Use of Wind Deflectors on Roof NSHEVs
Transcription
Use of Wind Deflectors on Roof NSHEVs
Use of Wind Deflectors on Roof NSHEVs Powering your ideas! Introduction The use of wind deflectors offers many advantages over conventional solutions. For example, their use eliminates the need for a wind directiondependent control system. The result: A potential reduction in relevant procurement costs of up to 50% thanks to the massive savings associated with NSHEVs. And it is that simple … Surely you’re thinking: That is exactly my goal, but how can I make it happen? This guideline is a simple instruction how to reach your goal quickly and easily. The guideline is divided into three chapters. Chapter 1 covers the basic principles. For example, the following questions are answered there: ■Why are wind deflectors required on roof NSHEVs? ■What does the standard specify? ■What are the advantages of D+H roof smoke exhaust systems in conjunction with wind deflectors? ■How is a NSHEV with a wind deflector calculated? ■Which dimensions are important for the calculation, and how are they determined? In Chapter 2, you will find instructions, based on a practical example, on how to calculate a NSHEV with wind deflector for your building. In the Appendix, you will also find all required diagrams for calculating roof NSHEVs with wind deflectors. Glass or sheet metal? That is the question in Chapter 3, which also provides details on ordering wind deflectors, using a practical example. Do you have any further questions? Our team of experts would be more than happy to offer you a personal consultation. www.dh-partner.com 2 1. Why should you use wind deflectors on roof NSHEVs? Basic principles DIN EN 12101-2 is a product standard which governs the testing and certification of NSHEVs. It states: ■ For roof NSHEVs, the aerodynamic flow rate coefficient is always determined both with and without taking the crosswind into consideration. For this, the lower value with crosswind influence should always be specified. ■ If NSHEVs are equipped with wind deflectors, the wind deflectors must be located at least 80 mm away from any NSHEV parts. Furthermore, the wind deflectors must be mounted in a manner that prevents the formation of any adverse snow or ice accumulation, with regard to the opening process. The new draft of the prEN 12101-2 standard also defines the terms “wall” and “roof”: ■ Roofs = exterior building surfaces with an inclination of 60° or less, relative to the horizontal plane. Shed roofs and lighting strips shall be regarded as part of the roof, irrespective of their inclination. ■ Walls = exterior building surfaces with an inclination of 60° or more, relative to the horizontal plane. The use of a sidewind dependent control for roof NSHEVs does not offer safe smoke exhaust and is therefore not allowed according to the current and future norm. For roof NSHEVs, the increase in aerodynamic efficiency when subjected to wind is typically realised using wind deflectors which guide the local wind flow over the opened area of the NSHEVs. What are the advantages of D+H roof smoke exhaust systems in connection with wind deflectors? ■No wind-direction dependent control system is required, thereby eliminating doubling of NSHEVs. ■DIN EN 12101-2 certified ■A visually appealing glass solution and an inexpensive sheet metal version are available. ■Universal installation kits are available for glass wind deflectors ■Detailed documentation 3 Calculation of a NSHEV with a wind deflector Because the NSHEV should always be viewed as a unit, the wind deflector is considered to be part of the NSHEV. The height of the wind deflector is always calculated in conjunction with the calculation of the NSHEV. Influencing variables for calculating a NSHEV All relevant variables are defined in the Technical Specification and can be derived from the specification. Technical Specification Roof inclination/roof type 0° - 30° Dual single flap 4 25° - 60° Individual unit Width and height of the post and beam facade of the system vendor to be processed Wsash frame Hsash frame Required effective aerodynamic opening area of the entire building for the AA smoke vent system AAroof 2. Practical example for calculating a NSHEV with a wind deflector Obtaining the result in just a few steps 1 For roof inclination and roof type please see Technical Specification 2 Determine the NSHEV dimensions in the Technical Specification 3 Determine the opening angle of the NSHEV 4 Determine the height of the wind deflector from the diagram 5 Calculate the width/height ratio of the NSHEV 6 Determine the aerodynamic flow rate coefficient from the diagram 7 Calculate the effective geometric area of the NSHEV 8 Calculate the effective aerodynamic area of the NSHEV 9 Calculate the number of required NSHEVs Example of calculating a NSHEV with a wind deflector A building with a specified area of 15 m2, for which smoke must be removed exclusively via a monopitch roof, is used as an example. The roof inclina1 tion is 10°. The Schüco® AWS 57 RO roof windows have a width of 1.2 m and height of 3 m. They must be equipped with wind deflectors and are opened to 30°.The number of required NSHEVs and the height of the wind deflector must be calculated. Specify roof inclination/roof type The available roof inclination and roof type can be found in the Technical Specification. The diagrams in the Appendix of the listed Chapters must be used for the calculations, depending on the roof inclination and roof type. Example: Monopitch roof, 10° inclination => Dual single flap, Chapter 3.1.1 10 ° He igh t 30 ° th Wid 0° - 15°/general roof, including barrel roof See Appendix, dual single flap Chapter 3.1.1 16° - 30°/general roof, including barrel roof See Appendix, dual single flap Chapter 3.1.2 2° - 30°/gable roof See Appendix, dual single flap Chapter 3.2 25° - 29°/general roof See Appendix, individual unit Chapter 3.3.1 29° - 60°/general roof See Appendix, individual unit Chapter 3.3.2 5 2 Dimensions of NSHEVs The width and height of the NSHEV can be found in the Technical Specification. 3 Opening angle of the NSHEV Determine the opening angle of the NSHEV if it is not specified in the Technical Specification. The opening angle is dependent on the stroke of the drive and can be calculated using the D+H Calculator*. Additionally the stroke can be determined by the opening angle. 4 x = s ystem vendor-specific exhaust dimension from Table 1 in Chapter 3.4 of the Appendix. Referring snow load calculation please contact our EN-Team! Example: Height of the wind deflector = 250 mm (The dimension is calculated using the data in Diagram 2 in Chapter 3.1.1) Example: x = 135 W/H = Bclear space / Hclear space = (1.2 – 0.135) / (3 – 0.135) = 0.37 Therefore, the width/height ratio is 0.37. Aerodynamic flow rate coefficient (CV) The aerodynamic flow rate coefficient, depending on the width/height ratio and the opening angle of the NSHEV, can be determined from the corresponding diagram in Chapter 3.1.1. 6 *We would be happy to set up your personal access to the D+H Calculator. Simply send us an email at: mydh.support@dh-partner.com Width/height ratio of the NSHEV Now, calculate the width/height ratio (W/H) using the values from step 2. 6 Example: 30° opening angle Height of the wind deflector Determine the height of the wind deflector, based on the width and height of the NSHEV, from the corresponding diagram in the Appendix. 5 Example: Width (W) = 1.2 m Height (H) = 3 m Example: Width/height (W/H) = 0.37 30° opening angle The aerodynamic flow rate coefficient is 0.43. 7 Geometrically available area (Av) of the NSHEV Av = HClear space x WClear space = (H – x) x (W – x) x = s ystem vendor-specific exhaust dimension from Table 1 in Chapter 3.4 of the Appendix. H and W from step 2 8 Effective aerodynamic area (Aa) of the NSHEV Aa = cv x Av cv = a erodynamic flow rate coefficient from step 6 Av = effective geometric area from step 7 9 Example: Aa = 0.43 x 3.05 m² = 1.3 m² The effective aerodynamic area of the NSHEV is 1.3 m2. Number of required NSHEVs n = AAroof /Aa AAroof n Aa Example: x = 135 Av = (3 – 0.135) x (1.2 – 0.135) = 3.05 m2 The effective geometric area of the NSHEV is 3.05 m2. =a erodynamic free opening area of the entire roof listed in the Technical Specification = number of roof NSHEVs = effective aerodynamic area from step 8 Example: n = 15 m2/1.3 m2 = 11.5 Therefore, the number of required NSHEVs is 12 units. 7 Calculating a NSHEV with a wind deflector Selecting the material 1 Glass or sheet metal? Glass Sheet metal G1 B1 Order glass for wind deflector Order sheet metal wind deflector G2 Order installation kits for wind deflector Example for ordering a wind deflector 1 Glass or sheet metal? Up to a height of 300 mm, a wind deflector can be manufactured in glass. For wind deflectors between 300 mm and 600 mm, sheet metal must be used. Glass is the visually appealing option, while sheet metal is the costeffective alternative. 8 You have decided on a glass wind deflector? Then continue with steps G1 and G2. Or do you want a sheet metal wind deflector? Then, continue with step B1. G1 Glass wind deflector The glass is not part of the D+H scope of supply! A manufacturing drawing is available for ordering the glass. Please download the AD00221 drawing from the Intranet. The AD00221 drawing can be found on page 21. Please enter the following information on the drawing: ■ Length (l) = height of the NSHEV in mm (from step 2, Chapter 2) +20 mm Example: Length (l) = 3,000 mm + 20 mm = 3,020 mm The length of the individual glass must not exceed 2,500 mm. Therefore, the glass must be cut. Therefore: Length (l) = 1,510 mm (number of glass panes doubles) ■ Height h = height of the wind deflector (from step 4, Chapter 2) Example: Height (h) = 250 mm The height of the individual glass must not exceed 300 mm. ■ Number of glass panes = 2 x number of NSHEVs (from step 9, Chapter 2) Example: 2 x 12 pieces = 24 pieces The number of glass panes doubles because the glass needs to be cut = 48 pieces The completed drawing can now be sent to a glazier and the material can be ordered in the required quantities. It is very much recommended to fur- nish the glass panes with drill holes and secure with screws. In this case the glass mountings are not necessary. For this, the maximum allowable distance between the drill holes is 460 mm (see WDF instructions for use). G2 Installation kits Two console sets are required for fastening glass wind deflectors: One for the corner mounting (WDF-BS001CM, Item No. 27. BAA. ZU) and one for middle mounting (WDF-BS002MM, Item No. 27 BAB. ZU). ■ Number of WDF-BS001-CM installation kits = number of NSHEVs Example: 12 NSHEVs = 12 x WDF-BS001-CM installation kits, to be ordered from D+H ■ Number of WDF-BS002-MM installation kits = ( height of the NSHEV in mm (from step 2, Chapter 2)/460 mm) x number of NSHEVs The result is always rounded down and multiplied by the number of NSHEVs. The distance between the installation kits must not exceed 460 mm! Example: (3,000/460) x 12 = 6 x 12 = 72 WDF-BS002-MM installation kits 9 B1 Order sheet metal wind deflector The sheet metal wind deflector is not part of the D+H scope of supply! A combined installation and manufacturing drawing is available for ordering and installing the sheet metal wind deflector. A complete sheet metal wind deflector consists of one piece of sheet metal, 2 side gauges and 2 T-profiles. Please download the AD00222 drawing from the Intranet. The AD00222 drawing can be found on page 18 et seqq. Please enter the following information on the drawing: ■ Page 19: Length (l) = height of the NSHEV in mm (from step 2, Chapter 2) + 100 mm Example: Length (l ) = 3,000 mm +100 mm = 3,100 mm The length of the individual sheet metal must not exceed 2,600 mm. Therefore, the sheet metal must be cut. Therefore: Length (l) = 1,550 mm (number of sheet metal pieces doubles) ■ Page 19: Height h = height of the wind deflector (from step 4, Chapter 2) Example: Height (h) = 250 mm The height of the individual sheet metal must not exceed 600 mm. ■ Page 19: Dimension X = see Table 2 (in AD00222) Example: Height (h) = 250 mm dimension (X) = 50 mm ■ Page 20: Dimension Y = height of WDF/2 Example: Dimension (Y) = height (h) /2 = 250 mm /2 = 125 mm ■ Page 18: Length of the T-profile = see Table 1 (in AD00222) Example: Height (h) = 250 mm Length (l) of the T-profile = 195 mm ■ Number of sheet metal pieces = 2 x number of NSHEVs Example: 2 x 12 pieces = 24 pieces The number of sheet metal pieces doubles because the sheet metal needs to be cut = 48 pieces ■ Number of side gauges = 2 x number of sheet metal pieces Example: 2 x 48 pieces = 96 pieces ■ Number of T-profiles = 2 x number of sheet metal pieces Example: 2 x 48 pieces = 96 pieces You now have all information for your NSHEV! Simply send the complete drawing to the selected window manufacturer and order the corresponding quantities of sheet metal, side gauges and T-profiles. 10 3. Diagrams for calculating roof NSHEVs with wind deflectors 3.1 Dual single shutter as roof bottom and top-hung vent (flat roof + barrel roof) 3.1.1 Roof inclination 0° to 15° Diagram 1 FlowDurchflussbeiwerte rate coefficientsCC Aclear space v; v; Alichte [Zweifach zum for Einbau Dach, Einbauneigung 15°] [DualEinzelklappe single shutter roofiminstallation, slope β = 0°0° tobis 15°] 0.80 0.75 0.70 0.65 Durchflussbeiwert CvCv [-] [-] Flow rate coefficient 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 W/H < 0.17 0.20 0.17 ≤ W/H < 0.28 0.15 0.28 ≤ W/H < 0.50 0.10 0.50 ≤ W/H < 1.00 0.05 W/H ≥ 1.00 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Öffnungswinkel Opening angle α[°] [°] 11 95 Diagram 2 5000 H 600 Unit dimensions Geräteabmessungen 4500 H 500 H 550 4000 Höhe HFR ZK [mm] Height HSF DF [mm] Opening angle 15° to < 45° ■Max. sash width up to 2.5 m (sash outer dimension!) ■Max. sash height 5 m (total height above both shutters!) ■Sash height and sash width are mutually dependent (e.g. 1.5 m width → 3 m height) ■System vendor specifications for area and weight must be observed at all times! Wind deflector height HH[mm] [mm] dependentdes onÖffnungswinkels: the opening 15° angle: Windleitwandhöhe in Abhängigkeit ≤ < 15° 45° ≤ α < 45° [Dual single shutter roofiminstallation, slope β = °0°bisto15°] 15°] [Zweifach Einzelklappe zumfor Einbau Dach, Einbauneigung H 400 H 450 3500 H 300 3000 H 350 H 250 2500 H 200 2000 H 150 1500 H 100 1000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 BreiteW BFR [mm] Width [mm] FR Diagram 3 5000 H 600 Unit dimensions Geräteabmessungen Geräteabmessungen 4500 H 500 H 550 4000 H 400 FR ZK Height H [mm] [mm] Höhe H SF DF Opening angle 45° to 90° ■Max. sash width up to 2.5 m (sash outer dimension!) ■Max. sash height 5 m (total height above both shutters!) ■Sash height and sash width are mutually dependent (e.g. 0.65 m width → 5 m height) ■System vendor specifications for area and weight must be observed at all times! Wind deflector heightHHH[mm] [mm] dependentdes onÖffnungswinkels: the opening 15° angle: 45° Windleitwandhöhe [mm] in Abhängigkeit Abhängigkeit des Öffnungswinkels: 45° 90° ≤ α ≤ 90° Windleitwandhöhe in ≤≤ <≤ 45° zumfor Einbau im Dach, Einbauneigung Einbauneigung ° bis bisto 15°] [Dual single shutter roofim installation, slope β = °0° 15°] [Zweifach Einzelklappe zum Einbau Dach, 15°] H 450 H 600 3500 H 350 H 300 3000 H 550 H 250 2500 H 500 H 450 H 200 2000 H 400 H 200 H 150 H 150 1500 H 250 H 350 H 300 H 100 100 H 1000 0 200 400 600 800 1000 1000 1200 1200 1400 1400 Breite B [mm] BreiteW BFR Width [mm] FR [mm] FR 12 1600 1600 1800 1800 2000 2000 2200 2200 2400 2400 2600 2600 3.1.2 Roof inclination 16° to 30° Diagram 4 Flow rate coefficientsCC Durchflussbeiwerte Aclear space v; v; Alichte [Zweifach zum for Einbau Dach, Einbauneigung 16° 30°] [DualEinzelklappe single shutter roofiminstallation, slope β = 16° tobis 30°] 0.60 0.55 0.50 Durchflussbeiwert CvCv [-] [-] Flow rate coefficient 0.45 0.40 0.35 0.30 0.25 0.20 0.15 W/H < 1.00 0.10 W/H ≥ 1.00 0.05 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Öffnungswinkel Opening angle α [°] [°] 13 95 Diagram 5 Wind deflector height H [mm] dependent on the opening angle: 15° ≤ α < 45° [Dual single shutter for roof installation, slope β = 16° to 30°] Windleitwandhöhe H [mm] in Abhängigkeit des Öffnungswinkels: 15° ≤ < 45° [Zweifach Einzelklappe zum Einbau im Dach, Einbauneigung 4500 3500 3000 2500 2000 1500 Unit dimensions Geräteabmessungen H 550 H 450 H 350 H 100 Width WFR [mm] 1000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 Breite BFR [mm] Diagram 6 Wind deflector height H [mm] dependent on the opening angle: 45° ≤ α ≤ 90° single shutter for roof installation, slope β = 16° bis 30°] Windleitwandhöhe H [mm] in Abhängigkeit des Öffnungswinkels: 15° ≤ <[Dual 45° [Zweifach Einzelklappe zum Einbau im Dach, Einbauneigung Opening angle 45° to 90° ■Max. sash width up to 2.5 m 5000 ° bis 15°] H 600 Unit dimensions Geräteabmessungen 4500 (sash outer dimension!) H 500 ■ 4000 Max. sash height 2.5 m (total height above both shutters!) H 400 3500 ■Sash height and sash width are H 300 3000 mutually dependent (e.g. 2.3 m width → 2.0 m height) H 250 2500 ■System vendor specifications for H 200 2000 area and weight must be observed H 150 1500 at all times! H 550 Height HSF DF [mm] Höhe HFR ZK [mm] Höhe HFR ZK [mm] 4000 ° bis 15°] Height HSF DF [mm] Opening angle 15° to 45° ■Max. sash width up to 2.5 m H 600 (sash outer dimension!) H 500 ■Max. sash height 2.5 m H 400 (total height above both shutters!) ■Sash height and sash width are H 300 mutually dependent H 250 (e.g. 2.5 m width → 2.5 m height) ■System vendor specifications for H 200 area and weight must be observed H 150 at all times! 5000 H 450 H 350 H 100 Width WFR [mm] 1000 0 200 400 600 800 1000 1200 1400 Breite BFR [mm] 14 1600 1800 2000 2200 2400 2600 3.2 Dual single shutter as roof bottom and top-hung vent (roof inclination of 2° to 30°/gable roof) Diagram 7 Flow rate coefficients Durchflussbeiwerte C v;CAlichte v; Aclear space [Zweifach zumfor Einbau im roof Satteldach, Einbauneigung bis 30°] 30°] [DualEinzelklappe single shutter gable installation, slope β = 2°2°bis 0.80 0.75 0.70 0.65 Durchflussbeiwert CvCv [-] [-] Flow rate coefficient 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 W/H < 0.17 0.20 0.17 ≤ W/H < 0.28 0.15 0.28 ≤ W/H < 0.50 0.10 0.50 ≤ W/H < 1.00 0.05 W/H ≥ 1.00 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 Öffnungswinkel [°][°] Opening angle α 15 95 Diagram 8 5000 5000 HH600 600 Unit dimensions Geräteabmessungen 4500 4500 500 HH500 550 HH550 4000 4000 400 HH400 450 HH450 3500 3500 Höhe HFR ZK [mm] Höhe HFR ZK [mm] Height HSF DF [mm] Opening angle 15° to < 45° ■Max. sash width up to 2.5 m (sash outer dimension!) ■Max. sash height 5 m (total height above both shutters!) ■Sash height and sash width are mutually dependent (e.g. 1.5 m width → 3 m height) ■System vendor specifications for area and weight must be observed at all times! Wind deflector height H[mm] [mm] dependentdes on the opening angle: 15° ≤ α < 45° Windleitwandhöhe ininAbhängigkeit Öffnungswinkels: WindleitwandhöheHH[mm] Abhängigkeitdes Öffnungswinkels: 15° 15° ≤≤ << 45° [Dual single shutter for gable installation, slope β° 2° = to 30°] [Zweifach Einzelklappe zum Einbau im roof Satteldach, Einbauneigung bis 30°] [Zweifach Einzelklappe zum Einbau im Dach, Einbauneigung bis2° 15°] 300 HH300 3000 3000 250 HH250 2500 2500 200 HH200 2000 2000 150 HH150 1500 1500 1000 1000 0 0 350 HH350 H 100 H 100 200 200 400 400 600 600 800 800 1000 1000 1200 1400 1200 1400 Breite BFR [mm] 1600 1600 1800 1800 2000 2000 2200 2200 2400 2400 2600 2600 BreiteW BFR [mm] Width [mm] FR Diagram 9 5000 5000 H 600 Geräteabmessungen Unit dimensions Geräteabmessungen 4500 4500 H 500 H 550 4000 4000 H 400 H 450 H 350 H 300 3000 3000 H 550 H 250 2500 2500 H 500 H 450 H 200 2000 2000 H 400 H 200 HH150 150 1500 1500 1000 1000 00 H 250 H 350 H 300 H 100 100 H 200 200 400 400 600 600 800 800 1000 1000 1200 1200 1400 1400 [mm] Breite B BFR [mm] Breite Width W FR [mm] FR 16 H 600 3500 3500 Höhe HFR ZK [mm] Höhe HFR ZK [mm] Height HSF DF [mm] Opening angle 45° to 90° ■Max. sash width up to 2.5 m (sash outer dimension!) ■Max. sash height 5 m (total height above both shutters!) ■Sash height and sash width are mutually dependent (e.g. 0.65 m width → 5 m height) ■System vendor specifications for area and weight must be observed at all times! Wind deflector height HH[mm] [mm] dependent onÖffnungswinkels: the opening 15° angle: Windleitwandhöhe 45° ≤≤ <≤45° 90° ≤ α ≤ 90° Windleitwandhöhe H [mm] in in Abhängigkeit des Öffnungswinkels: 45° [Dual single shutterzum for gable installation, slope β° = to 30°] [Zweifach Einzelklappe Einbau imroof Satteldach, Einbauneigung 2°2° bis 30°] [Zweifach Einzelklappe zum Einbau im Dach, Einbauneigung bis 15°] 1600 1600 1800 1800 2000 2000 2200 2200 2400 2400 2600 2600 3.3 Individual unit as top-hung vent 3.3.1 Roof inclination 25° to 29° ■Max. sash width up to 2.5 m (sash outer dimension!) ■For sash heights up to 1 m in length, ■System vendor specifications for the opening angle is 15° to 90°. ■For sash heights > 1 m in length, the opening angle is 15° to 30°. area and weight must be observed at all times! 3.3.2 Roof inclination 30° to 60° ■Max. sash width up to 2.5 m ■System vendor specifications for (sash outer dimension!) ■Max. sash height up to 2.5 m Diagram 10 area and weight must be observed at all times! Durchflussbeiwert Windleitwänden v;Alichte - mit Flow rate coefficient Cv; cAclear - with wind deflectors space [Dachkippflügel; Typ: Schüco "AWS 57 RO"] [Top-hung vent; model: Schüco "AWS 57 RO"] 0.75 0.70 0.65 Flow rate coefficient cV / [-] Durchflussbeiwert cv / [-] 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 (0.465m ≤ W < 0.865m) * H 0.20 (0.865m ≤ W < 1.365m) * H 0.15 (1.365m ≤ W < 1.865m) * H 0.10 (1.865m ≤ W < 2.365m) * H 0.05 W = width of clear space , H = height of clear space 0.00 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Öffnungswinkel / [°] Opening angle α / [°] Wind deflector dimensions: W ≤ 0.85 → HWDF = 100mm; LWDF = HSF 0.85 < W ≤ 1.20 → HWDF = 150mm; LWDF = HSF W > 1.20 → HWDF = 175mm; LWDF = HSF 17 18 19 3.4 System vendor specific clearances System vendor-specific exhaust dimensions will be defined by the Test Institute during determination of the aerodynamic efficiency. System Aluprof 98 ® Gutmann Heroal Raico Clearance in mm ® Sapa 20 136 ® 100 ® Reynaers 92 ® 114 140 ® Schüco ® 135 Wicona ® 134 21 max. 460 mm 27 Höhe / height h = xxx maximale Höhe 300mm / maximum height 300mm Technische Änderungen vorbehalten. Rights to technical modifications reserved. © 30.04.2010, D+H Mechatronic AG, Germany 5 Länge / length l = xxx max. 460 mm maximale Länge 2500mm! / maximum length 2500mm! 1 1 5 Serie xxx AD00221 Zeichnungs-Nr. / Drawing-No. glass for winddeflector Index Seite / Page A00 Georg-Sasse-Straße 28-32 22949 Ammersbek / Germany Tel.:+49 40 605 65-0 Fax:+49 40 605 65-222 www.dh-partner.com D+H Mechatronic AG Schutzvermerk ISO 16016 beachten! Refer to protection notice ISO 16016! In this drawing displayed construction-proposal has to be checked by the user concerning exactness and feasibility on his own authority. D+H do not take over liability for possible errors. Application advices for use have to be supplementary observed in D+H product and instruction for use sheets. In dieser Zeichnung dargestellte Konstruktionsvorschläge sind vom Anwender hinsichtlich Richtigkeit und Ausführbarkeit eigenverantwortlich zu prüfen. Für etwaige Fehler wird keine Haftung übernommen. Ergänzend sind die Anwendungshinweise aus den D+H Produkt- und Gebrauchsinformationen zu beachten. Ref. 001 System xxx 8 Verbundsicherheitsglas (VSG) / laminated sheet glass (LSG) Datum / Date 30.04.2010 Glas für Windleitwand Anwendung / Application max. 460 mm Bohrungen sind optional! / Drill holes are optional! 1.0/01/11 99.700.88 D+H Mechatronic AG, Georg-Sasse-Straße 28-32, D-22949 Ammersbek / Germany Telephone: +49 40 60565 0, Fax: +49 40 60565 222 Internet: www.dh-partner.com, E-mail: info@dh-partner.com © 2011 D+H Mechatronic AG, Ammersbek