Materi ke-9
Transcription
Materi ke-9
03/11/2015 KLASIFIKASI KOMPOSIT BERDASARKAN MATRIKSNYA PERTEMUAN KE-9 Composite materials POLYMER MATRIX COMPOSITES (PMC) Matrices Polymer Matrix Composites (PMC) Thermoset Metal Matrix Composites MMC) Thermoplastic Ceramic Matrix Composites (CMC) Rubber Material Komposit What is a polymer? Poly many mer repeat unit A polymer is a large molecule (macromolecule) composed of repeating structural units typically connected by covalent chemical bonds Examples of polymers: repeat unit repeat unit H H H H H H C C C C C C H H H H H H H H H H H H C C C C C C H Cl H Cl H Cl Polyethylene (PE) Polyvinyl chloride (PVC) Polymer Matrix Composites are very popular due to their low cost and simple fabrication methods. repeat unit H C H H H C C CH3 H H H C C CH3 H Polymer Matrix Composite (PMC) is the material consisting of a polymer (resin) matrix combined with a fibrous reinforcing dispersed phase. H C CH3 Polypropylene (PP) 1 03/11/2015 Classification of Polymers Polimer Linear - Semua polimer yang molekulnya dalam bentuk rantai. Polimer Termoplastik - Polimer linear atau bercabang di mana rantai molekul tidak saling berhubungan satu sama lain. Polimer Thermosetting - Polimer yang saling menyilang untuk menghasilkan struktur jaringan dimensi tiga yang kuat. Elastomer - Ini adalah polimer (termoplastik atau termoset ringan) yang memiliki deformasi elastis > 200%. Polymer(Matrix) Composite (Matrix + Reinforcement) Konfigurasi rantai Molekul: a. Linear b. Branched c. Crossed linked d. Ladder 2 03/11/2015 Resin thermoset adalah polimer yang paling banyak digunakan pada PMC. Polymerisation: This is the process of joining monomers into gaint chain like molecules. Epoxy dan polyester biasanya dicampur dengan penguat fiber. Methods of Polymerisation: • Condensation polymerisation • Addition polymerisation Bentuk yang paling banyak digunakan adalah struktur laminar, dibuat dengan menumpuk dan ikatan lapisan tipis pada fiber dan polimer sampai ketebalan yang diinginkan diperoleh. Fibers in PMCs • • • • Bentuknya bermacam-macam : discontinuous, continuous atau woven/tenun seperti pada pembuatan kain . Bahan utama fiber pada FRPs adalah gelas, karbon, dan Kevlar 49. Fiber yang tidak umum, seperti boron, SiC, Al2O3 dan baja. Glass (in particular E-glass) adalah bahan fiber yang paling umum pada FRPs saat ini; penggunaannya untuk memperkuat plastik dari sekitar tahun 1920. Degree of polymerization = No of monomer units in a chain ≈ 103 to 105 Thermosets • • Bahan termoset biasanya cair atau lunak sebelum pendinginan, dan dirancang untuk dicetak menjadi bentuk akhirnya. • Memiliki sifat mengalami reaksi kimia melalui aksi panas, katalis, sinar ultraviolet, dll, menjadi zat yang relatif tidak larut dan dapat dicairkan. • Mereka mengembangkan struktur ikatan tiga dimensi yang baik pada pendinginan. Setelah mengeras atau terikat silang, mereka akan terurai dari pada mencair. • • • Thermoset dibuat dengan mencampurkan dua komponen (resin dan hardener) yang bereaksi dan mengeras, baik pada temperatur ruang atau panas. Hasil polimernya biasanya berupa ikat silang yang besar, sehingga thermoset ini disebut juga dengan polimer jaringan. Bentuk ikat silang terjadi selama polimerisasi pada resin cair dan hardener, sehingga strukturnya hampir selalu amorphous. Bahan termoset umumnya lebih kuat dari pada bahan termoplastik karena jaringan ikatan 3-D nya, dan juga lebih cocok untuk aplikasi suhu tinggi hingga mencapai suhu dekomposisi bahan. 3 03/11/2015 Types of Thermosetting plastics Thermosets • Extensive cross-linking formed by covalent bonds. • Bonds prevent chains moving relative to each other. Epoxy: Polyester: Epoxy is a polymer that contain an epoxide group in its chemical structure. Example: DGEBA (Diglcidyl Ether of Bisphenol A ) A condensation reaction between a glycol and an unsaturated dibasic acid results in polyster. This contains a double bond C=C between its carbon atoms. Example: poly ethylene terephthalate (PET). Charecteristics of Polyester: Charecteristics of Epoxy: • Better Moisture Resistence • Low shrinkage • Good adhersion with Reinforcement • Cheap • Resistance to variety of chemicals • Adequate moisture resistance 4 03/11/2015 Thermoplastics • • • In thermoplastic polymer, individual molecules are linear in structure with no chemical linking between them. Some thermoplastics normally do not crystallize, they are termed as"amorphous" plastics and are useful at temperatures below the Tg. Mereka berada di tempat karena ikatan sekunder yang jelek (intermolecular force), seperti ikatan van der Walls dan hydrogen. • Generally, amorphous thermoplastics are less chemically resistant. Reasons for the use of thermoplastic matrix composites Thermoplastics (80%) • Refrigeration is not necessary with a thermoplastic matrix. • Parts can be made and joined by heating. • Parts can be remolded, and any scrap can be recycled. • Thermoplastics have better toughness and impact resistance than thermosets. • No cross links between chains. • Weak attractive forces between chains broken by warming. • Change shape - can be remoulded. • Weak forces reform in new shape when cold. • Shorter fabrication time. • Can be recycled. 5 03/11/2015 UNIQUE CHARACTERISTIC OF THERMOPLASTIC • • • • Near to glass transition temperature Tg, polymeric materials changes a hard solid to soft, tough ( leather like) solid. Over a temperature range around Tg.Near this temperature, the materials is also highly viscoelastic. When load is applied it exhibit Elastic deformation. With increasing temperature polymer changes into rubberlike solid undergoing deformation on external load. Further increasing the temp both amorphous and semicrystallline thermoplastic achieve highly viscous state and attain the melting temp Tm. • • Thermoplastic polymer have higher strain-to-failure. Variation of Tensile modulus with temperature for Amorphous and Semi crytaline thermoplastic. Types of Thermoplastics COMPARISON OF THE THREE POLYMER CATEGORIES 6 03/11/2015 Thermoplastics Vs Thermosets Functions of Matrix • Menopang fiber secara bersama-sama. • Melindungi fiber dari lingkungan. • Mendistribusikan beban secara merata di antara fiber sehingga semua fiber terdistribusi sejumlah regangan yang sama. • Meningkatkan sifat sebuah lapisan tranversal. • Meningkatkan resisytansi impak dan kerusakan komponen. • Membantu menghindari rambatan retak yang tumbuh melalui fiber dengan memberikan alternatif kegagalan sepanjang permukaan antara fiber dan matriks. • Reasonable strength, modulus and elongation (elongationshould be greater than fibre). • Strength at elevated temperature (depending on application). Desired Properties of a Matrix • Reduced moisture absorption. • Low shrinkage. • Low coefficient of thermal expansion. • Low temperature capability (depending on application). • Good flow characteristics so that it penetrates the fibre bundles completely and eliminates voids during the compacting/curing process. • Excellent chemical resistance (depending on application). Must be elastic to transfer load to fibres. • Should be easily processable into the final composite shape. • Dimensional stability (maintains its shape). • 7 03/11/2015 Effect of Temperature on Thermoplastics Thermoplastic polymers Thermosetting polymers 80 90 Polysulfon 70 80 70 60 50 40 Polyamid Polyethylene 30 20 Stress (Mpa) Degradation temperature - The temperature above which a polymer burns, chars, or decomposes. Glass temperature The temperature range below which the amorphous polymer assumes a rigid glassy structure. Stress (Mpa) Stress-strain behavior of different polymer matrices Polyester Epoxy 60 Phenolic 50 40 30 20 10 10 0 0 0 100 The effect of temperature on the modulus of elasticity for an amorphous thermoplastic. 200 300 Strian(% ) 400 500 0 1 2 3 Strian(%) 4 5 Notice to the range of ultimate strains of different polymers Comparision of various polymers as matrix materials Limitations of PMC (Termoplastis) – Low maximum working temperature. – High coefficient of thermal expansion- dimensional instability – Sensitivity to radiation and moisture. – Processing temperature are generally higher than those with thermosets. 8 03/11/2015 Pultrusion -characteristics Pultrusion Advantages: Minimal kinking of fibres/fabrics • Potential Problems: Improper fibre wet-out Fibre breakage Rapid processing Inadequate cure Low material scrap rate Die jamming Good quality control Complex die design • • • • • • • seek uniform thickness in order to achieve uniform cooling and hence minimise residual stress. hollow profiles require a cantilevered mandrel to enter the die from the fibre-feed end. continuous constant cross-section profile normally thermoset (thermoplastic possible) – impregnate with resin – pull through a heated die • resin shrinkage reduces friction in the die • polyester easier to process than epoxy tension control as in filament winding post-die, profile air-cooled before gripped – hand-over-hand hydraulic clamps – conveyor belt/caterpillar track systems. moving cut-off machine ("flying cutter"). The solid laminate will be cut to the desired length Inside the metal die, precise temperature control activates the curing of the thermoset resin. The Interface Interfacial bonding • Good bonding (adhesion) between matrix phase and dispersed phase provides transfer of load, applied to the material to the dispersed phase via the interface. Adhesion is necessary for • • There is always an interface between constituent phases in a composite material. For the composite to operate effectively, the phases must bond where they join at the interface. achieving high level of mechanical properties of the composite. • There are three forms of interface between the two phases: • Direct bonding with no intermediate layer. In this case adhesion (”wetting”) is provided by either covalent bonding or van der Waals force. • Intermediate layer (inter-phase) is in form of solid solution of the • Intermediate layer is in form of a third bonding phase matrix and dispersed phases constituents. (adhesive). 9 03/11/2015 Reinforcement-Matrix Interface • The load acting on the matrix has to be transferred to the reinforcement via. Interface. • The reinforcement must be strongly bonded to the matrix if high stiffness and strength are desired in the composite materials • A weak interface results in low stiffness and strength but high resistance to fracture. • A strong interface produces high stiffness and strength but often low resistance to fracture, i.e. brittle behavior Interfacial bonding • Setelah matriks memiliki kebasahan (wetability) terhadap penguat, ikatan akan terjadi. • Untuk sistem tertentu, lebih dari satu mekanisme ikatan mungkin terjadi pada waktu yang sama. 2 types of failure at interface • Ikatan dapat berubah selama tahap produksi atau selama perbaikan. 1) Adhesive failure - failure occur at interface 2) Cohesive failure – failure occur close to the interface (either at the fiber or matrix) Types of interfacial bonding at interface • Mechanical bonding • Physical bonding • Chemical bonding Mechanical Bonding • It is a simple mechanical keying or interlocking effect between the fiber-matrix phases. Physical Bonding • These kind of bonding involves weak secondary waals forces, dipolar interactions and hydrogen bonds. or vander • These type of bonding mechanism is of low significance because of its low magnitude. • The bond energy lies in the range of 8-16 kJ/mol. • When the matrix shrinks radially on cooling over the reinforcement leads to a griping action of the matrix on the fiber. 10 03/11/2015 Chemical bonding Interphase • Dissolution Bonding: This bonding is of short range and occurs at an electronic scale. This type of bonding is hindered by the presence of impurities on the fiber surface and also gas or air bubbles at the interface. • • In some cases, a third ingredient must be added to achieve bonding of primary and secondary phases Called an interphase, this third ingredient can be thought of as an adhesive • Reaction Bonding: This bonding is due to the transport of the molecules, atoms or ions which diffuse to the interface. APPLICATIONS OF PMCs Another Interphase • Polymer composites are used to make very light bicycles that are faster and easier to handle than standard ones, fishing boats that are resistant to corrosive seawater and lightweight turbine blades that generate wind power efficiently. New commercial aircraft also contain more composites than their predecessors. A 555-passenger plane recently built by Airbus, for example, consists of 25 percent composite material, while Boeing is designing a new jumbo aircraft that is planned to be more than half polymer composites. • Polymer Matrix Composites (PMCs) are used for manufacturing: secondary load-bearing aerospace structures, boat bodies, canoes, kayaks, automotive parts, radio controlled vehicles, sport goods (golf clubs, skis, tennis racquets), fishing rods, bullet-proof vests and other armor parts, brake and clutch linings. Interphase consisting of a solution of primary and secondary phases 11