Use of Wind Deflectors on Roof NSHEVs

Transcription

Use of Wind Deflectors on Roof NSHEVs
Use of Wind Deflectors
on Roof NSHEVs
Powering your ideas!
Introduction
The use of wind deflectors offers many
advantages over conventional solutions. For example, their use eliminates the need for a wind directiondependent control system. The result:
A potential reduction in relevant
procurement costs of up to 50%
thanks to the massive savings associated with NSHEVs.
And it is that simple …
Surely you’re thinking: That is exactly my goal, but how can I make it
happen? This guideline is a simple
instruction how to reach your goal
quickly and easily.
The guideline is divided into three
chapters. Chapter 1 covers the basic
principles. For example, the following
questions are answered there:
■Why are wind deflectors required
on roof NSHEVs?
■What does the standard specify?
■What are the advantages of D+H
roof smoke exhaust systems in
conjunction with wind deflectors?
■How is a NSHEV with a wind
deflector calculated?
■Which dimensions are important for
the calculation, and how are they
determined?
In Chapter 2, you will find instructions, based on a practical example,
on how to calculate a NSHEV with
wind deflector for your building. In
the Appendix, you will also find all
required diagrams for calculating roof
NSHEVs with wind deflectors.
Glass or sheet metal? That is the
question in Chapter 3, which also
provides details on ordering wind
deflectors, using a practical example.
Do you have any further questions?
Our team of experts would be more
than happy to offer you a personal
consultation.
www.dh-partner.com
2
1.
Why should you use wind deflectors on roof NSHEVs?
Basic principles
DIN EN 12101-2 is a product standard
which governs the testing and certification of NSHEVs.
It states:
■ For roof NSHEVs, the aerodynamic
flow rate coefficient is always determined both with and without taking
the crosswind into consideration.
For this, the lower value with crosswind influence should always be
specified.
■ If NSHEVs are equipped with
wind deflectors, the wind deflectors must be located at least 80
mm away from any NSHEV parts.
Furthermore, the wind deflectors
must be mounted in a manner
that prevents the formation of any
adverse snow or ice accumulation,
with regard to the opening process.
The new draft of the prEN 12101-2
standard also defines the terms “wall”
and “roof”:
■ Roofs = exterior building surfaces
with an inclination of 60° or less,
relative to the horizontal plane.
Shed roofs and lighting strips shall
be regarded as part of the roof, irrespective of their inclination.
■ Walls = exterior building surfaces
with an inclination of 60° or more,
relative to the horizontal plane.
The use of a sidewind dependent
control for roof NSHEVs does not offer
safe smoke exhaust and is therefore
not allowed according to the current
and future norm.
For roof NSHEVs, the increase in
aerodynamic efficiency when subjected to wind is typically realised using
wind deflectors which guide the local
wind flow over the opened area of the
NSHEVs.
What are the advantages of D+H roof smoke exhaust systems in connection with
wind deflectors?
■No wind-direction dependent control system is required, thereby
eliminating doubling of NSHEVs.
■DIN EN 12101-2 certified
■A visually appealing glass solution
and an inexpensive sheet metal
version are available.
■Universal installation kits are
available for glass wind deflectors
■Detailed documentation
3
Calculation of a NSHEV with a wind deflector
Because the NSHEV should always
be viewed as a unit, the wind deflector
is considered to be part of the NSHEV.
The height of the wind deflector is
always calculated in conjunction with
the calculation of the NSHEV.
Influencing variables for calculating a NSHEV
All relevant variables are defined in
the Technical Specification and can be
derived from the specification.
Technical Specification
Roof inclination/roof type
0° - 30°
Dual single flap
4
25° - 60°
Individual unit
Width and height of the
post and beam facade of
the system vendor to be
processed
Wsash frame
Hsash frame
Required effective
aerodynamic opening area
of the entire building for
the AA smoke vent system
AAroof
2.
Practical example for calculating a NSHEV with a wind deflector
Obtaining the result in just a few steps
1
For roof inclination and roof type please see Technical Specification
2
Determine the NSHEV dimensions in the Technical Specification
3
Determine the opening angle of the NSHEV
4
Determine the height of the wind deflector from the diagram
5
Calculate the width/height ratio of the NSHEV
6
Determine the aerodynamic flow rate coefficient from the diagram
7
Calculate the effective geometric area of the NSHEV
8
Calculate the effective aerodynamic area of the NSHEV
9
Calculate the number of required NSHEVs
Example of calculating a NSHEV with a wind deflector
A building with a specified area of 15 m2,
for which smoke must be removed
exclusively via a monopitch roof, is
used as an example. The roof inclina1
tion is 10°. The Schüco® AWS 57 RO
roof windows have a width of 1.2 m and
height of 3 m.
They must be equipped with wind
deflectors and are opened to 30°.The
number of required NSHEVs and the
height of the wind deflector must be
calculated.
Specify roof inclination/roof type
The available roof inclination and roof
type can be found in the Technical
Specification. The diagrams in the
Appendix of the listed Chapters must
be used for the calculations, depending on the roof inclination and roof
type.
Example:
Monopitch roof, 10° inclination =>
Dual single flap, Chapter 3.1.1
10
°
He
igh
t
30
°
th
Wid
0° - 15°/general roof, including barrel roof
See Appendix, dual single flap Chapter 3.1.1
16° - 30°/general roof, including barrel roof
See Appendix, dual single flap Chapter 3.1.2
2° - 30°/gable roof
See Appendix, dual single flap Chapter 3.2
25° - 29°/general roof
See Appendix, individual unit Chapter 3.3.1
29° - 60°/general roof
See Appendix, individual unit Chapter 3.3.2
5
2
Dimensions of NSHEVs
The width and height of the NSHEV
can be found in the Technical
Specification.
3
Opening angle of the NSHEV
Determine the opening angle of the
NSHEV if it is not specified in the
Technical Specification. The opening
angle is dependent on the stroke of
the drive and can be calculated using
the D+H Calculator*. Additionally the
stroke can be determined by the
opening angle.
4
x = s ystem vendor-specific exhaust
dimension from Table 1 in Chapter 3.4
of the Appendix.
Referring snow load calculation
please contact our EN-Team!
Example:
Height of the wind deflector = 250 mm
(The dimension is calculated using the
data in Diagram 2 in Chapter 3.1.1)
Example:
x = 135
W/H = Bclear space / Hclear space
= (1.2 – 0.135) / (3 – 0.135)
= 0.37
Therefore, the width/height ratio is 0.37.
Aerodynamic flow rate coefficient (CV)
The aerodynamic flow rate coefficient,
depending on the width/height ratio
and the opening angle of the NSHEV,
can be determined from the corresponding diagram in Chapter 3.1.1.
6
*We would be happy to set up
your personal access to the D+H
Calculator. Simply send us an email at:
mydh.support@dh-partner.com
Width/height ratio of the NSHEV
Now, calculate the width/height ratio
(W/H) using the values from step 2.
6
Example:
30° opening angle
Height of the wind deflector
Determine the height of the wind
deflector, based on the width and
height of the NSHEV, from the corresponding diagram in the Appendix.
5
Example:
Width (W) = 1.2 m
Height (H) = 3 m
Example:
Width/height (W/H) = 0.37
30° opening angle
The aerodynamic flow rate coefficient
is 0.43.
7
Geometrically available area (Av) of the NSHEV
Av = HClear space x WClear space
= (H – x) x (W – x)
x = s ystem vendor-specific exhaust
dimension from Table 1 in Chapter
3.4 of the Appendix.
H and W from step 2
8
Effective aerodynamic area (Aa) of the NSHEV
Aa = cv x Av
cv = a
erodynamic flow rate coefficient
from step 6
Av = effective geometric area from
step 7
9
Example:
Aa = 0.43 x 3.05 m² = 1.3 m²
The effective aerodynamic area of
the NSHEV is 1.3 m2.
Number of required NSHEVs
n = AAroof /Aa
AAroof
n
Aa Example:
x = 135
Av = (3 – 0.135) x (1.2 – 0.135)
= 3.05 m2
The effective geometric area of the
NSHEV is 3.05 m2.
=a
erodynamic free opening area of the entire roof
listed in the Technical
Specification
= number of roof NSHEVs
= effective aerodynamic area
from step 8
Example:
n = 15 m2/1.3 m2
= 11.5
Therefore, the number of required
NSHEVs is 12 units.
7
Calculating a NSHEV with a wind deflector
Selecting the material
1
Glass or sheet metal?
Glass
Sheet metal
G1
B1
Order glass for wind
deflector
Order sheet metal wind
deflector
G2
Order installation kits
for wind deflector
Example for ordering a wind deflector
1
Glass or sheet metal?
Up to a height of 300 mm, a wind
deflector can be manufactured in glass.
For wind deflectors between 300 mm
and 600 mm, sheet metal must be
used. Glass is the visually appealing
option, while sheet metal is the costeffective alternative.
8
You have decided on a glass wind deflector?
Then continue with steps G1 and G2.
Or do you want a sheet metal wind deflector?
Then, continue with step B1.
G1 Glass wind deflector
The glass is not part of the D+H scope
of supply! A manufacturing drawing
is available for ordering the glass.
Please download the AD00221 drawing from the Intranet. The AD00221
drawing can be found on page 21.
Please enter the following information
on the drawing:
■ Length (l) = height of the NSHEV in mm (from step 2, Chapter 2)
+20 mm
Example:
Length (l) = 3,000 mm + 20 mm
= 3,020 mm
The length of the individual glass must not exceed 2,500 mm.
Therefore, the glass must be cut.
Therefore: Length (l) = 1,510 mm (number of glass panes doubles)
■ Height h = height of the wind deflector (from step 4, Chapter 2)
Example:
Height (h) = 250 mm
The height of the individual glass must not exceed 300 mm.
■ Number of glass panes = 2 x number of NSHEVs
(from step 9, Chapter 2)
Example:
2 x 12 pieces = 24 pieces
The number of glass panes doubles because the glass needs to be cut
= 48 pieces
The completed drawing can now be
sent to a glazier and the material can
be ordered in the required quantities.
It is very much recommended to fur-
nish the glass panes with drill holes
and secure with screws. In this case
the glass mountings are not necessary. For this, the maximum allowable
distance between the drill holes is 460
mm (see WDF instructions for use).
G2 Installation kits
Two console sets are required for
fastening glass wind deflectors: One
for the corner mounting (WDF-BS001CM, Item No. 27. BAA. ZU) and one
for middle mounting (WDF-BS002MM, Item No. 27 BAB. ZU).
■ Number of WDF-BS001-CM installation kits = number of NSHEVs
Example:
12 NSHEVs = 12 x WDF-BS001-CM installation kits, to be ordered from
D+H
■ Number of WDF-BS002-MM installation kits
= ( height of the NSHEV in mm (from step 2, Chapter 2)/460 mm) x
number of NSHEVs
The result is always rounded down and multiplied by the number of NSHEVs.
The distance between the installation kits must not exceed 460 mm!
Example:
(3,000/460) x 12 = 6 x 12 = 72 WDF-BS002-MM installation kits
9
B1 Order sheet metal wind deflector
The sheet metal wind deflector is not
part of the D+H scope of supply! A
combined installation and manufacturing drawing is available for ordering
and installing the sheet metal wind
deflector. A complete sheet metal wind
deflector consists of one piece of sheet
metal, 2 side gauges and 2 T-profiles.
Please download the AD00222 drawing from the Intranet. The AD00222
drawing can be found on page 18 et
seqq. Please enter the following information on the drawing:
■ Page 19: Length (l) = height of the NSHEV in mm (from step 2, Chapter 2)
+ 100 mm
Example:
Length (l ) =
3,000 mm +100 mm
= 3,100 mm
The length of the individual sheet metal must not exceed 2,600 mm.
Therefore, the sheet metal must be cut.
Therefore: Length (l) = 1,550 mm (number of sheet metal pieces doubles)
■ Page 19: Height h = height of the wind deflector (from step 4, Chapter 2)
Example:
Height (h) = 250 mm
The height of the individual sheet metal must not exceed 600 mm.
■ Page 19: Dimension X = see Table 2 (in AD00222)
Example:
Height (h) =
250 mm dimension (X)
= 50 mm
■ Page 20: Dimension Y = height of WDF/2
Example:
Dimension (Y) = height (h) /2
= 250 mm /2 = 125 mm
■ Page 18: Length of the T-profile = see Table 1 (in AD00222)
Example:
Height (h) = 250 mm
Length (l) of the T-profile = 195 mm
■ Number of sheet metal pieces = 2 x number of NSHEVs
Example:
2 x 12 pieces = 24 pieces
The number of sheet metal pieces doubles because the sheet metal needs
to be cut = 48 pieces
■ Number of side gauges = 2 x number of sheet metal pieces
Example:
2 x 48 pieces = 96 pieces
■ Number of T-profiles = 2 x number of sheet metal pieces
Example:
2 x 48 pieces = 96 pieces
You now have all information for your NSHEV!
Simply send the complete drawing to the selected window manufacturer and order the corresponding quantities of
sheet metal, side gauges and T-profiles.
10
3.
Diagrams for calculating roof NSHEVs with wind deflectors
3.1 Dual single shutter as roof bottom and top-hung vent (flat roof + barrel roof)
3.1.1 Roof inclination 0° to 15°
Diagram 1
FlowDurchflussbeiwerte
rate coefficientsCC
Aclear space
v; v;
Alichte
[Zweifach
zum for
Einbau
Dach, Einbauneigung
15°]
[DualEinzelklappe
single shutter
roofiminstallation,
slope β = 0°0°
tobis
15°]
0.80
0.75
0.70
0.65
Durchflussbeiwert
CvCv
[-] [-]
Flow rate coefficient
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
W/H < 0.17
0.20
0.17 ≤ W/H < 0.28
0.15
0.28 ≤ W/H < 0.50
0.10
0.50 ≤ W/H < 1.00
0.05
W/H ≥ 1.00
0.00
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
Öffnungswinkel
Opening angle α[°]
[°]
11
95
Diagram 2
5000
H 600
Unit dimensions
Geräteabmessungen
4500
H 500
H 550
4000
Höhe HFR ZK [mm]
Height HSF DF [mm]
Opening angle 15° to < 45°
■Max. sash width up to 2.5 m
(sash outer dimension!)
■Max. sash height 5 m
(total height above both shutters!)
■Sash height and sash width are
mutually dependent
(e.g. 1.5 m width → 3 m height)
■System vendor specifications for
area and weight must be
observed at all times!
Wind deflector
height HH[mm]
[mm]
dependentdes
onÖffnungswinkels:
the opening 15°
angle:
Windleitwandhöhe
in Abhängigkeit
≤ < 15°
45° ≤ α < 45°
[Dual single
shutter
roofiminstallation,
slope β = °0°bisto15°]
15°]
[Zweifach
Einzelklappe
zumfor
Einbau
Dach, Einbauneigung
H 400
H 450
3500
H 300
3000
H 350
H 250
2500
H 200
2000
H 150
1500
H 100
1000
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
BreiteW
BFR [mm]
Width
[mm]
FR
Diagram 3
5000
H 600
Unit dimensions
Geräteabmessungen
Geräteabmessungen
4500
H 500
H 550
4000
H 400
FR ZK
Height
H [mm]
[mm]
Höhe H SF DF
Opening angle 45° to 90°
■Max. sash width up to 2.5 m
(sash outer dimension!)
■Max. sash height 5 m
(total height above both shutters!)
■Sash height and sash width are
mutually dependent
(e.g. 0.65 m width → 5 m height)
■System vendor specifications for
area and weight must be observed
at all times!
Wind deflector
heightHHH[mm]
[mm]
dependentdes
onÖffnungswinkels:
the opening 15°
angle:
45°
Windleitwandhöhe
[mm]
in Abhängigkeit
Abhängigkeit
des
Öffnungswinkels:
45°
90° ≤ α ≤ 90°
Windleitwandhöhe
in
≤≤ <≤ 45°
zumfor
Einbau
im
Dach, Einbauneigung
Einbauneigung
° bis
bisto
15°]
[Dual single
shutter
roofim
installation,
slope β = °0°
15°]
[Zweifach
Einzelklappe
zum
Einbau
Dach,
15°]
H 450
H 600
3500
H 350
H 300
3000
H 550
H 250
2500
H 500
H 450
H 200
2000
H 400
H 200
H 150
H 150
1500
H 250
H 350
H 300
H 100
100
H
1000
0
200
400
600
800
1000
1000
1200
1200
1400
1400
Breite
B
[mm]
BreiteW
BFR
Width
[mm]
FR [mm]
FR
12
1600
1600
1800
1800
2000
2000
2200
2200
2400
2400
2600
2600
3.1.2 Roof inclination 16° to 30°
Diagram 4
Flow
rate coefficientsCC
Durchflussbeiwerte
Aclear space
v; v;
Alichte
[Zweifach
zum for
Einbau
Dach, Einbauneigung
16°
30°]
[DualEinzelklappe
single shutter
roofiminstallation,
slope β = 16°
tobis
30°]
0.60
0.55
0.50
Durchflussbeiwert
CvCv
[-] [-]
Flow
rate coefficient
0.45
0.40
0.35
0.30
0.25
0.20
0.15
W/H < 1.00
0.10
W/H ≥ 1.00
0.05
0.00
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
Öffnungswinkel
Opening angle α [°]
[°]
13
95
Diagram 5
Wind deflector height H [mm] dependent on the opening angle: 15° ≤ α < 45°
[Dual single shutter for roof installation, slope β = 16° to 30°]
Windleitwandhöhe H [mm] in Abhängigkeit des Öffnungswinkels: 15° ≤ < 45°
[Zweifach Einzelklappe zum Einbau im Dach, Einbauneigung
4500
3500
3000
2500
2000
1500
Unit dimensions
Geräteabmessungen
H 550
H 450
H 350
H 100
Width WFR [mm]
1000
0
200
400
600
800
1000
1200
1400
1600
1800
2000
2200
2400
2600
Breite BFR [mm]
Diagram 6
Wind deflector height H [mm] dependent on the opening angle: 45° ≤ α ≤ 90°
single shutter for roof installation, slope β = 16° bis 30°]
Windleitwandhöhe H [mm] in Abhängigkeit des Öffnungswinkels: 15° ≤ <[Dual
45°
[Zweifach Einzelklappe zum Einbau im Dach, Einbauneigung
Opening angle 45° to 90°
■Max. sash width up to 2.5 m
5000
° bis 15°]
H 600
Unit dimensions
Geräteabmessungen
4500
(sash outer dimension!)
H 500
■
4000 Max. sash height 2.5 m
(total height above both shutters!) H 400
3500
■Sash height and sash width are
H 300
3000
mutually dependent
(e.g. 2.3 m width → 2.0 m height) H 250
2500
■System vendor specifications for
H 200
2000
area and weight must be observed
H 150
1500 at all times!
H 550
Height HSF DF [mm]
Höhe HFR ZK [mm]
Höhe HFR ZK [mm]
4000
° bis 15°]
Height HSF DF [mm]
Opening angle 15° to 45°
■Max. sash width up to 2.5 m H 600
(sash outer dimension!)
H 500
■Max. sash height 2.5 m
H 400
(total height above both shutters!)
■Sash height and sash width are
H 300
mutually dependent
H 250
(e.g. 2.5 m width → 2.5 m height)
■System vendor specifications for
H 200
area and weight must be observed
H 150
at all times!
5000
H 450
H 350
H 100
Width WFR [mm]
1000
0
200
400
600
800
1000
1200
1400
Breite BFR [mm]
14
1600
1800
2000
2200
2400
2600
3.2 Dual single shutter as roof bottom and top-hung vent
(roof inclination of 2° to 30°/gable roof)
Diagram 7
Flow
rate coefficients
Durchflussbeiwerte
C v;CAlichte
v; Aclear space
[Zweifach
zumfor
Einbau
im roof
Satteldach,
Einbauneigung
bis 30°]
30°]
[DualEinzelklappe
single shutter
gable
installation,
slope β = 2°2°bis
0.80
0.75
0.70
0.65
Durchflussbeiwert
CvCv
[-] [-]
Flow
rate coefficient
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
W/H < 0.17
0.20
0.17 ≤ W/H < 0.28
0.15
0.28 ≤ W/H < 0.50
0.10
0.50 ≤ W/H < 1.00
0.05
W/H ≥ 1.00
0.00
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
Öffnungswinkel
[°][°]
Opening angle α
15
95
Diagram 8
5000
5000
HH600
600
Unit dimensions
Geräteabmessungen
4500
4500
500
HH500
550
HH550
4000
4000
400
HH400
450
HH450
3500
3500
Höhe HFR ZK [mm]
Höhe HFR ZK [mm]
Height HSF DF [mm]
Opening angle 15° to < 45°
■Max. sash width up to 2.5 m
(sash outer dimension!)
■Max. sash height 5 m
(total height above both shutters!)
■Sash height and sash width are
mutually dependent
(e.g. 1.5 m width → 3 m height)
■System vendor specifications for
area and weight must be observed
at all times!
Wind deflector
height H[mm]
[mm]
dependentdes
on
the opening angle:
15° ≤ α < 45°
Windleitwandhöhe
ininAbhängigkeit
Öffnungswinkels:
WindleitwandhöheHH[mm]
Abhängigkeitdes
Öffnungswinkels: 15°
15° ≤≤ << 45°
[Dual
single
shutter
for
gable
installation,
slope β° 2°
=
to 30°]
[Zweifach
Einzelklappe
zum
Einbau
im roof
Satteldach,
Einbauneigung
bis
30°]
[Zweifach
Einzelklappe
zum
Einbau
im Dach,
Einbauneigung
bis2°
15°]
300
HH300
3000
3000
250
HH250
2500
2500
200
HH200
2000
2000
150
HH150
1500
1500
1000
1000
0
0
350
HH350
H 100
H 100
200
200
400
400
600
600
800
800
1000
1000
1200
1400
1200
1400
Breite BFR [mm]
1600
1600
1800
1800
2000
2000
2200
2200
2400
2400
2600
2600
BreiteW
BFR [mm]
Width
[mm]
FR
Diagram 9
5000
5000
H 600
Geräteabmessungen
Unit dimensions
Geräteabmessungen
4500
4500
H 500
H 550
4000
4000
H 400
H 450
H 350
H 300
3000
3000
H 550
H 250
2500
2500
H 500
H 450
H 200
2000
2000
H 400
H 200
HH150
150
1500
1500
1000
1000
00
H 250
H 350
H 300
H 100
100
H
200
200
400
400
600
600
800
800
1000
1000
1200
1200
1400
1400
[mm]
Breite B
BFR [mm]
Breite
Width
W
FR [mm]
FR
16
H 600
3500
3500
Höhe HFR ZK [mm]
Höhe HFR ZK [mm]
Height HSF DF [mm]
Opening angle 45° to 90°
■Max. sash width up to 2.5 m
(sash outer dimension!)
■Max. sash height 5 m
(total height above both shutters!)
■Sash height and sash width are
mutually dependent
(e.g. 0.65 m width → 5 m height)
■System vendor specifications for
area and weight must be observed
at all times!
Wind deflector
height HH[mm]
[mm]
dependent onÖffnungswinkels:
the opening 15°
angle:
Windleitwandhöhe
45° ≤≤ <≤45°
90° ≤ α ≤ 90°
Windleitwandhöhe H
[mm] in
in Abhängigkeit des Öffnungswinkels:
45°
[Dual
single
shutterzum
for
gable
installation,
slope β° =
to
30°]
[Zweifach
Einzelklappe
Einbau
imroof
Satteldach,
Einbauneigung
2°2°
bis
30°]
[Zweifach
Einzelklappe
zum
Einbau
im
Dach,
Einbauneigung
bis
15°]
1600
1600
1800
1800
2000
2000
2200
2200
2400
2400
2600
2600
3.3 Individual unit as top-hung vent
3.3.1 Roof inclination 25° to 29°
■Max. sash width up to 2.5 m
(sash outer dimension!)
■For sash heights up to 1 m in length,
■System vendor specifications for
the opening angle is 15° to 90°.
■For sash heights > 1 m in length, the
opening angle is 15° to 30°.
area and weight must be observed
at all times!
3.3.2 Roof inclination 30° to 60°
■Max. sash width up to 2.5 m
■System vendor specifications for
(sash outer dimension!)
■Max. sash height up to 2.5 m
Diagram 10
area and weight must be observed
at all times!
Durchflussbeiwert
Windleitwänden
v;Alichte - mit
Flow rate
coefficient Cv; cAclear
- with
wind deflectors
space
[Dachkippflügel; Typ: Schüco "AWS 57 RO"]
[Top-hung vent; model: Schüco "AWS 57 RO"]
0.75
0.70
0.65
Flow rate coefficient cV / [-]
Durchflussbeiwert cv / [-]
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
(0.465m ≤ W < 0.865m) * H
0.20
(0.865m ≤ W < 1.365m) * H
0.15
(1.365m ≤ W < 1.865m) * H
0.10
(1.865m ≤ W < 2.365m) * H
0.05
W = width of clear space , H = height of clear space
0.00
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
Öffnungswinkel
/ [°]
Opening angle α / [°]
Wind deflector dimensions:
W ≤ 0.85
→ HWDF = 100mm; LWDF = HSF
0.85 < W ≤ 1.20
→ HWDF = 150mm; LWDF = HSF
W > 1.20
→ HWDF = 175mm; LWDF = HSF
17
18
19
3.4 System vendor specific clearances
System vendor-specific exhaust dimensions will be defined by the Test Institute
during determination of the aerodynamic
efficiency.
System
Aluprof
98
®
Gutmann
Heroal
Raico
Clearance in mm
®
Sapa
20
136
®
100
®
Reynaers
92
®
114
140
®
Schüco
®
135
Wicona
®
134
21
max. 460 mm
27
Höhe / height
h = xxx
maximale Höhe 300mm /
maximum height 300mm
Technische Änderungen vorbehalten.
Rights to technical modifications reserved.
© 30.04.2010, D+H Mechatronic AG, Germany
5
Länge / length
l = xxx
max. 460 mm
maximale Länge 2500mm! /
maximum length 2500mm!
1
1
5
Serie
xxx
AD00221
Zeichnungs-Nr. / Drawing-No.
glass for winddeflector
Index Seite / Page
A00
Georg-Sasse-Straße 28-32
22949 Ammersbek / Germany
Tel.:+49 40 605 65-0
Fax:+49 40 605 65-222
www.dh-partner.com
D+H Mechatronic AG
Schutzvermerk ISO 16016 beachten! Refer to protection notice ISO 16016!
In this drawing displayed construction-proposal has to be checked by the user concerning exactness and feasibility on his own authority. D+H do not take
over liability for possible errors. Application advices for use have to be supplementary observed in D+H product and instruction for use sheets.
In dieser Zeichnung dargestellte Konstruktionsvorschläge sind vom Anwender hinsichtlich Richtigkeit und Ausführbarkeit eigenverantwortlich zu prüfen. Für
etwaige Fehler wird keine Haftung übernommen. Ergänzend sind die Anwendungshinweise aus den D+H Produkt- und Gebrauchsinformationen zu beachten.
Ref.
001
System
xxx
8
Verbundsicherheitsglas (VSG) /
laminated sheet glass (LSG)
Datum / Date 30.04.2010
Glas für Windleitwand
Anwendung / Application
max. 460 mm
Bohrungen sind optional! /
Drill holes are optional!
1.0/01/11
99.700.88
D+H Mechatronic AG, Georg-Sasse-Straße 28-32, D-22949 Ammersbek / Germany
Telephone: +49 40 60565 0, Fax: +49 40 60565 222
Internet: www.dh-partner.com, E-mail: info@dh-partner.com
© 2011 D+H Mechatronic AG, Ammersbek