This fragment contains a number of hydrophilic regions (Fig. 1B) and antibody epitopes, as predicted by the Jameson-Wolf antigenic index of the Protean module of the Lasergene program (DNAstar Inc.). We additionally expressed a 282-aminoacid His-tagged N-terminal fragment of PbLon (31.7 kDa, between residues 179 and 463), which also contains several peaks of predicted antibody epitopes. Both truncated recombinant proteins (rPbMdj1 and rPbLon) were expressed as major insoluble cytoplasmic proteins of calculated molecular masses of approximately 31 kDa for rPbMdj1 and 36 kDa for PbLon, including their vector sequences. These values are compatible with their SDS-PAGE mobilities (Fig. 3A). The correspondent pH 4.5-eluted SDS-PAGE bands were cut off the gels to immunize rabbits. Anti-rPbMdj1 and anti-rPbLon rabbit immune sera had high immunoblot titers, of 1:8,000, when tested with small amounts of the correspondent recombinant proteins, as seen in Fig. 3B. We therefore used these antibodies in subcellular localization experiments. Immunoblot reactions were carried out with both cell lysates and total mitochondrial proteins from P. brasiliensis yeast cells growing at 36°C or heat shocked for 60 min at 42°C (Fig. 3C). Anti-rPbMdj1 immune serum specifically reacted with a single mitochondrial component of approximately 55 kDa (Fig. 3D), which is comparable to the molecular mass predicted for the processed protein lacking the mitochondrial targeting region. Expression of this component increased in heat-shocked cells, demonstrating that the PbMDJ1 gene encodes a heat shock protein in P. brasiliensis. A single 55-kDa band was also seen when total mitochondrial extracts were captured with immo- bilized anti-PbMdj1 IgG and then tested by immunoblotting (not shown). When the same strategy was applied with wholecell extracts, the reaction was negative (not shown), showing that these antibodies were not cross-reacting with other intracellular components. The anti-rPbLon immune serum recognized a mitochondrial component of approximately 110 kDa, whose expression also increased in heat-shocked cells, suggesting that PbLON encodes a high-molecular-weight heat shock mitochondrial proteinase. The estimated molecular mass corresponds well to the PbLon monomer (117.6 kDa) deprived of the 6.1-kDa mitochondrial targeting region of 54 amino acids. In nonreducing SDS-PAGE gels (not shown), anti-rPbLon reacted with a mitochondrial component migrating slowly near the gel top, which is in accordance with the polymeric nature of the Lon-like proteases. The migration of the component recognized by anti-rPbMdj1 was not changed in the absence of a reducing agent (not shown). Neither PbLon nor PbMdj1 could be detected when 20 mg of total cell extracts was tested, possibly because of their small relative concentration in the cytoplasm. The heat shock nature of the mitochondrial proteins was confirmed at the transcription level. PbMDJ1 and PbLON RNA bands could be seen in Northern blots with total RNA extracted from P. brasiliensis yeast cells only after heat shock of 30 or 60 min at 42°C, but not with genetic material isolated from the starting culture growing at 36°C (Fig. 3E). The estimated sizes of the transcripts (2.05 kb for PbMDJ1 and 3.4 kb for PbLON) are in agreement with the correspondent genes and protein monomers labeled with anti-PbMdj1 and antiPbLon (Fig. 3D). Using confocal microscopy of P. brasiliensis yeast cells growing under aerobic conditions, we observed that anti-rPbMdj1 and anti-rPbLon antibodies reacted with the correspondent proteins in the mitochondria, as suggested by colocalization with MitoTracker Red (Fig. 4). Both antibodies (green) and MitoTracker (red) stained the cytoplasmic compartment with a 384 BATISTA ET AL. EUKARYOT. CELL FIG. 3. (A) Coomassie blue-stained 10% SDS-PAGE gels showing insoluble total bacterial extracts from recombinant bacteria expressing PbMdj1 or PbLon (extract) and the respective proteins eluted from Ni-NTA columns with pH 4.5 buffer. (B) Titration of anti-rPbMdj1 and anti-rPbLon rabbit immune sera (1:500 to 1:16,000) in immunoblotting. As a substrate, 100 ng of rPbMdj1 (left) or rPbLon (right), as shown in panel A, was used. NC, negative control with preimmune serum. The same lack of reactivity was observed when testing insoluble bacterial components from recombinant bacteria with vector alone eluted at pH 4.5 from a Ni-NTA column. (C) Coomassie blue-stained 10% SDS-PAGE gel profiles of total cell (T) and mitochondrial (M) extracts (20 g per lane) from a P. brasiliensis yeast culture growing at 36°C before and after heat shock at 42°C for 60 min. (D) Western blot of the gels shown in panel B, probed with the indicated rabbit sera at a concentration of 1:1,500. SDS-PAGE molecular markers are indicated (in kilodaltons) in panels A through D. (E) Northern blot analysis of total RNA isolated from P. brasiliensis cells growing at 36°C before and after heat shock at 42°C for 30 and 60 min, using PbMDJ1 and PbLON probes (upper panels). The band sizes are indicated (in kilobases). Lower panels show ethidium bromide-stained agarose gel replicas of the blotted gels in which the 18S and 28S rRNA components are visible. punctuated pattern, which merged in tones of yellow and orange. Surprisingly, however, anti-rPbMdj1 antibodies also labeled the whole cell surface, where patches of stronger green staining could be seen at the budding sites (Fig. 4A). This is particularly evident in the images of Fig. 4D, where the bud neck is intensely bright. The longitudinal slice of this image facilitated a view of a large fluorescent green surface on the daughter cell. Control images obtained with preimmune antibodies showed only background fluorescence (Fig. 4C). We tried to label S. cerevisiae, C. albicans, and C. neoformans with anti-PbMdj1 immune serum, but the reactions were negative, as were immunoblotting reactions with S. cerevisiae cell extracts (not shown). Details of the cellular localization of PbMdj1 were further exploited by transmission electron microscopy using immunogold labeling (Fig. 5). Our preparations had preserved cell surface and organelle structures (Fig. 5A), and the images show intense labeling with anti-PbMdj1 antibodies of the doublelayered cell wall. A large number of mitochondria are seen surrounding the cell membrane (Fig. 5A) yet are not in contact with it (Fig. 5B and C). The immunogold particles seem to be clustered inside the mitochondria, but in Fig. 5C they can also VOL. 5, 2006 PbMdj1 LOCALIZES TO THE MITOCHONDRIA AND CELL WALL 385 FIG. 4. Localization of PbMdj1 and PbLon by confocal microscopy of P. brasiliensis yeast cells. Red images are active mitochondria stained with MitoTracker Red. Green images are reactions with affinity-purified anti-rPbMdj1 or anti-rPbLon conjugated with FITC. Control reactions were carried out with preimmune IgG (panel C, same result for both preimmune sera). Merged images show colocalization of the labels (yellow-orange). Panel D shows two inner sections of budding cells reacting only with anti-rPbMdj1 (lower panel) or as a merged image (upper panel). Similar results were obtained with anti-rPbMdj1 IgG or affinity-purified antibodies, while only affinity-purified anti-PbLon showed interpretable images. be seen near/at the mitochondrial surface and within the thin space between the mitochondrial surface and the cell membrane. Mitochondria that were not near the cell wall were less labeled, and the gold particles in the cytoplasm (far from the cell wall) were scarce. The bud neck in Fig. 5D has a great concentration of gold particles, in accordance with the intense fluorescence of this region seen in Fig. 4D. Nonspecific labeling with preimmune rabbit antibodies was reduced to scattered particles in the cytoplasm and the cell wall (Fig. 5E). Surface labeling of P. brasiliensis yeast cells was also suggested by FACS. We observed a typical dose-response curve upon incubation of paraformaldehyde-fixed cells with 50, 100, or 200 g/ml of anti-rPbMdj1 IgG. At a concentration of 200 g/ml, over 50% of the cells were labeled, against 7% of preimmune IgG (Fig. 6A). In order to characterize the cell wall component that was reacting with anti-rPbMdj1 antibodies, cell wall components were released under mild conditions with -mercaptoethanol at an alkaline pH (Fig. 6B). When this extract was assayed by immunoblotting with anti-rPbMdj1, a 55-kDa component was revealed, which was comparable in size to the mitochondrial band recognized by the same serum (Fig. 6B). This result adds evidence to the dual mitochondrial and cell wall localization of PbMdj1 in P. brasiliensis. It is of note that we have not detected measurable amounts of PbMdj1 in culture supernatants. Since the structure of PbMdj1 predicts several antibody epitopes and one potential T-cell epitope, we questioned whether paracoccidioidomycosis patients produced antibodies recognizing the molecule and whether anti-rPbMdj1 would be able to interfere with fungal growth. We addressed the first question by testing the reactivity of rPbMdj1 with three patients’ sera by immunoblotting. As seen in Fig. 7, two of them recognized rPbMdj1 at a 1:200 dilution. The effect of polyclonal anti-rPbMdj1 IgG on in vitro growth of P. brasiliensis yeasts was tested in strain 18 cells, as described in Materials and Methods. Under these conditions, there was no inhibitory effect on the growth pattern or CFU counts compared with controls (Table 1). 386 BATISTA ET AL. EUKARYOT. CELL FIG. 5. Ultrastructural localization of PbMdj1 in P. brasiliensis yeast cells incubated with IgG fractions (60 g/ml) of either anti-rPbMdj1 (A through D) or preimmune control (E). Each panel shows a different cell. (A) Panoramic photomicrograph. (B and C) Details. Note labeling inside the mitochondria (M, arrows) and in the cell wall (CW). In panel C, labeling is also visible in the region between the cell membrane and the mitochondrion. (D) The bud neck is intensely labeled. DISCUSSION The present work demonstrates the presence of a mitochondrial member of the J-domain protein family, Mdj1, not only in the mitochondria but also in the cell wall of the pathogenic dimorphic fungus P. brasiliensis. To our knowledge, this is the first description of a DnaJ member on the cell surface. The unexpected cell wall localization of PbMdj1 was visualized in the fungal yeast cells using both confocal and electron microscopy and was confirmed by FACS analyses. The protein was labeled with rabbit polyclonal antibodies (IgG and affinitypurified fractions) raised against a recombinant PbMdj1 containing the N-terminal half of the protein. Evidence for the specificity of the immunological reactions with PbMdj1 comes from the following observations: (i) the anti-rPbMdj1 antibodies specifically recognized in immunoblotting, before or after antibody capture of soluble proteins, a single 55-kDa component from total P. brasiliensis mitochondrial extracts; (ii) the antirPbMdj1 antibodies specifically recognized a single 55-kDa immunoblotted component from a cell wall extract obtained from yeast cells of P. brasiliensis with mildly alkaline -mercaptoethanol treatment; and (iii) confocal reactions carried out with affinity-purified antibodies resulted in a labeling pattern of both the cell wall and mitochondria. Although the presence of surface J-domain proteins has not been reported before, the occurrence of extramitochondrial DnaJ homologues had been predicted by Soltys and Gupta VOL. 5, 2006 PbMdj1 LOCALIZES TO THE MITOCHONDRIA AND CELL WALL FIG. 6. (A) FACS analysis of P. brasiliensis yeast cells incubated with 200 g/ml of either anti-rPbMdj1 or preimmune IgG. (B) Coomassie blue-stained SDS-PAGE profile of an alkaline -mercaptoethanol cell wall extract (-ME, 40 g), which was also Western blotted and assayed with anti-rPbMdj1, anti-PbLon, and preimmune (PI) IgG at a dilution of 1:1,500. A mitochondrial extract (Mito) was run in parallel and assayed with anti-rPbMdj1. Molecular masses are indicated (in kilodaltons). (45). The presence of discrete amounts of mitochondrially sorted Hsp70 and Hsp60 on the plasma membrane, cytoplasmic vesicles, and cytoplasmic granules of mammalian cells has been well documented (42, 44; reviewed in reference 45). 387 Hsp60 has been detected in small clusters at discrete points on the H. capsulatum cell wall, and it has been shown to mediate attachment of the fungus to macrophages via CD11/CD18 receptors (24). Both Hsp70 and Hsp60 need specific cochaperones for optimum chaperone function, which is thus likely to occur extramitochondrially. Therefore, outside the mitochondria Mdj1 could be assisting Ssc1 (mitochondrial Hsp70), but it could also be functioning as an independent chaperone. Although an Ssc1 homologue has not been described in fungal cell walls, an Hsp70-like protein has been detected at the outer surface of the plasma membrane, throughout the cell wall, and at the cell surface of C. albicans (25). It will be interesting to find out if the P. brasiliensis Ssc1, whose gene homologue has been identified in the database, will also be found in the cell wall and if it colocalizes with Mdj1. The fungal cell wall is a dynamic compartment that determines and maintains cell shape but is also actively involved in many other biological events. Although glucans and chitin are the main scaffold components of the cell wall, it has a fascinating, complex structure with a number of other constituents (glycoproteins, proteins, and lipids), such as enzymes, adhesins, and structural and heat shock proteins, whose features depend on multiple intrinsic and external factors (reviewed for C. albicans in reference 10). Some of these components from pathogenic fungi are promising targets for drugs and immunotherapy (31). The interactions among these molecules seem to involve not only hydrogen and hydrophobic bonds but also covalent and phosphodiester (mediated by glycosyl phosphatidylinositol) linkages with polysaccharides. In the present study, we detected abundant labeling of the cell wall with antirPbMdj1 antibodies; however, low yields of the reactive 55kDa protein were obtained upon alkaline extraction with -mercaptoethanol, suggesting that the molecule is not loosely bound to this compartment. An additional observation was that when yeast cells were first treated with -mercaptoethanol and then labeled for FACS analysis, the percentage of fluorescent cells increased instead of going down to background lev- TABLE 1. Lack of inhibition of P. brasiliensis growth by anti-rPbMdj1 IgG Exptl condition (g/ml)a Culture medium ....................................................................... No. of CFUb 37 ⫾ 5.2 Anti-rPbMdj1 200..........................................................................................38.33 ⫾ 4.7 100..........................................................................................46.75 ⫾ 9.0 50............................................................................................37.75 ⫾ 2.7 25............................................................................................ 38 ⫾ 0.8 12.5......................................................................................... 39 ⫾ 0.8 Preimmune serum 200.......................................................................................... 46.5 ⫾ 3.5 100..........................................................................................41.75 ⫾ 4.9 50............................................................................................42.25 ⫾ 5.7 25............................................................................................43.25 ⫾ 3.1 12.5......................................................................................... 41.6 ⫾ 5.8 FIG. 7. Immunoblot reactivity of three PCM patients’ sera with rPbMdj1 (note visible bands for patients 1 and 2). Controls were serum from a healthy individual (⫺) and anti-rPbMdj1 (⫹ [at 1:16,000]). Human sera were tested at a 1:200 dilution. The PCM sera reacted with gp43 with immunodiffusion titers of 1:64 and 1:32. a Yeast cells (102) were cultivated in the presence of 200, 100, 50, 25, or 12.5 g/ml of IgG. After incubation for 48 or 72 h at 36°C, the cultures were supplemented with the same amount of IgG. b Numbers of CFU were determined on day 6 of culture. Differences in numbers of CFU were not statistically significant (P ⬎ 0.05). 388 BATISTA ET AL. els, as would be expected if PbMdj1 had been totally extracted (not shown). Therefore, it is likely that the initial peeling caused by mild alkaline and -mercaptoethanol treatment improved the access of anti-rPbMdj1 antibodies to formerly inaccessible PbMdj1 target molecules. That might also explain why, although PbMdj1 seems to be actively participating in yeast cell budding, anti-rPbMdj1 antibodies could not interfere with fungal growth in vitro within the range of concentrations tested: other cell components might be blocking antibody access to their target molecules. An example of such a blockage mechanism has been recently detected in Fonsecaea pedrosoi, for which anti-monohexosylceramide can react with the cell wall only when melanin is absent (32). Another possible explanation is that the antibodies cannot recognize PbMdj1 well in growing cells. On the other hand, genetic manipulation in P. brasiliensis is still an obstacle to research of P. brasiliensis; until we have mutants for both Lon and Mdj1, one can only speculate about their role in the fungal cell wall. Another aspect to be investigated is the functionality of the potential T-cell receptor that is conserved among dimorphs. A Southern blot of P. brasiliensis DNA restricted with endonucleases and assayed with an E5/E4 PbMDJ1 probe (Fig. 1A) resulted in a pattern of single bands (not shown), which suggests the presence of a single copy of the PbMDJ1 gene in the genome, as seen before with the adjacent PbLON gene (2). This is supported by the previous observations that PbMDJ1 and PbLON were mapped to a unique chromosomal band in 12 individual P. brasiliensis isolates (13). In other fungi analyzed here for which the genome is completely sequenced (Aspergillus and Candida), both LON and MDJ1 are present in single copies, reinforcing those observations. We have not found any evidence for the occurrence of alternative splicing in PbMDJ1: we visualized only one PbMDJ1 RNA band in Northern blots. Besides, RT-PCRs using primers designed to elongate the full-length ORF consistently resulted in a single band of the same size when we tested different RNA preparations of yeast cells either growing at 36°C or heat shocked at 42°C (not shown). Therefore, the components recognized by anti-rPbMDJ1 both in mitochondria and in the cell wall apparently derive from the same gene and are not a product of differentially sorted molecules bearing particular targeting sequences due to alternative splicing. The gene encoding alanine-glyoxylate aminotransferase from amphibian livers has two alternative transcription start sites at either side of the 24-nt-long mitochondrial targeting signal, so that the protein encoded by the long transcript localizes to the mitochondria, while the product of the shorter transcript is cytosolic (16). We have not been able to determine the transcription initiation site of PbMDJ1; however, computer analysis does not predict any internal translation start site that would result in an ORF lacking the mitochondrial matrix-targeting signal. Moreover, the similar SDS-PAGE gel migration of the protein labeled in mitochondria and cell wall extracts with anti-rPbMdj1 suggests that the molecule was first sorted to that organelle, where it was probably processed by a matrix-processing peptidase into a mature 55-kDa form and then migrated to the cell wall. A matrixprocessing peptidase homologue has been found in the P. brasiliensis database. Recent years have seen a growing number of examples of proteins that are sorted to the mitochondrial matrix and then EUKARYOT. CELL apparently exported to an additional compartment(s) of the cell (extensively reviewed in reference 45). The extramitochondrial destination varies with the molecules, which include antigens, enzymes, receptors, hormones, and chaperones, and with their specific roles in the destination sites. The mechanism(s) involved in mitochondrial export and its control are so far speculative, but the endosymbiotic origin of mitochondria suggests that some ancient bacterial secretory pathways must have been retained and modified by the organelle (45). It is noticeable that in a recent proteomics study of plasma membrane lipid rafts, 24% of the 196 identified proteins were mitochondrial; however, rafts have not been found in that compartment (1). In our electron microscopic images, mitochondria formed a ring near the cell surface. This pattern has been mentioned previously for P. brasiliensis yeast cells (19), and they can be seen in electron microscopic pictures of recently transformed yeasts (7), although in hyphae that pattern was not evident (6). The image shown in Fig. 5C suggests that some gold particles, in small clusters, are leaving the mitochondrion and moving toward the cell surface, but it is not clear whether these clusters are inside vesicles. Thus, the peripheral localization of mitochondria might not be fortuitous but rather may suggest that active trafficking of molecules to the cell surface might be taking place. We have previously characterized the P. brasiliensis LON homologue (2). Here we show that PbLON is a heat shock gene that encodes a 110-kDa mitochondrial heat shock protein. In our confocal analyses, PbLon localized to the mitochondria, showing that the presence of PbMdj1 in the cell wall does not include helping protein degradation by PbLon. We observed that the deduced Lon and Mdj1 sequences are remarkably homologous among dimorphic fungi, especially P. brasiliensis, H. capsulatum, and B. dermatitidis. It will be interesting to find out if Mdj1 localizes to the cell wall of these microorganisms. We found that the LON/MDJ1 locus organization is comparable among Eurotiomycetes species. The entire homologous locus probably also includes Bro1, CreA, a little farther from BroA, and a hypothetical protein adjacent to LON so far found in A. nidulans, A. fumigatus, and H. capsulatum. In terms of comparative genomics, this is a relevant finding that might have evolutionary significance. This is the first conserved chromosomal organization reported for Ascomycetes, for which genome sequencing of several species will soon be finished. We are presently studying the regulatory elements contained in the 5⬘ untranslated region shared by LON and MDJ1, and we hope to find conserved mechanisms of regulation among fungal heat shock proteins. ACKNOWLEDGMENTS We are thankful to Caroline Z. Romera, Elizabeth N. Kanashiro, Márcia F. A. Tanakai, André H. Aguillera, and Ronni R. Novaes e Brito for generous and competent technical assistance. We are grateful to Soraya S. Smaili for the use of confocal microscopy facilities. We are also grateful to Márcio L. Rodrigues and Gustavo H. Goldman for critical reading of the manuscript and to Luiz R. Travassos for always reminding us that the cell wall is a fascinating dynamic compartment where one can find any kind of molecule. This work was supported by FAPESP, CNPq, and Pronex/CNPq. REFERENCES 1. Bae, T. J., M. S. Kim, J. W. Kim, B. W. Kim, H. J. Choo, J. W. Lee, K. B. Kim, C. S. Lee, J. H. Kim, S. Y. Chang, C. Y. Kang, S. W. Lee, and Y. G. Ko. 2004. VOL. 5, 2006 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. PbMdj1 LOCALIZES TO THE MITOCHONDRIA AND CELL WALL Lipid raft proteome reveals ATP synthase complex in the cell surface. Proteomics 4:3536–3548. Barros, T. F., and R. Puccia. 2001. Cloning and characterization of a LON gene homologue from the human pathogen Paracoccidioides brasiliensis. Yeast 18:981–988. Bialek, R., A. Ibricevic, A. Fothergill, and D. Begerow. 2000. Small subunit ribosomal DNA sequence shows Paracoccidioides brasiliensis closely related to Blastomyces dermatitidis. J. Clin. Microbiol. 38:3190–3193. Bota, D. A., J. K. Ngo, and K. J. Davies. 2005. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic. Biol. Med. 38:665–677. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254. Carbonell, L. M., and J. Rodriguez. 1968. Mycelial phase of Paracoccidioides brasiliensis and Blastomyces dermatitidis: an electron microscope study. J. Bacteriol. 96:533–543. Carbonell, L. M. 1969. Ultrastructure of dimorphic transformation in Paracoccidioides brasiliensis. J. Bacteriol. 100:1076–1082. Carvalho, K., L. Ganiko, W. L. Batista, F. V. Morais, E. Marques, G. H. Goldman, M. F. Franco, and R. Puccia. 2005. Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotypes. Microbes Infect. 7:55–65. Casanova, M., and W. L. Chaffin. 1991. Cell wall glycoproteins of Candida albicans as released by different methods. J. Gen. Microbiol. 137:1045–1051. Chaffin, W. L., J. L. Lopez-Ribot, M. Casanova, D. Gozalbo, and J. P. Martinez. 1998. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62:130–180. Cisalpino, P. S., R. Puccia, L. M. Yamauchi, M. I. Cano, J. F. da Silveira, and L. R. Travassos. 1996. Cloning, characterization, and epitope expression of the major diagnostic antigen of Paracoccidioides brasiliensis. J. Biol. Chem. 271:4553–4560. Fan, C. Y., S. Lee, and D. M. Cyr. 2003. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 8:309–316. Feitosa, L. S., P. S. Cisalpino, M. R. dos Santos, R. A. Mortara, T. F. Barros, F. V. Morais, R. Puccia, J. F. da Silveira, and Z. P. de Camargo. 2003. Chromosomal polymorphism, syntenic relationships, and ploidy in the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet. Biol. 39:60–69. Felipe, M. S., R. V. Andrade, F. B. Arraes, A. M. Nicola, A. Q. Maranhao, F. A. Torres, I. Silva-Pereira, M. J. Pocas-Fonseca, E. G. Campos, L. M. Moraes, P. A. Andrade, A. H. Tavares, S. S. Silva, C. M. Kyaw, D. P. Souza, P. Network, M. Pereira, R. S. Jesuino, E. V. Andrade, J. A. Parente, G. S. Oliveira, M. S. Barbosa, N. F. Martins, A. L. Fachin, R. S. Cardoso, G. A. Passos, N. F. Almeida, M. E. Walter, C. M. Soares, M. J. Carvalho, and M. M. Brigido. 2005. Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J. Biol. Chem. 280:24706–24714. Goldman, G. H., M. E. dos Reis, R. Duarte, L. A. Souza Bernardes, A. C. Quiapin, P. M. Vitorelli, M. Savoldi, C. P. Semighini, R. C. de Oliveira, L. R. Nunes, L. R. Travassos, R. Puccia, W. L. Batista, L. E. Ferreira, J. C. Moreira, A. P. Bogossian, F. Tekaia, M. P. Nobrega, F. G. Nobrega, and M. H. Goldman. 2003. Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryot. Cell 2:34–48. Holbrook, J. D., and C. J. Danpure. 2002. Molecular basis for the dual mitochondrial and cytosolic localization of alanine:glyoxylate aminotransferase in amphibian liver cells. J. Biol. Chem. 277:2336–2344. Huang, H. C., M. Y. Sherman, O. Kandror, and A. L. Goldberg. 2001. The molecular chaperone DnaJ is required for the degradation of a soluble abnormal protein in Escherichia coli. J. Biol. Chem. 276:3920–3928. Izacc, S. M., F. J. Gomez, R. S. Jesuino, C. A. Fonseca, M. S. Felipe, G. S. Deepe, and C. M. Soares. 2001. Molecular cloning, characterization and expression of the heat shock protein 60 gene from the human pathogenic fungus Paracoccidioides brasiliensis. Med. Mycol. 39:445–455. Kashino, S. S., V. L. Calich, L. M. Singer-Vermes, P. A. Abrahamsohn, and E. Burger. 1987. Growth curves, morphology and ultrastructure of ten Paracoccidioides brasiliensis isolates. Mycopathologia 99:119–128. Kelley, W. L. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23:222–227. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. Langer, T., C. Lu, H. Echols, J. Flanagan, M. K. Hayer, and F. U. Hartl. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683–689. Leal, C. V., B. A. Montes, A. C. Mesa, A. L. Rua, M. Corredor, A. Restrepo, and J. G. McEwen. 2004. Agrobacterium tumefaciens-mediated transformation of Paracoccidioides brasiliensis. Med. Mycol. 42:391–395. Long, K. H., F. J. Gomez, R. E. Morris, and S. L. Newman. 2003. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 389 mediates binding to CD18 receptors on human macrophages. J. Immunol. 170:487–494. Lopez-Ribot, J. L., H. M. Alloush, B. J. Masten, and W. L. Chaffin. 1996. Evidence for presence in the cell wall of Candida albicans of a protein related to the hsp70 family. Infect. Immun. 64:3333–3340. Lu, B., T. Liu, J. A. Crosby, J. Thomas-Wohlever, I. Lee, and C. K. Suzuki. 2003. The ATP-dependent Lon protease of Mus musculus is a DNA-binding protein that is functionally conserved between yeast and mammals. Gene 306:45–55. Marques, E. R., M. E. Ferreira, R. D. Drummond, J. M. Felix, M. Menossi, M. Savoldi, L. R. Travassos, R. Puccia, W. L. Batista, K. C. Carvalho, M. H. Goldman, and G. H. Goldman. 2004. Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Mol. Genet. Genomics 271:667–677. McEwen, J. G., V. Bedoya, M. M. Patino, M. E. Salazar, and A. Restrepo. 1987. Experimental murine paracoccidioidomycosis induced by the inhalation of conidia. J. Med. Vet. Mycol. 25:165–175. Morais, F. V., T. F. Barros, M. K. Fukada, P. S. Cisalpino, and R. Puccia. 2000. Polymorphism in the gene coding for the immunodominant antigen gp43 from the pathogenic fungus Paracoccidioides brasiliensis. J. Clin. Microbiol. 38:3960–3966. Nielsen, H., J. Engelbrecht, S. Brunak, and G. von Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10:1–6. Nimrichter, L., M. L. Rodrigues, E. G. Rodrigues, and L. R. Travassos. 2005. The multitude of targets for the immune system and drug therapy in the fungal cell wall. Microbes Infect. 7:789–798. Nimrichter, L., M. D. Cerqueira, E. A. Leitão, M. Kildare, E. S. Nakayasu, S. R. Almeida, I. C. Almeida, C. S. Alviano, E. Barreto-Bergter, and M. L. Rodrigues. 2005. Structure, cellular distribution, antigenicity, and biological functions of Fonsecaea pedrosoi ceramide monohexosides. Infect. Immun. 73:7860–7868. Nunes, L. R., R. O. Oliveira, D. B. Leite, V. S. Silva, E. R. Marques, M. E. S. Ferreira, D. C. D. Ribeiro, L. A. S. Bernardes, M. H. S. Goldman, R. Puccia, L. R. Travassos, W. L. Batista, M. P. Nóbrega, F. G. Nóbrega, D. Y. Yang, and G. H. Goldman. 2005. Transcription profiling of Paracoccidioides brasiliensis cells undergoing the mycelium-to-yeast transition. Eukaryot. Cell 4:2115–2128. Odorizzi, G., D. J. Katzmann, M. Babst, A. Audhya, and S. D. Emr. 2003. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci. 116:1893–1903. Pellecchia, M., T. Szyperski, D. Wall, C. Georgopoulos, and K. Wuthrich. 1996. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J. Mol. Biol. 260:236–250. Peterson, S. W., and L. Sigler. 1998. Molecular genetic variation in Emmonsia crescens and Emmonsia parva, etiologic agents of adiaspiromycosis, and their phylogenetic relationship to Blastomyces dermatitidis (Ajellomyces dermatitidis) and other systemic fungal pathogens. J. Clin. Microbiol. 36:2918–2925. Rodrigues, M. L., L. R. Travassos, K. R. Miranda, A. J. Franzen, S. Rozental, W. de Souza, C. S. Alviano, and E. Barreto-Bergter. 2000. Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect. Immun. 68:7049–7060. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Savel’ev, A. S., L. A. Novikova, I. E. Kovaleva, V. N. Luzikov, W. Neupert, and T. Langer. 1998. ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J. Biol. Chem. 273:20596–20602. Sheffield, P., S. Garrard, and Z. Derewenda. 1999. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15:34–39. Silva, S. P., M. I. Borges-Walmsley, I. S. Pereira, C. M. Soares, A. R. Walmsley, and M. S. Felipe. 1999. Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis. Mol. Microbiol. 31:1039– 1050. Singh, B., B. J. Soltys, Z. C. Wu, H. V. Patel, K. B. Freeman, and R. S. Gupta. 1997. Cloning and some novel characteristics of mitochondrial Hsp70 from Chinese hamster cells. Exp. Cell Res. 234:205–216. Soares, R. M., Costa e Silva-Filho, S. Rozental, J. Angluster, W. de Souza, C. S. Alviano, and L. R. Travassos. 1998. Anionogenic groups and surface sialoglycoconjugate structures of yeast forms of the human pathogen Paracoccidioides brasiliensis. Microbiology 144:309–314. Soltys, B. J., and R. S. Gupta. 1996. Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp. Cell Res. 222:16–27. Soltys, B. J., and R. S. Gupta. 2000. Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int. Rev. Cytol. 194:133–196. 390 BATISTA ET AL. 46. Stahlberg, H., E. Kutejova, K. Suda, B. Wolpensinger, A. Lustig, G. Schatz, A. Engel, and C. K. Suzuki. 1999. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96:6787–6790. 47. Straus, A. H., E. Freymuller, L. R. Travassos, and H. K. Takahashi. 1996. Immunochemical and subcellular localization of the 43 kDa glycoprotein antigen of Paracoccidioides brasiliensis with monoclonal antibodies. J. Med. Vet. Mycol. 34:181–186. 48. Suzuki, C. K., E. Kutejova, and K. Suda. 1995. Analysis and purification of ATP-dependent mitochondrial lon protease of Saccharomyces cerevisiae. Methods Enzymol. 260:486–494. 49. Szabo, A., R. Korszun, F. U. Hartl, and J. Flanagan. 1996. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J. 15:408–417. 50. Tang, W., and C. C. Wang. 2001. Zinc fingers and thiol-disulfide oxidoreductase activities of chaperone DnaJ. Biochemistry 40:14985–14994. EUKARYOT. CELL 51. van Dyck, L., and T. Langer. 1999. ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell. Mol. Life Sci. 56:825–842. 52. Voos, W., and K. Rottgers. 2002. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Biophys. Acta 1592:51–62. 53. Wagner, I., H. Arlt, L. van Dyck, T. Langer, and W. Neupert. 1994. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 13:5135–5145. 54. Wagner, I., L. van Dyck, A. S. Savel’ev, W. Neupert, and T. Langer. 1997. Autocatalytic processing of the ATP-dependent PIM1 protease: crucial function of a pro-region for sorting to mitochondria. EMBO J. 16:7317–7325. 55. Walsh, P., D. Bursac, Y. C. Law, D. Cyr, and T. Lithgow. 2004. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO J. 5:567–571. 56. Wright, R., M. Basson, L. D’Ari, and J. Rine. 1988. Increased amounts of HMG-CoA reductase induce “karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J. Cell Biol. 107:101–114. Proteinases de P. brasiliensis: conclusões A serino-tiol proteinase extracelular de P. brasiliensis (PbST) é a enzima do fungo melhor caracterizada até o momento. O desenvolvimento desta tese ampliou o conhecimento sobre essa PbST com os seguintes dados: 1. A atividade da PbST sobre o peptídeo Abz-MKALTLQ-EDDnp sofre uma intensa modulação por açúcares neutros do tipo dextrana, manana de levedura e galactomanana de P. brasiliensis. A manana de levedura inibiu a interação da proteinase com o substrato, enquanto a dextrana e a galactomanana de P. brasiliensis aumentaram a afinidade da enzima pelo substrato. Adicionalmente, a galactomanana fúngica foi capaz de estabilizar a atividade hidrolítica em temperaturas elevadas e diminuir a Vmáx, o que provavelmente previne sua autólise antes de atingir o substrato in vivo (artigo 1). 2. Foram desenvolvidos compostos com intenso poder inibitório da PbST sobre AbzMKALTLQ-EDDnp e em ensaios de inibição da aderência celular de LLC-MK2. O inibidores foram gerados a partir de um substrato peptídico da enzima (MKRLTL) acoplado com o composto (C)Npys, o qual é capaz de reagir com grupos tiois livre. BzlC(Npys)KRLTL-NH2 apresentou um Ki de 16 nM, Bzl-MKRLTLC(Npys)-NH2 alcançou 160 nM, enquanto (C)Npys inibiu na ordem de 1,7 µM. Os inibidores não foram tóxicos em ensaios com culturas de células, o que oferece possibilidade de utilização in vivo. A inibição foi completamente revertida com ditiotreitol, mostrando ser devida à interação do (C)Npys com um grupo tiol livre posicionado próximo ao sítio ativo, como sugerido pelo aumento da eficiência de inibição com substrato peptídico (artigo 2). 39 3. Apesar do conhecimento acumulado sobre as características enzimáticas da PbST, sua identidade continua um mistério. Sua purificação total a partir de sobrenadante de cultura parece inviável. Utilizamos várias estratégias com o intuito de enriquecer a proteinase e realizar análises de seqüência por espectrometria de massas ou sequenciamento de Nterminal. Todavia, nenhuma informação conclusiva foi obtida (artigo 2 e anexo 1). Talvez os inúmeros peptídeos seqüenciados possam ser identificados em futuro breve, visto que a análise do genoma completo do Paracoccidioides brasiliensis está em andamento. O gene da serino proteinase mitocondrial ATP-dependente Lon de P. brasiliensis (PbST) foi clonado fortuitamente durante as tentativas de clonar a PbST usando oligonucleotídeos degenerados correspondentes aos sítios ativos de subtilisinas. Sua caracterização levou à identificação, no mesmo lócus, do gene MDJ1, codante de uma chaperone mitocondrial que potencialmente participa na seleção de substratos da Lon. O desenvolvimento desta tese ampliou o conhecimento sobre a PbLon com os seguintes dados: 1. A PbLon localiza-se somente na matriz da mitocôndria de leveduras do P. brasiliensis, enquanto a PbMdj1 foi detectada em grandes quantidades também na parede celular do fungo. A localização em microscopia confocal foi possível a partir de anticorpos policlonais de coelho anti-PbLon recombinante truncada. A marcação da PbLon na mitocôndria foi intensa por microscopia confocal (artigo 3) e discreta nos cortes de microscopia eletrônica de transmissão (anexo 2). 2. O objetivo de expressar a PbLon ativa em sistema heterólogo e com ela selecionar substratos peptídicos específicos para a enzima foi abandonado. As inúmeras tentativas 40 de expressão da proteinase recombinante ativa foram em vão (anexo 2), possivelmente por ser tóxica à célula quando superexpressada. 41 Capítulo 2 Moléculas secretadas de Paracoccidioides brasiliensis: proteínas associadas à parede celular diferencialmente expressas e resultados preliminares sobre vesículas extracelulares 42 Introdução A produção intracelular de pequenas vesículas contendo proteínas da membrana plasmática foi descrita há mais de 25 anos na maturação de reticulócitos de carneiro (Pan et al., 1983, 1985). Sabe-se que durante a maturação de reticulócito para eritrócito há o desaparecimento de diversas proteínas da membrana plasmática e o principal mecanismo parece estar relacionado à formação de vesículas lipidoproteicas no endossomo (Pan et al., 1985; Harding et al., 1984), seguido de fusão com a membrana plasmática e liberação dos exossomos na corrente sanguínea (Johnstone et al., 1987). Porém ainda não há descrição sobre a função fisiológica desses exosomos (revisão em Johnstone, 2006). As proteínas eliminadas pelos exossomos irão depender do tipo celular, porém o mesmo tipo celular pode apresentar diferenças, como eritrócitos de carneiros que irão reter a maioria dos seus transportadores de glucose, enquanto em porcos ficam retidos transportadores de nucleosídeos. Em células de mamíferos, já foi descrita a liberação de exossomos em células do sistema imune, epitélio intestinal, epidídimo e túbulos do rim (revisão em Johnstone, 2006). Atualmente os exossomos são definidos como pequenas vesículas membranosas lipido-proteicas originadas intracelularmente pelo brotamento de membranas que formam pequenas vesículas (vesículas intraluminais), as quais se acumulam em corpos multivesiculados. Sua liberação como exossomos ocorre a partir da fusão da membrana contendo os corpos multivesiculados com a membrana plasmática e seu tamanho varia entre 20 e 150 nm (revisões em Février e Raposo, 2004; Johnstone, 2006; Li et al., 2006). Os exossomos contém citosol e expõem o domínio intracelular de receptores. Classicamente, podem ser obtidos através de filtrações e centrifugações diferenciais de 43 sobrenadantes de cultura e são precipitados por uma centrifugação final a 100.000 x g por 1 hora. Em gradientes de sacarose, os exossomos alojam-se na densidade entre 1,13 e 1,21 g/mL e esse passo pode ser introduzido para eliminar vesículas associadas não especificamente a proteínas e/ou lipídeos extracelulares. Sua visualização somente pode ser feita através de microscopia eletrônica (revisão em Johnstone, 2006). Recentemente, foi proposto que os exossomos constituem um novo mecanismo de secreção para o exporte de Hsp70, a qual é desprovida de peptídeo sinal e tem, como outras Hsp, propriedades imunorregulatórias (Lancaster e Febbraio, 2005). Além de eliminar proteínas do citosol, os exossomos desempenham importantes funções imunológicas. Exossomos de células dendríticas maduras são 2 ordens de grandeza mais efetivos que exossomos de células dentríticas imaturas em indução de células-T antígeno específicas (Segura et al., 2005). Verificou-se também que exossomos de células dendríticas estimuladas com antígenos de tumor possuem uma resposta antitumoral in vivo (Quah et al., 2005), porém esse efeito não foi específico para o tipo de tumor. Sprent (2005) mostrou que exossomos podem ser imunogênicos para células T CD8+ mesmo na ausência de células apresentadoras de antígeno. Recentemente exossomos têm sido usados no tratamento de pacientes com melanoma, pois se sabe que eles possuem um complexo funcional MHC classe II – peptídeo capaz de promover resposta imune e rejeição de tumor (revisão em Chaput et al., 2005). Em bactérias gram-negativas também foi observada a liberação de vesículas extracelulares de 50 a 250 nm formadas diretamente a partir da membrana externa. A secreção de produtos em bactérias patogênicas gram-negativas é o principal meio de comunicação e intoxicação das células do hospedeiro. As vesículas são produzidas em 44 tecidos infectados e participam na colonização, carregando fatores de virulência e modulando a defesa e resposta imune do hospedeiro. Também já foram detectadas vesículas em fluidos corpóreos demonstrando sua capacidade de disseminação para diversos pontos. Algumas bactérias utilizam vesículas para destruir outras bactérias em situação de competição por nutrientes ou até mesmo transferir material benéfico, como enzimas de resistência a antibióticos. Por participar de tantas funções é considerado um potencial fator de virulência em bactérias gram-negativas (revisão em Kuehn e Kesty, 2005). Em nosso laboratório foi especulada a possibilidade da serino-tiol proteinase (PbST) ou algum modulador positivo da enzima ser veiculado ao meio extracelular por vesículas secretadas pelo fungo. Em algumas oportunidades foi observado aumento na atividade enzimática após congelamentos e degelos sucessivos de sobrenadante, o que poderia levar à lise de estruturas lipídicas. Estruturas semelhantes aos exossomos observadas em Trypanosoma cruzi foram capazes de provocar uma intensa resposta próinflamatória de macrófagos murinos via receptor Toll-like 2 (Torrecilhas et al., em revisão). Em fungos, vesículas extracelulares foram recentemente detectadas em Cryptococcus neoformans (Yoneda e Doering, 2006; Rodrigues et al., 2007). Além da parede celular, esse fungo possui uma cápsula composta polissacarídica que é essencial para a virulência (Chang e Kwon-Chung, 1994), porém o mecanismo de tranporte dessas macromoléculas nunca foi esclarecido. Recentemente Rodrigues e colaboradores (2007) evidenciaram e caracterizaram vesículas extracelulares com 50 a 400 nm de diâmetro contendo alta quantidade de glucoronoxilomanana (GXM), o principal polissacarídeo da cápsula de C. neoformans. Essas vesículas também foram purificadas a partir de 45 macrófagos infectados com o fungo, demonstrando que sua produção pode ocorrer “in vivo”. É importante ressaltar que em ensaios com células mortas não houve liberação de vesículas para o meio extracelular, descartando a possibilidade dessas estruturas serem meros artefatos de células lisadas. Em fungos, as vesículas possivelmente estão relacionadas com a secreção de proteínas secretadas que não possuem um sistema clássico de secreção. Sabe-se que há diversas proteínas citosólicas localizadas na parede celular de fungos que não possuem peptídeo sinal (revisão em Chaffin et al., 1998). A parede celular de fungos é uma estrutura dinâmica formada principalmente por polissacarídeos de quitina e glucana, mas contem também proteínas, glicoproteínas e lipídeos. Diversas funções são atribuídas à parede celular, entre elas manter o balanço osmótico, o formato celular, promover proteção mecânica e morfogênese (revisão em de Groot et al., 2005). O estudo detalhado desta estrutura é importante por 2 motivos: é o primeiro compartimento em contato com estruturas e com o sistema imune do hospedeiro e está ausente de células de mamíferos, tornando-se um ótimo alvo farmacológico. Em C. albicans os dois assuntos mais abordados na literatura em relação à parede celular são a presença de adesinas, pois a adesão é um pré-requisito para o estabelecimento da infecção e seu potencial de modular a resposta imune (revisão em Chaffin, 1998). Em Ascomycetos a parede celular é formada por uma bicamada constituída principalmente por polímeros de carboidratos e em menor concentração por proteínas, glicoproteínas e lipídeos. Em Neurospora crassa, a camada externa é alcali-solúvel formada de fibrilas e glicoproteínas, enquanto a interna é formada por polímeros de β1,3-glucana e quitina (Mahadevan e Tatum, 1967). Em C. albicans, a camada polissacarídica interna é formada pela ligação covalente de β-1,3-glucana à β-1,6-glucana 46 e quitina. Classicamente as proteínas de parede celular estão covalentemente ligadas às pequenas cadeias laterais de β-1,6-glucana via âncora de glisosilfosfatidilinositol (GPI) ou diretamente às cadeias de β-1,3-glucana, como é o caso das proteínas Pir (“protein with internal repeats”). As proteínas da família Pir, que são O-glicosiladas, podem ser extraídas com NaOH em condições brandas, assim como as proteínas ALS (“alkali linkage sensitive”). Manoproteínas ligadas covalentemente por pontes dissulfeto podem ser extraídas por tratamento com agente redutor. Outras proteínas, que são glicosiladas, possuem peptídeo sinal e não são covalentemente ligadas, podem ser extraídas com água quente ou detergentes iônicos como SDS. Nos últimos anos diversas proteínas citoplasmáticas resistentes a esses tratamentos têm sido detectadas na parede celular, e diversas não possuem peptídeo sinal. Especula-se que são exportadas por uma via não convencional (revisões em Chaffin et al., 1998; de Groot et al., 2005; Ruiz-Herrera et al., 2006, Nombela et al., 2006). As proteínas de parede celular estão relacionadas com diversas funções como porosidade, retenção de água, proteção contra estresse, manutenção, adesão, formação de biofilme, antigenicidade, retenção de ions de ferro, hidrofobicidade e virulência. Yun e colaboradores (1997) observaram que a superexpressão das proteínas Pir em S. cerevisiae produz um efeito protetor contra a osmotina, uma proteína de defesa em plantas. O proteoma de parede celular de C. albicans também revelou 3 proteínas GPI-ancoradas que possivelmente contribuem com a virulência: uma delas é uma proteína ligadora de grupo heme que poderia facilitar a sobrevivência em condições limitantes de íons ferro e duas superóxido dismutases que agiriam contra ataques oxidantes de macrófagos (de Groot et al., 2004; Fradin et al., 2005). Além das proteínas covalentemente ligadas, há 47 importantes proteínas que estão associadas à parede celular como a lacase presente na camada externa da parede celular de C. neoformans, que é capaz de transformar substratos fenólicos em melanina (Zhu et al., 2001). Em P. brasiliensis, poucas proteínas associadas à parede cellular foram descritas, incluindo duas adesinas (Gonzalez et al., 2005), uma gliceraldeído-3-fosfato desidrogenase (Barbosa et al., 2006) e gp43 (Vicentini et al., 1994), todas com capacidade de ligação com componentes da matriz extracelular, além de uma chaperone mitocondrial PbDnaJ1 (Batista et al., 2006), e melanina (Silva et al., 2006). 48 Proteomic analysis of differentially expressed cell wall-associated proteins from the human pathogen Paracoccidioides brasiliensis Alisson L. Matsuoa, Ernesto S. Nakayasub, Luciane Ganikob , Kátia C. Carvalhoa, Igor C. Almeidab, Rosana Pucciaa,* a Department of Microbiology, Immunology and Parasitology, Cell Biology Division, Federal University of São Paulo, 04023-62, São Paulo, Brazil b Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA 49 Racional O estudo de proteínas ligadas covalentemente ou associadas à parede de P. brasiliensis é pobre. Até o momento foram descritos apenas um homólogo da chaperone Mdj1 (Batista et al., 2006), duas adesinas, uma de 32 kDa (Gonzales et al., 2005) e a gliceraldeído-3-fosfato desidrogenase (Barbosa et al., 2006) com capacidade de ligar proteínas da matriz extracelular, além de melanina (Gomez et al., 2001). Algumas das proteínas encontradas na parede poderiam estar transientemente localizadas nesse compartimento inseridas em vesículas com destino extracelular. O estudo de vesículas extracelulares no fungo é inexistente. Neste capítulo apresentamos um manuscrito contendo as análises de proteoma de frações da parede celular de dois isolados de P. brasiliensis e o estudo preliminar de vesículas extracelulares do fungo. 50 Abstract This work aimed at identifying differentially expressed cell wall-associated proteins (CWAPs) in the dimorphic human pathogen P. brasiliensis. We compared isolates Pb18 and Pb3, yeast phase, cultivated in F12/glu supplemented or not fetal bovine serum (FBS). These isolates belong to distinct phylogenetic groups and evoke different types of immune response and disease progression in the B.10A mouse model. To obtain cell wall preparations, debris from mechanically disrupted cells were extensively washed with salt to remove contaminants and a fraction of proteins attached by disulfides bonds was removed with dithiotreitol. CWAPs were chemically extracted with NaOH or HF-pyridine, and digested with trypsin. The resulting peptides were identified by mass spectrometry (LC-MS/MS), validated by Phenyx and Mascot softwares, and quantified using an exponentially modified protein abundance index. Only 6 serum proteins were detected. We analyzed sixty fungal CWAPs that were identified by a minimum of 4 peptides in at least one sample. The most abundant were translation elongation factor 1, hsp70 and histone H2B. The amount of ribosomal proteins, hsp70, hsp90, catalase, calmodulin, actin and several metabolic proteins increased when both isolates were cultivated in FBS. Among the CWAPs prevalent in Pb18, thiol-specific oxidant and glyceraldehyde-3-phosphate dehydrogenase might help explain Pb18 higher virulence. Prevalence of gp43 in Pb3 cell wall, on the other hand, might contribute to its faster elimination and decreased virulence. When compared to Pb18, the Pb3 change of protein profile in serum suggested that it might be less adapted to host conditions. 51 Introduction Paracoccidioides brasiliensis is a thermodimorphic fungus responsible for paracoccidioidomycosis (PCM). PCM is a systemic granulomatous mycosis prevalent in Latin America, where at least 10 million individuals might be infected by inhalation of conidia (San-Blas et al., 2002). Within the pulmonary alveolar epithelium, the infectious particles can establish infection once they transform into the parasitic yeast form. The dimorphic transition appears to be a general requirement for pathogenicity of dimorphic fungi (Nemecek et al., 2006). In P. brasiliensis, the transition from mycelium to yeast is accompanied by several changes in the cell wall, such as an increase in chitin content and a shift in the anomeric structure of the β-1,3- (alkali insoluble) to α-1,3-glucan (alkali soluble), as reviewed by San-Blas et al. (1993), besides reorganization of membrane glycosphingolipids (Levery et al., 1998). The gp43 is a dominant immunodiagnostic antigen from P. brasiliensis found predominantly in the culture supernatant (Puccia and Travassos, 1991), but also partly associated to the cell wall (Straus et al., 1996). This glycoprotein is capable of binding to extracellular matrix-associated components, such as murine laminin (Vicentini et al., 1994; Gesztesi et al., 1996) and fibronectin (Mendes-Giannini et al., 2006), being therefore a possible virulence factor. On the other hand, it bears protective T-cell epitopes that are vaccine candidates (Taborda et al., 1998) and might be used in immunotherapy associated with chemotherapy (Marques et al., 2006). The PbGP43 gene has up to 6 distinct genotypes (Morais et al., 2000), where the most polymorphic are characteristic of 52 a small group of isolates recently classified as phylogenetic criptic species PS2, according to a multilocus study conducted by Matute et al. (2006). So far this group includes Brazilian clinical isolates Pb3, Pb4, BT84, Uberlândia, Venezuelan Pb2 and armadillo T10B1 (Matute et al., 2006). In a B10.A mouse model, isolates Pb2, Pb3 and Pb4 evoked regressive PCM, while isolates from the main species S1, where Pb18 is included, were consistently more virulent (Carvalho et al., 2005). Isolates from the Colombian phylogenetic group PS3 have not yet been compared to the others in terms of virulence. The cell wall of most fungal pathogens is the outermost layer of contact with the immune system and other host structures; hence its contents are fundamental to determine the faith of the infection. The cell wall is a dynamic compartment composed mainly of structural polysaccharides (chitin and glucans), with fewer percentages of proteins, glycoproteins and lipids. It is responsible for osmotic balance, cell shape, mechanical protection and morphogenesis. In Candida albicans, an internal layer of β-1,3-glucans is covalently linked to β-1,6-glucan and chitin. Cell wall proteins (CWPs) are responsible for remodeling, adhesion, biofilm formation and antigenicity. Classical CWPs are covalently linked either to β-1,6-glucan short side chains via a glycosilphosphatidylinusitol (GPI) anchor or directly to the long β-1,3 glucan chain. This is the case of a family of proteins with internal repeats (Pir) that are highly Oglycosylated. Pir proteins can be extracted with weak NaOH treatment, which also extracts other alkali-sensitive proteins (ASL). GPI-anchored proteins are sensitive to HFpyridine, while mannoproteins, covalently linked by disulfide bonds, are extracted with reducing agents. Other proteins, which are glycosylated and bear a signal peptide, are 53 non-covalently linked to the cell wall and are sensitive to extraction with hot water, chaotropic agents or ionic detergents. A growing number of proteins have been reported that are covalently linked, and hence resistant to these treatments, do not possess known signal peptides or sugar moieties and are originally cytoplasmic proteins. The type of association to or function at the cell wall is not clear, and it has been speculated that they are transported through a non-conventional export pathway (reviews in Ruiz-Herrera et al., 2006; Nombela et al., 2006). In P. brasiliensis, few cell wall-associated proteins have been identified, including two adhesins (Gonzalez et al., 2005), a glyceraldehyde-3-phosphate dehydrogenase (Barbosa et al., 2006), and gp43 (Vicentini et al., 1994), all capable of binding extracellular matrix-associated proteins. Another important protein associated with the cell wall is the enzyme laccase, responsible for melanin synthesis (Silva et al., 2006). In addition, our group has recently identified a mitochondrial member of the J family co-localized to the cell wall (Batista et al., 2006). In this study, we focused on the proteome of cell wall-associated proteins (CWPAs). We evaluated by mass spectrometry total CWPAs from fractions extracted with mild alkali and HF-pyridine of the isolates Pb18 and Pb3 grown in the presence and in the absence of bovine fetal serum. 54 Materials and methods Fungal isolates and culture conditions. We analyzed P. brasiliensis isolates 18 (Pb18) and Pb3 (as in Morais et al., 2000; original name 608; B26 in Matute et al., 2006). Fungal yeast cells were recovered from the lungs of mouse infected intratracheally, as described (Carvalho et al., 2005), and maintained short-term at 36oC in solid modified YPD (0.5% bacto-yeast extract, 0.5% casein peptone and 1.5% dextrose, pH 6.5) before use. For cell wall extraction, yeast cells were recovered from liquid cultures (900 mL) grown for 7 days (late log phase) in F12 defined medium (Difco)/1.5% glucose (F12/glu) supplemented or not with 5% fetal bovine serum (FBS), at 36oC, with agitation at 120 rpm in a rotary shaker. For adaptation to the culture medium, fungal cells from solid medium were first grown in the same conditions (100 mL, 6 days) as pre-inocula before being transferred to a larger volume of fresh medium. Cell wall purification. Yeast cells grown in liquid F12/glu supplemented or not with 5% FBS were microscopically analyzed for purity and viability (> 95%) with Tripan blue. Fungal cells (10 ml of wet cells) were collected by centrifugation (1,300 x g for 5 min) and washed 5 times with an excess amount of ice-cold buffer A (PBS, 0.1 M EDTA, 1 mM PMSF, pH 7.5). Washed cells were suspended in the same buffer and mechanically disrupted with glass beads (425-600 µm, Sigma), at a proportion of 1:2:1 (v:v:v, wet cells: buffer: glass beads), using a vortex (10 times for 30 sec, alternating with 30-sec intervals in ice). Cells debris containing the wall fraction were separated from cytoplasmatic contents (supernatant) by centrifugation at 1,300 x g for 5 min. Cell walls 55 were then washed with ice-cold buffer A another 47 times (1 x 1,300 x g for 5 min; 1 x 1,300 x g for 10 min; 15 x 16,000 x g for 10 min and 30 x 16,000 x g for 15 min), according to a standard protocol for fungal cell wall isolation (Previato et al., 1979). Washed cell walls were incubated for 1 hour at 37oC with buffer A containing 50 mM DTT (dithio-threitol) to release proteins associated or aggregated by S-S bonds. Purified cell walls were washed 3 extra times in ice-cold milliQ water (16,000 x g, 15 min) and then lyophilized. Cell wall protein extraction and fractionation. Cell wall-associated proteins (CWAPs) sensitive to mild alkali extraction, including covalently linked Pir proteins, were released by incubating purified cell walls (100 mg) with 30 mM NaOH (5 mL) at 4oC for 16 h. The reaction was interrupted by adding acetic acid (8 µl), then the suspension was centrifuged (16,000 x g) and filtrated through a sterile 0.22-micron filter. Samples were dried in a speed vac apparatus and stored at -20oC prior to trypsin digestion. CWAPs sensitive to acid treatment were released by HF-pyridine extraction. Purified cell walls (100 mg) were mixed in a vortex with 500 µL of pure HF-pyridine (70% HF in 30% pyridine, Fluka) in ice, and incubated for 3h in ice. The reactions were diluted with 9,5 mL of milliQ water and immediately desalted in a POROS R1 cartridges. Briefly, the cartridges were prepared with 1 mL 40mg/mL POROS 50 R1 resin (Applied Biosystems, Foster City, CA) in a solid-phase extraction support, washed with methanol and npropanol and equilibrated with 0.05%. Then the sample was loaded and washed with 0.05% TFA, before elution with 80% acetonitrile (ACN) containing 0.05% TFA. Proteins were dried in a speed vac apparatus and stored at -20oC until trypsin digestion. 56 Sample preparation for mass spectrometry (MS) analysis. Protein digestion was carried out as described by Stone & Williams (1996). Extracted cell wall-associated proteins were dissolved in 40 µL 400 mM NH4HCO3, pH 8.0, containing 8 M urea and the disulfide bonds were reduced by adding 10 µL 50 mM DTT and incubating for 15 min at 50oC. Then the cysteine residues were alkylated using 10 µL 100 mM iodoacetoamide (IA) for 30 min, at room temperature, in the dark. Then the reaction was diluted with HPLC-grade water to obtain a final concentration of 1 M urea. The digestion was performed with 4 µg trypsin, for 24 h at 37oC. The reaction was terminated by adding 1 µL pure formic acid (FA) and the peptides were desalted in a POROS R2 ziptips. The ziptips were prepared using 50 µL of a 40 mg/mL POROS 50 R2 resin (Applied Biosystems, Foster City, CA) suspension in 2-propanol into 200-µL micropipette tips. After equilibrating the ziptips with 0.05% TFA, peptide samples were loaded and washed with 0.05% TFA before eluting with 80% ACN/0.05% TFA. Peptides were 2-fold diluted in strong cation-exchange (SCX) buffer (25% ACN/0.5% FA) and fractionated using a POROS 50 HS ion exchange ziptip. The ziptips were prepared as the POROS R2, except that 20 µL of POROS 50 HS resin (50% suspension in 20% ethanol) was added instead. The ziptips were equilibrated with SCX buffer prior to loading the samples. Then the samples were washed with the same buffer and eluted with increasing NaCl concentrations dissolved in SCX buffer (25, 50, 100, 200 and 500 mM). All fractions were dried in speed vac, desalted in POROS R2 ziptips, dried in speed vac again and stored at -20oC until analysis. 57 Mass spectrometry analysis and peptide validation. Tryptic peptides were dissolved in 30 µL of 0.1% F, and subjected (1 µL) to liquid chromatography-mass spectrometry (LC-MS) analysis. LC was performed in a PepMap reversed-phase column (15 cm x 75 µm, 3-µm C18, LC Packings, Dionex) coupled to an Ultimate (LC Packings, Dionex) nanoHPLC. Bound peptides were eluted with 5-35% ACN/0.1% FA over 100 min and directly analyzed in a Q-tof 1 (Micromass, Waters) mass spectrometer. Spectra in positive-ion mode were collected in the 400–1800 m/z range, and each peptide was fragmented (MS/MS) for 3 seconds in the 50–2050 m/z range. MS/MS data were converted into peak lists (PKL format) using ProteinLynx 2.0 (Waters). MS peaks were smoothed twice with 5 channels using Savitzky-Golay method, and centered with 4 channels in top 80%. For the MS/MS peaks a threshold of 5% was set. After smoothing twice with 3 channels in Savitzky-Golay method, the peaks were centered with 4 channels in top 80% and converted into monoisotopic ions. Converted peak lists were submitted to database search analysis using Phenyx (GeneBio) and Mascot (Matrix Science) softwares against the NCBInr and NCBInr fungi databases. The following parameters were used: (i) enzyme: trypsin, (ii) one missed cleavage allowed, (iii) fixed modification: carbamidomethylation of cysteines, (iv) variable modification: oxidation of methionine, (v) peptide tolerance: 1000 ppm, (vi) MS/MS tolerance: 0.5 Da. The validated Mascot peptides had a minimum ion score of 48 when using the entire NCBInr database or 37 and above using the NCBInr fungi database. Peptides validated by Phenyx had a minimum ion score of 7.0. 58 Relative quantification of proteins. In order to estimate absolute protein contents in a complex mixture we used the exponentially modified protein abundance index (emPAI) as described by Ishihama et al. (2005). PAI is an index defined as the number of observed peptides for an individual protein divided by the number of observable (theoretical) peptides for that protein upon digestion with a proteinase of known cleavage site. The number of observable peptides upon trypsin digestion was estimated with the PepitideMass software (http://ca.expasy.org/tools/peptide-mass.html), setting as parameters the same conditions used in our experiments. For absolute abundance, PAI was converted to exponentially modified PAI (emPAI) following the equation: 10PAI – 1. Results Identification of cell wall-associated proteins (CWAPs). We isolated, fractionated and identified trypsin-cleaved peptides from total P. brasiliensis CWAPs that were sensitive to individual extractions with NaOH or HF-pyridine. We compared isolates Pb18 and Pb3 grown in defined F-12/glucose medium supplemented or not with 5% FBS. Considering that P. brasiliensis cell wall preparations have not been boiled in SDS before fractionation, our peptide analysis identified not only integral cell wall proteins, but also those associated with other proteins or carbohydrate moieties, thus justifying the term “cell wall-associated proteins”. The peptide sequences revealed by mass spectrometry were scored and validated using Phenyx or Mascot softwares, which generated a list of proteins containing identical peptides. Many peptides were detected in both NaOH and 59 HF-pyridine fractions. Hence, we merged peptide data from these fractions in order simplify the analysis of the most abundant CWAPs in each isolate and growth condition. In addition, we only took into consideration proteins identified by four or more peptides in at least one of the four samples analyzed (Pb18 or Pb3 in F12/glu; Pb18 or Pb3 in FBS). The number of peptides identifying each protein can be seen in Table 1 (in parenthesis). Most of the proteins have identical peptides to fungal homologues, and 17 derive from the P. brasiliensis databases. Under those stringent parameters, we have identified a total of sixty CWAPs (Table 1), from which thirty-five were detected in both Pb18 and Pb3 irrespective of growth condition (Fig. 1). Eight CWAPs were found exclusively in cells cultivated in the presence of serum. Among them, 3 were common to both isolates (cytochrome c oxidase subunit VIa, initiation factor 4A, mitochondrial carrier protein), 3 were detected only in Pb18 (fungal transcription factor, polyketide synthase-related protein, hypothetical protein) and 2 only in Pb3 (avidin, hypothetical protein). No exclusive protein was found when the isolates grew only in F12/glu (Figure 1). Quantitative analysis of CWAPs. The results of emPAI abundance, calculated as detailed in Materials and Methods, can be seen in Table 1. According to these calculations, about 75% of total abundance (from the four samples) scored 0.5 or lower, 24% were between 0.5 and 1.0 and only 1% were higher than 1.0. The most abundant CWAP was by far a homologue of translation elongation factor 1, followed by heat shock 70 and histone H2B. Two hsp70 family members were CWAPs in P. brasiliensis, including a mitochondrial one (gi3124921), which was not the 60 most abundant. Other mitochondrial proteins have been identified, such as, putative cytochrome c oxidase (subunits IV and VIa), carrier protein Ggc1, hsp60, probable mitochondrial F1 ATPase (subunit alpha) and cpn10. Mitochondrial and ribosomal proteins have previously been shown to be cross-linked to cell wall components (Bowman et al., 2006). It is relevant to point out that we detected only 6 FBS proteins in our samples, specifically, gamma globin, hemoglobin alpha-1 subunit, alpha-2-HS-glycoprotein, vitronectin, inter-alpha-trypsin inhibitor and apolipoprotein A-I (Table 2). The small number and differential distribution between isolates suggests that they might be specifically bound to cell wall components, but can be displaced under relatively mild conditions. Effect of FBS on in vitro expression of CWAP. We used the emPAI values of abundance (Table 1) to calculate relative values that reflected how growth in 5% FBS changed the pattern of CWAP expression comparatively in Pb18 and Pb3. The results were then used to build a color-coded graph (FBS/F12), as explained in the legend of Fig. 2, where each protein of Table 1 is represented. Among the 60 CWAPs analyzed, 22 were more abundant (green pallet) in both isolates cultivated in FBS, including a series of ribosomal proteins, hsp60, hsp70 and hsp90, catalase, calmodulin, actin and several metabolic proteins. The summation of emPAI values from all CWAPs of P. brasiliensis (both isolates) grown in FBS was 65.48, while the values calculated for cells grown in F12/glu totalized 38.36, suggesting that serum components evoke general overexpression of proteins. Total emPAI was considerably higher for Pb18 than PB3 (28.69 x 17.69) 61 when both isolates were cultivated in the absence of serum. When growing FBS, although Pb18 and PB3 contribute equally well to the total emPAI of 65.48, the number of individual proteins whose abundance increased was higher in Pb3 (42) than in Pb18 (36). Additionally, more proteins had decrease abundance (red pallet) in Pb18 (17) than in Pb3 (4), suggesting that these isolates have distinct regulatory mechanisms at the transcription and/or translation/post translation levels, which ultimately might account for a distinct host/parasite relationship. Differentially expressed CWAPs in Pb8 and Pb3. In order to identify more clearly the CWAPs differentially expressed in Pb18 and Pb3 in terms of abundance, we analyzed Table 1 data comparing the values according to the isolate (Pb18/Pb3, in FBS or F12), as seen in Fig.2. When both culture conditions are considered, 20 proteins were more abundant in Pb18 (green pallet), including some ribosomal proteins, Hsp90, actin, glyceraldehyde-3-phosphate dehydrogenase, thiol-specific antioxidant and catalase. Only 4 CWAPs were more abundant in Pb3 (red pallet) in both culture conditions, specifically, Hsp70, triosephosphate isomerase, aconitase and mannitol-1-phosphate dehydrogenase. When yeast cells cultured in FBS are analyzed, 21 CWAPs were relatively more abundant in Pb3 than in Pb18 (e.g. gp43, enolase, calmodulin, polyubiquitin, plasma membrane ATPase), while 33 CWAPs were prevalent in Pb18. Some of these proteins are discussed below. 62 Discussion The present work aimed at identifying cell wall-associated proteins (CWAPs) differentially expressed in two P. brasiliensis isolates (Pb18 and Pb3) grown in the presence or in the absence of fetal bovine serum (FBS). Pb18 and Pb3 have distinct phylogenetic background (Matute et al., 2006) and prompt opposite types of disease progression in a B.10A mouse model (Carvalho et al., 2005). To remove contaminants, isolated cell walls were extensively washed with salt (Previato et al., 1979), and a fraction of proteins attached by disulfide bonds was removed with dithiotreitol. We analyzed CWAPs that have been removed under mild NaOH and HF-pyridine extraction and blended the results because many of them were found in both fractions. Since previous hot water and/or detergent removal (de Groot et al., 2004) have not been undertaken, we assume that the detected proteins are bonded either covalently or not. That could also justify why our list of proteins does not contain many previously reported covalently-linked CPWs (de Groot et al., 2004), whose accessibility might be hampered under our experimental conditions. Alternatively, P. brasiliensis yeast cells do not necessarily contain the same C. albicans proteins on the cell wall. On the other hand, the lack of complete genome information for P. brasiliensis does not presently allow for a complete analysis of the data. Among the CWAPs prevalent in Pb18, thiol-specific oxidant (TSA) and glyceraldehyde-3-phosphate dehydrogenase (GADPH) were 2-fold more abundant in Pb18 than in Pb3 grown in FBS, and that might be relevant for the Pb18 increased virulence. P. brasiliensis GADPH has previously been detected at the cell wall by 63 immunoelectron microscopy, and found to be involved in the initial colonization and fungal dissemination due to its capacity to bind fibronectin, type I collagen and laminin (Barbosa et al., 2005). Assays using P. brasiliensis previously incubated with polyclonal anti-GADPH or recombinant GADPH promoted an inhibition of adherence and internalization by pneumocytes in vitro. In C. albicans, TSA was differentially detected on the cell surface of the pathogenic mycelial form (Urban et al., 2003), and it seems to be indispensable for the yeast-mycelial transition under oxidative stress (Shin et al., 2005). In P. brasiliensis, the TSA1 gene was preferentially expressed in the pathogenic yeast phase (Marques et al., 2004) and presently found associated with the cell wall. TSA might play a key role in P. brasiliensis survival under an unfavorable oxidative environment within phagocytes, especially for Pb18, which would then evoke a more successful infection. We interestingly detected a polyketide synthase-related protein only in Pb18 grown in serum. This enzyme is involved in the dihydroxynaphtalene (DHN)-melanin pathway, whose precursor is acetate (Bell e Wheeler, 1986). Melanin is an important fungal virulence factor (reviewed by Nosanchuk and Casadevall, 2006), and was also found in P. brasiliensis, where melanized cells were poorly phagocytosed by macrophages and were less sensitive to antifungal drugs (Silva et al., 2006). Although a homologue for the laccase gene has not yet been found in P. brasiliensis EST databases, yeast cells are able to synthesize a melanin-like pigment in the presence of a L-3,4dihydroxyphenilalanine (L-DOPA) precursor. Conidia, on the other hand, can produce it also in the absence of L-DOPA, suggesting the existence of an alternative pathway that could take acetate as precursor. Two members of a putative kinase regulator family, 14- 64 3-3-like protein and protein 2 were 2-fold more abundant in Pb18 than in Pb3 cultivated in FSB. The relevance of this difference will be further investigated. Cytoskeleton proteins have seldom been described associated with the cell wall. We presently detected β-tubulina only in Pb18 (alkaline fraction), and actin abundantly distributed in all samples. Both had increased amounts when the isolates were cultivated in FSB, especially β-tubulina (3.5-fold). Actin is a structural protein intimately related with S. pombe cell wall synthesis. Reverting protoplasts revealed that new cell wall formation co-localizes with spots of actin, and treatment with cytochalasin D depleted cell wall formation (Kobori et al., 1989). A structure called filasome was found to be composed by a vesicle of 35-70 nm that is surrounded by fine filaments containing actin (Takagi et al., 2003). The filasome follows an actin filament pathway and fuses with the plasma membrane releasing the vesicle that probably carries cell wall material. That could explain the finding of actin in our cell wall preparations, and increase of actin and tubulin on the cell wall of P. brasiliensis cultivated in serum could reflect increased protein transportation. Tubulins are the main constituents of microtubules, which are responsible for many functions including segregation of genetic material, maintenance of cell shape and intracellular transport of proteins, lipids and organelles (review in Palmer et al., 2005). In addition to the surface Pb18 proteins that could aid this isolate to establish a more successful infection than Pb3, two FBS proteins were differentially bound more abundantly to Pb18 surface, specifically, vitronectin and apolipoprotein. Vitronectin, which is involved in the regulation of blood coagulation (Dahlbäck et al., 1987), has also been found on cell wall extracts of C. albicans (Jakab et al., 1993), possibly bound 65 through a specific cell wall receptor (revision in Chaffin et al., 1998). Considering that in C. albicans interaction with vitronectin increased binding to and phagocytosis by macrophages, it might help the microorganism to establish infection (Limper et al., 1994). The main function of lipoproteins is to transport lipids and lipid-soluble molecules. There is no previous report on cell wall-bound apolipoprotein A-I, however bovine apolipoprotein A-II presents an antimicrobial effect against E. coli and S. cerevisiae (Motizuki et al., 1998). The serum apolipoprotein was detected only in Pb18 cell wall fraction extracted with HF-pyridine, but its relevance is obscure. Two serum proteinase inhibitors, inter-alpha-trypsin (a serpin) and alpha-2-HSglycoprotein (cystatin), were found associated to the P. brasiliensis cell wall. These inhibitors could play a role in neutralization of fungal proteinases potentially important for fungal infection, dissemination or nutrition. Presently, we have not found any cell wall-associated proteinases in our experimental conditions; however inter-alpha-trypsin was detected associated with only Pb3 cell wall, possibly inhibiting a proteinase not secreted by Pb18. Gp43 has been detected in small amounts in the acid-extracted cell wall fraction. In Pb18, it has been detected only in the sample grown in F12/gluc, while its contents increase 4-fold in Pb3 cultivated in FSB. We can speculate that its presence in Pb3 cell wall in vivo might contribute to its more effective clearance by the immune system, resulting in regressive PCM in B10.A, as opposed to Pb18 (Carvalho et al., 2005). Polyubiquitin was detected in comparable amounts in the alkali-extracted cell wall fraction of both Pb18 and Pb3 grown in the absence of serum, but only Pb3 had detectable amounts when cultivated in serum-supplemented medium, at a 2-fold increase. 66 In the cytoplasm, polyubiquitin classically tags proteins for proteolysis by proteasomes, but it is now understood that polyubiquitin is involved in many other cellular processes, which include tagging of membrane proteins before internalization (reviewed in Aguilar and Wendland, 2003). Its finding on the cell wall remains to be elucidated. Calmodulin was 3-fold more abundant in Pb3-FBS than in Pb18-FSB. Calmodulin is a small calcium-binding protein that plays an important role as modulator of intracellular calcium signaling, and participates in the regulation of gene expression in response to external stimuli, including stress (Kraus and Heitman, 2003). In P. brasiliensis, calmodulin seems to be essential for the mycelial-to-yeast-transformation (Carvalho et al., 2003). Overall, Pb3 seemed to expose at the cell wall fewer proteins than Pb18 when growing in defined medium and then respond more fiercely to the presence of serum. That could explain why a potent mediator such as calmodulin prevailed in Pb3. We have recently shown that, when compared to Pb18, Pb3 has a slower transcriptional response of some HSP genes to heat shock (Batista et al., 2007). It is possible that a slower transcriptional response results in a crippled adaptation of Pb3 to the host, which will in turn more readily eliminate it. We have detected in P. brasiliensis many cell wall-associated proteins lacking known secretion signal, which have previously been reported in C. albicans and S. cerevisiae (reviewed by Nombela et al., 2006). They include glycolysis proteins like enolase, GADPH, fructose 1,6-bisphosphate aldolase, stress proteins like Hsp70, Hsp60, Hsp90, and others like catalase, TSA, cytochrome c, 14-3-3-like protein, translation elongation factors. We presently detected proteins from different intracellular compartments. Histones, typically nuclear, have previously been microscopically 67 localized to H. capsulatum cell wall and anti-histone monoclonal antibodies protected against experimental histoplasmosis (Nosanchuk et al., 2003). We found several mitochondrial proteins, including Hsp 60. In H. capsulatum, cell wall hsp60 was shown to bind to macrophage complement receptor type 3 (Long et al., 2003) and it protects vaccinated BALB/C and C57BL/6 (Deepe et al., 1996; Deepe and Gibbons, 2001). Antirecombinant Hsp60 have been found in the sera from several paracoccidioidomycosis patients (Izacc et al., 2001). Two hsp70 members were abundantly found associated with the P. brasiliensis cell wall from both Pb3 and Pb18. Recently, Batista et al. (2006) detected an Mdj1 homologue both in cell wall and mitochondria, where it is originally localized. It was the first time that a protein from the J family was found on the cell wall but its role in this compartment is speculative. Since it is responsible for mitochondrial hsp70 regulation in yeast, finding of mitochondrial hsp70 on the cell wall suggests that the chaperone Mdj1/hsp70 complex could be active also at the cell wall. Presently we have not found Mdj1 in alkali or acid cell wall fractions, probably because this molecule was washed out during DTT extraction, as seen to occur with whole cells (Batista et al., 2006). In conclusion, by using a proteomics approach we identified cell wall-associated proteins that are differentially expressed in Pb18 and Pb3 growing in the presence of serum that might help explain their distinct degree of virulence in the mouse model. 68 Legends Figure 1: Graphic representation of the 60 CWAPs analyzed in this work. Figure 2. Color representation of the relative abundance of each protein shown in Table 1, calculated as follows: a) FBS/F12 - influence of serum in the change of abundance for Pb18 and Pb3. Values for growth in FBS were divided by the correspondent control values in the absence of serum (F12); b) Pb18/Pb3 - comparison between Pb18 and Pb3 cultivated both in the presence or in the absence (F12) of FBS. Red to dark red (values between 0.5 and 0.99) indicate quantitative decrease in FBS or lower abundance in Pb18, while dark green to green (values between 1.0 and 2.0) indicate serum-related increase in the amount of CWAPs or higher abundance in Pb18. Unaltered abundance (1.0) is represented in black. When peptides for a particular protein were absent (emPAI = 0) the correspondent protein was considered 2 times repressed or abundant (0.5 or 2.0, respectively). 69 Figure 1. Matsuo et al., 2007 70 Figure 2 Matsuo et al., 2007 71 AC Pb 18 emPAI Pb18 Serum Pb 3 Pb3 Serum Protein similar to eukaryotic translation elongation factor 1 alpha 1 gi|82995146 8.33 (32) 7.11 (30) 4.72 (25) 5.58 (27) heat shock protein 70 [Paracoccidioides brasiliensis] gi|14538021 1.12 (28) 2.16 (43) 2.71 (49) 3.25 (54) histone H2B [Rosellinia necatrix] gi|27531291 2.16 (12) 1.87 (11) 0.96 (7) 2.48 (13) HHF2p [Candida glabrata]/histone 4 gi|21668067 actin gi|66804921 0.85 (12) 1.64 (19) 0.76 (11) 1.27 (16) ATP synthase F1, beta subunit gi|77685559 0.80 (13) 1.25 (18) 0.80 (13) 0.80 (13) Grp1p [Exophiala dermatitidis] gi|82571189 0.75 (10) 1.08 (13) 0.06 (1) 0.85 (11) 1.93 (7) 1.15 (5) 1.15 (5) 1.15 (5) calmodulin gi|168777 0.13 (1) 0.44 (3) 0.13 (1) 1.98 (9) bipA [Aspergillus awamori] ribosomal protein S15, putative [Aspergillus fumigatus Af293] hypothetical protein MG00221.4 [Magnaporthe grisea 70-15]/ 40S RIBOSOMAL PROTEIN S7 histone H3 [Fusarium proliferatum] 40S ribosomal subunit protein S9 [Cryptosporidium hominis] putative cytochrome c oxidase subunit VIa [Paracoccidioides brasiliensis] 70 kDa heat shock protein [Paracoccidioides brasiliensis] gi|2582633 0.69 (19) 0.56 (16) 0.40 (12) 0.95 (24) gi|66852980 0.62 (4) 0.62 (4) 0.27 (2) 0.83 (5) gi|39975265 gi|5918753 0.65 (7) 0.78 (8) 0.15 (2) 0.54 (6) 1.51 (6) 0.00 (0) 0.00 (0) 0.58 (3) gi|54656881 0.12 (1) 0.78 (5) 0.41 (3) 0.58 (4) gi|50428882 0.00 (0) 1.40 (8) 0.00 (0) 0.39 (3) gi|31324921 0.51 (19) 0.44 (17) 0.21 (9) 0.51 (19) thiol-specific antioxidant [Ajellomyces capsulatus] gi|14161441 0.41 (4) 0.67 (6) 0.29 (3) 0.29 (3) malate dehydrogenase [Paracoccidioides brasiliensis] gi|47119068 0.54 (10) 0.36 (7) 0.14 (3) 0.54 (10) 14-3-3-like protein 2 [Paracoccidioides brasiliensis] putative cytochrome c oxidase subunit IV [Paracoccidioides brasiliensis] heat shock protein 60 [Paracoccidioides brasiliensis] hypothetical protein [Neurospora crassa OR74A]/Chaperonin 10 Kd subunit hypothetical protein AN5800.2 [Aspergillus nidulans /eukaryotic ribosomal protein L18 gi|38569374 0.18 (3) 0.73 (10) 0.32 (5) 0.32 (5) gi|50428890 0.37 (3) 0.23 (2) 0.37 (3) 0.52 (4) gi|3088571 0.39 (14) 0.46 (16) 0.12 (5) 0.46 (16) gi|85079266 0.58 (4) 0.41 (3) 0.00 (0) 0.41 (3) gi|67539260 0.45(5) 0.45 (5) 0.00 (0) 0.45 (5) polyubiquitin [Cicer arietinum] glyceraldehyde-3-phosphate dehydrogenase [Paracoccidioides brasiliensis] gi|24817262 0.31 (2) 0.00 (0) 0.31 (2) 0.72 (4) gi|30995493 0.37 (7) 0.50 (9) 0.25 (5) 0.20 (4) heat shock protein 90 [Paracoccidioides brasiliensis] gi|60656557 0.24 (11) 0.49 (20) 0.10 (5) 0.43 (18) 14-3-3-like protein [Paracoccidioides brasiliensis] gi|30351156 0.51 (7) 0.43 (6) 0.13 (2) 0.19 (3) thioredoxin [Paracoccidioides brasiliensis] ADT_NEUCR ADP,ATP CARRIER PROTEIN (ADP/ATP TRANSLOCASE) gi|34980254 0.15 (1) 0.15 (1) 0.78 (4) 0.15 (1) gi|42551288 0.48 (7) 0.32 (5) 0.12 (2) 0.25 (4) 72 SconC [Paracoccidioides brasiliensis] peptidyl-prolyl cis/trans isomerase [Paracoccidioides brasiliensis] gi|61608602 0.29 (3) 0.29 (3) 0.09 (1) 0.41 (4) gi|34979129 0.28 (3) 0.51 (5) 0.28 (3) 0.00 (0) hypothetical protein MG04489.4 [Magnaporthe grisea gi|39945014 0.00 (0) 0.00 (0) 0.00 (0) 1.05 (5) ribosomal L10 protein [Paracoccidioides brasiliensis] unnamed protein product [Aspergillus oryzae]/mitochondrial F1 ATPase subunit alpha gi|28797723 0.17 (3) 0.37 (6) 0.23 (4) 0.17 (3) gi|83765516 0.21 (7) 0.35 (11) 0.15 (5) 0.18 (6) catR [Aspergillus niger] Catalase gi|840716 Conserved ribosomal protein P0 similar to rat P0, human P0, and E. coli L10e; shown to be phosphory gi|6323371 unnamed protein product [Aspergillus oryzae]/Ribosomal_L7 gi|83774731 fructose 1,6-biphosphate aldolase 1 [Paracoccidioides brasiliensis] gi|29826036 0.13 (3) 0.39 (8) 0.00 (0) 0.33 (7) Plasma membrane ATPase (Proton pump) Triosephosphate isomerase [Clostridium acetobutylicum ATCC 824] 0.17 (2) 0.37 (4) 0.08 (1) 0.17 (2) 0.30 (4) 0.22 (3) 0.14 (2) 0.14 (2) 0.13 (2) 0.19 (3) 0.06 (1) 0.34 (5) gi|728908 0.23 (7) 0.13 (4) 0.06 (2) 0.27 (8) gi|15893999 0.00 (0) 0.13 (2) 0.19 (3) 0.34 (5) avidin 40S ribosomal protein S3 [Chaetomium globosum CBS 148.51] gi|451889 0.00 (0) 0.00 (0) 0.00 (0) 0.65 (5) gi|88183746 0.00 (0) 0.28 (5) 0.16 (3) 0.16 (3) enolase [Cryphonectria parasitica] gi|40806812 0.25 (5) 0.05 (1) 0.14 (3) 0.14 (3) gi|2293 0.12 (2) 0.47 (7) 0.00 (0) 0.00 (0) gi|71000467 0.29 (5) 0.29 (5) 0.00 (0) 0.00 (0) 40S ribosomal protein S18 [Coccidioides immitis RS] gi|90307829 0.21 (3) 0.29 (4) 0.00 (0) 0.07 (1) hypothetical protein [Yarrowia lipolytica] ribosomal protein S0.e.B, cytosolic [Aspergillus fumigatus Af293] gi|50556244 0.12 (2) 0.25 (4) 0.00 (0) 0.18 (3) gi|70998726 0.05 (1) 0.23 (4) 0.05 (1) 0.17 (3) elongation factor 2 [Neurospora crassa] COG0515: Serine/threonine protein kinase [Nostoc punctiforme PCC 73102] gi|13925370 0.04 (2) 0.17 (8) 0.06 (3) 0.15 (7) gi|23124801 0.05 (1) 0.21 (4) 0.05 (1) 0.10 (2) glycoprotein gp43 electron transfer flavoprotein, subunit beta imported [Aspergillus fumigatus Af293] gi|1588394 0.15 (3) 0.00 (0) 0.05 (1) 0.20 (4) gi|70998364 0.06 (1) 0.27 (4) 0.00 (0) 0.06 (1) gi|3661614 0.00 (0) 0.05 (2) 0.15 (6) 0.15 (6) gi|83952823 0.07 (2) 0.04 (1) 0.04 (1) 0.19 (5) gi|28797565 0.00 (0) 0.00 (0) 0.04 (1) 0.27 (6) gi|83767463 0.20 (4) 0.09 (2) 0.00 (0) 0.00 (0) gi|32414453 0.00 (0) 0.17 (4) 0.00 (0) 0.08 (2) beta-tubulin [Neotyphodium coenophialum] cytosolic small ribosomal subunit S4 [Aspergillus fumigatus Af293] aconitase [Aspergillus terreus] ATP synthase subunit A [Roseovarius nubinhibens ISM] mannitol-1-phosphate dehydrogenase [Paracoccidioides brasiliensis] unnamed protein product [Aspergillus oryzae]/60S ribosomal protein L8 EUKARYOTIC INITIATION FACTOR 4A (EIF4A) (EIF4A) [Neurospora crassa] 73 putative mitochondrial carrier protein Ggc1 [Candida albicans SC5314] fungal specific transcription factor [Aspergillus fumigatus Af293] hypothetical protein [Neurospora crassa N150] COG3321: Polyketide synthase modules and related proteins [Burkholderia mallei GB8 horse 4] gi|68484497 0.00 (0) 0.20 (4) 0.00 (0) 0.05 (1) gi|70981502 0.00 (0) 0.11 (5) 0.00 (0) 0.00 (0) gi|85082883 0.00 (0) 0.08 (4) 0.00 (0) 0.00 (0) gi|67640326 0.00 (0) 0.08 (6) 0.00 (0) 0.00 (0) Table 1. Associated CWPs identified by LC-MS/MS of isolates Pb18 and Pb3 grown in F12/glu supplemented or not with FCS. The relative abundance of proteins was recorded as emPAI based on the number of peptides (in parenthesis) detected for each protein. The listed proteins are organized from the most to the least abundant protein. 74 Serum Proteins AC gi|393 Pb 18 NaOH 8 Pb 18 HF 11 Pb 3 NaOH 4 Pb 3 HF 10 gamma globin Hemoglobin alpha-1 subunit gi|122272 0 4 0 5 Vitronectin gi|73587073 5 3 3 0 inter-alpha-trypsin inhibitor gi|27806743 0 0 4 0 apolipoprotein A-I, apoA-1 gi|245563 0 8 0 0 alpha-2-HS-glycoprotein gi|27806751 6 2 5 2 Table 2. FBS proteins bound to cell wall of isolates Pb18 and Pb3. The number of peptides detected by LC-MS/MS is displayed for each protein. 75 References Aguilar,RC, B Wendland, 2003, Ubiquitin: not just for proteasomes anymore: Curr.Opin.Cell Biol., v. 15, p. 184-190. Barbosa,MS, S N Bao, P F Andreotti, F P de Faria, M S S Felipe, L D Feitosa, M J S Mendes-Giannini, C M D Soares, 2006, Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells: Infection and Immunity, v. 74, p. 382-389. Batista,WL, A L Matsuo, L Ganiko, T F Barros, T R Veiga, E Freymuller, R Puccia, 2006, The PbMDJ1 gene belongs to a conserved MDJ1/LON locus in thermodimorphic pathogenic fungi and encodes a heat shock protein that localizes to both the mitochondria and cell wall of Paracoccidioides brasiliensis: Eukaryotic Cell, v. 5, p. 379-390. Batista,WL, T F Barros, G H Goldman, F V Morais, R Puccia, 2007, Identification of transcription elements in the 5' intergenic region shared by LON and MDJ1 heat shock genes from the human pathogen Paracoccidioides brasiliensis. Evaluation of gene expression: Fungal Genet Biol., v. 44, p. 347-356. Bell,AA, M H Wheeler, 1986, Biosynthesis and functions of fungal melanins.: Annu.Rev.Phytopatol., v. 24, p. 411-451. Bowman,SM, A Piwowar, M Al Dabbous, J Vierula, S J Free, 2006, Mutational analysis of the glycosylphosphatidylinositol (GPI) anchor pathway demonstrates that GPI-anchored proteins are required for cell wall biogenesis and normal hyphal growth in Neurospora crassa: Eukaryotic Cell, v. 5, p. 587-600. Carvalho,KC, L Ganiko, W L Batista, F V Morais, E R Marques, G H Goldman, M E Franco, R Puccia, 2005, Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotype: Microbes and Infection, v. 7, p. 55-65. Chaffin,WL, J L Lopez-Ribot, M Casanova, D Gozalbo, J P Martinez, 1998, Cell wall and secreted proteins of Candida albicans: Identification, function, and expression: Microbiology and Molecular Biology Reviews, v. 62, p. 130-+. da Silva,MB, A F Marques, J D Nosanchuk, A Casadevall, L R Travassos, C P Taborda, 2006, Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility: Microbes Infect., v. 8, p. 197-205. Dahlback,K, H Lofberg, B Dahlback, 1987, Immunohistochemical Demonstration of Vitronectin in Association with Elastin and Amyloid Deposits in Human-Kidney: Histochemistry, v. 87, p. 511-515. de Carvalho,MJ, R S Amorim Jesuino, B S Daher, I Silva-Pereira, S M de Freitas, C M Soares, M S Felipe, 2003, Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis: Fungal Genet Biol., v. 39, p. 204-210. De Groot,PWJ, A D de Boer, J Cunningham, H L Dekker, L de Jong, K J Hellingwerf, C de Koster, F M Klis, 2004, Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins: Eukaryotic Cell, v. 3, p. 955-965. Deepe,GS, Jr., R Gibbons, G D Brunner, F J Gomez, 1996, A protective domain of heat-shock protein 60 from Histoplasma capsulatum: J.Infect.Dis., v. 174, p. 828-834. Deepe,GS, Jr., R Gibbons, 2001, V beta 6+ T cells are obligatory for vaccine-induced immunity to Histoplasma capsulatum: J.Immunol., v. 167, p. 2219-2226. 76 Gesztesi,JL, R Puccia, L R Travassos, A P Vicentini, J Z de Moraes, M F Franco, J D Lopes, 1996, Monoclonal antibodies against the 43,000 Da glycoprotein from Paracoccidioides brasiliensis modulate laminin-mediated fungal adhesion to epithelial cells and pathogenesis: Hybridoma, v. 15, p. 415-422. Gonzalez,A, B L Gomez, A Restrepo, A J Hamilton, L E Cano, 2005, Recognition of extracellular matrix proteins by Paracoccidioides brasiliensis yeast cells: Med Mycol., v. 43, p. 637-645. Goshe,MB, R D Smith, 2003, Stable isotope-coded proteomic mass spectrometry: Current Opinion in Biotechnology, v. 14, p. 101-109. Ishihama,Y, Y Oda, T Tabata, T Sato, T Nagasu, J Rappsilber, M Mann, 2005, Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein: Molecular & Cellular Proteomics, v. 4, p. 1265-1272. Izacc,SMS, F J Gomez, R S A Jesuino, C A Fonseca, M S S Felipe, G S Deepe, C M A Soares, 2001, Molecular cloning, characterization and expression of the heat shock protein 60 gene from the human pathogenic fungus Paracoccidioides brasiliensis: Medical Mycology, v. 39, p. 445-455. Jakab,E, M Paulsson, F Ascencio, A Ljungh, 1993, Expression of Vitronectin and Fibronectin-Binding by Candida-Albicans Yeast-Cells: Apmis, v. 101, p. 187-193. Kobori,H, N Yamada, A Taki, M Osumi, 1989, Actin Is Associated with the Formation of the Cell-Wall in Reverting Protoplasts of the Fission Yeast Schizosaccharomyces-Pombe: Journal of Cell Science, v. 94, p. 635-646. Kraus,PR, J Heitman, 2003, Coping with stress: calmodulin and calcineurin in model and pathogenic fungi: Biochem.Biophys.Res.Commun., v. 311, p. 1151-1157. Levery,SB, M S Toledo, A H Straus, H K Takahashi, 1998, Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: An immunodominant beta-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen: Biochemistry, v. 37, p. 8764-8775. Limper,AH, D M Oriordan, J E Standing, E C Crouch, 1994, Surfactant Protein-D Mediates Adherence of Pneumocystis-Carinii to Alveolar Macrophages: Clinical Research, v. 42, p. A427. Long,KH, F J Gomez, R E Morris, S L Newman, 2003, Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages: J.Immunol., v. 170, p. 487-494. Marques,AF, M B da Silva, M A Juliano, L R Travassos, C P Taborda, 2006, Peptide immunization as an adjuvant to chemotherapy in mice challenged intratracheally with virulent yeast cells of Paracoccidioides brasiliensis: Antimicrob.Agents Chemother., v. 50, p. 2814-2819. Marques,ER, M E S Ferreira, R D Drummond, J M Felix, M Menossi, M Savoldi, L R Travassos, R Puccia, W L Batista, K C Carvalho, M H S Goldman, G H Goldman, 2004, Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis: Molecular Genetics and Genomics, v. 271, p. 667-677. Matute,DR, J G Mcewen, B A Montes, G San Blas, E Bagagli, J T Rauscher, A Restrepo, F Morais, G Nino-Vega, J W Taylor, 2006, Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies: Molecular Biology and Evolution, v. 23, p. 65-73. Mendes-Giannini,MJS, P F Andreotti, L R Vincenzi, J L M da Silva, H L Lenzi, G Benard, R ZancopeOliveira, H L D Guedes, C P Soares, 2006, Binding of extracellular matrix proteins to Paracoccidioides brasiliensis: Microbes and Infection, v. 8, p. 1550-1559. 77 Morais,FV, T F Barros, M K Fukada, P S Cisalpino, R Puccia, 2000, Polymorphism in the gene coding for the immunodominant antigen gp43 from the pathogenic fungus Paracoccidioides brasiliensis: Journal of Clinical Microbiology, v. 38, p. 3960-3966. Motizuki,M, T Itoh, M Yamada, S Shimamura, K Tsurugi, 1998, Purification, primary structure, and antimicrobial activities of bovine apolipoprotein A-II: Journal of Biochemistry, v. 123, p. 675-679. Nemecek,JC, M Wuthrich, B S Klein, 2006, Global control of dimorphism and virulence in fungi: Science, v. 312, p. 583-588. Nombela,C, C Gil, W L Chaffin, 2006, Non-conventional protein secretion in yeast: Trends Microbiol., v. 14, p. 15-21. Nosanchuk,JD, J N Steenbergen, L Shi, G S Deepe, Jr., A Casadevall, 2003, Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum: J.Clin.Invest, v. 112, p. 1164-1175. Nosanchuk,JD, A Casadevall, 2006, Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds: Antimicrob.Agents Chemother., v. 50, p. 3519-3528. Palmer,KJ, P Watson, D J Stephens, 2005, The role of microtubules in transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells: Biochem.Soc.Symp., p. 1-13. Previato,JO, P A Gorin, R H Haskins, L R Travassos, 1979, Soluble and insoluble glucans from different cell types of the human pathogen Sporothrix schenckii: Experimental Mycology, v. 3, p. 92-105. Puccia,R, L R Travassos, 1991, 43-Kilodalton Glycoprotein from Paracoccidioides-Brasiliensis Immunochemical Reactions with Sera from Patients with Paracoccidioidomycosis, Histoplasmosis, Or Jorge Lobos Disease: Journal of Clinical Microbiology, v. 29, p. 1610-1615. Ruiz-Herrera,J, M V Elorza, E Valentin, R Sentandreu, 2006, Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity: FEMS Yeast Res., v. 6, p. 14-29. Russell,WK, Z Y Park, D H Russell, 2001, Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry: Analytical Chemistry, v. 73, p. 26822685. San Blas,G, 1993, Biochemical and physiological aspects in the dimorphism of Paracoccidioides brasiliensis: Arch.Med Res., v. 24, p. 267-268. San Blas,G, G Nino-Vega, T Iturriaga, 2002, Paracoccidioides brasiliensis and paracoccidioidomycosis: Molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics: Medical Mycology, v. 40, p. 225-242. Shin,DH, S Jung, S J Park, Y J Kim, J M Ahn, W Kim, W Choi, 2005, Characterization of thiol-specific antioxidant 1 (TSA1) of Candida albicans: Yeast, v. 22, p. 907-918. Straus,AH, E Freymuller, L R Travassos, H K Takahashi, 1996, Immunochemical and subcellular localization of the 43 kDa glycoprotein antigen of Paracoccidioides brasiliensis with monoclonal antibodies: J.Med Vet.Mycol., v. 34, p. 181-186. Taborda,CP, M A Juliano, R Puccia, M Franco, L R Travassos, 1998, Mapping of the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a Th-1 response protective against fungal infection in BALB/c mice: Infection and Immunity, v. 66, p. 786-793. 78 Takagi,T, S A Ishijima, H Ochi, M Osumi, 2003, Ultrastructure and behavior of actin cytoskeleton during cell wall formation in the fission yeast Schizosaccharomyces pombe: Journal of Electron Microscopy, v. 52, p. 161-174. Urban,C, K Sohn, F Lottspeich, H Brunner, S Rupp, 2003, Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell: Febs Letters, v. 544, p. 228235. Vicentini,AP, J L Gesztesi, M F Franco, W Desouza, J Z Demoraes, L R Travassos, J D Lopes, 1994, Binding of Paracoccidioides-Brasiliensis to Laminin Through Surface Glycoprotein Gp43 Leads to Enhancement of Fungal Pathogenesis: Infection and Immunity, v. 62, p. 1465-1469. 79 Moléculas secretadas de Paracoccidioides brasiliensis: resultados preliminares sobre vesículas extracelulares 80 Materiais e métodos Gel filtração em coluna com Sepharose CL-4B Uma coluna de gel filtração (16 mm de diâmetro por 40 cm de altura da Amersham) contendo 70 mL de Sepharose CL-4B (separação entre 20.000 kDa a 60 kDa - Amersham) foi previamente equilibrada a 4oC com 5 volumes de tampão acetato de amônio 100 mM, pH 7,3, em fluxo constante de 4 mL/hora, utilizando uma bomba peristáltica. Amostras de 2 mL de sobrenadantes de cultura de P. brasiliensis concentrado eram aplicadas na coluna e frações de 1 mL recolhidas com um coletador automático para posterior análise. ELISA A detecção de componentes de alto peso molecular no sobrenadante de cultura de P. brasiliensis foi realizada através de ELISA, em placas de 96 cavidades (Nunc, MaxiSorpe surface). Os poços eram sensibilizados com as vesículas adicionados de 50 µL de tampão carbonato/bicarbonato 200 mM pH 9,6 e incubados a 4°C por uma noite (o/n). Em alguns experimentos as vesículas foram tratadas com metaperiodato de sódio (reagente que oxida epitopos de carboidratos) em 3 concentrações diferentes (5, 10 e 20 mM). As placas eram lavadas 5 vezes com PBS acrescido de 0,1% de Tween-20 (PBS-T) e incubadas com PBS-Molico 5% (100 µl/poço) por 3 h à temperatura ambiente. Após 3 lavagens com PBS-T, os antígenos eram incubados por 2 horas a 37oC com 100 µl de PBS-Molico 5% contendo soro de paciente com PCM (1:1000). Após 5 lavagens com PBS-T, eram adicionados 100 µl de PBS-Molico 5% contendo anticorpo de cabra anti- 81 IgG de humano (1:1000) ou anticorpo de macaco anti-IgG de coelho (1:1000), ambos conjugados com HRP (Amersham), e incubados por 1h a 37°C. Depois de 5 lavagens com PBS-T, era feita uma única lavagem com 200 µL de tampão bicarbonato 50 mM, pH 9,6. A revelação era feita por quimioluminescência, com o uso de luminol (ECL reagent, Pierce) diluído 1:20 em tampão bicarbonato 50 mM, pH 9,6, preparado de acordo com instruções do fabricante. A leitura era feita em luminômetro de microplacas (Cambridge Technology, Watertown, MA, Modelo 7710) e expressa como unidades de relativas de luminescência (URL). Purificação de vesículas do sobrenadante de P. brasiliensis P. brasiliensis isolados Pb3 (nome original: 608), Pb12 (nome original: Argentina), Pb18 (nome original: 18) ou Pb339 (nome original: B-339) eram crescidos a 36º C, sob agitação, por 7 a 10 dias em meio definido F12 (Invitrogen) acrescido de 1,5% de glucose (F12glu), e em alguns experimentos complementado com 5% de soro fetal bovino (SFB), previamente ultracentrifugado a 200.000 g por 4 horas para retirada das vesículas do soro. Os sobrenadantes de cultura eram filtrados em membrana estéril de 0,22 µm com a ajuda de uma bomba à vácuo e concentrados em sistema AMICON (Millipore) utilizando as membranas YM10 com limite de exclusão de 10.000 Da ou BIOMAX (PBMK 076 10 – Millipore) com limite de exclusão de 300.000 Da. A amostra era lavada com 20 mL de tampão contendo 100 mM de acetato de amônio pH 7,3, concentrada até um volume final de 2 mL e aplicada na coluna de gel filtração de CL-4B. Alternativamente, o concentrado era equilibrado em 200 mL de PBS, concentrado a um volume final de 10 mL e submetido a uma ultracentrifugação por 4 horas a 100.000 x g, a 82 4º C. O precipitado contendo vesículas era liofilizado (para análise de proteínas) ou estocado em geladeira por período curto (para análises funcionais). Toda a manipulação era feita a frio. A viabilidade das culturas, recolhidas em fase logarítmica ou logarítmica tardia de crescimento, era estimada em >90% pelo método de exclusão com Tripan blue em microscópio ótico, com o qual adicionalmente se determinou a pureza das preparações. Gradiente de sacarose para purificação de vesículas de P. brasiliensis Um precipitado de 100.000 x g conservado a 4oC foi dissolvido em 5 mL de uma solução 2,6 M de sacarose em 20 mM de Tris pH 7,2 e colocado em um tubo de ultracentrífuga (12 mL) específico para o rotor SW41 (Sorvall). Acima da amostra foi adicionado um gradiente linear de 2,0 a 0,25 M de sacarose em 20 mM de Tris pH 7,2, e a separação foi realizada através de uma ultracentrifugação de 270.000 x g por 16 horas. As amostras foram recolhidas a partir do fundo do tubo em frações de 1 mL, adaptado-se uma bomba peristáltica com uma pipeta Pasteur de vidro em um fluxo de 1 mL/min. As frações recolhidas foram estocadas em geladeira. Precipitação com ácido tricloroacético (TCA) Para precipitação de proteínas com TCA, as amostras eram adicionadas de 10% de TCA e conservadas por 20 min no gelo. Após centrifugar por 20 min a 4º C em microcentrífuga (14.500 rpm), o sobrenadante era descartado e o precipitado lavado com 1 mL de acetona gelada (estocada a – 20º C). A amostra era novamente centrifugada e o precipitado seco em speed vac. 83 Digestão de proteínas em solução aquosa/orgânica para análise em espectrometria de massas (LC-MS/MS) A digestão de proteínas em solução foi realizada conforme Russel (2001) e Goshe (2003), com modificações. Proteínas em quantidade de até 100 µg eram dissolvidas em 100 µL de solução contendo metanol e 50 mM de bicarbonato de amônio pH 8,0 (v/v, 60/40) em tubo de rosca. A amostra era incubada por 5 min a 95oC e deixada resfriar à temperatura ambiente. A redução das proteínas era realizada com 5 mM de dithiotreitol (DTT) a 37oC por 30 min, seguida de alquilação utilizando 10 mM de iodoacetamida por 90 min no escuro. A amostra era diluída 5x no mesmo tampão e as proteínas digeridas com tripsina em uma razão de 1/50 (wt/wt) de enzima/substrato por 16 h a 37oC. A reação era interrompida com uma concentração final de 0,05% de ácido trifluoroacético (TFA), a amostra seca em “speed vac” e dessalinizada em “ziptip” de fase reversa. Dessalinização em “ziptip” de fase reversa para análise em LC-MS/MS Um pequena quantidade de fibra de vidro era adicionada a uma ponteira de 200 µL para evitar vazamento da resina de fase reversa POROS 50 R2 (40 mg/mL em isopropanol). A coluna era ativada com 5 volumes de metanol, equilibrada com 5 volumes de TFA (0,046%) e a amostra equilibrada na mesma solução era aplicada. A coluna era lavada com 5 volumes de TFA 0,046%, e eluída com 5 volumes de acetonitrila 80% contendo 0,046% de TFA. As amostras eram secas em speed vac e analisadas em LC-MS/MS. 84 Fracionamento de peptídeos em ziptip de troca-iônica Fibra de vidro era adicionada a uma ponteira de 200 µL para evitar vazamento da resina POROS HR50 (interação catiônica forte). Após o empacotamento, a resina era equilibrada com 5 volumes de tampão (EB) contendo 0,5% de ácido fórmico e 25% de acetonitrila e a amosta em EB era aplicada. Os peptídeos não ligados eram lavados com 5 volumes de EB e a eluição realizada com as concentrações de 25, 50, 100, 200 e 500 mM de NaCl em EB. A dessalinização era realizada em “ziptip” de fase reversa. Análise de peptídeos por LC-MS/MS As amostras previamente secas em speed vac eram ressuspendidas em 30 µL de ácido fórmico (AF) 0,1%, dos quais 1 µL era aplicado para análise em LC-MS. A cromatografia dos peptídeos era realizada na coluna de fase reversa PepMap (15 cm x 75 µm, 3µm, LC Packings) em um nanoHPLC Ultimate (LC Packings), com um autosampler Famos (LC Packings). O gradiente para eluição dos peptídeos era de 0 - 40% de solvente B (80% acetonitrila/AF 0,1%) em 100 min, ou de 5 - 50% de solvente B em 30 min (para amostras provenientes de digestão em gel). Os peptídeos eluídos da coluna eram analisados diretamente no espectrômetro de massas (Q-tof 1, Micromass, Waters). Os espectros no modo MS eram coletados a cada 2 segundos, em uma faixa de 400-1800 m/z e cada peptídeo era submetido a uma fragmentação (MS/MS) por 3 s, em uma faixa de 50-2050 m/z. Os espectros MS/MS coletados eram convertidos em peak lists (formato PKL) e analisados com os softwares Mascot (Matrix Science) and Phenyx (GeneBio) nos bancos NCBInr, P. brasiliensis, Neurospora e S. cerevisiae. 85 Microscopia eletrônica Os procedimentos de inclusão, ultramicrotomia e reações de imunocitoquímica em leveduras de P. brasiliensis foram realizados no Centro de Microscopia Eletrônica (UNIFESP), sob a coordenação da Dra. Edna F. Haapalainen e em colaboração com a pós-doutoranda Luciane Ganiko do nosso laboratório na época. Preparações de vesículas ou leveduras do isolado Pb339 crescido em meio F12glu em fase logarítmica de crescimento eram lavadas em tampão cacodilato de sódio 0.1 M, pH 7.2 (TC) e fixadas em solução de Karnowisk modificado (glutaraldeído 2.5%, v/v, paraformaldeído 2%, m/v, em TC) durante 3½ h à temperatura ambiente, sob agitação constante. As preparações permaneceram no fixador a 4oC até o momento do processamento. O precipitado era lavado em TC e incluído em ágar 2.5% (m/v) para obtenção de fragmentos de ~ 2 mm de espessura. A etapa de pós-fixação era feita com solução de tetróxido de ósmio 1% (v/v) em TC durante 1 h à temperatura ambiente, sob agitação constante. Alternativamente, as preparações eram pós-fixadas na presença de ferricianeto de potássio 1% (v/v) para melhor preservação e resolução dos sistemas de membranas (Forbes et al., 1977). Parte das amostras era lavada em água ultra-pura (2 x 10 min) para contrastação in bloc com acetato de uranila 0.5% (m/v) durante 30 min, protegida da luz. As amostras não contrastadas com acetato de uranila eram lavadas em TC (2 x 10 min). Posteriormente, as amostras eram desidratadas em concentrações crescentes de etanol (Merck) 70%, 90% e 100% durante 30 min cada, transferidas para óxido de propileno (EMS), com 2 trocas de 30 min. Os fragmentos de precipitado celular eram 86 infiltrados com resina Epon (EMS) ou Spurr (EMS), com aumento progressivo da razão de resina para óxido de propileno (1:1 durante 2 h, 2:1 durante 16 h). Para infiltração com resina pura, eram realizadas 2 trocas de 2 - 3 h e, posteriormente, os fragmentos eram transferidos para cápsulas contendo resina. As cápsulas permaneceram na estufa a 65oC durante 48 h para polimerização da resina. As amostras infiltradas com Epon eram pósfixadas em tetróxido de ósmio sem ferricianeto de potássio. Seções ultra-finas (70 – 120 nm) obtidas no ultramicrótomo Leica eram coletadas em grades de níquel resvestidas com formvar e carbono, lavadas, fixadas com glutaraldeído 2.5% (v/v) e enxaguadas em água ultra-pura (MilliQ). As análises eram feitas em microscópio eletrônico Jeol JEM 1200EX model II. 87 Resultados e Discussão • Análise da preparação de vesículas por “Western blot” e microscopia eletrônica Amostras de sobrenadante de cultura do P. brasiliensis Pb339 cultivado em meio F12/glu complementado com SFB depletado de vesículas foram concentradas em Amicon e ultracentrifugadas a 100.000 x g por 4 horas a 4oC. O precipitado foi ressuspendido em tampão de amostra para SDS-PAGE, fervido e analisado por “Western blot”. Na figura 1 mostramos o padrão de bandas reconhecido por soro de paciente com PCM (1:1000), como revelado por quimioluminescência. Os componentes do precipitado 100.000 x g reconhecidos pelo soro de paciente concentraram-se na faixa de peso molecular entre 75 e 45 kDa, aproximadamente e foram específicos, como sugerido pela comparação com a reação negativa obtida com soro de indivíduo normal. 88 Figura 1. Análise por “Western blot” da antigenicidade das moléculas do precipitado a 100,000 x g com soro de paciente com PCM. Uma fração semelhante de amostra foi analisada através de microscopia eletrônica de transmissão. Na Figura 2A podemos observar a presença neste precipitado de diversas estruturas delimitadas por membranas, aparentemente vesículas, com tamanhos entre 20 e 100 nm, coerentes com o tamanho dos exossomos descritos na literatura. Revendo algumas fotos de leveduras de P. brasiliensis analisadas por microscopia eletrônica, pudemos observar também algumas células aparentemente liberando vesículas para o meio extracelular (Figura 2B - setas). Coincidentemente estas vesículas têm tamanho de 20 a 100 nm de diâmetro, sugerindo que o fungo realmente libera vesículas para o meio extracelular. 89 Figura 2. Detecção por microscopia eletrônica de transmissão de vesículas liberadas pelo P. brasiliensis no meio extracelular. A) Sobrenadante de cultura concentrado e ultracentrifugado a 100.000 x g. B) Célula de P. brasiliensis aparentemente liberando vesículas para o meio extracelular (setas). • Cromatografia da preparação de vesículas extracelulares de P. brasiliensis 90 Outra estratégia utilizada para o reconhecimento de estruturas vesiculares extracelulares foi o fracionamento de sobrenadantes concentrados de cultura de fungo em uma coluna de Sepharose CL-4B. Previamente, a coluna foi calibrada com 2 marcadores de peso molecular, a saber, tireoglobulina (~700 kDa) e BSA (dímero com ~135 kDa), nas mesmas condições descritas em Materiais e Métodos, e as frações analisadas em espectrofotômetro (Abs280). Na figura 3 podemos observar que o pico de tireoglobulina está na fração 43, enquanto o dímero de BSA ficou predominantemente na fração 60, coerente com o resultado esperado. Figura 3. Calibração de uma coluna de Sepharose CL-4B. Perfil de eluição (A280) de 200 µg de tireoglobulina (~700 kDa) ou BSA (dímero ~135 kDa) em frações de 1 mL (fluxo de 4 mL/hora). Cerca de 50 mL de sobrenadante de P. brasiliensis B-339 crescido por 10 dias em meio F12/glu contendo 5% de SFB foi concentrado em sistema Amicon com membrana YM10, lavado com 8 mL de tampão contendo 100 mM de acetato de amônio pH 7,3 e concentrado até um volume final de 2 mL. A amostra concentrada foi fracionada em 91 coluna de Sepharose CL-4B ou ultracentrifugada a 100.000 x g por 4 horas a 4oC, e estocada. O fracionamento de sobrenadante concentrado de P. brasiliensis em coluna de Sepharose CL-4B calibrada pode ser visto na Figura 3. Alíquotas das frações (200 µL) foram analisadas por ELISA quanto à reatividade com soro de paciente (1:1000) com PCM. O perfil de reatividade pode ser visto na Figura 4, onde o controle da reação foi feito na ausência de fungo, ou seja, somente com meio F12/glu contendo ou não SFB, concentrado e fracionado na mesma coluna. Observa-se que houve uma alta reatividade do soro com as frações 26 a 33 eluídas a partir de sobrenadante de cultura e, portanto, específicas para componentes fúngicos. Para uma coluna de 70 mL, o Vo estaria em torno de 24 mL (fração 24), sugerindo que as frações entre 26 e 33 estão incluídas na coluna. Essas frações apresentam uma massa molecular acima de 700 kDa (fração 43 – tireoglobulina), compatíveis com a massa de vesículas (entre 1.000 e 20.000 kDa). Note que houve uma reatividade de imunoglobulinas de paciente com componentes do soro (perfil F12+SFB). Sobrenadantes de cultura do fungo cultivado em meio sem soro apresentaram reatividade específica com componentes do fungo eluídos a partir da fração 40, os quais podem representar agregados com componentes antigênicos. 92 Figura 4. CL-ELISA das frações eluídas da coluna de Sepharose CL-4B. Os gráficos mostram o perfil da reatividade, com soro de paciente com PCM, das frações eluídas a partir do sobrenadante de cultura de P. brasiliensis B-339. • Análise de vesículas purificadas em gradiente de sacarose Um dos nossos objetivos em relação às vesículas extracelulares de P. brasiliensis é verificar se elas carregam moléculas imunomodulatórias, como já evidenciado em organismos patogênicos como o T. cruzi (Torrecilhas et al., 2007, em revisão). Com o 93 objetivo de testar frações purificadas do pellet de 100.000 x g de sobrenadante de cultura do fungo, após ultracentrifugação as vesículas foram fracionadas em gradiente linear entre 2,6 e 0,25 M de sacarose em Tris pH 7,2 (Wubbolts et al., 2003). Estávamos particularmente interessados em separar a malha que apareceu entremeada nas vesículas, como visto na Figura 2A. As frações ímpares foram enviadas para análise no laboratório do Prof. Carlos P. Taborda, USP. As frações foram usadas para estimular macrófagos de cultura J774 e no sobrenadante foram dosadas as citocinas IL-10, IL-12 e óxido nítrico (NO). Observou-se que as frações 7 e 9 foram as mais ativas na indução de NO (Figura 5), enquanto IL-10 e IL-12 não foram detectadas em nenhuma fração (resultado não mostrado). A constatação preliminar de que vesículas extracelulares do P. brasiliensis podem ter uma importância imunológica é altamente relevante ao nosso estudo. 94 Figura 5. Detecção da liberação de NO por macrófagos após 24 horas de incubação com as frações vesiculares provenientes da separação por gradiente linear de sacarose. • Proteoma de vesículas de P. brasiliensis As informações de que o P. brasiliensis aparentemente libera vesículas, as quais contêm moléculas antigênicas e potencialmente imunorregulatórias, direcionou nosso interesse imediato em realizar o proteoma desse material. Paralelamente, foi realizada a análise do proteoma da parede do fungo (manuscrito anexo), não somente pela importância de conhecer as proteínas associadas a esse compartimento, com também para estabelecer uma base de comparação com as proteínas de vesículas que necessariamente devem transitar por esse compartimento antes de alcançarem o meio externo. Os isolados a serem estudados foram selecionados segundo sua capacidade secretora e pelo seu grau de virulência. A Pb339 tem sido usada há décadas como fonte de antígenos extracelulares e purificação de gp43. Geralmente apresenta crescimento abundante e secreção de inúmeros componentes moleculares. O Pb18 tem sido igualmente utilizado há décadas em experimentos de infecção de camundongos devido à sua alta virulência e representa a maior espécie filogenética (S1), segundo Matute et al. (2006). O Pb12 foi o isolado mais agressivo em experimentos de PCM murina em camundongos B10.A, para os quais IFNγ estava ausente durante a infecção (Carvalho et al., 2005). O Pb3 representa uma espécie filogenética distinta (PS2) e tem um padrão regressivo de PCM em camundongos B10.A (Carvalho et al., 2005; Matute et al., 2006). O perfil em SDS-PAGE das proteínas contidas no precipitado 100,000 x g de vesículas pode ser observado na figura 6. As preparações aparecem com vários e abundantes componentes. Somente as preparações provenientes de Pb3 apresentaram 95 baixa quantidade de proteínas. Isso já era esperado, já que os precipitados de 100.000 x g eram consideravelmente menores para esse isolado. Apesar das preparações conterem uma quantidade razoável de proteínas, as digestões com tripsina mostraram poucos “hits” significativos com o banco de dados. Para validar o proteoma de vesículas serão necessárias preparações contendo maior quantidade de proteínas. O conhecimento do genoma completo do P. brasiliensis também facilitará enormemente sua identificação. Figura 6. Padrão de banda das proteínas do precipitado 100.000 x g secretadas pelo P. brasiliensis Pb18, Pb12, Pb3 e Pb339 em gel de SDS-PAGE 10% corado pelo método da prata. • Marcação da preparação de vesículas com anticorpos anti-alfa galactosil Um dos nossos objetivos foi detectar um marcador para as vesículas extracelulares de P. brasiliensis de forma a otimizar sua purificação. Para tal, já foram testados anticorpos anti-PbLon, anti-gp43 e anti-PbMdj1, porém todos produziram reações negativas. 96 Em T. cruzi, parte da população de vesículas extracelulares é reconhecida por anticorpos anti-epitopo alfa-galactosil (anti-Gal), os quais podem ser isolados em grandes quantidades a partir de soros de pacientes chagásicos (Almeida et. al., 1994). Esses epitopos estão presentes em cadeias longas de oligossacarídeos O-ligados, principalmente em resíduos de treonina de mucinas-like do complexo antigênico F2/3 de T. cruzi. O complexo F2 é composto por glicoproteínas de 74 e 95 kDa e F3 por glicoproteínas de 120 a 200 kDa. Apesar de epitopos contendo resíduos de α-galactosil não terem sido descritos em fungos até o momento, foi feita uma reação de “immunoblot” de precipitados 100.000 x g de sobrenadantes de P. brasiliensis Pb339 com anticorpos anti-Gal. Observou-se uma reação intensa com um componente de cerca de 70 kDa (Fig. 7) de migração difusa no gel de SDS-PAGE. Figura 7. “Immunoblot” com revelação por quimioluminescência mostrando a reatividade de anticorpos anti-alfa galactosil isolados de soro chagásico com precipitados de sobrenadantes de cultura (100.000 x g) de P. brasiliensis Pb339: 1, crescido em YPD ou 3, crescido em meio F12/glu. Em 2, componentes do sobrenadante de cultura < 300.000 Da (não retidos na concentração em Amicon). 97 Ensaios de ELISA utilizando concentrações crescentes do anticorpo (10, 20 e 40 µg/mL) mostraram que a reação foi dose-dependente, como ocorre com o controle positivo, a fração F2/3 (Fig. 8). Figura 8. Reatividade em Elisa revelada por quimioluminescência de diferentes concentrações de anticorpos anti-alfa-galactosil isolados de soro chagásico com precipitados de sobrenadantes de cultura (100.000 x g) de P. brasiliensis Pb339 (A) ou fração F2/3 (B) de T. cruzi. Para verificar se os anticorpos reconhecem epitopos de caboidratos, as vesículas foram tratadas com metaperiodato de sódio em 3 concentrações diferentes (5, 10 e 20 98 mM). Pode-se observar na Fig. 9 que 5 mM do reagente praticamente aboliram a ligação do anticorpo com o precipitados a 100.000 x g, sugerindo que a reatividade era devida a epitopos de galactose. Figura 9. Reatividade em Elisa, revelada por quimioluminescência, de anticorpos anti-alfa galactosil (20 mg/mL) isolados de soro chagásico com precipitado de sobrenadantes de cultura (100.000 x g) de P. brasiliensis tratado com diferentes concentrações de metaperiodato de sódio (NaIO4). Um ensaio de inibição com diversos açúcares em concentração de 0,3 M incubados com o anticorpo primário mostrou inibição principalmente com d(+)-galactose (45%), seguida de methyl-β-D-xilopiranosídeo (38%) e methyl-α-D-galactopiranosídeo (35%) (figura 10). 99 Figura 10. Reatividade em Elisa, revelada por quimioluminescência, de anticorpos anti-alfa-galactosil (20 mg/mL) isolados de soro chagásico com precipitado de sobrenadantes de cultura (100.000 x g) de P. brasiliensis Pb339 na presença de 0,3 M dos açúcares indicados. O controle foi incubado na ausência de competidor. Ensaios para confirmar a presença do epitopo anti-alfa galactosil foram realizados pela Dra. Luciane Ganiko, no laboratório do Dr. Igor C. Almeida da University of Texas at El Paso (UTEP). Nesses ensaios, o substrato foi tratado com a enzima alfagalactosidase, a qual hidroliza resíduos de alfa-galactosidase de cadeias lineares. Na Fig. 11 observamos que o tratamento das vesículas de T. cruzi com alfa-galactosidase impediu substancialmente o reconhecimento de uma lectina específica para resíduos alfagalactosil, conhecida como MOA (Marasmium oreades agglutinin). O reconhecimento da lectina foi drasticamente reduzido, indicando que esse epitopo também está presente em preparações de vesículas de P. brasiliensis. Tanto o anticorpo quanto a lectina poderão 100 ser utlizados na purificação das vesículas de P. brasiliensis em coluna de afinidade ou como marcador. Figura 11. Reatividade em Elisa, revelada por quimioluminescência, de MOA com precipitado de sobrenadantes de cultura (100.000 x g) de P. brasiliensis (PbVs) ou vesículas de T. cruzi (TcaGalVes) tratados (barras negras) ou não (barras brancas) com alfa-galactosidase. Controle: na ausência de antígeno. 101 Capítulo 2: conclusões Em nosso laboratório foi especulada a possibilidade da serino-tiol proteinase (PbST) ou algum modulador positivo da enzima ser veiculado ao meio extracelular por vesículas secretadas pelo fungo. Os resultados preliminares de caracterização de vesículas extracelulares de P. brasiliensis apontam que: 1. Foi observada por microscopia eletrônica a presença de estruturas semelhantes a vesículas delimitadas por membrana em precipitados a 100.000 x g de sobrenadantes de P. brasiliensis. Frações do precipitado correspondentes à densidade de vesículas em gradiente de sacarose foram capazes de estimular a produção de NO por macrófagos, porém não de IL-10 ou Il-12 nas condições testadas. Preparações de vesículas foram reconhecidas especificamente por anticorpos de pacientes portadores de PCM, anticorpos policlonais monoespecíficos anti-alfa galactosil e também pela lectina MOA, que reconhece epitopos contendo α galactose. A atividade da PbST não foi detectada nas preparações de vesículas até o momento, possivelmente porque sua secreção não é estimulada no meio F12/glucose. Esses resultados preliminares abriram a perspectiva de um amplo projeto do laboratório para o estudo de vesículas extracelulares de P. brasiliensis. 102 A parede celular de fungos é uma estrutura coerente e dinâmica formada principalmente por polissacarídeos de quitina e glucana, mas contem também proteínas, glicoproteínas e lipídeos. A parede celular tem fundamental importância na biologia do fungo e na interação parasita-hospedeiro, além de ser um ótimo alvo farmacológico. Nossos estudos sobre o proteoma diferencial de frações da parede celular de dois isolados do P. brasiliensis, que diferem geneticamente e quanto à virulência em camundongos, podem ser assim resumidos: 1. Foram identificadas proteínas associadas à parede cellular (CWAPs) diferencialmente expressas no fungo dimórfico P. brasiliensis. Os isolados Pb3 e Pb18 foram cultivados em F12 glucose na presença ou não de 5% de soro fetal bovino (SFB). Esses isolados pertencem a grupos filogenéticos distintos e provocam tipos diferentes de resposta immune e progressão da PCM em modelo murino. Preparações de parede celular, lavadas extensivamente com sal e tratadas com ditiotreitol, foram extraídas com NaOH e HF, e os peptídeos tripticos foram identificados por espectrometria de massas (LC-MS/MS) utilizando os softwares Mascot e Phenyx. 60 proteínas foram identificadas com 4 ou mais peptídeos e as mais abundantes foram o fator de elongação 1, Hsp 70 e histona H2B. Proteínas ribosomais, hsp70, hsp90, catalase, calmodulina e várias proteínas metabólicas foram mais abundantes nas culturas em FSB. Entre as CWAPs prevalentes em Pb18, oxidante tiol específica e gliceraldeído-3-fosfato desidrogenase poderiam estar relacionadas com sua maior virulência. A prevalência de gp43 na parede de Pb3, por outro lado, poderia contribuir com a sua eliminação mais eficaz pelo sistema imune. 103 Referências Bibliográficas Almeida,AJ, M Martins, J A Carmona, L E Cano, A Restrepo, C Leao, F Rodrigues, 2006, New insights into the cell cycle profile of Paracoccidioides brasiliensis: Fungal Genetics and Biology, v. 43, p. 401-409. Almeida,AJ, J A Carmona, C Cunha, A Carvalho, C A Rappleye, W E Goldman, P J Hooykaas, C Leao, P Ludovico, F Rodrigues, 2007, Towards a molecular genetic system for the pathogenic fungus Paracoccidioides brasiliensis: Fungal Genet Biol.. Almeida,IC, M A Ferguson, S Schenkman, L R Travassos, 1994, GPI-anchored glycoconjugates from Trypanosoma cruzi trypomastigotes are recognized by lytic anti-alpha-galactosyl antibodies isolated from patients with chronic Chagas' disease: Braz.J.Med Biol.Res., v. 27, p. 443-447. Amerik,AY, V K Antonov, A E Gorbalenya, S A Kotova, T V Rotanova, E V Shimbarevich, 1991, SiteDirected Mutagenesis of la Protease - A Catalytically Active Serine Residue: Febs Letters, v. 287, p. 211214. Andreotti,PF, J L Monteiro da Silva, A M Bailao, C M Soares, G Benard, C P Soares, M J MendesGiannini, 2005, Isolation and partial characterization of a 30 kDa adhesin from Paracoccidioides brasiliensis: Microbes Infect., v. 7, p. 875-881. Bagagli,E, A Sano, K I Coelho, S Alquati, M Miyaji, Z P De Camargo, G M Gomes, M Franco, M R Montenegro, 1998, Isolation of coccidioides brasiliensis from armadillos (Dasypus noveminctus) captured in an endemic area of paracoccidioidomycosis: American Journal of Tropical Medicine and Hygiene, v. 58, p. 505-512. Bagagli,E, M Franco, S D M Bosco, F Hebeler-Barbosa, L A Trinca, M R Montenegro, 2003, High frequency of Paracoccidioides brasiliensis infection in armadillos (Dasypus novemcinctus): an ecological study: Medical Mycology, v. 41, p. 217-223. Bailao,AM, A Schrank, C L Borges, V Dutra, Walquiria Ines Molinari-Madlum EE, M S Soares Felipe, M J Soares Mendes-Giannini, W S Martins, M Pereira, S C Maria de Almeida, 2006, Differential gene expression by Paracoccidioides brasiliensis in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis: Microbes Infect., v. 8, p. 26862697. Barbosa,MS, S N Bao, P F Andreotti, F P de Faria, M S S Felipe, L D Feitosa, M J S Mendes-Giannini, C M D Soares, 2006, Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells: Infection and Immunity, v. 74, p. 382-389. Barrett,AJ, N D Rawlings, 1991, Types and families of endopeptidases: Biochem.Soc.Trans., v. 19, p. 707715. Barros,TF, R Puccia, 2001, Cloning and characterization of a LON gene homologue from the human pathogen Paracoccidioides brasiliensis: Yeast, v. 18, p. 981-988. Batista,WL, A L Matsuo, L Ganiko, T F Barros, T R Veiga, E Freymuller, R Puccia, 2006, The PbMDJ1 gene belongs to a conserved MDJ1/LON locus in thermodimorphic pathogenic fungi and encodes a heat shock protein that localizes to both the mitochondria and cell wall of Paracoccidioides brasiliensis: Eukaryotic Cell, v. 5, p. 379-390. 104 Batista,WL, T F Barros, G H Goldman, F V Morais, R Puccia, 2007, Identification of transcription elements in the 5' intergenic region shared by LON and MDJ1 heat shock genes from the human pathogen Paracoccidioides brasiliensis. Evaluation of gene expression: Fungal Genet Biol., v. 44, p. 347-356. Bernard,G, N M Orii, H H S Marques, M Mendonça, M Z Aquino, A E Campeas, G B Delnegro, A Durandy, A J S Duarte, 1994, Severe acuteparacoccidioidomycosis in children: Pediatric Infectious Disease Journal, p. 510-515. Besche,H, P Zwickl, 2004, The Thermoplasma acidophilum Lon protease has a Ser-Lys dyad active site: European Journal of Biochemistry, v. 271, p. 4361-4365. Biagioni,L, M J Souza, L G Chamma, R P Mendes, S A Marques, N G Mota, M Franco, 1984, Serology of paracoccidioidomycosis. II. Correlation between class-specific antibodies and clinical forms of the disease: Trans.R.Soc.Trop Med Hyg., v. 78, p. 617-621. Boddicker,JD, B D Jones, 2004, Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells: Infect.Immun., v. 72, p. 2002-2013. Bota,DA, K J A Davies, 2001, Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders: Mitochondrion, v. 1, p. 33-49. Bota,DA, K J A Davies, 2002, Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism: Nature Cell Biology, v. 4, p. 674-680. Bota,DA, J K Ngo, K J A Davies, 2005, Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death: Free Radical Biology and Medicine, v. 38, p. 665-677. Botos,I, E E Melnikov, S Cherry, J E Tropea, A G Khalatova, F Rasulova, Z Dauter, M R Maurizi, T V Rotanova, A Wlodawer, A Gustchina, 2004, The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site: Journal of Biological Chemistry, v. 279, p. 8140-8148. Brown,GD, S Gordon, 2003, Fungal beta-glucans and mammalian immunity: Immunity, v. 19, p. 311-315. Brummer,E, L H Hanson, A Restrepo, D A Stevens, 1989, Intracellular Multiplication of ParacoccidioidesBrasiliensis in Macrophages - Killing and Restriction of Multiplication by Activated Macrophages: Infection and Immunity, v. 57, p. 2289-2294. Brummer,E, E Castaneda, A Restrepo, 1993, Paracoccidioidomycosis - An Update: Clinical Microbiology Reviews, v. 6, p. 89-117. Calich,VLG, L M Singervermes, A M Siqueira, E Burger, 1985, Susceptibility and Resistance of Inbred Mice to Paracoccidioides-Brasiliensis: British Journal of Experimental Pathology, v. 66, p. 585-594. Calich,VLG, L M Singer-Vermes, M Russo, C A C Vaz, E Burger, 1994, Immunogenetics in paracoccidioidomycosis, in M Franco, CS Lacaz, A Restrepo-Moreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 151-173. Calich,VLG, S S Kashino, 1998, Cytokines produced by susceptible and resistant mice in the course of Paracoccidioides brasiliensis infection: Brazilian Journal of Medical and Biological Research, v. 31, p. 615623. Calich,VLG, C A C Vaz, E Burger, 1998, Immunity to Paracoccidioides brasiliensis infection: Research in Immunology, v. 149, p. 407-417. 105 Cano,LE, L M Singervermes, C A C Vaz, M Russo, V L G Calich, 1995, Pulmonary Paracoccidioidomycosis in Resistant and Susceptible Mice - Relationship Among Progression of Infection, Bronchoalveolar Cell Activation, Cellular Immune-Response, and Specific Isotype Patterns: Infection and Immunity, v. 63, p. 1777-1783. Carmo,JPM, L A Dias-Melicio, S A Calvi, M T S Peracoli, A M V C Soares, 2006, TNF-alpha activates human monocytes for Paracoccidioides brasiliensis killing by an H2O2-dependent mechanism: Medical Mycology, v. 44, p. 363-368. Carmona,AK, R Puccia, M C F Oliveira, E G Rodrigues, L Juliano, L R Travassos, 1995, Characterization of An Exocellular Serine-Thiol Proteinase Activity in Paracoccidioides-Brasiliensis: Biochemical Journal, v. 309, p. 209-214. Carvalhaes,MS, W D Dasilva, E G Birman, O A Santanna, P Abrahamsohn, T L Kipnis, 1986, Experimental Paracoccidioidomycosis in High and Low Antibody-Producer Mice .1. Evolution of the Disease, Its Correlation with the Humoral Immune-Response and the Patterns of Tissue Lesions: Annales de l Institut Pasteur-Immunology, v. C137, p. 127-141. Carvalho,KC, L Ganiko, W L Batista, F V Morais, E R Marques, G H Goldman, M E Franco, R Puccia, 2005, Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotype: Microbes and Infection, v. 7, p. 55-65. Chaffin,WL, J L Lopez-Ribot, M Casanova, D Gozalbo, J P Martinez, 1998, Cell wall and secreted proteins of Candida albicans: Identification, function, and expression: Microbiology and Molecular Biology Reviews, v. 62, p. 130-+. Chagas,JR, I Y Hirata, M A Juliano, W Xiong, C Wang, J Chao, L Juliano, E S Prado, 1992, Substrate specificities of tissue kallikrein and T-kininogenase: their possible role in kininogen processing: Biochemistry, v. 31, p. 4969-4974. Chang,YC, K J Kwon-Chung, 1994, Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence: Mol Cell Biol., v. 14, p. 4912-4919. Chaput,N, J Taieb, F Andre, L Zitvogel, 2005, The potential of exosomes in immunotherapy: Expert.Opin.Biol.Ther., v. 5, p. 737-747. Chequer-Bou-Habib,D, C Daniel-Ribeiro, D M Banic, A C do Valle, B Galvao-Castro, 1989, Polyclonal B cell activation in paracoccidioidomycosis. Polyclonal activation in paracoccidioidomycosis: Mycopathologia, v. 108, p. 89-93. Clemons,KV, D Feldman, D A Stevens, 1989, Influence of Estradiol on Protein Expression and Methionine Utilization During Morphogenesis of Paracoccidioides-Brasiliensis: Journal of General Microbiology, v. 135, p. 1607-1617. Corredor,GG, L A Peralta, J H Castano, J S Zuluaga, B Henao, M Arango, A M Tabares, D R Matute, J G Mcewen, A Restrepo, 2005, The naked-tailed armadillo Cabassous centralis (Miller 1899): a new host to Paracoccidioides brasiliensis. Molecular identification of the isolate: Medical Mycology, v. 43, p. 275-280. Coutinho,ZF, D Silva, M Lazera, V Petri, R M Oliveira, P C Sabroza, B Wanke, 2002, Paracoccidioidomycosis mortality in Brazil (1980-1995): Cad.Saude Publica, v. 18, p. 1441-1454. Cunha,AF, M V Sousa, S P Silva, R S Jesuino, C M Soares, M S Felipe, 1999, Identification, N-terminal region sequencing and similarity analysis of differentially expressed proteins in Paracoccidioides brasiliensis: Med Mycol., v. 37, p. 115-121. 106 da Silva,MB, A F Marques, J D Nosanchuk, A Casadevall, L R Travassos, C P Taborda, 2006, Melanin in the dimorphic fungal pathogen Paracoccidioides brasiliensis: effects on phagocytosis, intracellular resistance and drug susceptibility: Microbes Infect., v. 8, p. 197-205. da Silva,SP, M I Borges-Walmsley, I S Pereira, C M Soares, A R Walmsley, M S Felipe, 1999, Differential expression of an hsp70 gene during transition from the mycelial to the infective yeast form of the human pathogenic fungus Paracoccidioides brasiliensis: Mol Microbiol., v. 31, p. 1039-1050. De Groot,PWJ, A D de Boer, J Cunningham, H L Dekker, L de Jong, K J Hellingwerf, C de Koster, F M Klis, 2004, Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins: Eukaryotic Cell, v. 3, p. 955-965. De Groot,PWJ, A F Ram, F M Klis, 2005, Features and functions of covalently linked proteins in fungal cell walls: Fungal Genetics and Biology, v. 42, p. 657-675. de Mattos,GD, S R de Almeida, M Mariano, J D Lopes, 2003, Characterization of gp70 and anti-gp70 monoclonal antibodies in Paracoccidioides brasiliensis pathogenesis: Infect.Immun., v. 71, p. 6534-6542. de Restrepo,FM, M Restrepo, A Restrepo, 1983, paracoccidioidomycosis: Sabouraudia, v. 21, p. 35-39. Blood groups and HLA antigens in Diez,S, B L Gomez, A Restrepo, R J Hay, A J Hamilton, 2002, Paracoccidioides brasiliensis 87-kilodalton antigen, a heat shock protein useful in diagnosis: Characterization, purification, and detection in biopsy material via immunohistochemistry: Journal of Clinical Microbiology, v. 40, p. 359-365. Diniz,SN, R Nomizo, P S Cisalpino, M M Teixeira, G D Brown, A Mantovani, S Gordon, L F Reis, A A Dias, 2004, PTX3 function as an opsonin for the dectin-1-dependent internalization of zymosan by macrophages: J.Leukoc.Biol., v. 75, p. 649-656. Feitosa,LD, P S Cisalpino, M R M dos Santos, R A Mortara, T F Barros, F V Morais, R Puccia, J F da Silveira, Z P De Camargo, 2003, Chromosomal polymorphism, syntenic relationships, and ploidy in the pathogenic fungus Paracoccidioides brasiliensis: Fungal Genetics and Biology, v. 39, p. 60-69. Felipe,MSS, R V Andrade, S S Petrofeza, A Q Maranhao, F A G Torres, P Albuquerque, F B M Arraes, M Arruda, M O Azevedo, A J Baptista, L A M Bataus, C L Borges, E G Campos, M R Cruz, B S Daher, A Dantas, M A S V Ferreira, G V Ghil, R S A Jesuino, C M Kyaw, L Leitao, C R Martins, L M P Moraes, E O Neves, A M Nicola, E S Alves, J A Parente, M Pereira, M J Pocas-Fonseca, R Resende, B M Ribeiro, R R Saldanha, S C Santos, I Silva-Pereira, M A S Silva, E Silveira, I C Simoes, R B A Soares, D P Souza, M T De Souza, E V Andrade, M A S Xavier, H P Veiga, E J Venancio, M J A Carvalho, A G Oliveira, M K Inoue, N F Almeida, M E M T Walter, C M A Soares, M M Brigido, 2003, Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis: Yeast, v. 20, p. 263271. Felipe,MSS, R V Andrade, F B M Arraes, A M Nicola, A Q Maranhao, F A G Torres, I Silva-Pereira, M J Poc as-Fonseca, E G Campos, L M P Moraes, P A Andrade, A H F P Tavares, S S Silva, C M Kyaw, D P Souza, P Network, M Pereira, R S A Jesuino, E V Andrade, J A Parente, G S Oliveira, M S Barbosa, N F Martins, A L Fachin, R S Cardoso, G A S Passos, N F Almeida, M E M T Walter, C M A Soares, M J A Carvalho, M M Brigido, 2005, Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells: Journal of Biological Chemistry, v. 280, p. 24706-24714. Ferreira,MED, E D Marques, I Malavazi, I Torres, A Restrepo, L R Nunes, R C de Oliveira, M H S Goldman, G H Goldman, 2006, Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis: Molecular Genetics and Genomics, v. 276, p. 450463. 107 Fevrier,B, G Raposo, 2004, Exosomes: endosomal-derived vesicles shipping extracellular messages: Curr.Opin.Cell Biol., v. 16, p. 415-421. Figueiredo,F, L M C Alves, C L Silva, 1993, Tumor-Necrosis-Factor Production In-Vivo and In-Vitro in Response to Paracoccidioides-Brasiliensis and the Cell-Wall Fractions Thereof: Clinical and Experimental Immunology, v. 93, p. 189-194. Finlay,BB, F Heffron, S Falkow, 1989, Epithelial-Cell Surfaces Induce Salmonella Proteins Required for Bacterial Adherence and Invasion: Science, v. 243, p. 940-943. Fischer,H, R Glockshuber, 1994, A point mutation within the ATP-binding site inactivates both catalytic functions of the ATP-dependent protease La (Lon) from Escherichia coli: FEBS Lett., v. 356, p. 101-103. Fliss,AE, J Rao, M W Melville, M E Cheetham, A J Caplan, 1999, Domain requirements of DnaJ-like (Hsp40) molecular chaperones in the activation of a steroid hormone receptor: Journal of Biological Chemistry, v. 274, p. 34045-34052. Forbes,MS, M L Rennels, E Nelson, 1977, Ultrastructure of pericytes in mouse heart: Am.J.Anat., v. 149, p. 47-70. Fradin,C, P De Groot, D MacCallum, M Schaller, F Klis, F C Odds, B Hube, 2005, Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood: Mol Microbiol., v. 56, p. 397-415. Franco,M, M R Montenegro, R P Mendes, S A Marques, N L Dillon, N G Mota, 1987, Paracoccidioidomycosis: a recently proposed classification of its clinical forms: Rev Soc.Bras.Med Trop, v. 20, p. 129-132. Fu,GK, M J Smith, D M Markovitz, 1997, Bacterial protease Lon is a site-specific DNA-binding protein: J.Biol.Chem., v. 272, p. 534-538. Galvao-Castro,B, J A Sa Ferreira, K F Marzochi, M C Marzochi, S G Coutinho, P H Lambert, 1984, Polyclonal B cell activation, circulating immune complexes and autoimmunity in human american visceral leishmaniasis: Clin.Exp.Immunol., v. 56, p. 58-66. Ganiko,L, R Puccia, V S Mariano, O A Sant'Anna, E Freymuller, M C Roque-Barreira, L R Travassos, 2007, Paracoccin, an N-acetyl-glucosamine-binding lectin of Paracoccidioides brasiliensis, is involved in fungal growth: Microbes Infect., v. 9, p. 695-703. Garcia,NM, G Del Negro, E M Heins-Vaccari, N T de Melo, C M de Assis, C S Lacaz, 1993, [Paracoccidioides brasiliensis, a new sample isolated from feces of a penguin (Pygoscelis adeliae)]: Rev Inst Med Trop Sao Paulo, v. 35, p. 227-235. Gesztesi,JL, R Puccia, L R Travassos, A P Vicentini, J Z de Moraes, M F Franco, J D Lopes, 1996, Monoclonal antibodies against the 43,000 Da glycoprotein from Paracoccidioides brasiliensis modulate laminin-mediated fungal adhesion to epithelial cells and pathogenesis: Hybridoma, v. 15, p. 415-422. Goldberg,AL, K H Swamy, C H Chung, F S Larimore, 1981, Proteases in Escherichia coli: Methods Enzymol., v. 80 Pt C, p. 680-702. Goldman,GH, E D Marques, D C D Ribeiro, L A D Bernardes, A C Quiapin, P M Vitorelli, M Savoldi, C P Semighini, R C de Oliveira, L R Nunes, L R Travassos, R Puccia, W L Batista, L E Ferreira, J C Moreira, A P Bogossian, F Tekaia, M P Nobrega, F G Nobrega, M H S Goldman, 2003, Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: Identification of putative homologues of Candida albicans virulence and pathogenicity genes: Eukaryotic Cell, v. 2, p. 34-48. 108 Gomez,BL, J D Nosanchuk, S Diez, S Youngchim, P Aisen, L E Cano, A Restrepo, A Casadevall, A J Hamilton, 2001, Detection of melanin-like pigments in the dimorphic fungal pathogen Paracoccidioides brasiliensis in vitro and during infection: Infection and Immunity, v. 69, p. 5760-5767. Gonzalez,A, B L Gomez, A Restrepo, A J Hamilton, L E Cano, 2005, Recognition of extracellular matrix proteins by Paracoccidioides brasiliensis yeast cells: Med Mycol., v. 43, p. 637-645. Goshe,MB, R D Smith, 2003, Stable isotope-coded proteomic mass spectrometry: Current Opinion in Biotechnology, v. 14, p. 101-109. Grant,CM, L P Collinson, J H Roe, I W Dawes, 1996, Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation: Mol Microbiol., v. 21, p. 171-179. Griffith,KL, I M Shah, R E Wolf, 2004, Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons: Molecular Microbiology, v. 51, p. 1801-1816. Grose,E, J R Tamsitt, 1965, Paracoccidioides brasiliensis recovered from the intestinal tract of three bats (Artibeus lituratus) in Colombia, S.A: Sabouraudia, v. 4, p. 124-125. Harding,C, J Heuser, P Stahl, 1984, Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding: Eur.J.Cell Biol., v. 35, p. 256-263. Harris,TO, D W Shelver, J F Bohnsack, C E Rubens, 2003, A novel streptococcal surface protease promotes virulence, resistance to opsonophagocytosis, and cleavage of human fibrinogen: J.Clin.Invest, v. 111, p. 61-70. Hebeler-Barbosa,F, M R Montenegro, E Bagagli, 2003, Virulence profiles of ten Paracoccidioides brasiliensis isolates obtained from armadillos (Dasypus novemcinctus): Medical Mycology, v. 41, p. 89-96. Hedstrom,L, 2002, Serine protease mechanism and specificity: Chem.Rev, v. 102, p. 4501-4524. Ishii,Y, F Amano, 2001, Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine: Biochemical Journal, v. 358, p. 473-480. Izacc,SMS, F J Gomez, R S A Jesuino, C A Fonseca, M S S Felipe, G S Deepe, C M A Soares, 2001, Molecular cloning, characterization and expression of the heat shock protein 60 gene from the human pathogenic fungus Paracoccidioides brasiliensis: Medical Mycology, v. 39, p. 445-455. Jesuino,RSA, M O Azevedo, M S S Felipe, M Pereira, C M D Soares, 2002, Characterization of a chaperone ClpB homologue of Paracoccidioides brasiliensis: Yeast, v. 19, p. 963-972. Johnson,WD, C M Lang, 1977, Paracoccidioidomycosis (South American blastomycosis) in a squirrel monkey (Saimiri sciureus): Vet.Pathol., v. 14, p. 368-371. Johnstone,RM, M Adam, J R Hammond, L Orr, C Turbide, 1987, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes): J.Biol.Chem., v. 262, p. 9412-9420. Johnstone,RM, 2006, Exosomes biological significance: A concise review: Blood Cells Mol Dis., v. 36, p. 315-321. 109 Jubete,Y, M R Maurizi, S Gottesman, 1996, Role of the heat shock protein DnaJ in the Lon-dependent degradation of naturally unstable proteins: Journal of Biological Chemistry, v. 271, p. 30798-30803. Kanetsuna,F, L M Carbonel, R E Moreno, J Rodriguez, 1969, Cell Wall Composition of Yeast and Mycelial Forms of Paracoccidioides Brasiliensis: Journal of Bacteriology, v. 97, p. 1036-&. Kashino,SS, V L G Calich, L M Singervermes, P A Abrahamsohn, E Burger, 1987, Growth-Curves, Morphology and Ultrastructure of 10 Paracoccidioides-Brasiliensis Isolates: Mycopathologia, v. 99, p. 119128. Kindler,V, A P Sappino, G E Grau, P F Piguet, P Vassalli, 1989, The Inducing Role of Tumor Necrosis Factor in the Development of Bactericidal Granulomas During Bcg Infection: Cell, v. 56, p. 731-740. Kominami,E, H Hoffschulte, H Holzer, 1981, Purification and Properties of Proteinase-B from Yeast: Biochimica et Biophysica Acta, v. 661, p. 124-135. Kuehn,MJ, N C Kesty, 2005, Bacterial outer membrane vesicles and the host-pathogen interaction: Genes Dev., v. 19, p. 2645-2655. Kurita,N, M Oarada, M Miyaji, E Ito, 2000, Effect of cytokines on antifungal activity of human polymorphonuclear leucocytes against yeast cells of Paracoccidioides brasiliensis: Medical Mycology, v. 38, p. 177-182. Kwon-Chung,KJ, I Polacheck, T J Popkin, 1982, Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice: J.Bacteriol., v. 150, p. 1414-1421. Lacaz,CS, 1994, Mycological diagnosis, in M Franco, CS Lacaz, A Restrepo-Moreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 339-344. Lacaz,CS, 1994, Historical evolution of the knowledge on paracoccidioidomycosis and its etiologic agent, Paracoccidioides brasiliensis, in M Franco, CS Lacaz, A Restrepo-Moreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 1-11. Lacaz,CS, 1994, Paracoccidioides brasiliensis: morphology; evolutionary cycle; maintenance during saprophytic life; biology, virulence, taxonomy., in M Franco, CS Lacaz, A Restrepo-Moreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 13-25. Lacerda,GB, B Arcegomez, F Q Telles, 1988, Increased Frequency of Hla-B40 in Patients with Paracoccidioidomycosis: Journal of Medical and Veterinary Mycology, v. 26, p. 253-256. Lancaster,GI, M A Febbraio, 2005, Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins: J.Biol.Chem., v. 280, p. 23349-23355. Langer,T, W Neupert, 1996, Regulated protein degradation in mitochondria: Experientia, v. 52, p. 10691076. Levery,SB, M S Toledo, A H Straus, H K Takahashi, 1998, Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: An immunodominant beta-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen: Biochemistry, v. 37, p. 8764-8775. Li,XB, Z R Zhang, H J Schluesener, S Q Xu, 2006, Role of exosomes in immune regulation: J.Cell Mol Med, v. 10, p. 364-375. 110 Lopes,JD, M C R Mouracampos, A P Vicentini, J L Gesztesi, W Desouza, Z P Camargo, 1994, Characterization of Glycoprotein Gp43, the Major Laminin-Binding Protein of ParacoccidioidesBrasiliensis: Brazilian Journal of Medical and Biological Research, v. 27, p. 2309-2313. Mahadevan,PR, E L Tatum, 1967, Localization of structural polymers in the cell wall of Neurospora crassa: J.Cell Biol., v. 35, p. 295-302. Marques,AF, M B da Silva, M A Juliano, L R Travassos, C P Taborda, 2006, Peptide immunization as an adjuvant to chemotherapy in mice challenged intratracheally with virulent yeast cells of Paracoccidioides brasiliensis: Antimicrob.Agents Chemother., v. 50, p. 2814-2819. Marques,ER, M E S Ferreira, R D Drummond, J M Felix, M Menossi, M Savoldi, L R Travassos, R Puccia, W L Batista, K C Carvalho, M H S Goldman, G H Goldman, 2004, Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis: Molecular Genetics and Genomics, v. 271, p. 667-677. Matsuo,AL, A K Carmona, L S Silva, C E Cunha, E S Nakayasu, I C Almeida, M A Juliano, R Puccia, 2007, C-Npys (S-3-nitro-2-pyridinesulfenyl) and peptide derivatives can inhibit a serine-thiol proteinase activity from Paracoccidioides brasiliensis: Biochem.Biophys.Res.Commun., v. 355, p. 1000-1005. Matute,DR, J G Mcewen, B A Montes, G San Blas, E Bagagli, J T Rauscher, A Restrepo, F Morais, G Nino-Vega, J W Taylor, 2006, Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies: Molecular Biology and Evolution, v. 23, p. 65-73. Mcewen,JG, V Bedoya, M M Patino, M E Salazar, M A Restrepo, 1987, Experimental Murine Paracoccidiodomycosis Induced by the Inhalation of Conidia: Journal of Medical and Veterinary Mycology, v. 25, p. 165-175. Mckerrow,JH, E Sun, P J Rosenthal, J Bouvier, 1993, The Proteases and Pathogenicity of Parasitic Protozoa: Annual Review of Microbiology, v. 47, p. 821-853. Mendes-Giannini,MJS, P F Andreotti, L R Vincenzi, J L M da Silva, H L Lenzi, G Benard, R ZancopeOliveira, H L D Guedes, C P Soares, 2006, Binding of extracellular matrix proteins to Paracoccidioides brasiliensis: Microbes and Infection, v. 8, p. 1550-1559. Mendes,RP, R Negroni, A Arechavala, 1994, Treatment and control of cure, in M Franco, CS Lacaz, A Restrepo-Moreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 373-387. Morais,FV, T F Barros, M K Fukada, P S Cisalpino, R Puccia, 2000, Polymorphism in the gene coding for the immunodominant antigen gp43 from the pathogenic fungus Paracoccidioides brasiliensis: Journal of Clinical Microbiology, v. 38, p. 3960-3966. Moscardi-Bacchi,M, E Brummer, D A Stevens, 1994, Support of Paracoccidioides brasiliensis multiplication by human monocytes or macrophages: inhibition by activated phagocytes: J.Med Microbiol., v. 40, p. 159-164. Mota,NG, M T Rezkallah-Iwasso, M T Peracoli, R C Audi, R P Mendes, J Marcondes, S A Marques, N L Dillon, M F Franco, 1985, Correlation between cell-mediated immunity and clinical forms of paracoccidioidomycosis: Trans.R.Soc.Trop Med Hyg., v. 79, p. 765-772. Muller,A, W Saenger, 1993, Studies on the Inhibitory-Action of Mercury Upon Proteinase-K: Journal of Biological Chemistry, v. 268, p. 26150-26154. 111 Munro,CA, K Winter, A Buchan, K Henry, J M Becker, A J P Brown, C E Bulawa, N A R Gow, 2001, Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity: Molecular Microbiology, v. 39, p. 1414-1426. Munro,CA, S Selvaggini, I de Bruijn, L Walker, M D Lenardon, B Gerssen, S Milne, A J P Brown, N A R Gow, 2007, The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans: Molecular Microbiology, v. 63, p. 1399-1413. Naglik,JR, S J Challacombe, B Hube, 2003, Candida albicans secreted aspartyl proteinases in virulence and pathogenesis: Microbiology and Molecular Biology Reviews, v. 67, p. 400-+. Nascimento,FRF, V L G Calich, D Rodriguez, M Russo, 2002, Dual role for nitric oxide in paracoccidioidomycosis: Essential for resistance, but overproduction associated with susceptibility: Journal of Immunology, v. 168, p. 4593-4600. Nemecek,JC, M Wuthrich, B S Klein, 2006, Global control of dimorphism and virulence in fungi: Science, v. 312, p. 583-588. Nino-Vega,GA, C A Munro, G San Blas, G W Gooday, N A R Gow, 2000, Differential expression of chitin synthase genes during temperature-induced dimorphic transitions in Paracoccidioides brasiliensis: Medical Mycology, v. 38, p. 31-39. Nombela,C, C Gil, W L Chaffin, 2006, Non-conventional protein secretion in yeast: Trends Microbiol., v. 14, p. 15-21. Nunes,LR, d O Costa, D B Leite, V S da Silva, M E dos Reis, M E Silva Ferreira, D C Ribeiro, L A Souza Bernardes, M H Goldman, R Puccia, L R Travassos, W L Batista, M P Nobrega, F G Nobrega, D Y Yang, C A Braganca Pereira, G H Goldman, 2005, Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition: Eukaryot.Cell, v. 4, p. 2115-2128. Ogrydziak,DM, 1993, Yeast Extracellular Proteases: Critical Reviews in Biotechnology, v. 13, p. 1-55. Ortiz-Ortiz,L, D E Parks, M Rodriguez, W O Weigle, 1980, Polyclonal B lymphocyte activation during Trypanosoma cruzi infection: J.Immunol., v. 124, p. 121-126. Pan,BT, R Blostein, R M Johnstone, 1983, Loss of the transferrin receptor during the maturation of sheep reticulocytes in vitro. An immunological approach: Biochem.J., v. 210, p. 37-47. Pan,BT, K Teng, C Wu, M Adam, R M Johnstone, 1985, Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes: J.Cell Biol., v. 101, p. 942-948. Pinto,AR, R Puccia, S N Diniz, M F Franco, L R Travassos, 2000, DNA-based vaccination against murine paracoccidioidomycosis using the gp43 gene from Paracoccidioides brasiliensis: Vaccine, v. 18, p. 30503058. Posadas,A, 1892, Un nuevo caso de micosis fungoidea con psorospermias: Ann Circ Med Argent, v. 15, p. 585-597. Puccia,R, S Schenkman, P A J Gorin, L R Travassos, 1986, Exocellular Components of ParacoccidioidesBrasiliensis - Identification of A Specific Antigen: Infection and Immunity, v. 53, p. 199-206. Puccia,R, L R Travassos, 1991, 43-Kilodalton Glycoprotein from Paracoccidioides-Brasiliensis Immunochemical Reactions with Sera from Patients with Paracoccidioidomycosis, Histoplasmosis, Or Jorge Lobos Disease: Journal of Clinical Microbiology, v. 29, p. 1610-1615. 112 Puccia,R, A K Carmona, J L Gesztesi, L Juliano, L R Travassos, 1998, Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleavage of components associated with the basement membrane: Medical Mycology, v. 36, p. 345-348. Puccia,R, M A Juliano, L Juliano, L R Travassos, A K Carmona, 1999, Detection of the basement membrane-degrading proteolytic activity of Paracoccidioides brasiliensis after SDS-PAGE using agarose overlays containing Abz-MKALTLQ-EDDnp: Brazilian Journal of Medical and Biological Research, v. 32, p. 645-649. Quah,BJ, H C O'Neill, 2005, The immunogenicity of dendritic cell-derived exosomes: Blood Cells Mol Dis., v. 35, p. 94-110. Rappleye,CA, J T Engle, W E Goldman, 2004, RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence: Mol Microbiol., v. 53, p. 153-165. Rappleye,CA, L G Eissenberg, W E Goldman, 2007, Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor: Proc.Natl.Acad.Sci.U.S.A, v. 104, p. 1366-1370. Rawlings,ND, F R Morton, A J Barrett, 2006, MEROPS: the peptidase database: Nucleic Acids Res., v. 34, p. D270-D272. Restrepo-Moreno,A, 1994, Ecology of Paracoccidioides brasiliensis, in M Franco, CS Lacaz, A RestrepoMoreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 121-130. Restrepo,A, I Gomez, M A Robledo, 1982, [Efficacy of ketoconazole in patients with recurrent paracoccidioidomycosis]: Rev Inst Med Trop Sao Paulo, v. 24, p. 173-179. Restrepo,A, 2000, Morphological aspects of Paracoccidioides brasiliensis in lymph nodes: implications for the prolonged latency of paracoccidioidomycosis?: Medical Mycology, v. 38, p. 317-322. Restrepo,A, J G Mcewen, E Castaneda, 2001, The habitat of Paracoccidioides brasiliensis: how far from solving the riddle?: Medical Mycology, v. 39, p. 233-241. Ricci,G, F T Mota, A Wakamatsu, R C Serafim, R C Borra, M Franco, 2004, Canine paracoccidioidomycosis: Med Mycol., v. 42, p. 379-383. Robertson,GT, M E Kovach, C A Allen, T A Ficht, R M Roop, 2000, The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice: Molecular Microbiology, v. 35, p. 577-588. Rodrigues,EG, L R Travassos, 1994, Nature of the reactive epitopes in Paracoccidioides brasiliensis polysaccharide antigen: J.Med Vet.Mycol., v. 32, p. 77-81. Rodrigues,ML, L Nimrichter, D L Oliveira, S Frases, K Miranda, O Zaragoza, M Alvarez, A Nakouzi, M Feldmesser, A Casadevall, 2007, Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport: Eukaryot.Cell, v. 6, p. 48-59. Rowley,N, C Pripbuus, B Westermann, C Brown, E Schwarz, B Barrell, W Neupert, 1994, Mdj1P, A Novel Chaperone of the Dnaj Family, Is Involved in Mitochondrial Biogenesis and Protein-Folding: Cell, v. 77, p. 249-259. Ruiz-Herrera,J, M V Elorza, E Valentin, R Sentandreu, 2006, Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity: FEMS Yeast Res., v. 6, p. 14-29. 113 Russell,WK, Z Y Park, D H Russell, 2001, Proteolysis in mixed organic-aqueous solvent systems: Applications for peptide mass mapping using mass spectrometry: Analytical Chemistry, v. 73, p. 26822685. Salem-Izacc,SM, R S Jesuino, W A Brito, M Pereira, M S Felipe, C M Soares, 1997, Protein synthesis patterns of Paracoccidiodes brasiliensis isolates in stage-specific forms and during cellular differentiation: J.Med Vet.Mycol., v. 35, p. 205-211. Salyers,A, D Witt, 1994, Virulence factors that promote colonization, in A Salyers and D Witt (eds), Bacterial pathogenesis: a molecular approach: Washington, D.C., ASM press, p. 30-46. San Blas,G, 1993, Biochemical and physiological aspects in the dimorphism of Paracoccidioides brasiliensis: Arch.Med Res., v. 24, p. 267-268. San Blas,G, F Sorais, G Nino-Vega, C Mendez, F San Blas, 1998, Cytosolic neutral proteinases of Paracoccidioides brasiliensis: Current Microbiology, v. 37, p. 141-143. San Blas,G, G Nino-Vega, T Iturriaga, 2002, Paracoccidioides brasiliensis and paracoccidioidomycosis: Molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics: Medical Mycology, v. 40, p. 225-242. Sano,A, R Tanaka, K Yokoyama, M Franco, E Bagagli, M R Montenegro, Y Mikami, M Miyaji, K Nishimura, 1998, Comparison between human and armadillo Paracoccidioides brasiliensis isolates by random amplified polymorphic DNA analysis: Mycopathologia, v. 143, p. 165-169. Sano,A, J Defaveri, R Tanaka, K Yokoyama, N Kurita, M Franco, K I R Coelho, E Bagagli, M R Montenegro, M Miyaji, K Nishimura, 1998, Pathogenicities and GP43kDa gene of three Paracoccidioides brasiliensis isolates originated from a nine-banded armadillo (Dasypus novemcinctus): Mycopathologia, v. 144, p. 61-65. Saraiva,EC, A Altemani, M F Franco, C S Unterkircher, Z P Camargo, 1996, Paracoccidioides brasiliensisgp43 used as paracoccidioidin: J.Med Vet.Mycol., v. 34, p. 155-161. Savel'ev,AS, L A Novikova, I E Kovaleva, V N Luzikov, W Neupert, T Langer, 1998, ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system: J.Biol.Chem., v. 273, p. 20596-20602. Schechter,I, A Berger, 1967, On the size Biochem.Biophys.Res.Commun., v. 27, p. 157-162. of the active site in proteases. I. Papain: Segura,E, S Amigorena, C Thery, 2005, Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses: Blood Cells Mol Dis., v. 35, p. 89-93. Shikanai-Yasuda,MA, F Q Telles Filho, R P Mendes, A L Colombo, M L Moretti, 2006, Paracoccidioidomicose: Revista da Sociedade Brasileira de Medicina Tropical, v. 39, p. 297-310. Silva,CL, R A Fazioli, 1985, A Paracoccidioides brasiliensis polysaccharide having granuloma-inducing, toxic and macrophage-stimulating activity: J.Gen.Microbiol., v. 131, p. 1497-1501. Smith,CK, T A Baker, R T Sauer, 1999, Lon and Clp family proteases and chaperones share homologous substrate-recognition domains: Proc.Natl.Acad.Sci.U.S.A, v. 96, p. 6678-6682. Smith,EL, F S Markland, C B Kasper, R J DeLange, M Landon, W H Evans, 1966, The complete amino acid sequence of two types of subtilisin, BPN' and Carlsberg: J.Biol.Chem., v. 241, p. 5974-5976. 114 Smithson,SL, I C Paterson, A M Bailey, S E Screen, B A Hunt, B D Cobb, R M Cooper, A K Charnley, J M Clarkson, 1995, Cloning and Characterization of A Gene Encoding A Cuticle-Degrading Protease from the Insect Pathogenic Fungus Metarhizium-Anisopliae: Gene, v. 166, p. 161-165. Sprent,J, 2005, Direct stimulation of naive T cells by antigen-presenting cell vesicles: Blood Cells Mol Dis., v. 35, p. 17-20. Stahlberg,H, E Kutejova, K Suda, B Wolpensinger, A Lustig, G Schatz, A Engel, C K Suzuki, 1999, Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits: Proceedings of the National Academy of Sciences of the United States of America, v. 96, p. 6787-6790. Straus,AH, E Freymuller, L R Travassos, H K Takahashi, 1996, Immunochemical and subcellular localization of the 43 kDa glycoprotein antigen of Paracoccidioides brasiliensis with monoclonal antibodies: J.Med Vet.Mycol., v. 34, p. 181-186. Szabo,A, R Korszun, F U Hartl, J Flanagan, 1996, A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates: EMBO J., v. 15, p. 408-417. Taborda,CP, M A Juliano, R Puccia, M Franco, L R Travassos, 1998, Mapping of the T-cell epitope in the major 43-kilodalton glycoprotein of Paracoccidioides brasiliensis which induces a Th-1 response protective against fungal infection in BALB/c mice: Infection and Immunity, v. 66, p. 786-793. Taborda,CP, J Rivera, O Zaragoza, A Casadevall, 2003, More is not necessarily better: prozone-like effects in passive immunization with IgG: J.Immunol., v. 170, p. 3621-3630. Tavares,AH, S S Silva, A Dantas, E G Campos, R V Andrade, A Q Maranhao, M M Brigido, D G PassosSilva, A L Fachin, S M Teixeira, G A Passos, C M Soares, A L Bocca, M J Carvalho, I Silva-Pereira, M S Felipe, 2007, Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages: Microbes Infect., v. 9, p. 583-590. Tsilibaris,V, G Maenhaut-Michel, L Van Melderen, 2006, Biological roles of the Lon ATP-dependent protease: Research in Microbiology, v. 157, p. 701-713. Van Dyck,L, D A Pearce, F Sherman, 1994, PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae: J.Biol.Chem., v. 269, p. 238242. Van Dyck,L, T Langer, 1999, ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae: Cell Mol Life Sci., v. 56, p. 825-842. Van Melderen,L, M H Thi, P Lecchi, S Gottesman, M Couturier, M R Maurizi, 1996, ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions: J.Biol.Chem., v. 271, p. 27730-27738. Venancio,EJ, C M Kyaw, C V Mello, S P Silva, C M Soares, M S Felipe, I Silva-Pereira, 2002, Identification of differentially expressed transcripts in the human pathogenic fungus Paracoccidioides brasiliensis by differential display: Med Mycol., v. 40, p. 45-51. Vicentini,AP, J L Gesztesi, M F Franco, W Desouza, J Z Demoraes, L R Travassos, J D Lopes, 1994, Binding of Paracoccidioides-Brasiliensis to Laminin Through Surface Glycoprotein Gp43 Leads to Enhancement of Fungal Pathogenesis: Infection and Immunity, v. 62, p. 1465-1469. Voos,W, K Rottgers, 2002, Molecular chaperones as essential mediators of mitochondrial biogenesis: Biochimica et Biophysica Acta-Molecular Cell Research, v. 1592, p. 51-62. 115 Wagner,I, H Arlt, L Van Dyck, T Langer, W Neupert, 1994, Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria: EMBO J., v. 13, p. 5135-5145. Walsh,P, D Bursac, Y C Law, D Cyr, T Lithgow, 2004, The J-protein family: modulating protein assembly, disassembly and translocation: Embo Reports, v. 5, p. 567-571. Walter,S, J Buchner, 2002, Molecular chaperones--cellular Angew.Chem.Int.Ed Engl., v. 41, p. 1098-1113. machines for protein folding: Wanke,B, A T Londero, 1994, Epidemiology and Paracoccidioidomycosis infection, in M Franco, CS Lacaz, A Restrepo-Moreno, and G Del Negro (eds), Paracoccidioidomycosis: London, Boca Raton, p. 109120. Wright,CS, R A Alden, J Kraut, 1969, Structure of subtilisin BPN' at 2.5 angstrom resolution: Nature, v. 221, p. 235-242. Wu,AL, W S Moye-Rowley, 1994, GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation: Mol Cell Biol., v. 14, p. 5832-5839. Yoneda,A, T L Doering, 2006, A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis: Mol Biol.Cell, v. 17, p. 5131-5140. Yun,DJ, Y Zhao, J M Pardo, M L Narasimhan, B Damsz, H Lee, L R Abad, M P Durzo, P M Hasegawa, R A Bressan, 1997, Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein: Proceedings of the National Academy of Sciences of the United States of America, v. 94, p. 7082-7087. Zhu,X, J Gibbons, J Garcia-Rivera, A Casadevall, P R Williamson, 2001, Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor: Infect.Immun., v. 69, p. 5589-5596. 116 Anexo 1: Resultados complementares sobre a PbST 1. Purificação da PbST A purificação da serino-tiol ativa tem sido impedida por ocorrer em baixas concentrações proteicas, ter tendência à autólise e agregação com componentes polissacarídeos de alto peso molecular. Anteriormente ao desenvolvimento desta tese, várias estratégias aplicadas com esse fim tiveram sucesso parcial. Desta forma, um dos objetivos deste trabalho foi testar outras técnicas no sentido de conseguir preparações suficientemente enriquecidas para a proteinase que pudessem ser analisadas quanto à composição de aminoácidos. Nos trabalhos apresentados anteriormente, utilizamos dois tipos de preparações enzimáticas, a saber, fração 3 eluída de uma coluna de interação hidrofóbica de Phenyl Superose (Matsuo et al., 2006) e a fração 4 resultante de cromatografia de afinidade em uma coluna de p-aminometilbenzamidina (pABA), utilizada apenas recentemente no laboratório (Matsuo et al., 2007). Outras estratégias usadas na purificação da PbST estão comentadas abaixo e foram extensivamente detalhadas em relatórios científicos apresentados à FAPESP. a) Cromatografia de fase reversa em coluna de Sephasil Protein C4: Frações eluídas da coluna de Phenyl-Superose correspondentes ao pico de atividade proteolítica (Matsuo et al., 2006) eram fracionados por f.p.l.c, em ÄKTA, em uma coluna de fase reversa Sephasil Protein C4 (Amersham Biociences) que continha 1,66 ml de resina equilibrada com 0,1% de TFA (ácido triclorofluoroacético). As frações eram eluídas através de um gradiente de 0 a 90% acetonitrila em 0,1% de TFA, rapidamente 117 congeladas em gelo-seco, secas em speed-vac, e estocadas a -20ºC. Antes de testadas, as frações eram ressuspendidas em 100µL de Tris 50 mM, pH 8,0, e então analisadas quanto ao padrão de bandas e atividade frente ao substrato peptídico específico AbzMKALTLQ-EDDnp. Tínhamos consciência de que uma cromatografia em condições drásticas com solventes orgânicos poderia resultar na morte da atividade enzimática. No entanto, foi encontrada uma intensa atividade nas frações 5 (pico fino e homogêneo) e 12. Infelizmente, no entanto, esse resultado não se repetiu em qualquer das 8 vezes subsequentes e a estratégia foi abandonada. b) Cromatografia em colunas de troca-iônica: Frações eluídas da coluna de Phenyl-Superose correspondentes ao pico de atividade hidrolítica sobre AbzMKALTLQ-EDDnp (Matsuo et al., 2006) foram fracionadas em colunas trocadoras catiônicas de Sepharose SP (forte) e Sepharose CM (fraca), e em resinas trocadoras aniônicas Sepharose Q (forte) e Sepharose DEAE (fraca), da Amersham Pharmacia Biotech, de acordo com os procedimentos sugeridos pelo fabricante. Os ensaios de hidrólise de substrato peptídico de fluorescência apagada Abz-MKALTLQ-EDDnp mostraram que a recuperação da atividade foi melhor com as resinas catiônicas Sepharose DEAE (28,4%) e Sepharose Q (26,5%), porém o rendimento foi baixo e tornou este tipo de cromatografia inviável. c) Precipitação de sobrenadante total com etanol: para enriquecer a atividade da PbST, sobrenadantes de cultura ativos de P. brasiliensis foram precipitados em série com etanol nas proporções de 20%, 40%, 60%, 80% ou 95%. As proteínas do sobrenadante concentraram-se nas frações 20% a 40% e 40% a 60% de etanol. Quando testadas quanto à clivagem de fibronectina (Fn) por 30 min a 37oC, verificou-se que a 118 fração 20% a 40%, não apresentou atividade proteolítica, enquanto as frações 40% a 60% e 60% a 80% clivaram a Fn totalmente. Coincidentemente, estas mesmas frações continham um componente de alta massa molecular, aparentemente a galactomanana do fungo com efeito modulatório sobre a PbST (Matsuo et al., 2006). A atividade do precipitado com 40% a 60% de etanol foi inibida por PMSF e pHMB. Não foi dada sequência aos experimentos de precipitação com etanol porque a coluna de pABA foi adquirida nesse período e mostrou boa resolução (Matsuo et al., 2007). No entanto, uma preparação ativa e com reduzido conteúdo proteico resultante da precipitação com 50 a 80% de etanol foi analisada quanto à composição peptídica, com resultados desanimadores. 2. Resultados de experimentos sugeridos pela banca de qualificação Por ocasião do exame de qualificação, dois experimentos foram sugeridos pela banca, os quais foram realizados como descrito a seguir: 1. Obter anticorpos policlonais reativos com alguma subtilina-tiol e verificar reação cruzada com a PbST. Para tal, inoculamos uma coelha com 10 µg de proteinase K (Sigma) purificada do fungo Tritirachium album via intradérmica com adjuvante de Freund (50 µL). Após duas imunizações, o soro foi recolhido e testado em ELISA, “Western blot” ou “Dot blot” contra proteinase K, sobrenadante total de P. brasiliensis ativo para PbST, fração eluída ou não-ligada em coluna de pABA. Porém os resultados 119 foram positivos apenas para a proteinase K, mostrando que o anticorpo não foi capaz de reagir cruzadamente com a serino-tiol nas condições testadas. 2. Verificar se há anticorpos no soro de paciente com PCM capazes de inibir a atividade proteolítica, uma vez que a proteinase é secretada. Para tal, imunoglobulinas de um paciente com PCM foram purificadas em coluna de afinidade de proteína A e testadas em diversas concentrações (0,5, 0.25 ou 0.1 µg/ µL) quanto à capacidade de inibir a clivagem de fibronectina pela PbST eluída de coluna pABA. Em nenhuma concentração testada as imunoglobulinas foram capazes de inibir a ação da proteinase, sugerindo que o soro de paciente não continha anticorpos anti-PbST ou nas condições testadas os anticorpos não foram capazes de inibir ou interagir com os epitopos da molécula ao ponto de interferir com o sítio ativo. 120 Anexo 2: Resultados complementares sobre a PbLon 1. Expressão da PbLon em sistema heterólogo Um dos objetivos do projeto de doutorado foi a expressão da enzima PbLon recombinante ativa para estudos de especificidade utilizando peptídeos de fluorescência apagada do tipo O-aminobenzoil-peptidil-etilenodiaminobenzidina (Abz-EDDnp), os quais poderiam levar à detecção de inibidores específicos da enzima. Para tal, a construção deveria conter os fragmentos de cDNA correspondentes aos sítios ativos da enzima. No trabalho apresentado anteriormente (Batista et al., 2006) obteve-se a expressão em bactéria de uma porção N-terminal da PbLon, na forma de corpos de inclusão, a qual foi essencial para obtenção de anticorpos policlonais de coelho usados em experimentos de localização celular. Foram realizadas, entretanto, inúmeras tentativas frustadas de expressão da molécula solúvel e ativa, cujas construções e sistemas estão esquematizamos na Figura 1. 121 Figura 1. Construções contendo o gene da PbLON para expressão em sistema procarioto (E. coli) ou sistema eucarioto (Pichia pastoris e S. cerevisiae). Expressão de PbLon recombinante truncada no N-terminal A primeira tentativa de expressão da PbLon foi realizada pela Dra. Tânia Fraga Barros utilizando o cDNA completo da proteinase inserido no vetor pHIS1, porém nenhuma banda correspondente à proteína foi observada. A segunda construção privou a molécula dos primeiros 178 aminoácidos do N-terminal, o que não comprometeu os sítios catalíticos. Para tal, usou-se um plasmídeo pHIS1Lon do laboratório (Barros, 2001), onde o cDNA do gene PbLON truncado no nt 151 foi inserido no sítio EcoRI de pHIS1. Esse plasmídeo foi presentemente clivado com BamHI (nt 537) e re-ligado no sítio BamHI do vetor. Essa construção foi usada na transformação das bactérias de expressão BL21(DE3), BL21(DE3) pLysS resistente ao clorofenicol, BL21(DE3) trxB resistente à kanamicina e BL21(DE3) Rosetta. 122 As bactérias induzidas com IPTG por 3 horas foram lisadas e as proteínas submetidas à cromatografia em coluna de Ni-NTA (Qiagen). As proteínas eluídas foram analisadas em “Western blot” com anti-rPbLon onde foram vizualizadas duas bandas específicas, uma de 32 kDa e outra de 80 kDa (figura 2), quando o peso molecular esperado era de 95 a 100 kDa. Figura 2. Imunoblot das proteínas eluídas de uma coluna de níquel a partir do sobrenadante das bactérias recombinantes induzidas por 3 horas com IPTG. As massas moleculares estão indicadas em kDa. Para verificar se essa proteína truncada teria atividade, foram realizados ensaios de proteólise de azocaseína com extrato total de bactéria, porém não foi observada nenhuma clivagem ATP-dependente ou diferente do controle. O produto de eluição de colunas de níquel foi igualmente negativo quanto à atividade proteolítica de azocaseína dependente de ATP. 123 Expressão de PbLon recombinante usando o vetor pET44a+: Este vetor tem como características principais a expressão da proteína recombinante com uma cauda da proteína Nus (495 aminoácidos), que confere solubilidade às proteínas expressas, uma cauda de histidina na região N-terminal para facilitar da purificação e o gene de resistência à ampicilina. O fragmento de cDNA de 3,1 kb do gene PbLON foi subclonado no sítio EcoRI do vetor pET44a+ e transformado em E. coli BL21 pLysS. Análises em “Western blot” utilizando anti-PbLon não revelaram nenhuma banda na altura esperada de 160 kDa (~45 kDa da cauda de Nus mais ~117 kDa da proteinase), porém detectou uma banda com cerca de 120 kDa marcada especificamente (figura 3). Quando sobrenadantes de bactérias recombinantes foram testados quanto à clivagem de azocaseína, não foi observada nenhuma clivagem ATP-dependente ou diferente do controle (bactéria sem plasmídeo de expressão). 124 Figura 3. A) Padrão de bandas do extrato total de bactérias recombinantes pET44a+PbLon após 3 horas de indução com 1 mM de IPTG. Análise em gel de SDS-PAGE 10% corado por Comassie Blue. Controle, extrato de bactéria transformada com o vetor expressando uma proteína não relacionada. B) Imunoblot revelado por quimioluminescência e anti-PbLon (1:500). Foram testados extratos de 3 clones recombinantes e o mesmo controle de A. Expressão de PbLon em P. pastoris: ainda com objetivo de expressar PbLon completa e ativa testamos o sistema de expressão na levedura P. pastoris, o qual foi utilizado com sucesso em nosso laboratório na secreção de gp43 recombinante solúvel (Carvalho, 2004). Foram usados os vetores pPIC9 e pHIL-S1, que possuem os marcadores de resistência à ampicilina para seleção em bactéria, e o gene HIS4 (da histidinol desidrogenase) para seleção em leveduras. Nesse sistema, o fragmento de cDNA heterólogo é sub-clonado entre as sequências promotora e terminadora do gene da oxidase alternativa (AOX1), para indução da proteína recombinante em grandes 125 quantidades com metanol. Além disso, o fragmento é clonado em fase com uma uma sequência sinal na região 5’ para promover a secreção da proteína expressa. A P. pastoris é uma levedura metilotrópica capaz de metabolizar metanol como única fonte de carbono, a partir de sua oxidação em formaldeído pela álcool oxidase. Em nosso experimento foi utilizada a cepa GS115 de P. pastoris, que apresenta o genotipo HIS4. Essa linhagem sofre inserção do plasmídio linearizado no sítio AOX1 e a levedura passa a apresentar o fenótipo His+ Mut+ / His+ Muts (com alta ou baixa utilização de metanol, respectivamente), dependendo da enzima utilizada para linearizar o plasmídeo. O vetor foi clivado com a enzima SacI, que resulta no fenótipo His+ Mut+. Esse evento pode ocorrer com plasmídeos fechados ou religados, porém em freqüência baixa. Foi subclonado no sítio EcoRI dos vetores pPIC9 e pHIL-S1um fragmento de 3,1 kb correspondente ao cDNA da PbLON partir do nucleotídeo 45. As construções foram selecionadas em bactérias através de resistência à ampicilina e as leveduras selecionadas em meio mínimo desprovido de histidina, após crescimento por 2 dias a 30ºC. Foram selecionados 10 clones para análise da expressão de PbLon. Para tal, as leveduras foram induzidas com metanol por 2, 3, 4, 5 e 6 dias e uma alíquota de 5 µL do sobrenadante das culturas foi testado. Nenhum deles demonstrou atividade ATP-dependente em ensaios de azocaseína. Não detectamos a proteína recombinante em gel de SDS-PAGE, “Western blot” ou “Dot blot”. Expressão de PbLon em S. cerevisiae: testamos o sistema de expressão na levedura S. cerevisiae, o qual foi utilizado com sucesso na expressão de genes LON de outros 126 organismos (van Dijl et al., 1998). Presentemente, foram usados os vetores pYES2/NT B e pYES2/NT C (Invitrogen), que possuem os marcadores de resistência à ampicilina para seleção em bactéria, e o gene URA3 para seleção das leveduras em meio seletivo URA-. Nesse sistema, o fragmento de cDNA heterólogo é subclonado em fase com a sequência promotora GAL1, a qual induz fortemente a expressão de proteínas recombinantes na presença de galactose e é reprimido na presença de glucose. No vetor pYES2/NT C, foi subclonado um fragmento de 3,1 kb no sítio EcoRI, correspondente ao cDNA da PbLON partir do nucleotídeo ~100. No vetor pYES2/NT B, foi subclonado um fragmento de 2,6 kb nos sítios BamHI e EcoRI, com a região Nterminal truncada em 178 aminoácidos. As bactérias foram transformadas com as construções e selecionadas através de resistência à ampicilina. Os produtos de ligação foram utilizados para transformar as leveduras, de acordo com os protocolos sugeridos pelo fabricante. As leveduras foram induzidas, coletadas e analisadas em gel de SDS-PAGE, “Western blot” ou “Dot blot” porém não foi detectado nenhum indício da proteína recombinante. Ressaltamos que este kit da Invitrogen possui um vetor controle contendo o gene da β-galactosidade que funcinou perfeitamente. 2. Localização da PbLon por microscopia eletrônica Em Batista et al. (2006) foram registrados os resultados de localização mitocondrial da PbLon usando microscopia confocal. Presentemente mostramos que em microscopia eletrônica as células marcadas com o anticorpo policlonal monoespecífico de coelho anti-rPbLon mostraram uma discreta marcação na mitocôndria (setas), como visto 127 na figura 4A representativa das demais. A marcação discreta, que contrasta com aquela vista em microscopia confocal (Batista et al., 2006), pode estar relacionada ao plano do corte ultrafino analisado. Com o anticorpo pré-imune, houve uma ligeira marcação inespecífica na parede celular (figura 4B). Figura 4. A) Microscopia eletrônica de P brasiliensis marcado com anticorpos policlonais anti-rPbLon monoespecíficos e B) soro pré-imune. As setas indicam marcações intramitocondriais. 128