Chasse aux canards en environnement bruité
Transcription
Chasse aux canards en environnement bruité
Chasse aux canards en environnement bruité Nils Berglund MAPMO, Université d’Orléans CNRS, UMR 6628 et Fédération Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund Collaborateurs: Stéphane Cordier, Damien Landon, Simona Mancini, MAPMO, Orléans Barbara Gentz, University of Bielefeld Christian Kuehn, Max Planck Institute, Dresden Projet ANR MANDy, Mathematical Analysis of Neuronal Dynamics GdT Mathématiques et Neurosciences, IHP, Paris, 14 mars 2011 Oscillations in natural systems Belousov-Zhabotinsky reaction [Hudson 79] Stellate cells [Dickson 00] Mean temperature based on ice core measurements [Johnson et al 01] 1 Oscillations in natural systems Belousov-Zhabotinsky reaction [Hudson 79] Stellate cells [Dickson 00] . Deterministic models reproducing these oscillations exist and have been abundantly studied They often involve singular perturbation theory . We want to understand the effect of noise on oscillatory patterns 1-a Example: Van der Pol oscillator 1 x3 ẋ = y + x − 3 ẏ = −εx t7→εt ⇐⇒ x00 +ε−1/2(x2 −1)x0 +x = 0 1 x3 εẋ = y + x − 3 ẏ = −x 2 x00 +ε−1/2(x2 −1)x0 +x = 0 Example: Van der Pol oscillator 1 x3 ẋ = y + x − 3 ẏ = −εx y t7→εt ⇐⇒ ẏ = 0 ẏ = −x y ε→0 3 x ẋ = y + x − 1 3 1 x3 εẋ = y + x − 3 ⇐⇒ / ε→0 3) y = −(x − 1 x 3 ẏ = −x x ⇒ ẋ = 1 − x2 2-a x00 +ε−1/2(x2 −1)x0 +x = 0 Example: Van der Pol oscillator 1 x3 ẋ = y + x − 3 t7→εt ⇐⇒ ẏ = −εx y 1 x3 εẋ = y + x − 3 ẏ = −x y ε→0 3 x ẋ = y + x − 1 3 ⇐⇒ / ẏ = 0 ε→0 3) y = −(x − 1 x 3 ẏ = −x x ⇒ ẋ = 2 1 − x x x y y 2-b x00 +ε−1/2(x2 −1)x0 +x = 0 Example: Van der Pol oscillator 1 x3 ẋ = y + x − 3 t7→εt ⇐⇒ ẏ = −εx 3 εẋ=y + x − 1 x 3 ẏ=−x x y Relaxation oscillations x x y y 2-c Effect of noise on the Van der Pol oscillator # 3 xt dxt = yt + xt − dt + σ dWt " 3 dyt = −εxt dt 3 Effect of noise on the Van der Pol oscillator # 3 xt dxt = yt + xt − dt + σ dWt " 3 dyt = −εxt dt Theorem [B & Gentz 2006] √ • σ < ε : Cycles comparable to deterministic ones 2 −ε/σ with probability 1 − O(e ) √ • σ > ε : Cycles are smaller, by O(σ 4/3), than deterministic cycles, with probability 2 /ε|log σ| −σ 1 − O(e ) 3-a Neuron . Single neuron communicates by generating action potential . Excitable: small change in parameters yields spike generation . May display Mixed-Mode Oscillations (MMOs) and Relaxation Oscillations 4 Conductance-based models for membrane potential Hodgkin–Huxley model (1952) C v̇ = − X i α β ḡiϕi i χi i (v − vi∗) τϕ,i(v)ϕ̇i = −(ϕi − ϕ∗i (v)) τχ,i(v)χ̇i = −(χi − χ∗i (v)) voltage activation inactivation . i ∈ {Na+, K+, . . . } describes different types of ion channels . ϕ∗i (v), χ∗i (v) sigmoı̈dal functions, e.g. tanh(av + b) 5 Conductance-based models for membrane potential Hodgkin–Huxley model (1952) C v̇ = − X i α β ḡiϕi i χi i (v − vi∗) τϕ,i(v)ϕ̇i = −(ϕi − ϕ∗i (v)) τχ,i(v)χ̇i = −(χi − χ∗i (v)) voltage activation inactivation . i ∈ {Na+, K+, . . . } describes different types of ion channels . ϕ∗i (v), χ∗i (v) sigmoı̈dal functions, e.g. tanh(av + b) For C/ḡi τx,i: slow–fast systems of the form εv̇= f (v, w) ẇi= gi(v, w) 5-a Conductance-based models for membrane potential Fitzhugh–Nagumo model (1962) εẋ = x − x3 + y ẏ = α − βx − γy = √1 + δ − x 3 The canard (french duck) phenomenon [J.-L. Callot, F. Diener, M. Diener (1978), E. Benoı̂t (1981), . . . ] ε = 0.05 α= β γ δ1 δ2 δ3 δ4 √1 3 +δ =1 =0 = −0.003 = −0.003765458 = −0.003765459 = −0.005 6 Conductance-based models for membrane potential Fitzhugh–Nagumo model (1962) εẋ = x − x3 + y ẏ = α − βx − γy = √1 + δ − x 3 The canard (french duck) phenomenon [J.-L. Callot, F. Diener, M. Diener (1978), E. Benoı̂t (1981), . . . ] ε = 0.05 α= β γ δ1 δ2 δ3 δ4 √1 3 +δ =1 =0 = −0.003 = −0.003765458 = −0.003765459 = −0.005 y δ3 δ4 δ2 δ1 x 6-a Conductance-based models for membrane potential Fitzhugh–Nagumo model (1962) εẋ = x − x3 + y ẏ = α − βx − γy = √1 + δ − x 3 The canard (french duck) phenomenon [J.-L. Callot, F. Diener, M. Diener (1978), E. Benoı̂t (1981), . . . ] ε = 0.05 α= β γ δ1 δ2 δ3 δ4 √1 3 +δ =1 =0 = −0.003 = −0.003765458 = −0.003765459 = −0.005 6-b The canard (french duck) phenomenon Normal form near fold point εẋ = y − x2 (+ higher-order terms) ẏ = δ − x 0.5 ts y 0.5 (a) 0.3 0.1 −0.1 −0.7 Cǫa Cǫr −0.3 0.1 0.5 0.5 (b) 0.3 0.3 0.1 0.1 C0 0.7 −0.1 −0.7 −0.3 0.1 0.5 0.7 −0.1 −0.7 (c) Cǫr Cǫa −0.3 0.1 0.5 0.7 x 6-c Folded node singularity Normal form [Benoı̂t, Lobry ’82, Szmolyan, Wechselberger ’01]: ẋ = y − x2 ẏ = −(µ + 1)x − z µ ż = 2 (+ higher-order terms) 7 Folded node singularity Normal form [Benoı̂t, Lobry ’82, Szmolyan, Wechselberger ’01]: ẋ = y − x2 ẏ = −(µ + 1)x − z µ ż = 2 (+ higher-order terms) y C0r C0a L x z 7-a Folded node singularity Theorem [Benoı̂t, Lobry ’82, Szmolyan, Wechselberger ’01]: For 2k + 1 < µ−1 < 2k + 3, the system admits k canard solutions The j th canard makes (2j + 1)/2 oscillations Mixed-mode oscillations (MMOs) Picture: Mathieu Desroches 7-b Effect of noise 1 σ (1) 2 dxt = (yt − xt ) dt + √ dWt ε ε (2) dyt = [−(µ + 1)xt − zt] dt + σ dWt µ dzt = dt 2 • Noise smears out small amplitude oscillations • Early transitions modify the mixed-mode pattern 8 Covariance tubes det det Linearized stochastic equation around a canard (xdet t , yt , zt ) dζt = A(t)ζt dt + σ dWt ζt = U (t)ζ0 + σ Z t 0 U (t, s) dWs A(t) = −2xdet t 1 −(1+µ) 0 (U (t, s) : principal solution of U̇ = AU ) Gaussian process with covariance matrix Cov(ζt) = σ 2V (t) V (t) = U (t)V (0)U (t)−1+ Z t 0 U (t, s)U (t, s)T ds 9 Covariance tubes det det Linearized stochastic equation around a canard (xdet t , yt , zt ) dζt = A(t)ζt dt + σ dWt ζt = U (t)ζ0 + σ Z t 0 U (t, s) dWs A(t) = −2xdet t 1 −(1+µ) 0 (U (t, s) : principal solution of U̇ = AU ) Gaussian process with covariance matrix V (t) = U (t)V (0)U (t)−1+ Cov(ζt) = σ 2V (t) Z t 0 U (t, s)U (t, s)T ds Covariance tube : B(h) = det −1 det det 2 h(x, y) − (xdet t , yt ), V (t) [(x, y) − (xt , yt )]i < h n o Theorem [B, Gentz, Kuehn 2010] Probability of leaving covariance tube before time t (with zt 6 0) : 2 /2σ 2 P τB(h) < t 6 C(t) e−κh n o 9-a 9-b Covariance tubes Theorem [B, Gentz, Kuehn 2010] Probability of leaving covariance tube before time t (with zt 6 0) : 2 /2σ 2 P τB(h) < t 6 C(t) e−κh n o Sketch of proof : . (Sub)martingale : {Mt }t>0 , E{Mt |Ms } = (>)Ms for t > s > 0 n o 1 . Doob’s submartingale inequality : P sup Mt > L 6 E[MT ] L 06t6T 10 Covariance tubes Theorem [B, Gentz, Kuehn 2010] Probability of leaving covariance tube before time t (with zt 6 0) : 2 /2σ 2 P τB(h) < t 6 C(t) e−κh n o Sketch of proof : . (Sub)martingale : {Mt }t>0 , E{Mt |Ms } = (>)Ms for t > s > 0 n o 1 . Doob’s submartingale inequality : P sup Mt > L 6 E[MT ] L 06t6T Z t . Linear equation : ζt = σ U (t, s) dWs is no martingale 0 but can be approximated by martingale on small time intervals . exp{γhζt , V (t)−1 ζt i} approximated by submartingale . Doob’s inequality yields bound on probability of leaving B(h) during small time intervals. Then sum over all time intervals 10-a Covariance tubes Theorem [B, Gentz, Kuehn 2010] Probability of leaving covariance tube before time t (with zt 6 0) : 2 /2σ 2 P τB(h) < t 6 C(t) e−κh n o Sketch of proof : . (Sub)martingale : {Mt }t>0 , E{Mt |Ms } = (>)Ms for t > s > 0 n o 1 . Doob’s submartingale inequality : P sup Mt > L 6 E[MT ] L 06t6T Z t . Linear equation : ζt = σ U (t, s) dWs is no martingale 0 but can be approximated by martingale on small time intervals . exp{γhζt , V (t)−1 ζt i} approximated by submartingale . Doob’s inequality yields bound on probability of leaving B(h) during small time intervals. Then sum over all time intervals . Nonlinear equation : dζt = A(t)ζt dt + b(ζt , t) dt + σ dWt Z t Z t ζt = σ U (t, s) dWs + U (t, s)b(ζs , s) ds 0 0 Second integral can be treated as small perturbation for t 6 τB(h) 10-b Small-amplitude oscillations and noise One shows that for z = 0 . The distance between the kth and k + 1st canard 2 has order e−(2k+1) µ . The section of B(h) is close to circular with radius µ−1/4h 11 Small-amplitude oscillations and noise One shows that for z = 0 . The distance between the kth and k + 1st canard 2 has order e−(2k+1) µ . The section of B(h) is close to circular with radius µ−1/4h Sketch of proof : . Dynamic diagonalization of equation linearized around central (“weak”) canard . V (t) = σ −2 Cov(ζt ) satisfies fast-slow equation dV = A(z)V + V A(z)T + 1l dz which can be studied by singular perturbation theory. Note : Hopf bifurcation at z = 0 ! µ 11-a Small-amplitude oscillations and noise One shows that for z = 0 . The distance between the kth and k + 1st canard 2 has order e−(2k+1) µ . The section of B(h) is close to circular with radius µ−1/4h Corollary Let 2 σk (µ) = µ1/4 e−(2k+1) µ Canards with 2k+1 oscillations 4 become indistinguishable from noisy fluctuations for σ > σk (µ) 11-b Small-amplitude oscillations and noise One shows that for z = 0 . The distance between the kth and k + 1st canard 2 has order e−(2k+1) µ . The section of B(h) is close to circular with radius µ−1/4h Corollary Let 2 σk (µ) = µ1/4 e−(2k+1) µ Canards with 2k+1 oscillations 4 become indistinguishable from noisy fluctuations for σ > σk (µ) 11-c Early transitions Let D be neighbourhood of size √ z of a canard for z > 0 (unstable) Theorem [B, Gentz, Kuehn 2010] ∃κ, C, γ1, γ2 > 0 such that for σ|log σ|γ1 6 µ3/4 probability of leaving D after zt = z satisfies P zτD > z 6 C|log σ|γ2 e−κ(z n Small for z q o 2 −µ)/(µ|log σ|) µ|log σ|/κ 12 Early transitions Let D be neighbourhood of size √ z of a canard for z > 0 (unstable) Theorem [B, Gentz, Kuehn 2010] ∃κ, C, γ1, γ2 > 0 such that for σ|log σ|γ1 6 µ3/4 probability of leaving D after zt = z satisfies P zτD > z 6 C|log σ|γ2 e−κ(z n Small for z q o 2 −µ)/(µ|log σ|) µ|log σ|/κ Sketch of proof : √ . Escape from neighbourhood of size σ|log σ|/ z : compare with linearized equation on small time intervals + Markov property √ √ . Escape from annulus σ|log σ|/ z 6 kζk 6 z : use polar coordinates and averaging . To combine the two regimes : use Laplace transforms 12-a Early transitions Let D be neighbourhood of size √ z of a canard for z > 0 (unstable) Theorem [B, Gentz, Kuehn 2010] ∃κ, C, γ1, γ2 > 0 such that for σ|log σ|γ1 6 µ3/4 probability of leaving D after zt = z satisfies P zτD > z 6 C|log σ|γ2 e−κ(z n Small for z q o 2 −µ)/(µ|log σ|) µ|log σ|/κ 12-b Further work . Better understanding of distribution of noise-induced transitions . Effect on mixed-mode pattern in conjunction with global return mechanism 13 Further work . Better understanding of distribution of noise-induced transitions . Effect on mixed-mode pattern in conjunction with global return mechanism 13-a References N.B. and Barbara Gentz, Noise-induced phenomena in slow-fast dynamical systems, A sample-paths approach, Springer, Probability and its Applications (2006) N.B. and Barbara Gentz, Stochastic dynamic bifurcations and excitability, in C. Laing and G. Lord, (Eds.), Stochastic methods in Neuroscience, p. 65-93, Oxford University Press (2009) N.B., Barbara Gentz and Christian Kuehn, Hunting French Ducks in a Noisy Environment, hal-00535928, submitted (2010) 14 Noise-induced MMOs [D. Landon, PhD thesis, in progress] FitzHugh–Nagumo, normal form near bifurcation point: dxt= (yt − x2 t ) dt + σ dWt dyt= ε(δ − xt) dt √ . δ > ε: equilibrium (δ, δ 2) is a node, effectively 1D problem • σ δ 3/2: rare spikes, approx. exponential interspike times • σ δ 3/2: repeated spikes √ δ < ε: equilibrium (δ, δ 2) is a focus. Two-dimensional problem 15 Noise-induced MMOs [D. Landon, PhD thesis, in progress] FitzHugh–Nagumo, normal form near bifurcation point: dxt= (yt − x2 t ) dt + σ dWt dyt= ε(δ − xt) dt √ . δ > ε: equilibrium (δ, δ 2) is a node, effectively 1D problem • σ δ 3/2: rare spikes, approx. exponential interspike times • σ δ 3/2: repeated spikes √ . δ < ε: equilibrium (δ, δ 2) is a focus. Two-dimensional problem 15-a Noise-induced MMOs [D. Landon, PhD thesis, in progress] Conjectured bifurcation diagram [Muratov and Vanden Eijnden (2007)] : σ ε3/4 σ = δ 3/2 σ = (δε)1/2 σ = δε1/4 ε1/2 δ 16 Noise-induced MMOs [D. Landon, PhD thesis, in progress] Conjectured bifurcation diagram [Muratov and Vanden Eijnden (2007)] : σ ε3/4 σ = δ 3/2 σ = (δε)1/2 σ = δε1/4 ε1/2 δ Work in progress : . Prove bifurcation diagram is correct . Characterize interspike time statistics and spike train statistics . Characterize distribution of mixed-mode patterns 16-a
Similar documents
Oscillations multimodales et chasse aux canards stochastiques
For 2k + 1 < µ−1 < 2k + 3, the system admits k canard solutions The j th canard makes (2j + 1)/2 oscillations
More information