U-Pb dating of detrital zircons from the Wudangshan Group in the
Transcription
U-Pb dating of detrital zircons from the Wudangshan Group in the
Article Geochemistry August 2010 Vol.55 No.22: 2440−2448 doi: 10.1007/s11434-010-3095-6 SPECIAL TOPICS: U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance LING WenLi1,2*, DUAN RuiChun1,3, LIU XiaoMing1,4, CHENG JianPing1, MAO XinWu5, PENG LianHong5, LIU ZaoXue5, YANG HongMei1,3 & REN BangFang1,6 1 Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074, China; 3 Yichang Institute of Geology and Mineral Resources, Yichang 443003, China; 4 State Key Laboratory of Continental Geodynamics, Northwest University, Xi’an 710069, China; 5 Geological Survey of Hubei Province, Wuhan 430022, China; 6 Tianjin Institute of Geology and Mineral Resources, Tianjin 300170, China 2 Received November 16, 2009; accepted December 22, 2009 U-Pb dating was made by the LA-ICP-MS method for detrital zircons from the Wudangshan volcanic-sedimentary succession in the South Qinling. Samples comprise quartz sandstones of the Wudangshan Group collected from the base of the Yangping Formation and an upper layer of the Shuangtai Formation overlain its volcanic sequence, and two river-sand collections from the drainage systems cutting across the two formations, respectively. The results show that the Yangping detrital zircons are dominated by 830–780 Ma grains with a minor population of ~1.0–0.84 Ga and sporadic grains of ~2.6, ~2.4 and 2.0 Ga, whereas the Shuangtai zircons yield an upper intercept age of 763±33 Ma, identical to the timing of the Wudangshan volcanism within error, with few concordant grains of 1.9 and 0.86 Ga. Age spectra for the two river-sand samples are similar to those of the Yangping and Shuangtai Formations, respectively. It thus suggests that the Wudangshan strata are less than 780 Ma, whereas their major detrital zircon populations of 1.0–0.85 Ga and 830–780 Ma are consistent with timing of the Hannan magmatic activities along the northwestern margin of the South China Block. This suggests a Hannan or adjacent area provenance for the Wudangshan strata. The Wudang area is characterized by rift-related igneous events at ~755 and ~680 Ma, respectively, pointing to a tectonomagmatic history different from the Hannan area. It is inferred that the ~755 Ma magmatism is likely to indicate a separation of the South China Block from the supercontinent Rodinia, while the ~680 Ma event suggests a further split between the South Qinling and some unknown continent. Detrital zircon, U-Pb geochronology, South Qinling, South China Block, Neoproterozoic evolution Citation: Ling W L, Duan R C, Liu X M, et al. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance. Chinese Sci Bull, 2010, 55: 2440−2448, doi: 10.1007/s11434-010-3095-6 It is well known that the Qinling-Dabie-Sulu orogenesis played an important role in east-central China’s continental configuration and evolution, particularly amalgamation between the North China Block (NCB) and the South China Block (SCB) and a transformation of lithospheric tectonic regime during the Mesozoic [1–6]. However, a number of essential issues remain controversial, including the dis*Corresponding author (email: wlling@cug.edu.cn) © Science China Press and Springer-Verlag Berlin Heidelberg 2010 chronous collisions in the Qinling and Dabie-Sulu orogenic belts, comparison between the tectonic units and positions along the continental suture zone. In fact, these disputes are principally due to our poor understanding of the attributes of diverse Qinling tectonic units. For instance, whether the North-and South Qinling units were the orogen-involved segments from the two blocks or independent micro-continents? Although arc-and rift-related igneous activities at 1.0 to 0.78 Ga intensively occurred along the northcsb.scichina.com www.springerlink.com LING WenLi, et al. Chinese Sci Bull ern margin of the SCB, these events are lacking in the adjacent South Qinling. It is also notable that Neoproterozoic zircons hosted by the Triassic eclogites in the Dabie-Sulu orogenic belt have been used as a critical indicator of the SCB subduction beneath the NCB. However, there are two difficulties in this inference: (1) if the Qinling and the Dabie-Sulu belts were co-genetic and the South Qinling was the orogen-involved segment from the SCB, the subducted block should show a South Qinling affinity [7]. However, the Neoproterozoic affinity between the South Qinling and the northern SCB remains unclear; and (2) a large amount of the Neoproterozoic zircons hosted by the Dabie-Sulu eclogites are ~750 and ~680 Ma [8–10], but these ages have not been documented along the northern SCB margin next to the South Qinling. Thus, more detailed studies of the Qinling tectonic unites, especially the late Precambrian history, are critical to understanding of the Phanerozoic continental convergence and the tectonic transformation in east-central China. Besides, a Neoproterozoic correlation study between the South Qinling and SCB would also provide new constraints on the connection models of South China with Rodinia. In the South Qinling, the largest Precambrian terrain occurs at the Wudang area. The Wudangshan Group dominates the South Qinling deformed basement [3], on which a number of studies have been documented [11–14]. The Wudangshan volcanic-sedimentary succession experienced a regional metamorphism varying from lower to upper greenschist facies, while intensive deformation has transformed the strata to NW-trending tight folds and faults. Previous age data are highly controversial, which is markedly illustrated by a ~1.0 Ga difference between volcanic rocks collected from the southern-and northern Wudang area, respectively [13]. The present authors recently reported a comprehensive U-Pb zircon study of volcanic rocks collected from the main cross sections of the Wudangshan strata, which exclusively reveals a ~755 Ma igneous timing [15]. However, the depositional age and provenance of the lower Wudangshan strata are still poorly constrained due to a ~2500 m stratigraphy thickness and that the volcanic sequence occurs only at the upper strata. This work reports a U-Pb detrital zircon geochronology of the Wudangshan sedimentary succession. The samples comprise sandstones from the Yangping- Shuangtai Formations of the lower and mid-upper strata, respectively, and river sands deposited within two local water systems cutting across these two formations, respectively. The aims of this study were to (1) depict the U-Pb geochronology of the Wudangshan detrital zircons and constrain the maximum age of the strata; (2) compare their Neoproterozoic spectra with the timing of the synchronous igneous activities that occurred along the northern SCB margin, thus to analyze their provenance correlation with the SCB Precambrian basement; and (3) explore the correlation of the South Qinling and SCB during the Neoproterozoic as well as their linkage with Rodinia August (2010) Vol.55 No.22 2441 breakup. 1 Regional geology The North and South China Blocks are separated by the E-W trending Qinling-Dabie-Sulu orogen, which is disconnected by the Nanyang basin. The orogen is suggested to have been finally formed by the closure of easternmost Paleo-Tethys [1,2,6]. Form the north southward, the Qinling orogenic belt comprises tectonic units of the southern margin of the NCB, North Qinling, South Qinling and the northern margin of the SCB (Figure 1). The South Qinling borders the North Qinling and the northern margin of the SCB along the Shangdan suture to the north and the Mianlue suture to the south, respectively. These sutures are inferred to have been formed by the Middle Paleozoic collision between the NCB and the South Qinling and the Late Triassic collision between the South Qinling and the SCB, respectively [6]. The Wudang area is situated at the eastern extremity of the South Qinling and typical of an inlier. The uplift center comprises the Wudangshan Gp surrounded by the Nanhua-Sinian to Phanerozoic strata (Figure 1). The Wudangshan Gp comprises the oldest base of the outcropped strata in the region and the largest Precambrian suites (~8000 km2) in the South Qinling. From bottom upward this volcanic-sedimentary succession is subdivided into the Yangping, Shuangtai and Lanyuhe Formations. The Yangping Fm comprises quartz sandstone, feldspathic-quartz sandstone, arkose, siltstone, and sericite (-quartz) schist with minor marble layers. The Shuangtai Fm consists of bimodal volcanic sequence intercalated with fine-grain sedimentary beds, whereas the Lanyuhe Fm is dominated by greywacke, quartzofeldspathic sandstones and finegrain rocks. The Yaolinghe succession overlies the Wudangshan strata by an unconformity contact, and consists of dominatively basaltic lavas interbedded with minor silicic volcanic and schist layers. Both the Wudangshan and Yaolinghe Gps were intruded by doleritic-gabbroic sills, and all these suites suffered greenschist facies metamorphism and were overlain by the Nanhua-Sinian to Phanerozoic covers. The Wudangshan and the Yaolinghe volcanisms were dated at 755±3 Ma and 685±7 Ma, respectively, while the mafic sills at 679 ±3 Ma [15]. 2 Sampling and analysis methods Samples comprise two sandstones (WD05-64 and WD05-65) from the base of the Yangping Fm in the south, one feldspathic-quartz (WD05-14) from the upper Shuangtai Fm in the southwest, and two river-sands (WD05-S1 and WD05-S2) from two water systems cutting across these two formations, respectively (Figure 1). The rocks for detrital zircons analysis were crushed and separated using standard 2442 LING WenLi, et al. Chinese Sci Bull August (2010) Vol.55 No.22 Figure 1 Sketch geological map of the Wudangshan area in the South Qinling [12] showing sampling locations (c). (a) and (b) show tectonic positions of the Qinling-Dabie orogen and the Wudang area, respectively. 1, Wudangshan Gp; 2,Yaolinghe Gp; 3, mafic sill; 4, the sinian; 5, intermediate-acid intrusion; 6, Phanerozoic sedimentary succession; 7, reservoir; 8, fault; 9, sampling location of this study; 10, sampling location of the Wudang igneous suites [15]; 11, approximate range of the sampled local water-system. techniques of density and magnetic discrimination. The final concentrates were handpicked under a binocular microscope. The zircon grains were mounted in epoxy resin with zircon standard 91500 and silicate glass standard NIST SRM610. After polishing, the zircon grains were examined by cathodoluminescence (CL) to detect cores, rims and other complexities might be present and select suitable laser ablation spots during in situ analysis of U-Pb isotope. The LING WenLi, et al. Chinese Sci Bull CL imaging was performed at the State Key Laboratory of Continental Dynamics (LCD), Northwest University (Xi’An, China) using Quanta 400FEG SEM. Analysis of U-Pb detrital zircon was carried out at LCD using ELA-ICPMS. Laser-ablation system comprises GeoLas 200M equipped with a 193 nm ArF-excimer laser and is coupled with an Agilent 7500a ICP-MS. The laser spot diameter was 30 μm. Each analysis includes a background acquisition interval of approximately 30 s and a signal acquisition of about 80 s. Raw data were processed using the Glitter (REV 4.0) software [16]. Apparent and discordia U-Pb ages were calculated by the ISOPLOT program (REV. 4.9) [17]. All measurements were performed using zircon 91500 as the external standard with a 206Pb/238U age of 1065.4±0.6 Ma [18]. The standard silicate glass NIST SRM610 was used to calculate U, Th and Pb concentrations. The detailed analytical method was described elsewhere [19]. 3 U-Pb geochronology of detrital zircon The measured U-Pb isotopic data and corresponding apparent ages for 179 zircons from the sandstones and 183 grains from the river-sands are listed in Table S1. 3.1 Yangping sandstone Analyses of 59 grains from WD05-64 g an age range from 2.55 Ga to 780 Ma (Figure 2a). All zircons are concordant or near concordant except two grains, which display 207 Pb/206Pb and 206Pb/238U apparent ages of 1975±32 Ma, 2022±33 Ma and 1741±14 Ma, 1828±15 Ma, respectively. Of the concordant zircons, 5 grains consist of the oldest population ranging 2555–2380 Ma (206Pb/238U age, the same below). These grains are olivary round and display weak CL images with accreted light thin rims (Figure 3a1, a2). The second population comprises 8 grains giving ages of 2071– 2032 Ma. Their surfaces are rounded and pitted, while their CL images show well-developed oscillatory zoning or sectors typical of magmatic genesis (Figure 3a3–a5). The remaining zircons are Neoproterozoic and can be further divided into two populations of 1045–855 and 830–780Ma, respectively. The former population (15 grains) has subhedral to rounded surfaces with stubby form. Their CL images are variable with relatively faint composition zoning and tiny inclusions (Figure 3a6–a8). In contrast, the later population (24 grains) are euhedral and elongate with relatively intact prisms, pyramids and well defined oscillatory zones (Figure 3a9–a11), indicating a short distance provenance. Analyses of 68 zircons from WD05-65 display age spectra similar to WD05-64 (Figure 2b). One grain gives an Archean age of 2631±13 Ma. It is a rounded surface and elongate crystal with light CL image but featureless internal core and gray accreted rim (Figure 3b1). Three grains give ages from 2003 to 2023 Ma comparable with the second August (2010) Vol.55 No.22 2443 population of the WD05-64 spectra. These zircons are rounded and pitted with light but recognizable oscillatory zoning core and gray accreted rim (Figure 3b2). The spectra are dominated by Neoproterozoic grains, which can be also divided into two populations. Ten grains of 903–841 Ma are stubby to elongate with rounded surfaces. Their CL images show blurred oscillatory zoning (Figure3b3, b4). The largest population of 831–777 Ma comprises 51 grains, comparable with the younger Neoproterozoic population of WD05-64. These grains are variable elongate from euhedral with relatively intact prisms and pyramids to rounded surfaces, and characterized by well defined oscillatory zones (Figure 3b5– b7). 3.2 Shuangtai sandstone Sample WD05-14 was collected from a sandstone layer overlying the volcanic sequence within the Shuangtai Fm along the stratotype section. Analyses of 52 grains were carried out. Compared with the Yangping sandstones, most grains from WD05-14 are tiny in size (< 100 μm). Two grains give ages (206Pb/238U) of 1781±22 Ma and 861±11 Ma, respectively (Figure 2c). The older grain is moderately discordant (207Pb/206Pb age of 1915±54 Ma) with rounded surface but oscillatory zoning core and wide accreted rim (Figure 3 c1), whereas the younger is concordant with subhedral surface, zoning oscillatory core and thin accreted rim (Figure 3c2). The remaining grains are characterized by discordant U-Pb composition with 206Pb/238U apparent ages from 732 to 453 Ma (Figure 2c). These grains are euhedral with well-defined oscillatory zoning (Figure 3c3, c4). On the concordia diagram, however, the grains give a well defined upper intercept age of 763±33 Ma, identical to the timing of the Wudangshan volcanism within analysis error [15]. 3.3 Sandy zircons Though it is likely that the river sands may contain zircons from previously eroded rocks, river detrital zircon analysis is still a valuable approach to assess possible sampling bias and provide age spectra representative of a wider range of the Wudangshan rocks. Sand WD05-S1 was collected from a river system chiefly cutting across the Shuangtai Fm and its covers. Of the 105 analyses (Figure 2d), one subhedral grain show faint but recognizable oscillatory zoning and give concordant ages of 1748±12 Ma and 1724±12 Ma for its core and rim, respectively (Figure 3d1), while another grain yields an age of 869t±8 Ma and is characterized by rounded surface and light oscillatory zoning (Figure 3d2). The remaining concordant zircons can be divided into four populations with weighted mean ages of 792±4 Ma (95% confidence, n=12, MSWD=2.3), 748±3 Ma (n=55, MSWD=6.8), 680±5 Ma (n=19, MSWD=6.0) and 582±3 Ma (n=3, MSWD=1.1), respectively. These grains are euhedral and stubby to elongate forms with well-developed oscillatory 2444 LING WenLi, et al. Chinese Sci Bull August (2010) Vol.55 No.22 Figure 2 Concordia diagrams for detrital zircons from the Yangping (a,b) and Shuangtai (c) Fms of the Wudangshan Gp and river sands of the local water systems (d–e). zoning (Figure 3d3, d4 for population ~792 Ma, Figure 3d5, d7 for population ~748 Ma, Figure3d8 for population ~680 Ma and Figure 3d9 for population ~582 Ma). The data suggest that their provenances are primarily the Wudangshan volcanics (~750 Ma), and subordinately the Yaolinghe volcanics and the intrusive sills (~680 Ma), whereas the ~790 Ma grains indicate an inherited origin previously hosted by these igneous rocks. It is notable that ~580 Ma magmatism has not been reported in this region. A further work is needed to assess the possible magmatism occurring at the Neoproterozoic-Cambrian transition though it is likely a less intensive igneous event. Sample WD05-S2 was collected from a river system mainly cutting across the Yangping Fm. The age spectra comprise 78 analyses and show features similar to WD05-64 (Figure 2). Two concordant grains are 2378±16 and 2376±31 Ma, respectively, with rounded surfaces and oscillatory zoning core and dark gray accreted rims (Figure 3e1–e2). The second population consists of 17 grains ranging from 2056 to 1971 Ma (weighted mean age of 2011±14 Ma, MSWD=9.7). Most zircons are fragments of larger crystals and vary from subhedral to rounded in form and well-defined to faint oscillatory zonings (Figure 3e3, e4). Three grains display discrete ages of 1867±11 Ma, 1839±12 Ma and LING WenLi, et al. Figure 3 Chinese Sci Bull August (2010) Vol.55 No.22 2445 CL images for detrial zircons from the Yangping and Shuangtai Fms of the Wudangshan Gp and river sands of the local water systems. 1690±19 Ma, respectively, and show forms and CL images similar to the previous population. A 11-grain population displays a successive cluster from 971 to 881 Ma, showing rounded surfaces and clean oscillatory zoning or sectors (Figure 3e5, e6). The largest population consists of 39 grains ranging from 835 to 773 Ma. These zircons show forms of rounded stubby to euhedral elongate with well-developed oscillatory zoning (Figure 3e7, e8). 2446 LING WenLi, et al. Chinese Sci Bull August (2010) Vol.55 No.22 High similarity in age spectra between the detrital zircons from the sandstones and the river-sand, respectively, suggests that both approaches are effective for provenance tracing. 4 Discussion 4.1 Maximum depositional age and stratigraphic sequence of the Wudangshan Gp The Wudangshan Gp is one of the key units to understand the Precambrian history of the South Qinling. However, whether the Wudangshan Gp in fact consists of diverse age volcanic-sedimentary suites (Mesoproterozoic to Neoproterozoic [13]) and if the Yangping Fm overlies or underlies the Shuangtai Fm (normal or reverse sequence [11]) remain hot issues for debate. A recent study by the present authors has shown that the volcanic rocks collected from 5 diverse cross sections of the Wudangshan Gp were exclusively formed at ~755 Ma [15], while the results here reveal that the youngest detrital zircons from the Yangping and Shuangtai Fms are ~780 and ~755 Ma, respectively. Besides, the coevality between the Shuangtai detrital zircons and the Shuangtai volcanism infers an intra-formation provenance by rapid erosion. These suggest that the whole strata of Wudangshan Group are Neoproterozoic with a maximum age less than 780 Ma; the strata have a normal stratigraphic sequence, i.e. the Yangping Fm is overlain by the Shuangtai Fm. 4.2 Neoproterozoic correlation of the South Qinling with the northern SCB margin As previously mentioned, contrasting views (i.e. independent micro-continent [1,6] versus orogen-involved segment [20,21]) have been proposed on the South Qinling-SCB relation. Figure 4 illustrates U-Pb age histograms for the detrital zircons along with that for the inherited zircons hosted by the Wudangshan, Yaolinghe volcanic suites and the intrusive sills [15]. As a whole, the zircons can be divided into four groups of ~2.4, 2.0–2.2, 1.7–1.8 and 0.78–1.0 Ga, respectively. Well documented data have revealed that the Paleoproterozoic to Mesoproterozoic magmatic activities were variably recorded both in the NCB [22–26] and SCB [27–30]. Hence it is difficult to use these ages to trace the sedimentary provenance of the Wudangshan succession. However, the cluster range of 1.0–0.78 Ga for the largest detrital zircon population is comparable with the timings of the Neoproterozoic igneous activities widely occurred in the SCB. Zircons with this age range from the Dabie metamorphic rocks have been used to identify as a SCB affinity for the host rocks [31,32]. The igneous activities occurred at ~1.0–0.9 Ga and 0.83–0.78 Ga have been suggested to be arc-and rift-related, respectively [33–35], though divergent views both on the timing and tectonic set- Figure 4 U-Pb age spectrum histograms for detrital zircons from the Shuangtai (a) and Yangping (b,c) Fms and the local river sands (d,e) comparing with that for the inherited zircons from the Neoproterozoic Wudang igneous suites [15](f). ting remain [36–38]. It was also alternatively proposed that arc-related and arc-continent collision-related magmatisms occurred at 1.3–1.0 and 0.97–0.86 Ga, respectively, during the Rodinia assemblage, while the 0.83–0.74 Ga igneous suites were formed by post-collision magmatism resulted from the orogen collapse due to lithospheric extension [38]. Actually, ~1.0–0.78 Ga igneous activities were successively recorded only in the Hannan of the northern SCB margin [35] and in the southeastern SCB (i.e. Jiangnan orogen). Of the ~750 Ma events, those occurred in the western [39] and northern (the Dabie orogen) [9] margins of the SCB are suggested to be rift-related, whereas those occurred in the LING WenLi, et al. Chinese Sci Bull southeastern margin to be orogen collapse-related [32,38]. The abundant 1.0–0.78 Ga detrital/inherited zircons thus suggest that the Wudangshan strata had a Hannan-like provenance, and that the Wudang area has a basement comprising rocks resembling the Hannan Neoproterozoic igneous suites. Hence it is proposed that the South Qinling was a marginal segment of the SCB during the early Neoproterozoic. 4.3 Linkage of the Neoproterozoic South Qinling with Rodinia breakup It is notable that ~680 Ma magmatism is uniquely recognized in the South Qinling, while ~750 magmatic suites are restricted to the Yangtze marginal areas (i.e. the western Sichuan [39], the Dabie [8,9] and Jiangnan orogenic belts [32,38,40]). This implies that the South Qinling experienced a tectonic evolution different from the SCB during the mid-late Neoproterozoic. Accordingly, the ~750 and 680 Ma zircons hosted by eclogitic suites in the Dabie-Sulu orogenic belt suggest that the subducted continental segment has a South Qinling affinity. A number of studies have shown that the ~680 Ma Yaolinghe and the intrusive magmatisms were rift-related [12,15,41–44]. Though synchronous rocks are lacking within the SCB, ~680 Ma magmatisms have been reported on the Seward Peninsula in northwestern Alaska [45] and in the southern to central Appalachians of eastern North America [46]. These suites are suggested to be comparable with the magmatic belt in eastern North America and the Svalbard, which were resulted from a separation from the Laurentia during Rodinia breakup [46]. In addition, a large-scale mafic dyke swarm occurs at the Mundine Well, northwestern Australia. It was dated at 755±3 Ma [47] and suggested to be a mantle plume-related origin [48]. We thus propose that the ~755 Ma magmatic event indicates a separation of the northern SCB margin from Rodinia, while the ~680 Ma event likely implies a further split between the South Qinling and some unknown continent [15]. This paper has benefited from the scientific comments of two anonymous reviewers and the editorial committee. We appreciate the help of Deng Q. Z., Cheng T. L. and He R. L. in field works. This work was supported by the National Natural Science Foundation of China (40373015, 40673025 and 40821061) and the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (B07039). August (2010) Vol.55 No.22 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 Mattauer M, Matte P, Malavielle P, et al. Tectonics of the Qingling belt: Build-up and evolution of eastern Asia. Nature, 1985, 317: 496–500 Hsu K J, Wang Q C, Li J L, et al. Tectonic evolution of Qinling Mountains, China. Eclog Geol Helv, 1987, 80: 735–753 Zhang G W. Formation and Evolution of the Qinling Orogenic Belt (in Chinese). Xi’an: Northwest University Press, 1988. 1–192 Liu B P, Zhou Z G, Xiao J D, et al. Characteristics of Devonian sedimentary facies in the Qinling Mountains and their tectono- 23 24 25 2447 palaeogeographic significance. J Southeast Asian Earth Sci, 1989, 3: 211−217 Gao S, Zhang B R, Gu X M, et al. Silurian-Devonian provenance changes of South Qinling basins: Implications for accretion of the Yangtze (South China) to the North China Cratons. Tectonophysics, 1995, 250: 183−197 Meng Q R, Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 2000, 323: 183–196 Zhang H, Gao S, Zhang B, et al. Pb isotopes of granitoids suggest Devonian accretion of Yangtze (South China) craton to North China craton. Geology 1997, 25: 1015–1018 Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 2004, 68: 4145−4165 Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol, 2006, 231: 135−158 Tang J, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Res, 2008, 161: 389–418 Chen J B, Qin Z Y, Wang S Q, et al. Geological characteristics of the Wudang Group. Tianjin: Tianjin Science and Technology Translation and Publishing Corp. 1991. 1–130 Ling W L, Cheng J P, Wang X H, et al. Geochemical features of the Neoproterozoic igneous rocks from the Wudang region and their implications for the reconstruction of the Jinning tectonic evolution along the south Qinling orogenic belt. Acta Petrol Sin, 2002, 18: 25− 36 Zhang Z Q, Zhang G W, Tang S H, et al. The age of metamorphic rocks of the Wudang Group (in Chinese). Chin Geol, 2002, 29: 117−125 Cai Z Y, Lou H, Xiong X L, et al. A discussion on the age of the meta-sedimentary rocks in the upper part of the Wudang Group: Constrained by the grain-zircon U-Pb dating (in Chinese). J Stratigr, 2006, 30: 60―63 Ling W L, Ren B F, Duan R C, et al. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication. Chinese Sci Bull, 2008, 53: 2192–2199 van Archterbergh E, Ryanm C G, Griffin W L, et al. GLITTER: On-line interactive data reduction for the laser ablation ICP-MS microprobe. In: Proceedings of the 9th V.M. Goldschmidt Conference, Cambridge, Massachusetts, 1999. 305−306 Ludwig K R. Users manual for Isoplot/Ex (rev. 2.49): A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, 2001, No. 1a, 55 Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl, 1995, 19: 1−23 Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand Newslett, 2004, 28: 353–370 Li S G. Chemical geodynamics of continental subduction (in Chinese). Earth Sci Front, 1998, 5: 211−233 Yin H F, Zhang K X. Evolution and characteristics of the central orogenic belt (in Chinese). Earth Sci-J Chin Univ Geosci, 1995, 23: 438−442 Jahn B M, Auvray B, Cornichet J, et al. 3.5 Ga old amphibolites from eastern Hebei Province, China: Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Res, 1987, 34: 311–346 Kroner A, Compston W, Zhang G, et al. Age and tectonic setting of late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 1988, 16: 211–215 Zhao G C. Palaeoproterozoic assembly of the North China Craton. Geol Magaz, 2001, 138: 87−91 Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoprotero- 2448 26 27 28 29 30 31 32 33 34 35 36 37 LING WenLi, et al. Chinese Sci Bull zoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005, 136: 177−202 Wilde S A, Zhao G C, Sun M. Late Archaean to Early Palaeoproterozoic Magmatic Events in the North China Craton: The Prelude to Amalgamation. Gondwana Res, 2002, 5: 85−94 Yuan H, Zhang Z, Liu W, et al. Direct dating of zircon grains by 207 Pb/206Pb (in Chinese). Miner Petrol, 1991, 11: 72–79 Qiu Y M, Gao S, McNaughton N J, et al. First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 2000, 28: 11−14 Ling W L, Gao S, Zhang B R, et al. The recognizing of ca. 1.95 Ga tectono-thermal event in Kongling nucleus and its significance for the evolution of Yangtze Block, South China. Chinese Sci Bull, 2001, 46: 326−329 Liu X M, Gao S, Ling W L, et al. Identification of 3.5 Ga detrital zircons from Yangtze craton in south China and the implication for Archean crust evolution. Prog Nat Sci, 2006, 16: 663−666 Zheng Y F. Neoproterozoic magmatic activity and global change. Chinese Sci Bull, 2003, 48: 1639−1656 Zheng Y F, Zhang S B. Formation and evolution of Precambrian continental crust in South China. Chinese Sci Bull, 2007, 52: 1−12 Li X H, Li Z X, Ge W, et al. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at 825 Ma? Precambrian Res, 2003, 122: 45–83 Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122: 85–109 Ling W L, Gao S, Zhang B R, et al. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: Implications for amalgamation and break-up of Rodinia Supercontinent. Precambrian Res, 2003, 122: 111−140 Li X H, Li Z X, Sinclair J A, et al. Reply to the comment by Zhou et al. On: “Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China” [Precambrian Res. 151 (2006) 14–30] [Precambrian Res. 154 (2007) 153–157]. Precambrian Res, 2007, 155: 318–323 Zhou M F, Zhao J H, Xia X P, et al. Comment on “Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution August (2010) Vol.55 No.22 38 39 40 41 42 43 44 45 46 47 48 of the western Yangtze Block, South China” [Li et al. (2006)]. Precambrian Res, 2007, 155: 313–317 Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arcderived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Res, 2008, 163: 351–383 Lin G C, Li X H, Li W X. SHRIMP U-Pb zircon age, geochemistry and Nd-Hf isotopes of the Neoproterozoic mafic dykes from western Sichuan: petrogenesis and tectonic implications. Sci China Ser D-Earth Sci, 2007, 50: 1–16 Wang X L, Zhou J C, Qiu J S, et al. Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: Implications for petrogenesis and post-orogenic extension. Geol Mag, 2008, 145: 215–233 Zhou D W, Zhang C L, Wang J L, et al. A study on the basic dyke swarms in Wudang block and its geological significance. Chinese Sci Bull, 1997, 42: 2546–2549 Zhang C, Zhou D, Liu Y. Geochemistry of basic dykes in Wudang block and their tectonic significance. Chin J Geoch, 1998, 28: 126 –135 Zhang C L, Zhou D W, Jin H L, et al. Study on the Sr, Nd, Pb and O isotopes of basic dyke swarms in the Wudang block and volcanics of the Yaolinghe Group (in Chinese). Acta Petrol Sin, 1999, 15: 430–437 Li H K, Lu S N, Chen Z H, et al. Zircon U-Pb geochronology of rifttype volcanic rocks of the Yaolinghe Group in the South Qinling orogen. Geol Bull Chin, 2003, 22: 775–781 Patrick B E, McClelland W C. Late Proterozoic granitic magmatism on Seward Peninsula and a Barentian origin for Arctic AlaskaChukotka. Geology, 1995, 23: 81−84 Tollo R P, Aleinikoff J N, Bartholomew M J, et al. Neoproterozoic A-type granitoids of the central and southern Appalachian: Intraplate magmatism associated with episodic rifting of the Rodinia supercontinent. Precambrian Res, 2004, 128: 3−38 Wingate M T D, Giddings J W. Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma. Precambrian Res, 2000, 100: 335–357 Li X H, Li Z X, Wingate M T D, et al. Geochemistry of the 755Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia? Precambrian Res, 2006, 146: 1–15 Supporting Information Table S1 Detrital zircon U-Pb compositions and apparent ages of the Wudangshan Gp sedimentary rocks and the local water systems The supporting information is available online at csb.scichina.com and www.springerlink.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors. LING WenLi, et al. Table S1 No. Chinese Sci Bull 2449 August (2010) Vol.55 No.22 Detrital zircon U-Pb compositions and apparent ages of the Wudangshan Gp sedimentary rocks and the local water systems 207 Pb/206Pb±1σ WD05-64 1 0.0771 2 0.0702 3 0.0713 4 0.0646 6 0.0682 7 0.0667 8 0.1602 9 0.0667 10 0.0672 11 0.0684 12 0.0688 13 0.0679 14 0.0712 15 0.0701 16 0.0737 17 0.0689 18 0.0687 19 0.0672 20 0.0651 21 0.0653 22 0.1551 23 0.1252 24 0.0660 25 0.1243 26 0.0678 27 0.1221 28 0.0704 29 0.0638 31 0.1523 32 0.0721 33 0.0690 34 0.1224 35 0.0702 36 0.1251 37 0.0660 38 0.0657 39 0.1213 40 0.1216 41 0.1222 42 0.1575 43 0.0697 44 0.1543 45 0.0665 46 0.1246 47 0.1210 48 0.0710 49 0.0704 50 0.0660 51 0.0678 53 0.0672 54 0.0624 55 0.0648 56 0.0717 57 0.0655 WD05-65 1 0.0651 2 0.1775 3 0.0650 4 0.0679 5 0.0683 207 Pb/235U±1σ Measured ratios 206 Pb/238U±1σ 208 Pb/232Th±1σ Th/U 207 Apparent ages (Ma) Pb/206Pb±1σ 207Pb/235U±1σ 206Pb/238U±1σ 0.0033 0.0027 0.0026 0.0024 0.0034 0.0009 0.0022 0.0054 0.0021 0.0020 0.0021 0.0036 0.0027 0.0011 0.0033 0.0053 0.0019 0.0038 0.0008 0.0025 0.0018 0.0016 0.0027 0.0016 0.0015 0.0023 0.0025 0.0014 0.0019 0.0025 0.0040 0.0032 0.0012 0.0021 0.0014 0.0028 0.0022 0.0024 0.0014 0.0022 0.0016 0.0019 0.0025 0.0023 0.0014 0.0030 0.0030 0.0021 0.0040 0.0018 0.0028 0.0031 0.0041 0.0024 1.517 1.390 1.409 1.209 1.276 1.259 10.75 1.316 1.254 1.271 1.354 1.329 1.336 1.244 1.788 1.357 1.259 1.259 1.227 1.216 9.863 6.544 1.247 6.493 1.346 6.533 1.497 1.176 9.477 1.462 1.302 6.332 1.531 6.527 1.302 1.231 5.182 6.320 6.244 9.991 1.556 9.494 1.254 5.630 6.217 1.257 1.270 1.221 1.407 1.273 1.127 1.221 1.299 1.209 0.062 0.052 0.049 0.043 0.061 0.014 0.123 0.104 0.038 0.035 0.040 0.068 0.049 0.017 0.076 0.102 0.033 0.068 0.013 0.045 0.089 0.069 0.049 0.066 0.028 0.113 0.052 0.023 0.094 0.049 0.074 0.159 0.023 0.098 0.025 0.051 0.083 0.117 0.054 0.119 0.033 0.095 0.046 0.096 0.051 0.052 0.053 0.037 0.080 0.033 0.049 0.056 0.072 0.042 0.1428 0.1436 0.1434 0.1357 0.1357 0.1369 0.4863 0.1432 0.1353 0.1347 0.1428 0.1419 0.1362 0.1286 0.1760 0.1429 0.1330 0.1360 0.1367 0.1350 0.4612 0.3791 0.1369 0.3789 0.1441 0.3881 0.1541 0.1337 0.4515 0.1471 0.1368 0.3752 0.1581 0.3785 0.1431 0.1358 0.3100 0.3771 0.3706 0.4601 0.1619 0.4465 0.1368 0.3279 0.3726 0.1285 0.1309 0.1341 0.1505 0.1374 0.1311 0.1367 0.1315 0.1338 0.0020 0.0018 0.0017 0.0016 0.0021 0.0009 0.0040 0.0030 0.0014 0.0014 0.0015 0.0022 0.0017 0.0009 0.0025 0.0031 0.0013 0.0023 0.0009 0.0016 0.0033 0.0028 0.0017 0.0028 0.0012 0.0038 0.0019 0.0011 0.0034 0.0018 0.0024 0.0048 0.0012 0.0034 0.0012 0.0018 0.0028 0.0038 0.0026 0.0038 0.0014 0.0034 0.0017 0.0031 0.0025 0.0018 0.0018 0.0015 0.0027 0.0013 0.0018 0.0020 0.0023 0.0016 0.0437 0.0457 0.0442 0.0420 0.0426 0.0427 0.1462 0.0454 0.0448 0.0445 0.0447 0.0448 0.0439 0.0396 0.0595 0.0490 0.0431 0.0441 0.0435 0.0448 0.1371 0.1146 0.0418 0.1141 0.0475 0.1164 0.0545 0.0405 0.1323 0.0537 0.0455 0.1136 0.0513 0.1139 0.0458 0.0452 0.1020 0.1170 0.0762 0.1393 0.0528 0.1349 0.0434 0.0994 0.1147 0.0408 0.0454 0.0454 0.0473 0.0477 0.0434 0.0429 0.0438 0.0439 0.0008 0.0009 0.0007 0.0007 0.0009 0.0003 0.0019 0.0013 0.0008 0.0006 0.0006 0.0008 0.0009 0.0003 0.0011 0.0015 0.0005 0.0010 0.0003 0.0008 0.0011 0.0010 0.0008 0.0011 0.0005 0.0012 0.0014 0.0004 0.0015 0.0012 0.0008 0.0018 0.0006 0.0013 0.0005 0.0010 0.0016 0.0016 0.0009 0.0021 0.0009 0.0014 0.0007 0.0012 0.0011 0.0009 0.0008 0.0007 0.0011 0.0008 0.0009 0.0010 0.0011 0.0006 1.635 0.977 1.565 0.992 1.288 0.879 0.435 1.446 0.658 1.173 1.483 2.047 0.806 2.684 1.457 1.170 1.627 1.697 1.136 1.024 0.799 0.774 1.071 0.578 0.908 1.834 0.462 1.331 0.382 0.511 2.299 1.357 0.597 0.972 0.957 0.802 0.446 0.956 0.274 0.344 0.425 0.548 1.171 1.143 0.249 0.980 1.274 1.050 1.526 0.695 0.940 1.022 1.093 1.632 1123 934 965 761 874 828 2458 827 844 880 891 865 962 932 1033 895 889 843 778 785 2403 2032 808 2019 861 1987 941 736 2371 989 899 1992 935 2030 807 798 1975 1979 1989 2429 921 2394 822 2022 1971 956 939 807 862 843 687 768 977 791 82 78 72 76 100 28 23 160 65 60 63 106 77 32 87 151 56 112 27 78 20 23 83 22 45 33 72 45 21 70 116 46 35 30 44 87 32 35 20 24 46 21 78 33 20 85 86 66 117 56 94 97 112 75 0.0009 0.0022 0.0015 0.0020 0.0016 1.193 12.34 1.189 1.340 1.265 0.013 0.120 0.025 0.037 0.027 0.1330 0.5040 0.1327 0.1431 0.1342 0.0009 0.0038 0.0011 0.0014 0.0011 0.0411 0.1407 0.0413 0.0451 0.0401 0.0007 0.0014 0.0006 0.0007 0.0005 0.072 0.594 0.470 0.811 0.828 776 2630 774 865 879 28 20 48 60 47 860 865 864 820 820 827 2555 862 818 815 861 856 823 780 1045 861 805 822 826 816 2445 2072 827 2071 868 2114 924 809 2402 885 827 2054 946 2069 862 821 1741 2063 2032 2440 967 2380 826 1828 2042 779 793 811 904 830 794 826 796 810 11 10 10 9 12 5 17 17 8 8 9 12 9 5 14 17 7 13 5 9 15 13 10 13 7 18 10 6 15 10 13 22 7 16 7 10 14 18 12 17 8 15 9 15 12 10 10 8 15 8 10 11 13 9 937 885 893 805 835 828 2501 853 825 833 869 858 862 821 1041 871 828 828 813 808 2422 2052 822 2045 866 2050 929 789 2385 915 847 2023 943 2050 847 815 1850 2021 2011 2434 953 2387 825 1921 2007 827 832 810 892 834 766 810 845 805 25 22 21 20 27 6 11 46 17 16 17 30 21 8 28 44 15 31 6 20 8 9 22 9 12 15 21 11 9 20 33 22 9 13 11 23 14 16 8 11 13 9 21 15 7 23 23 17 34 15 23 26 32 19 805 5 797 6 2631 16 2630 9 803 6 796 12 862 8 863 16 812 6 830 12 (To be continued on the next page) 2450 LING WenLi, et al. Chinese Sci Bull August (2010) Vol.55 No.22 (Continued) No. Measured ratios Apparent ages (Ma) 7 8 Pb/206Pb±1σ 0.0655 0.0010 0.0666 0.0014 Pb/235U±1σ 1.170 0.015 1.249 0.024 Pb/238U±1σ 0.1296 0.0009 0.1360 0.0011 Pb/232Th±1σ 0.0391 0.0003 0.0399 0.0004 Th/U 1.543 0.922 207 207 206 208 Pb/206Pb±1σ 790 32 826 43 207 Pb/235U±1σ 786 5 822 6 207 Pb/238U±1σ 787 7 823 11 206 9 0.0676 0.0012 1.270 0.019 0.1363 0.0010 0.0416 0.0004 0.857 856 35 824 6 832 9 10 0.0678 0.0011 1.278 0.018 0.1366 0.0010 0.0430 0.0004 0.905 863 33 826 6 836 8 11 0.0660 0.0010 1.206 0.016 0.1326 0.0009 0.0387 0.0003 1.167 806 32 803 5 803 7 12 0.0675 0.0009 1.259 0.014 0.1354 0.0009 0.0425 0.0003 1.116 852 29 818 5 828 6 13 0.0641 0.0009 1.196 0.013 0.1354 0.0009 0.0409 0.0003 0.830 744 29 819 5 799 6 14 0.0642 0.0010 1.195 0.015 0.1351 0.0009 0.0424 0.0004 0.667 747 32 817 5 799 7 15 0.0664 0.0014 1.233 0.023 0.1346 0.0011 0.0423 0.0004 0.870 820 43 814 6 816 11 16 0.0663 0.0015 1.232 0.026 0.1348 0.0011 0.0433 0.0005 0.835 816 47 815 6 815 12 17 0.0634 0.0014 1.170 0.024 0.1339 0.0011 0.0397 0.0004 1.768 721 46 810 6 787 11 18 0.0660 0.0008 1.251 0.011 0.1376 0.0009 0.0414 0.0003 0.298 806 24 831 5 824 5 19 0.0677 0.0014 1.239 0.024 0.1329 0.0011 0.0416 0.0004 0.885 858 43 804 6 819 11 20 0.0664 0.0015 1.259 0.025 0.1376 0.0011 0.0417 0.0005 0.608 818 45 831 6 827 11 21 0.0677 0.0010 1.225 0.014 0.1313 0.0009 0.0453 0.0004 0.646 858 29 795 5 812 6 22 0.0648 0.0015 1.154 0.025 0.1292 0.0011 0.0379 0.0004 0.940 768 48 783 6 779 12 23 0.1219 0.0028 6.128 0.133 0.3645 0.0041 0.1186 0.0019 0.741 1985 41 2003 19 1994 19 24 0.0667 0.0009 1.237 0.012 0.1344 0.0009 0.0413 0.0003 1.202 830 26 813 5 817 6 25 0.0657 0.0020 1.227 0.035 0.1355 0.0013 0.0425 0.0006 1.038 796 62 819 7 813 16 26 0.1239 0.0014 6.298 0.048 0.3686 0.0024 0.1035 0.0006 1.337 2013 19 2023 11 2018 7 27 0.0684 0.0008 1.245 0.012 0.1322 0.0009 0.0427 0.0004 0.564 879 25 800 5 821 5 28 0.0689 0.0018 1.290 0.031 0.1358 0.0012 0.0449 0.0007 0.524 896 52 821 7 842 14 29 0.0687 0.0019 1.302 0.034 0.1375 0.0013 0.0394 0.0005 0.970 890 56 830 7 847 15 30 0.0679 0.0014 1.251 0.024 0.1336 0.0011 0.0408 0.0004 0.936 866 43 808 6 824 11 31 0.0688 0.0025 1.399 0.048 0.1474 0.0017 0.0467 0.0008 1.027 893 72 886 10 888 20 32 0.1223 0.0018 6.184 0.079 0.3667 0.0029 0.1052 0.0010 1.121 1990 26 2014 14 2002 11 33 0.0650 0.0008 1.196 0.012 0.1334 0.0009 0.0396 0.0002 1.834 775 26 807 5 799 5 34 0.0680 0.0026 1.261 0.045 0.1346 0.0016 0.0417 0.0007 1.031 868 76 814 9 828 20 35 0.0676 0.0014 1.332 0.026 0.1428 0.0012 0.0439 0.0006 0.614 857 44 861 7 860 11 36 0.0681 0.0019 1.209 0.031 0.1288 0.0012 0.0399 0.0005 1.067 871 56 781 7 805 14 37 0.0703 0.0020 1.310 0.034 0.1351 0.0013 0.0415 0.0006 0.832 938 56 817 7 850 15 38 0.0687 0.0010 1.289 0.015 0.1361 0.0009 0.0424 0.0004 0.545 889 29 823 5 841 7 39 0.0681 0.0015 1.344 0.026 0.1431 0.0012 0.0446 0.0005 0.823 872 44 862 7 865 11 40 0.0653 0.0018 1.205 0.031 0.1339 0.0012 0.0429 0.0009 0.362 783 56 810 7 803 14 41 0.0645 0.0011 1.168 0.018 0.1314 0.0010 0.0392 0.0003 0.947 757 36 796 5 786 8 42 0.0651 0.0015 1.177 0.025 0.1312 0.0011 0.0420 0.0005 1.023 777 48 795 6 790 12 43 0.0669 0.0007 1.377 0.010 0.1492 0.0009 0.0446 0.0003 1.153 836 23 896 5 879 4 44 0.0645 0.0016 1.139 0.026 0.1280 0.0011 0.0379 0.0006 0.473 758 52 777 6 772 13 45 0.0658 0.0012 1.210 0.019 0.1334 0.0010 0.0442 0.0003 1.513 799 37 808 6 805 9 46 0.0673 0.0009 1.329 0.013 0.1433 0.0009 0.0441 0.0003 0.741 847 26 863 5 859 6 47 0.0647 0.0009 1.231 0.015 0.1380 0.0009 0.0425 0.0003 0.775 765 30 833 5 815 7 48 0.0646 0.0014 1.196 0.024 0.1344 0.0011 0.0415 0.0010 0.216 761 45 813 6 799 11 49 0.0648 0.0021 1.215 0.036 0.1361 0.0014 0.0414 0.0006 1.125 767 65 823 8 808 17 50 0.0648 0.0013 1.202 0.022 0.1346 0.0011 0.0413 0.0004 1.100 767 42 814 6 802 10 51 0.0688 0.0011 1.358 0.019 0.1431 0.0010 0.0455 0.0005 0.390 894 34 862 6 871 8 52 0.0652 0.0013 1.189 0.022 0.1323 0.0011 0.0403 0.0005 0.683 781 42 801 6 796 10 53 0.0655 0.0012 1.227 0.020 0.1358 0.0010 0.0423 0.0004 1.073 790 39 821 6 813 9 54 0.0702 0.0039 1.283 0.068 0.1326 0.0022 0.0429 0.0010 1.302 933 109 803 12 838 30 56 0.0674 0.0014 1.256 0.024 0.1352 0.0011 0.0410 0.0005 0.708 849 43 817 6 826 11 (To be continued on the next page) LING WenLi, et al. Chinese Sci Bull 2451 August (2010) Vol.55 No.22 (Continued) Measured ratios No. 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ Apparent ages (Ma) 208 Pb/232Th±1σ Th/U 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ 57 0.0650 0.0014 1.202 0.023 0.1340 0.0011 0.0403 0.0004 1.189 776 44 811 6 801 11 59 0.0666 0.0015 1.205 0.025 0.1313 0.0011 0.0390 0.0006 0.378 824 46 795 6 803 11 60 0.0684 0.0016 1.276 0.028 0.1353 0.0012 0.0430 0.0007 0.425 880 49 818 7 835 13 61 0.0701 0.0024 1.264 0.041 0.1309 0.0015 0.0427 0.0008 0.752 931 68 793 8 830 18 62 0.0679 0.0009 1.373 0.015 0.1467 0.0010 0.0452 0.0004 0.559 865 27 882 6 877 6 63 0.0659 0.0011 1.250 0.019 0.1375 0.0010 0.0428 0.0004 0.513 805 36 831 6 824 9 64 0.0644 0.0016 1.156 0.027 0.1301 0.0012 0.0403 0.0005 0.847 756 53 789 7 780 13 65 0.0663 0.0012 1.274 0.020 0.1393 0.0010 0.0420 0.0004 0.797 817 36 841 6 834 9 66 0.0659 0.0014 1.196 0.023 0.1316 0.0011 0.0411 0.0004 0.970 804 44 797 6 799 11 67 0.0666 0.0011 1.235 0.017 0.1345 0.0010 0.0424 0.0004 0.537 825 34 813 5 817 8 68 0.0695 0.0017 1.442 0.033 0.1504 0.0014 0.0505 0.0007 0.722 914 50 903 8 906 14 WD06-14 1 0.0655 0.0022 0.896 0.029 0.0993 0.0011 0.0300 0.0006 0.545 789 70 610 7 650 16 2 0.0633 0.0025 0.811 0.030 0.0929 0.0011 0.0269 0.0007 0.491 718 80 573 7 603 17 3 0.0655 0.0015 0.884 0.019 0.0979 0.0008 0.0275 0.0003 0.903 791 47 602 5 643 10 4 0.0634 0.0018 0.976 0.025 0.1116 0.0011 0.0313 0.0005 0.561 722 58 682 6 692 13 5 0.0629 0.0025 0.932 0.036 0.1074 0.0013 0.0291 0.0007 0.610 706 83 657 8 669 19 6 0.0623 0.0027 1.027 0.043 0.1196 0.0016 0.0343 0.0010 0.550 684 89 728 9 718 21 7 0.0622 0.0044 0.949 0.065 0.1106 0.0023 0.0319 0.0015 0.447 682 144 676 13 677 34 8 0.0676 0.0026 0.966 0.035 0.1036 0.0013 0.0318 0.0007 0.568 857 77 635 7 686 18 10 0.0658 0.0019 0.933 0.025 0.1027 0.0010 0.0278 0.0004 0.993 801 58 631 6 669 13 11 0.0662 0.0031 1.028 0.046 0.1127 0.0016 0.0327 0.0009 0.552 812 94 688 9 718 23 12 0.0679 0.0044 1.339 0.085 0.1429 0.0028 0.0427 0.0015 0.894 867 129 861 16 863 37 14 0.0661 0.0027 0.985 0.038 0.1082 0.0014 0.0295 0.0007 0.672 808 82 662 8 696 20 15 0.0664 0.0037 0.915 0.049 0.1000 0.0017 0.0333 0.0012 0.462 817 112 615 10 660 26 16 0.0640 0.0022 0.877 0.028 0.0995 0.0011 0.0277 0.0005 0.715 740 70 611 6 640 15 18 0.0640 0.0022 1.037 0.034 0.1174 0.0013 0.0328 0.0007 0.639 742 72 716 8 722 17 19 0.0646 0.0021 1.018 0.032 0.1143 0.0012 0.0308 0.0006 0.781 761 67 698 7 713 16 20 0.0628 0.0021 0.928 0.030 0.1073 0.0012 0.0300 0.0006 0.699 700 70 657 7 667 16 22 0.0615 0.0013 0.687 0.013 0.0811 0.0007 0.0186 0.0002 1.295 656 45 503 4 531 8 24 0.0670 0.0021 0.961 0.028 0.1040 0.0011 0.0282 0.0005 0.712 839 64 638 6 684 15 26 0.0645 0.0013 0.924 0.016 0.1038 0.0008 0.0282 0.0003 1.020 759 41 637 5 664 9 27 0.0648 0.0025 1.026 0.037 0.1148 0.0014 0.0313 0.0008 0.544 769 78 701 8 717 19 28 0.0645 0.0033 1.040 0.052 0.1169 0.0018 0.0318 0.0010 0.527 758 105 713 10 724 26 30 0.0663 0.0027 0.998 0.039 0.1092 0.0014 0.0296 0.0007 0.714 815 83 668 8 703 20 32 0.0672 0.0023 0.980 0.032 0.1059 0.0012 0.0306 0.0007 0.565 842 71 649 7 694 17 33 0.0629 0.0016 1.042 0.024 0.1202 0.0011 0.0337 0.0005 0.658 705 52 732 6 725 12 35 0.0626 0.0018 1.033 0.028 0.1198 0.0012 0.0323 0.0005 1.015 694 60 729 7 721 14 36 0.0626 0.0021 0.959 0.031 0.1112 0.0012 0.0316 0.0006 0.618 693 71 680 7 683 16 37 0.1173 0.0036 5.148 0.150 0.3184 0.0045 0.0849 0.0022 0.464 1915 54 1782 22 1844 25 38 0.0676 0.0025 0.942 0.033 0.1010 0.0012 0.0301 0.0007 0.513 856 74 621 7 674 17 39 0.0678 0.0027 0.928 0.035 0.0993 0.0012 0.0279 0.0006 0.833 863 80 610 7 667 19 40 0.0634 0.0032 0.982 0.048 0.1124 0.0016 0.0320 0.0008 0.943 721 103 687 10 695 24 43 0.0645 0.0015 0.895 0.020 0.1006 0.0009 0.0265 0.0003 0.752 758 49 618 5 649 11 44 0.0652 0.0018 0.975 0.025 0.1084 0.0010 0.0300 0.0005 0.556 781 57 664 6 691 13 45 0.0705 0.0032 0.936 0.040 0.0963 0.0014 0.0291 0.0008 0.641 942 89 593 8 671 21 46 0.0648 0.0021 0.858 0.027 0.0960 0.0010 0.0269 0.0005 0.590 767 68 591 6 629 15 47 0.0647 0.0019 0.649 0.018 0.0727 0.0007 0.0175 0.0002 1.324 764 61 453 4 508 11 49 0.0654 0.0029 1.028 0.044 0.1140 0.0016 0.0320 0.0008 0.589 787 91 696 9 718 22 (To be continued on the next page) 2452 LING WenLi, et al. Chinese Sci Bull August (2010) Vol.55 No.22 (Continued) Measured ratios No. 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ Apparent ages (Ma) 208 Pb/232Th±1σ Th/U 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ 51 0.0627 0.0019 0.849 0.025 0.0983 0.0010 0.0273 0.0005 0.576 696 64 605 6 624 13 53 0.0674 0.0046 1.000 0.066 0.1076 0.0021 0.0352 0.0014 0.562 851 136 659 12 704 34 WD05-S1 1 0.0611 0.0016 0.792 0.019 0.0940 0.0009 0.0247 0.0003 1.957 643 55 579 5 592 11 2 0.0634 0.0032 1.073 0.053 0.1228 0.0018 0.0375 0.0009 1.066 720 104 747 10 740 26 3 0.0647 0.0052 0.959 0.075 0.1075 0.0024 0.0336 0.0011 1.292 764 160 658 14 683 39 4 0.0646 0.0031 1.097 0.051 0.1232 0.0017 0.0424 0.0005 3.027 761 98 749 10 752 25 5 0.0642 0.0031 0.967 0.045 0.1094 0.0016 0.0340 0.0008 1.082 747 99 669 9 687 23 6 0.0658 0.0042 0.984 0.061 0.1085 0.0020 0.0327 0.0013 0.655 800 128 664 11 696 31 7 0.0619 0.0013 0.958 0.018 0.1122 0.0009 0.0350 0.0005 0.487 672 44 686 5 682 10 8 0.0659 0.0028 1.104 0.046 0.1216 0.0016 0.0374 0.0008 0.987 802 88 740 9 755 22 9 0.0708 0.0028 0.857 0.033 0.0878 0.0011 0.0350 0.0007 0.771 952 80 542 7 628 18 10 0.0616 0.0020 1.052 0.033 0.1239 0.0013 0.0376 0.0007 0.701 660 70 753 8 730 17 100 0.0692 0.0025 0.971 0.034 0.1018 0.0012 0.0343 0.0006 0.939 904 73 625 7 689 17 101 0.0650 0.0018 1.108 0.028 0.1236 0.0012 0.0396 0.0006 0.677 774 56 751 7 757 14 102 0.0648 0.0021 1.105 0.034 0.1237 0.0013 0.0399 0.0008 0.589 768 66 752 8 756 16 103 0.0633 0.0016 1.084 0.025 0.1241 0.0011 0.0391 0.0006 0.743 720 52 754 6 746 12 104 0.0634 0.0037 0.977 0.055 0.1117 0.0018 0.0348 0.0013 0.557 722 118 683 10 692 28 105 0.0633 0.0030 1.083 0.051 0.1242 0.0017 0.0415 0.0008 1.431 717 99 755 10 745 25 11 0.0633 0.0023 0.987 0.034 0.1131 0.0013 0.0339 0.0005 1.576 720 74 691 7 697 17 12 0.0638 0.0050 1.050 0.081 0.1194 0.0026 0.0358 0.0012 1.313 735 159 727 15 729 40 13 0.0640 0.0020 1.076 0.031 0.1219 0.0013 0.0369 0.0007 0.925 743 64 741 7 742 15 14 0.0632 0.0017 1.082 0.028 0.1242 0.0012 0.0391 0.0007 0.447 714 57 755 7 744 14 15 0.0632 0.0019 0.992 0.028 0.1138 0.0011 0.0368 0.0005 1.803 715 62 695 7 700 14 16 0.0633 0.0057 0.971 0.085 0.1112 0.0026 0.0379 0.0021 0.517 720 179 680 15 689 44 17 0.0622 0.0023 0.961 0.035 0.1120 0.0013 0.0315 0.0004 2.402 681 78 685 8 684 18 18 0.0642 0.0011 1.073 0.017 0.1213 0.0009 0.0319 0.0003 0.676 747 37 738 5 740 8 19 0.0615 0.0056 0.936 0.082 0.1103 0.0027 0.0309 0.0016 0.900 658 182 675 16 671 43 20 0.0637 0.0024 1.075 0.039 0.1224 0.0015 0.0370 0.0006 1.599 732 79 744 8 741 19 21 0.0643 0.0014 1.108 0.021 0.1250 0.0010 0.0343 0.0003 1.686 751 44 759 6 757 10 22 0.0642 0.0020 1.098 0.033 0.1241 0.0013 0.0335 0.0006 1.239 748 66 754 8 753 16 23 0.0629 0.0011 1.087 0.017 0.1253 0.0010 0.0359 0.0005 0.467 706 37 761 6 747 8 24 0.0608 0.0015 0.794 0.018 0.0948 0.0008 0.0250 0.0003 1.713 631 51 584 5 594 10 26 0.0642 0.0029 1.088 0.047 0.1228 0.0017 0.0328 0.0009 0.675 750 92 747 10 748 23 27 0.0656 0.0037 0.994 0.054 0.1099 0.0018 0.0340 0.0009 1.187 794 113 672 10 701 27 28 0.0658 0.0024 1.110 0.039 0.1223 0.0014 0.0392 0.0006 1.550 800 76 744 8 758 19 29 0.0641 0.0027 1.084 0.044 0.1227 0.0016 0.0376 0.0008 1.051 745 87 746 9 746 21 30 0.0652 0.0020 1.104 0.033 0.1227 0.0013 0.0381 0.0006 0.978 781 64 746 7 755 16 32 0.0643 0.0018 0.936 0.025 0.1056 0.0010 0.0345 0.0004 1.610 751 59 647 6 671 13 33 0.0664 0.0026 1.233 0.046 0.1346 0.0017 0.0408 0.0008 0.858 820 80 814 10 816 21 34 0.0629 0.0012 1.075 0.019 0.1239 0.0010 0.0402 0.0004 0.842 705 40 753 6 741 9 36 0.0612 0.0019 1.012 0.030 0.1199 0.0012 0.0380 0.0006 1.119 647 65 730 7 710 15 37 0.0643 0.0018 1.088 0.028 0.1228 0.0012 0.0392 0.0006 0.642 751 57 747 7 748 14 38 0.0643 0.0025 1.098 0.041 0.1238 0.0015 0.0379 0.0007 1.672 751 79 753 9 752 20 39 0.0632 0.0018 1.027 0.028 0.1178 0.0012 0.0352 0.0005 0.952 716 60 718 7 717 14 40 0.0645 0.0026 1.068 0.041 0.1202 0.0015 0.0375 0.0007 1.191 757 81 732 9 738 20 41 0.0615 0.0027 0.805 0.034 0.0950 0.0012 0.0303 0.0007 0.810 655 91 585 7 599 19 42 0.0665 0.0023 1.207 0.041 0.1316 0.0015 0.0397 0.0007 1.126 822 72 797 9 804 19 43 0.0637 0.0020 1.069 0.032 0.1217 0.0013 0.0357 0.0006 1.155 733 66 740 7 738 16 (To be continued on the next page) LING WenLi, et al. Chinese Sci Bull 2453 August (2010) Vol.55 No.22 (Continued) No. Measured ratios 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ Apparent ages (Ma) 208 Pb/232Th±1σ Th/U 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ 44 0.0666 0.0017 1.027 0.025 0.1120 0.0010 0.0359 0.0005 1.128 824 53 684 6 718 13 45 0.0681 0.0020 1.149 0.032 0.1225 0.0012 0.0360 0.0005 1.455 870 59 745 7 777 15 46 0.0645 0.0016 1.112 0.026 0.1250 0.0011 0.0380 0.0004 1.435 758 52 759 7 759 13 47 0.0654 0.0026 1.160 0.044 0.1286 0.0016 0.0409 0.0007 1.534 788 81 780 9 782 21 48 0.0661 0.0021 1.201 0.036 0.1317 0.0014 0.0411 0.0007 0.985 811 65 798 8 801 17 49 0.0634 0.0034 1.039 0.055 0.1188 0.0019 0.0389 0.0011 0.802 723 111 724 11 724 27 51 0.0674 0.0035 1.210 0.060 0.1301 0.0020 0.0414 0.0011 0.857 852 104 789 11 805 28 52 0.0665 0.0034 1.034 0.052 0.1129 0.0017 0.0384 0.0011 0.764 821 104 690 10 721 26 54 0.0650 0.0018 1.108 0.030 0.1236 0.0012 0.0393 0.0007 0.692 776 58 751 7 757 14 55 0.0650 0.0015 1.181 0.026 0.1317 0.0012 0.0415 0.0004 2.683 776 49 798 7 792 12 56 0.1059 0.0016 4.476 0.057 0.3066 0.0024 0.0892 0.0008 0.956 1730 27 1724 12 1727 11 57 0.1042 0.0015 4.474 0.055 0.3115 0.0024 0.0937 0.0011 0.498 1700 27 1748 12 1726 10 58 0.0655 0.0024 1.178 0.042 0.1306 0.0016 0.0409 0.0009 0.725 789 76 791 9 791 20 59 0.0644 0.0020 1.100 0.033 0.1238 0.0013 0.0393 0.0007 0.794 755 64 753 7 753 16 60 0.0647 0.0016 1.103 0.025 0.1237 0.0011 0.0388 0.0005 0.961 763 51 752 6 755 12 61 0.0677 0.0019 1.348 0.036 0.1444 0.0014 0.0447 0.0010 0.397 860 57 869 8 867 15 62 0.0645 0.0016 1.101 0.026 0.1239 0.0011 0.0393 0.0005 0.950 757 52 753 6 754 12 63 0.0643 0.0020 1.069 0.032 0.1207 0.0012 0.0364 0.0005 1.488 750 64 735 7 738 16 64 0.0673 0.0030 1.204 0.053 0.1297 0.0018 0.0414 0.0008 1.396 848 91 786 10 802 24 65 0.0645 0.0027 1.103 0.044 0.1241 0.0016 0.0392 0.0006 1.675 757 85 754 9 755 21 66 0.0635 0.0044 0.975 0.066 0.1114 0.0022 0.0380 0.0010 1.435 724 140 681 12 691 34 67 0.0658 0.0024 1.199 0.042 0.1321 0.0015 0.0421 0.0009 0.632 801 74 800 9 800 19 68 0.0638 0.0017 1.054 0.027 0.1200 0.0011 0.0388 0.0006 0.600 733 56 730 6 731 13 69 0.0642 0.0025 1.092 0.041 0.1234 0.0015 0.0396 0.0010 0.514 747 80 750 8 749 20 70 0.0629 0.0026 1.079 0.043 0.1244 0.0015 0.0409 0.0007 1.197 704 86 756 9 743 21 71 0.0655 0.0028 1.114 0.045 0.1234 0.0016 0.0385 0.0009 0.915 791 86 750 9 760 22 72 0.0656 0.0017 1.106 0.026 0.1223 0.0011 0.0388 0.0006 0.719 793 52 744 6 756 13 73 0.0658 0.0015 1.044 0.022 0.1151 0.0010 0.0379 0.0005 0.813 801 47 702 6 726 11 74 0.0671 0.0031 1.197 0.053 0.1294 0.0018 0.0409 0.0010 0.729 840 92 784 10 799 24 76 0.0662 0.0017 1.183 0.029 0.1296 0.0012 0.0409 0.0005 1.043 813 54 786 7 793 14 77 0.0694 0.0018 0.916 0.022 0.0958 0.0009 0.0384 0.0008 0.328 910 51 590 5 660 12 78 0.0626 0.0045 1.053 0.073 0.1219 0.0024 0.0397 0.0010 1.576 696 145 742 14 730 36 80 0.0623 0.0018 0.935 0.025 0.1089 0.0011 0.0371 0.0005 1.034 684 59 666 6 670 13 81 0.0686 0.0032 1.030 0.046 0.1090 0.0016 0.0367 0.0010 0.667 886 94 667 9 719 23 82 0.0604 0.0015 1.030 0.023 0.1237 0.0011 0.0396 0.0005 0.818 618 51 752 6 719 12 83 0.0629 0.0012 1.064 0.017 0.1226 0.0010 0.0378 0.0004 0.834 706 38 746 6 736 9 84 0.0657 0.0014 1.116 0.023 0.1233 0.0011 0.0401 0.0005 0.739 796 45 749 6 761 11 85 0.0603 0.0012 0.928 0.017 0.1118 0.0009 0.0298 0.0003 0.992 613 43 683 5 667 9 86 0.0639 0.0062 1.069 0.101 0.1213 0.0033 0.0392 0.0016 1.226 740 193 738 19 738 50 87 0.0622 0.0014 1.062 0.023 0.1238 0.0011 0.0385 0.0004 2.086 681 48 753 6 735 11 88 0.0625 0.0048 0.956 0.071 0.1108 0.0023 0.0347 0.0015 0.581 692 155 678 13 681 37 89 0.0645 0.0019 1.106 0.031 0.1243 0.0013 0.0406 0.0007 0.835 759 60 755 7 756 15 90 0.0630 0.0015 1.085 0.025 0.1249 0.0011 0.0395 0.0006 0.646 707 51 759 6 746 12 91 0.0637 0.0024 1.100 0.039 0.1254 0.0015 0.0392 0.0009 0.604 730 76 761 8 753 19 92 0.0655 0.0036 1.178 0.063 0.1304 0.0020 0.0407 0.0007 2.717 792 111 790 11 790 29 93 0.0627 0.0010 1.073 0.014 0.1242 0.0009 0.0391 0.0003 1.077 697 33 755 5 740 7 94 0.0631 0.0037 1.038 0.059 0.1193 0.0020 0.0370 0.0010 1.091 711 120 727 12 723 30 95 0.0673 0.0033 1.220 0.058 0.1314 0.0020 0.0426 0.0011 0.800 848 99 796 11 810 27 96 0.0663 0.0011 1.112 0.016 0.1217 0.0009 0.0396 0.0005 0.289 816 34 740 5 759 8 (To be continued on the next page) 2454 LING WenLi, et al. Chinese Sci Bull August (2010) Vol.55 No.22 (Continued) Measured ratios No. 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ Apparent ages (Ma) 208 Pb/232Th±1σ Th/U 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ 97 0.0646 0.0023 1.101 0.038 0.1236 0.0014 0.0362 0.0008 0.600 763 74 751 8 754 18 98 0.0644 0.0032 0.962 0.046 0.1084 0.0016 0.0358 0.0010 0.669 755 100 663 9 685 24 99 0.0627 0.0017 1.069 0.028 0.1237 0.0012 0.0407 0.0005 1.135 697 58 752 7 738 14 WD05-S2 1 0.1224 0.0026 6.111 0.121 0.3634 0.0041 0.1003 0.0017 0.665 1992 37 1998 19 1992 17 2 0.0668 0.0015 1.261 0.025 0.1374 0.0012 0.0419 0.0006 0.570 832 45 830 7 829 11 3 0.0672 0.0010 1.277 0.015 0.1383 0.0010 0.0399 0.0004 0.309 845 30 835 5 835 7 4 0.0675 0.0030 1.264 0.055 0.1364 0.0020 0.0412 0.0012 0.576 852 90 824 11 830 25 5 0.1232 0.0044 6.252 0.222 0.3695 0.0069 0.0996 0.0027 0.835 2003 62 2027 32 2012 31 6 0.1539 0.0021 9.430 0.106 0.4461 0.0037 0.1238 0.0015 0.450 2390 23 2378 16 2381 10 7 0.1233 0.0024 6.127 0.109 0.3619 0.0038 0.0990 0.0014 0.792 2004 34 1991 18 1994 16 8 0.0666 0.0023 1.219 0.040 0.1333 0.0016 0.0424 0.0007 1.052 825 70 807 9 810 18 9 0.1222 0.0018 6.055 0.078 0.3608 0.0030 0.1017 0.0008 1.887 1989 26 1986 14 1984 11 10 0.1235 0.0016 6.185 0.062 0.3646 0.0027 0.0998 0.0015 0.162 2007 22 2004 13 2002 9 11 0.1591 0.0022 9.424 0.114 0.4312 0.0037 0.1159 0.0016 0.432 2446 24 2311 17 2380 11 12 0.1209 0.0013 6.203 0.044 0.3736 0.0024 0.1000 0.0010 0.116 1969 19 2046 11 2005 6 13 0.1244 0.0028 6.305 0.135 0.3691 0.0045 0.1040 0.0017 0.875 2020 39 2025 21 2019 19 14 0.0667 0.0022 1.219 0.039 0.1331 0.0015 0.0388 0.0006 1.102 828 68 805 9 809 18 15 0.1256 0.0029 6.416 0.144 0.3720 0.0047 0.1080 0.0019 0.778 2037 41 2039 22 2035 20 16 0.0659 0.0009 1.238 0.014 0.1368 0.0009 0.0410 0.0003 0.878 803 28 826 5 818 6 17 0.0667 0.0013 1.221 0.022 0.1332 0.0011 0.0419 0.0005 0.396 828 40 806 6 810 10 18 0.0697 0.0013 1.444 0.024 0.1509 0.0012 0.0479 0.0005 0.587 919 37 906 7 908 10 20 0.0654 0.0035 1.146 0.060 0.1276 0.0021 0.0434 0.0011 0.878 786 109 774 12 775 29 21 0.0670 0.0034 1.262 0.062 0.1372 0.0022 0.0400 0.0009 1.095 836 101 829 13 829 28 22 0.1259 0.0049 6.426 0.254 0.3714 0.0078 0.1045 0.0030 0.951 2042 68 2036 37 2036 35 23 0.0666 0.0017 1.180 0.029 0.1291 0.0012 0.0396 0.0006 0.761 824 53 783 7 791 13 24 0.1546 0.0039 9.469 0.239 0.4458 0.0070 0.1141 0.0034 0.357 2397 42 2376 31 2385 23 25 0.0678 0.0011 1.287 0.019 0.1381 0.0010 0.0414 0.0005 0.406 862 34 834 6 840 8 26 0.0672 0.0031 1.262 0.056 0.1366 0.0021 0.0412 0.0009 0.924 845 92 825 12 829 25 27 0.1228 0.0019 6.192 0.087 0.3670 0.0033 0.1054 0.0012 0.807 1997 28 2015 15 2003 12 28 0.0665 0.0019 1.217 0.034 0.1332 0.0014 0.0418 0.0006 0.761 822 60 806 8 809 15 29 0.0654 0.0027 1.144 0.045 0.1274 0.0017 0.0520 0.0012 0.696 786 84 773 10 775 22 30 0.0660 0.0017 1.204 0.029 0.1327 0.0013 0.0412 0.0005 0.820 807 52 803 7 802 13 31 0.1034 0.0028 4.260 0.112 0.2998 0.0039 0.0859 0.0018 0.339 1686 49 1690 19 1686 22 32 0.0710 0.0015 1.504 0.030 0.1540 0.0014 0.0467 0.0006 0.614 958 44 924 8 932 12 33 0.0686 0.0024 1.282 0.044 0.1359 0.0016 0.0418 0.0006 1.546 888 72 822 9 838 19 34 0.1232 0.0030 6.168 0.147 0.3642 0.0048 0.1035 0.0019 0.773 2003 43 2002 23 2000 21 35 0.1247 0.0039 6.321 0.196 0.3687 0.0061 0.1068 0.0028 0.677 2025 54 2024 29 2021 27 36 0.1239 0.0032 6.241 0.156 0.3664 0.0051 0.1046 0.0019 0.880 2013 45 2013 24 2010 22 37 0.0658 0.0013 1.220 0.021 0.1350 0.0011 0.0425 0.0004 0.966 799 40 817 6 810 10 38 0.1277 0.0021 6.596 0.100 0.3757 0.0036 0.1117 0.0014 0.743 2067 29 2056 17 2059 13 39 0.0679 0.0018 1.255 0.032 0.1344 0.0013 0.0406 0.0005 1.145 867 55 813 8 826 14 40 0.0703 0.0029 1.497 0.061 0.1548 0.0022 0.0459 0.0010 0.959 938 83 928 12 929 25 41 0.0650 0.0031 1.163 0.054 0.1302 0.0020 0.0394 0.0010 0.566 774 97 789 11 783 25 42 0.0710 0.0018 1.557 0.037 0.1596 0.0016 0.0480 0.0007 0.626 957 51 954 9 953 15 43 0.0643 0.0013 1.153 0.021 0.1305 0.0011 0.0399 0.0003 1.482 752 43 791 6 779 10 44 0.0671 0.0020 1.226 0.035 0.1330 0.0014 0.0416 0.0006 1.223 839 61 805 8 813 16 45 0.1219 0.0037 6.029 0.179 0.3598 0.0057 0.0869 0.0020 0.867 1984 53 1981 27 1980 26 46 0.0685 0.0017 1.381 0.032 0.1465 0.0014 0.0441 0.0007 0.609 885 51 881 8 881 14 (To be continued on the next page) LING WenLi, et al. Chinese Sci Bull 2455 August (2010) Vol.55 No.22 (Continued) No. Measured ratios 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ Apparent ages (Ma) 208 Pb/232Th±1σ Th/U 207 Pb/206Pb±1σ 207 Pb/235U±1σ 206 Pb/238U±1σ 47 0.0656 0.0010 1.162 0.015 0.1289 0.0009 0.0395 0.0004 0.474 792 32 782 5 783 7 48 0.0666 0.0014 1.172 0.022 0.1280 0.0011 0.0390 0.0004 1.418 825 42 777 6 788 10 49 0.0654 0.0008 1.191 0.010 0.1325 0.0009 0.0409 0.0003 0.495 787 24 802 5 796 5 50 0.0669 0.0025 1.230 0.044 0.1337 0.0017 0.0468 0.0009 0.718 835 75 809 10 814 20 51 0.0717 0.0025 1.603 0.055 0.1625 0.0021 0.0487 0.0011 0.588 978 71 971 11 971 21 52 0.1149 0.0014 5.305 0.050 0.3359 0.0024 0.0991 0.0008 0.499 1878 22 1867 11 1870 8 53 0.1211 0.0014 5.956 0.049 0.3577 0.0024 0.1084 0.0014 0.087 1972 20 1971 11 1969 7 55 0.0684 0.0010 1.399 0.016 0.1487 0.0010 0.0446 0.0004 0.659 881 28 894 6 888 7 17 56 0.0668 0.0021 1.250 0.038 0.1361 0.0015 0.0439 0.0008 0.586 832 65 823 9 824 57 0.0681 0.0010 1.389 0.017 0.1484 0.0010 0.0459 0.0004 0.409 870 29 892 6 884 7 58 0.0683 0.0013 1.270 0.022 0.1353 0.0011 0.0431 0.0006 0.444 877 39 818 6 832 10 59 0.0671 0.0016 1.230 0.027 0.1334 0.0012 0.0415 0.0005 0.760 840 48 807 7 815 12 60 0.0663 0.0011 1.238 0.018 0.1358 0.0010 0.0421 0.0004 0.788 816 34 821 6 818 8 61 0.0673 0.0019 1.253 0.034 0.1354 0.0014 0.0441 0.0007 0.733 846 58 818 8 825 15 62 0.0671 0.0033 1.236 0.059 0.1340 0.0021 0.0462 0.0013 0.661 840 99 811 12 817 27 63 0.0684 0.0033 1.285 0.060 0.1366 0.0022 0.0421 0.0008 1.396 879 96 826 12 839 27 64 0.0673 0.0014 1.256 0.025 0.1357 0.0012 0.0427 0.0006 0.467 847 44 820 7 826 11 65 0.0677 0.0016 1.276 0.029 0.1370 0.0013 0.0418 0.0005 0.973 860 50 828 7 835 13 66 0.0673 0.0009 1.367 0.015 0.1477 0.0010 0.0452 0.0004 0.601 846 28 888 6 875 7 67 0.0650 0.0014 1.215 0.024 0.1359 0.0012 0.0422 0.0004 1.299 774 45 821 7 807 11 68 0.0699 0.0034 1.486 0.070 0.1546 0.0025 0.0516 0.0016 0.514 926 96 926 14 925 29 69 0.0660 0.0015 1.227 0.026 0.1352 0.0012 0.0395 0.0007 0.348 805 47 818 7 813 12 70 0.0683 0.0035 1.268 0.063 0.1351 0.0023 0.0450 0.0009 1.382 876 102 817 13 832 28 71 0.0663 0.0021 1.237 0.037 0.1356 0.0015 0.0423 0.0007 0.807 816 65 820 8 818 17 72 0.1247 0.0032 6.308 0.158 0.3677 0.0051 0.1067 0.0020 0.836 2024 45 2019 24 2020 22 73 0.1126 0.0015 5.113 0.055 0.3301 0.0025 0.0977 0.0009 0.677 1842 24 1839 12 1838 9 75 0.0661 0.0024 1.216 0.043 0.1338 0.0016 0.0402 0.0006 1.587 809 74 809 9 808 20 78 0.0671 0.0017 1.382 0.032 0.1497 0.0014 0.0451 0.0005 1.363 840 50 899 8 881 14
Similar documents
EVOLUTION OF THE NORTH AMERICAN CORDILLERA William R
First published online as a Review in Advance on November 10, 2003
More information