Visiting the thermal emission in the near
Transcription
Visiting the thermal emission in the near
Thermal radiation scanning tunnelling microscope (TRSTM): Near-field imaging and spectroscopy probe of the thermal emission Yannick De Wilde Institut Langevin, CNRS, ESPCI ParisTech, Paris yannick.dewilde@espci.fr Nanoscale Radiative Heat Transfer–May 13, 2013 Motivation : Theoretical predictions Energy density 1.0 SiC z = 100 µm 0.8 Far-Field 0.6 0.4 0.2 0.0 wresonance = 178.7 *1012 s-1 = 948 cm-1 lresonance = 10.55µm Shchegrov, Joulain, Carminati, Greffet, Phys. Rev. Lett., 85, 1548 (2000) 20x10 Energy density SiC = polar material which supports surface phonon-polaritons => Evanescent waves thermally stimulated 3 z = 100 nm 15 Near-Field 10 5 0 0 100 200 300 w (Hz) Nanoscale Radiative Heat Transfer–May 13, 2013 c 400 500x10 12 Motivation : Far-field measurements SiC + grating T=500°C AFM (topography) Antenna like emission pattern SiC DIFFRACTION Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002) SPATIAL COHERENCE OF THERMAL EMISSION !!! Nanoscale Radiative Heat Transfer–May 13, 2013 c Probe of thermal emission in the near-field Optical Detector Collection optics Far-field l Near-field T≠0 1 U (r , w ) = r (r,w ) hw exp ( hw / kT ) - 1 LDOS Photon statistics (Bose Einstein distribution) Nanoscale Radiative Heat Transfer–May 13, 2013 c OUTLINE Ø Infrared-NSOM & Thermal radiation scanning tunnelling (TRSTM) setup. Ø Examples using laser sources. Ø TRSTM for imaging thermal radiation in the near-field. Ø TRSTM for spectroscopy measurements. Nanoscale Radiative Heat Transfer–May 13, 2013 c Optical near-field :definition k= e 0,8 Surface waves 0,6 Real metal 0,4 Surface Plasmons ky kx 2 + k y 2 = k 2 Plane waves 0,2 w/wp SPPs c Light line (e=1) 0,707 Air w 1 ckx/wp kx 2 Source Sub-l objects k=(w/c) =(2p/l) Evanescent waves No propagation in far-field z x 10 nm Nanoscale Radiative Heat Transfer–May 13, 2013 c Applications of near-field probes NANOMATERIALS z CONFINED FIELDS PROPAGATING Illumination EVANESCENT High spatial frequencies (small details) y x <<l Optical imaging of nano-materials ( resolution << l ) SPPs dd dm Air EVANESCENT Real metal Detection of purely evanescent fields ( example: surface plasmons ) Nanoscale Radiative Heat Transfer–May 13, 2013 c Aperture NSOM Veerman et al. , Appl. Phys. Lett. 72, 3115 (1998) Pohl et al. , Appl. Phys. Lett 44, 651 (1984) NSOM= near-field scanning optical microscope Nanoscale Radiative Heat Transfer–May 13, 2013 c Aperture NSOM Veerman et al. , Appl. Phys. Lett. 72, 3115 (1998) Silica fiber : Well-suited for visible and near-IR but not for the mid-IR !!! Nanoscale Radiative Heat Transfer–May 13, 2013 c Wikramasynghe et al., APL65,1623 (1994); Boccara et al., Micro. Microanal. Microstruct. 5, 389 (1994) - Perhaps one could try instead to disturb the near-field with a small subwavelength scatterer… « Scattering-type NSOM » (s-NSOM) A. Claude Boccara Idea : I scat . ( xt , yt ) = s E ( xt , yt ) 2 In practice : Nanoscale Radiative Heat Transfer–May 13, 2013 c Tip approach in an evanescent field. I scat . ( xt , yt ) = s E ( xt , yt ) Nanoscale Radiative Heat Transfer–May 13, 2013 c 2 s-NSOM for mid-infrared detection of near-field thermal emission Thermal radiation scanning tunnelling microscope « TRSTM » W Filter W tip (W) IMAGING De Wilde, Formanek, Carminati, Gralak, Lemoine, Mulet, Joulain, Chen, Greffet, Nature 444, 740 (2006) SPECTROSCOPY Babuty,, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). Nanoscale Radiative Heat Transfer–May 13, 2013 c Mid IR s-NSOM – TRSTM: Tip preparation Tungsten wire BEFORE d=50 µm Electrochemical etching AFTER Nanoscale Radiative Heat Transfer–May 13, 2013 c Mid IR s-NSOM – TRSTM: Tip gluing De Wilde, Formanek, Aigouy, Rev. Sci. Instrum. 74, 3889 (2003) Nanoscale Radiative Heat Transfer–May 13, 2013 c Mid IR s-NSOM – TRSTM: Cassegrain objective Reflective objective 5 cm 5 cm Two gold spherical mirrors: - Broad spectral range (UV, Vis, IR, THz) - No chromatic aberrations Magnification= x36 Numerical aperture= 0.5 Working distance= 10.4 mm 10.4 mm Sample Nanoscale Radiative Heat Transfer–May 13, 2013 c Mid IR s-NSOM – TRSTM: HgCdTe detector Liquid N2 cooled Size: d=0.5 mm (5 10-2 cm) Detectivity: D*»4 1010 cm Hz1/2 W -1 (>50 % between l» 7 µm - 12 µm) Noise = d -12 W » 10 Hz1/ 2 D* Nanoscale Radiative Heat Transfer–May 13, 2013 c Super-resolution with external source: Imaging of nano-materials Infrared near-field imaging AFM Holes sub-l (f=200nm) : SiO2 Detector Laser l=10.6 µm Chromium Tip Cr SiO2 Optical 200 nm Optical resolution ~ 30 - 50 nm ~ l/200 Piezoelectric translation stage (scanner) Formanek, De Wilde, Aigouy, J. Appl. Phys. 93, 9548 (2003) NSOM (3mmx3mm) l=10.6 mm Diffraction limit Nanoscale Radiative Heat Transfer–May 13, 2013 c Building block of active plasmonics: Slit doublet experiment Measured topography (AFM) 3 2 1 Top electrode of quantum cascade laser 2 Au 1 l≈7.5µm SPP Coupler Generator 2 1 llaser/neff Collaboration: R. Colombelli’s group, IEF Passive waveguide 3 b spp -b spp 2 1 llaser Babuty, et al., Phys. Rev. Lett., 104, 226806, (2010) Nanoscale Radiative Heat Transfer–May 13, 2013 c Building block of active plasmonics: Slit doublet experiment Measured topography (AFM) 2 1 3 Au 2 1 Measured near-field l≈7.5µm Interference of counterpropagating SPPs generated by electrical pumping of a QC laser. Collaboration: R. Colombelli’s group, IEF Babuty, et al., Phys. Rev. Lett., 104, 226806, (2010) Nanoscale Radiative Heat Transfer–May 13, 2013 c Remark 1: Far field background issue 50 µm Laser beam Tip Nanoscale Radiative Heat Transfer–May 13, 2013 c Extracting the near-field contribution in the detector signal. Tip Far-field Near-field Sample ~l << l Nanoscale Radiative Heat Transfer–May 13, 2013 c Z Tip-Scattered intensity in a plan perpendicular to metal surface. Iscat.(xt,zt) z x Bousseksou, Babuty, Tetienne, Moldovan, Braive, Beaudoin, Sagnes, De Wilde, Colombelli, Optics Express 20, 13738 (2012). Nanoscale Radiative Heat Transfer–May 13, 2013 c Extracting the near-field contribution in the detector signal. Tip Far-field Near-field Sample ~ 100 nm W»32 KHz ~l << l Nanoscale Radiative Heat Transfer–May 13, 2013 c Z Lock-in demodulation |E|2 Signal at detector S µ s|E|2 - If modulation applied along z: S(z+a cos Wt) µ S0+A dS/dz cos Wt + B d2S /dz2 cos 2Wt +… Sample surface z Signal demodulation with a lock-in : SW µ dS /dz - Rejection of far-field contribution - Improvement of near-field/far-field ratio when demodulating at tip oscillation S2W µ d2S /dz2 frequency W or higher harmonics. Bousseksou, Babuty, Tetienne, Moldovan, Braive, Beaudoin, Sagnes, De Wilde, Colombelli, Optics Express 20, 13738 (2012). Nanoscale Radiative Heat Transfer–May 13, 2013 c Infrared apertureless SNOM with laser source CO2 laser beam [l=10.6µm] reference Detector W Tip S Lock-in amplifier AFM Signal SW or S2W Metal film SiO2 Optical = SW or S2W Formanek, De Wilde, Aigouy, J. Appl. Phys. 93, 9548 (2003) Nanoscale Radiative Heat Transfer–May 13, 2013 c Remark 2: Tip illumination conditions S(w)=seff.(etip,esample,rtip)|E(rtip)|2 |E(rtip)|2 is here imposed by the external laser source. Nanoscale Radiative Heat Transfer–May 13, 2013 c Thermal Radiation STM: New paradigm W Filter W tip (W) The EM-LDOS r(rtip,w) 2 1 can be probed with E (rtip , w ) = r (rtip ,w ) hw exp ( hw / kT ) - 1 the TRSTM. Nanoscale Radiative Heat Transfer–May 13, 2013 c Jean-Jacques Greffet Near-field imaging with the TRSTM Experiments: F. Formanek (ex-PhD,ESPCI) Karl Joulain •De Wilde, Formanek, Carminati, Gralak, Lemoine, Mulet, Joulain, Chen, Greffet, Nature 444, 740 (2006). •Shchegrov, Joulain, Carminati, Greffet, Phys. Rev. Lett., 85, 1548 (2000). Rémi Carminati Boris Gralak •Joulain, Carminati, Mulet, Greffet, PRB 68, 245405 (2003). Nanoscale Radiative Heat Transfer–May 13, 2013 c TRSTM Images of pattern of Au on SiC Tsample » 500 K Ttip » 300 K B B A Au A SiC Topography (AFM) TRSTM Resolution ~ 100 nm TRSTM signal ~ 20 pW No filter ,W ~ IR-SNOM signal 103 Nanoscale Radiative Heat Transfer–May 13, 2013 c Energy selection : TRSTM images with filter at l = 10,9 mm SiC TRSTM A B C Au A B Topography (AFM) C FRINGES = Thermally excited surface plasmon modes in a planar cavity Nanoscale Radiative Heat Transfer–May 13, Nature 2013 444, 740 (2006). c Images TRSTM vs. EM-LDOS B. Gralak Inst. Fresnel TRSTM l=10.9mm T=170°C AFM l=10.6mm Nanoscale Radiative Heat Transfer–May 13, 2013 c Higher harmonic demodulation SiC Au SiC = Polar material with surface : phonon polaritons. SiC Dispersion curve TRSTM image at 2W Filter at 10.9mm (width 1 mm) V. Shchegrov, K. Joulain, R. Carminati, J-J. Greffet, Phys.Rev.Lett. 85, 1548(2000) • Near-field energy density peaked at 10.55 mm. • Large k║ => higher confinement Nanoscale Radiative Heat Transfer–May 13, 2013 c Revisiting « blackbody radiation » spectra in the near-field. Near-field spectroscopy with the TRSTM Karl Joulain Jean-Jacques Greffet Pierre-Olivier Chapuis Arthur Babuty ? d d << lemission • Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). • Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834. Nanoscale Radiative Heat Transfer–May 13, 2013 c Spatial coherence of thermal emission in the near-field of SiC SiC + grating T=500°C AFM (topography) Antenna like emission pattern SiC DIFFRACTION Greffet, Carminati, Joulain, Mulet, Mainguy, Chen, Nature 416, 61 (2002) SPATIAL COHERENCE OF THERMAL EMISSION !!! Nanoscale Radiative Heat Transfer–May 13, 2013 c What about the temporal coherence ? Nanoscale Radiative Heat Transfer–May 13, 2013 c Local FTIR spectroscopy probe of nearfield thermal emission FTIR d TRSTM Delay MCT Detector BS Lock-In amplifier TRSTM Tip Objective Sample FTIR i Heater Intensity Wtip d Nanoscale Radiative Heat Transfer–May 13, 2013 c LDOS on SiC : Theoretical predictions stheo.=948 cm-1 Dispersion relation of SPhP w resonance Wavenumber s [cm-1] Shchegrov, Joulain, Carminati, Greffet, Phys. Rev. Lett., 85, 1548 (2000) Nanoscale Radiative Heat Transfer–May 13, 2013 c Near-field thermal emission on SiC Intensity (a.u.) 0.025 0.020 0.015 sexp.=913 cm-1 471 K 433 K 395 K 342 K 330 K 0.010 0.005 0.000 -0.005 800 1000 1200 1400 -1 ) Wavenumberws (cm [cm-1] Frequency Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). Nanoscale Radiative Heat Transfer–May 13, 2013 c Intensity (a.u.) Test of near-field origin of the signal 1 Wtip 0.004 2 Wtip 0.002 0.000 800 1000 1200 1400 -1) Wavenumber [cm-1] Frequency w s(cm Peak present at 1 Wtip and 2 Wtip Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). Nanoscale Radiative Heat Transfer–May 13, 2013 c SiC : Experiment vs. LDOS Experiment Theory Partial temporal coherence is demonstrated, but a redshift and broadening is observed in the experimental peak with respect to theory. Nanoscale Radiative Heat Transfer–May 13, 2013 c S(w)=seff.(etip,esample,rtip)|E(rtip)|2 |E(rtip)|2 µ EM-LDOS T=500 K See Karl Joulain’s Talk at 2 pm. Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834. Nanoscale Radiative Heat Transfer–May 13, 2013 c SiC: Theoretical modelling vs. experiment SiC Good agreement with experiments (Rtip=1.6 µm) Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834. Nanoscale Radiative Heat Transfer–May 13, 2013 c SiO2: Theory modelling vs. experiment Intensity (a.u.) SiO2 1.0 Theory (rt=1.6 µm) 0.8 Experiment (T=473 K) 0.6 0.4 Sample: SiO2 0.2 0.0 -0.2 700 800 900 1000 1100 -1 1200 Wavenumber s (cm ) Good agreement with experiments (Rtip=1.6 µm) Babuty, Joulain, Chapuis, Greffet, De Wilde, Phys. Rev. Lett. 110, 146103 (2013). Joulain, Ben-Abdallah, Chapuis, Babuty, De Wilde, arXiv:1201.4834. Nanoscale Radiative Heat Transfer–May 13, 2013 c TRSTM spectroscopy with a heated tip (Markus B. Raschke group) Jones, Raschke, Nanoletters 12, 1475 (2012). Nanoscale Radiative Heat Transfer–May 13, 2013 c Mapping the EM-LDOS in the visible Valentina Krachmalnicoff wfluo 12 2 1 100 nm Da Cao Mapping of LDOS at wfluo. based on measurements of G . Rémi Carminati V.Krachmalnicoff, et al., Phys. Rev. Lett. 105,183901 (2010). Krachmalnicoff, Cao, Cazé, Castanié, Pierrat, Bardou, Collin, Carminati, De Wilde, Optics Express 21, 11536 (2013). + Romain Pierrat, Alexandre Cazé, Etienne Castanié Nanoscale Radiative Heat Transfer–May 13, 2013 c CONCLUSIONS Infrared-NSOM based on home-built system for subwavelength imaging of materials and investigations of plasmonic devices. The set-up can operate without any external source in the « TRSTM mode », allowing the detection of thermal emission in the near-field. TRSTM images and FTIR spectra have been obtained. They probe the spatial and frequency dependence of the EM-LDOS (see Karl Joulain’s talk this afternoon). TRSTM spectra have revealed the temporal coherence of the near-field thermal emission in SiC and SiO2. Nanoscale Radiative Heat Transfer–May 13, 2013 c THANK YOU ! Near-Field thermal emission: Laboratoire Charles Fabry, Inst. d’Optique J.-J. Greffet, P. Ben Abdallah Institut P’ K. Joulain Centre d’Etudes Thermiques de Lyon P.-O. Chapuis Institut d'Electronique du Sud T. Taliercio, V. Ntsame Guilengui Labo. Nanotechnologies Nanosystèmes Ali Belarouci CRHEA-CNRS Yvon Cordier, Adrien Michon SPPs active devices: Institut d’Electronique Fondamentale R. Colombelli, D. Costantini, A. Bousseksou III-V Lab A. Accard,J. Decobert, G-H. Duan Laboratoire Photonique et Nanostructures G. Beaudoin, I. Sagnes, Institut Langevin A. Babuty, L. Greusard, F. Peragut Institut Langevin: A. Babuty, F. Peragut, L. Greusard, V. Krachmalnicoff, R. Carminati, D. Cao, A. Cazé, R. Pierrat, E. Castanié (+ LPN: S. Collin, N. Bardou) = + Nanoscale Radiative Heat Transfer–May 13, 2013 c
Similar documents
Résultats en bassin de
11..CARROLL................ Jennifer........1981..... 55.71..... 833......CAMO 12..VEILLEUX................ Pamela F.......1986..... 55.79..... 830......UL/ULAVAL 13..WIECHEC............... Sonia.....
More information