A Spatio-Temporal State-Space Model for River Network Data

Transcription

A Spatio-Temporal State-Space Model for River Network Data
BIOSTAT
Department of Applied Mathematics,
Biometrics and Process Control
A spatio-temporal statespace model for river
network data
L. Clement and O. Thas
19th Annual Conference of The International Environmetrics Society
TIES 2008, Kelowna, Canada, June 8-13, 2008
BIOSTAT, Coupure Links 653, 9000 Gent,Belgium
e-mail: lieven.clement@Ugent.be
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
1
Introduction
2
Methods
3
4
Case Study: Nitrate concentration in the river
Yzer
Conclusions
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
2/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Introduction
Important legislation concerning water quality (WQ):
Water Framework Directive (WFD)
Major goal: maintain and improve the aquatic environment
In Flanders: VMM → develop basin management plans
Detect impact of previous actions. Assess improvement/trend
in WQ
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
3/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
The Yzer Catchment
1
Yzer
1
2
3
4
length 76 km, 44 km in
Belgium
area 1101 km2
mouth Nieuwpoort: complex
of sluices.
Eutrophication due to nutrient
pollution: high nitrate
Figure 1.1: The Yzer catchment. In the left panel the main river is shown an
three parts are indicated. In the right panel the entire catchment is g
along with the sampling locations of the VMM (indicated with b
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
4/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
The Yzer Catchment
1
Yzer
1
2
3
4
TIES 2008, June 8 - 13, 2008
length 76 km, 44 km in
Belgium
area 1101 km2
mouth Nieuwpoort: complex
of sluices.
Eutrophication due to nutrient
pollution: high nitrate
L. Clement and O. Thas, BIOSTAT
4/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
The Yzer Catchment
1
Yzer
1
2
3
4
2
Nitrate Data
1
TIES 2008, June 8 - 13, 2008
length 76 km, 44 km in
Belgium
area 1101 km2
mouth Nieuwpoort: complex
of sluices.
Eutrophication due to nutrient
pollution: high nitrate
Sampling location 1:
dependence in time
L. Clement and O. Thas, BIOSTAT
4/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
The Yzer Catchment
1
Yzer
30
1
MAP II
10
20
MAP I
2
0
Nitrate (mg N/l)
Observed
1990
1992
1994
1996
1998
2000
2002
2004
3
Time
4
0
Effect (mg N/l)
Seasonal effect
1990
1992
1994
1996
1998
2000
2002
2004
2
Nitrate Data
Time
1
MAP II
0
2
3
−3
Effect (mg N/l)
3
Trend
MAP I
1990
1992
1994
1996
1998
2000
2002
2004
Time
TIES 2008, June 8 - 13, 2008
length 76 km, 44 km in
Belgium
area 1101 km2
mouth Nieuwpoort: complex
of sluices.
Eutrophication due to nutrient
pollution: high nitrate
Sampling location 1:
dependence in time
Seasonal variation and trend
1996: MAP I
2000: MAPIIbis
L. Clement and O. Thas, BIOSTAT
4/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
The Yzer Catchment
1
Yzer
1
2
3
4
2
Nitrate Data
1
2
3
4
TIES 2008, June 8 - 13, 2008
length 76 km, 44 km in
Belgium
area 1101 km2
mouth Nieuwpoort: complex
of sluices.
Eutrophication due to nutrient
pollution: high nitrate
Sampling location 1:
dependence in time
Seasonal variation and trend
1996: MAP I
2000: MAPIIbis
Five sampling locations:
dependence in time and space
L. Clement and O. Thas, BIOSTAT
4/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case S1
Study: Nitrate
concentration in the river Yzer
S2
S4
S5
The Yzer Catchment
S3
1
Yzer
length 76 km, 44 km in
Belgium
2
2 area 1101 km
Chapter 1. Introduction
3 mouth Nieuwpoort: complex
of sluices.
4 Eutrophication due to nutrient
Figure 1.2: Top Left: Network topology of the sampling locations.
pollution:Bottom
high Left:
nitrate
1
S2
20
Nitrate (mg N/l)
01/90
30
25
20
15
0
5
5
0
10 20 30 40 50 60 70
S3
Nitrate (mg N/l)
01/02
Time
10
25
01/96
20
01/90
S5
15
01/02
Time
S4
10
15
5
0
01/96
Map of the river reaches considered in this case study. Locations S1,
2 Nitrate Data
S2, S4 and S5 are located on the Yzer
river while location S3 is located on a joining creek. Right: Map of the 1partSampling
of the Yzerlocation
catchment1:
located in Flanders, Belgium. The area considered
in this studyinistime
indidependence
cated with the ellipse and the five sampling locations
are
indicated
with
2 Seasonal variation and trend
black dots
Nitrate (mg N/l)
01/90
10
Nitrate (mg N/l)
20
15
10
0
5
Nitrate (mg N/l)
25
25
30
S1
01/96
Time
01/02
01/90
01/96
01/02
Time
1996: MAP I
2000: MAPIIbis
4 Five sampling locations:
Sampling locations S1, S2, S4 and S5 are located on the Yzer while sampling locaFigure 1.3: Nitrate observations at five sampling locations of the river Yzer. Samdependence in time and space
tion S3 is located on a joining creek. Their river network topology and locations in
0
3
01/90
01/96
01/02
Time
pling locations S1, S2, S4, S5 are located on the Yzer river while sam-
pling location S3 is located on
a tributary
TIES
2008,
June 8 -1.2.
13, 2008
Clement and O.
BIOSTAT
the
catchment are shown
in Figure
MonthlyL.observations
areThas,
available
between
4/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Spatial dependence structure
Spatio-temporal dependence structure
Observation Model
Methods: Spatio-Temporal model
1
Spatial dependence structure
2
Spatio-temporal dependence structure
3
Observation model
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
5/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Spatial dependence structure
Spatio-temporal dependence structure
Observation Model
Spatial dependence structure (SDP)
River networks:
The water flows in 1 direction
→ Causal interpretation of
correlations
Unidirectional correlation
structure
Isolated river: Directed Acyclic
Graph
→ conditional independence
0
6ρ12
6
6 0
4 0
0
2
A=
S = AS + γ
TIES 2008, June 8 - 13, 2008
0
0
0
ρ24
0
0
0
0
ρ34
0
0
0
0
0
ρ45
3
0
07
7
07
05
0
γ ∼ MVN(0, Σγ ) , Σγ diag
L. Clement and O. Thas, BIOSTAT
6/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Spatial dependence structure
Spatio-temporal dependence structure
Observation Model
Spatio-temporal dependence structure
St = ASt + BSt−1 + η t
Unidirectional dependence in
time
Assumption: observation at t
only depends on observation at
t − 1 → AR(1) process
B Diagonal matrix with AR coef
(only monthly observations)
η t ∼ MVN(0, Ση ) (Ση diag)
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
7/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Spatial dependence structure
Spatio-temporal dependence structure
Observation Model
Spatio-temporal dependence structure
St = ASt + BSt−1 + η t
St = ΦSt−1 + δ t
Unidirectional dependence in
time
Assumption: observation at t
only depends on observation at
t − 1 → AR(1) process
B Diagonal matrix with AR coef
(only monthly observations)
η t ∼ MVN(0, Ση ) (Ση diag)
Φ = (I − A)−1 B
δ t ∼ MVN(0, Q),
Q = (I − A)−1 Ση (I − A)−T
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
7/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Spatial dependence structure
Spatio-temporal dependence structure
Observation Model
Observation Model
Model of S only holds for isolated
river model
(
St = ΦSt−1 + δ t
Y t = St + t
Reality: disturbance
→ put S in observation model
Error term: t ∼ MVN(0, Σ )
→ spatial correlation due to
disturbances
Up to now only covariance
structure modelled
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
8/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Spatial dependence structure
Spatio-temporal dependence structure
Observation Model
Observation Model
Model of S only holds for isolated
river model
(
St = ΦSt−1 + δ t
Y t = X t β + St + t
Reality: disturbance
→ put S in observation model
Error term: t ∼ MVN(0, Σ )
→ spatial correlation due to
disturbances
Up to now only covariance
structure modelled
Mean model:
E {Yt } = Xt β
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
8/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
Parameter Estimation
Kalman Filter and Kalman Smoother
ECM algorithm
E step: Calculate expected log likelihood of State Space model
CM step1: Parameters dependence structure
CM step 2: Parameters of the mean model
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
9/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
Kalman Filter
State Space model: likelihood can be factorized using the Kalman
Filter
E [St |t − 1]
E [(St − at|t−1 )(St − at|t−1 )T ]
E [St ]
E [(St − at )(St − at )T ]
E [vt vtT ]
=
=
=
=
=
at|t−1
Pt|t−1
at
Pt
Ft
=
=
=
=
=
Φat−1
ΦPt−1 ΦT + Q
at|t−1 + Pt|t−1 F−1
t vt
Pt|t−1 − Pt|t−1 F−1
t Pt|t−1
Pt|t−1 + Σ
with innovation vt = (Yt − at|t−1 − Xt β)
log LY =
N
P
t=1
log Lyt |Yt−1 ∼ − 12
TIES 2008, June 8 - 13, 2008
N
P
t=1
log |Ft | −
1
2
N
P
t=1
vtT Ft −1 vt
L. Clement and O. Thas, BIOSTAT
10/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
Kalman Smoother
Smoothed estimates at|N for St conditionally on all N
For t = N − 1, . . . , 0
at|N = at + P∗t (at+1|N − at+1|t )
Pt|N = Pt + P∗t (Pt+1|N − Pt+1|t )P∗T
t
P∗t = Pt ΦT P−1
t+1|t
Lag-one covariance smoothers (Digalakis, Rohlick and
Osendorf 1993)
⇒ Forward recursion:
Pt,t−1|t = (I − Pt|t−1 F−1
t )ΦPt−1
⇒ Backward recursion:
Pt,t−1|N = Pt,t−1|t + (Pt|N − Pt )P−1
t Pt,t−1|t
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
11/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
Using the Kalman filter for GLS
Apply same Kalman filter to Yt and each of the columns of Xt
⇒ A p × 1 vector of innovations, Yt∗ on Yt and
⇒ a p × m matrix of innovations, X∗t on (X1t , . . . , Xmt ) are
produced.
⇒ Run recursions for Pt|t−1 , Pt|t and Ft only once rather than
m + 1 times.
GLS estimator of β becomes
" N
#−1 N
X
X
−1 ∗
−1 ∗
β̂GLS =
X∗T
F
X
X∗T
(1)
t
t
t
t F t yt .
t=1
t=1
vt become vt = yt∗ − x∗t β̂GLS .
Maximisation possible by classical numerical algorithms
Here ECM algorithm
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
12/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
Existing EM algorithms
1
lc (Ψ) = log LYN ,SN (Ψ) the joint log-likelihood of YN and SN .
2
Problem: unobservable state process S
3
Use an EM algorithm (e.g. Shumway and Stoffer 1982)
4
RMN topology: restrictions on parametrisation
⇒ Q and Φ have some parameters in common
⇒ Adapt existing EM algorithm for SS models
5
Presence of the exogenous variables ⇒ use ECM algorithm.
⇒ Split M-step in two CM-steps.
⇒ CM step 1: Update the parameters of the dependence
structure Ψα given the current values of the mean model β.
⇒ CM step 2: estimate of β using the updated values of Ψα .
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
13/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
ECM algorithm
1
Choose initial estimates: Ψ0
2
E-step: Calculate Q(Ψ, Ψkα , β k ) = E lc (Ψ)|YN , Ψk
3
CM-step 1: Find the covariance parameters Ψk+1
that
α
k
k
maximise Q(Ψ, Ψα , β )
4
k
CM-step 2: Find β k+1 that maximises Q(Ψ, Ψk+1
α ,β )
5
Repeat steps 2-4 until convergence
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
14/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
E-step
o
1 n
k
k
−1
Q(Ψ, Ψk ) ∼ − E log |ΣS0 | + ST
0 ΣS0 S0 |Y, Ψ , β
2
(
)
N
X
1
T −1
− E N log |Ση | +
(St − ASt − BSt−1 ) Ση (St − ASt − BSt−1 )|...
2
t=1
(
)
N
X
1
− E N log |Σ | +
(Yt − Xβ − St )T Σ−1
(Y t − Xβ − St )|... .
2
t=1
Exponential family ⇒ sufficient statistics |Y
E [St |Y] = at|N
E [St St |Y] = Pt|N + at|N aT
t|N
E [St St−1 |Y] = Pt,t−1|N + at|N aT
t−1|N .
Maximise the obtained expected likelihood in the CM steps
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
15/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
CM-step 1: Update parameters of dependence structure
given β k
k
Q(Ψ, Ψ ) ∼ −
1
2
n
o
T −1
k
k
E log |ΣS0 | + S0 ΣS S0 |Y, Ψ , β
0
9
8
N
=
<
X
T −1
(St − ASt − BSt−1 ) Ση (St − ASt − BSt−1 )|...
−
E N log |Ση | +
;
2 :
t=1
9
8
N
=
X
1 <
T −1
−
E N log |Σ | +
(Yt − Xβ − St ) Σ (Yt − Xβ − St )|... .
;
2 :
1
t=1
Σ̂S0 = P0|N
Replace all sufficient statistics by their conditional expectations
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
16/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
CM-step 1: Update parameters of dependence structure
given β k
k
Q(Ψ, Ψ ) ∼ −
1
2
n
o
T −1
k
k
E log |ΣS0 | + S0 ΣS S0 |Y, Ψ , β
0
9
8
N
=
<
X
T −1
−
(St − ASt − BSt−1 ) Ση (St − ASt − BSt−1 )|...
E N log |Ση | +
;
2 :
t=1
9
8
N
=
X
1 <
T −1
−
(Yt − Xβ − St ) Σ (Yt − Xβ − St )|... .
E N log |Σ | +
;
2 :
t=1
1
(
E {log LS (Ψ)|...} ∼ − 12
Pp
i=1
E
N log ∆σηi +
1
2
ση
i
TIES 2008, June 8 - 13, 2008
PN
i
t=1 (St
[i]
)
i
− A[i] St − Bi St−1
)2 |...
L. Clement and O. Thas, BIOSTAT
17/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
CM-step 1: Update parameters of dependence structure
given β k
k
Q(Ψ, Ψ ) ∼ −
1
2
n
o
T −1
k
k
E log |ΣS0 | + S0 ΣS S0 |Y, Ψ , β
0
9
8
N
=
<
X
T −1
−
(St − ASt − BSt−1 ) Ση (St − ASt − BSt−1 )|...
E N log |Ση | +
;
2 :
t=1
9
8
N
=
X
1 <
T −1
−
(Yt − Xβ − St ) Σ (Yt − Xβ − St )|... .
E N log |Σ | +
;
2 :
t=1
1
8
>
>
>
>
>
>
>
>
>
<
>
>
>
>
>
>
>
>
>
:
„
«„
«
„
«
PN
PN
PN
[i] [i] T −1 PN
[i]
i i
i [i] T
i
t=1 St St−1 −
t=1 St St
t=1 St St
t=1 St−1 St
„
«„
«−1 „
«
PN
PN
PN
PN
[i] T
[i] [i] T
[i]
2
Si
−
Si
S
S S
Si
S
t=1 t−1
t=1 t−1 t
t=1 t t
t=1 t−1 t
–
„
«
»“
”
−1
PN
PN
[i] T
[i] [i] T
i
Ak+1
=
Sti − Bik+1 St−1
St
t=1 St St
t=1
i
RSSk+1
2 k+1
i
ση
=
N
i
Bik+1 =
Replace all sufficient statistics by their conditional expectations
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
17/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
CM-step 1: Update parameters of dependence structure
given β k
k
Q(Ψ, Ψ ) ∼ −
1
2
n
o
T −1
k
k
E log |ΣS0 | + S0 ΣS S0 |Y, Ψ , β
0
9
8
N
=
<
X
T −1
(St − ASt − BSt−1 ) Ση (St − ASt − BSt−1 )|...
− E N log |Ση | +
;
2 :
t=1
9
8
N
=
X
1 <
T −1
E N log |Σ | +
−
(Yt − Xβ − St ) Σ (Yt − Xβ − St )|... .
;
2 :
1
t=1
PN
(Y0 Y0T )−
Σ k+1 = t=1 t t
with Y0t = Yt − Xt β k
PN
PN
PN
0 T
0T
T
t=1 (Y t St )− t=1 (St Y t )+ t=1 (St St )
N
Replace all sufficient statistics by their conditional expectations
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
18/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Kalman Filter and Smoother
Parameter estimation algorithms
CM-step 2: Update β k given Ψk+1
α
β k+1 : FGLS using Kalman Filter with Ψk+1
α .
Kalman filter is already available for next E step.
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
19/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Case Study
Has the water quality improved?
MAP II
20
MAP I
10
Is mean of 2003 different from
0
Nitrate (mg N/l)
30
Mean model: ST + annual effect
1990
1994
1998
1
the general mean
2
the mean of 2001-2002
2002
Time
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
20/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Model for average NO−
3 at Si on time t
E {y } = µ + α + β + (κ) I(i) + γ sin(2πt/12)
1
i,t
i model,
j a parametric
j
Spatio-temporal
river network
approach
+ γ2 cos(2πt/12) + (λ)j,1 sin(2πt/12) + (λ)j,2 cos(2πt/12)
S2
(i = 1 . . . 5, j = year1 , . . . , year14 )
25
20
15
Nitrate (mg N/l)
S4
S5
25
20
15
5
5
0
01/90
01/96
Time
01/02
01/90
01/96
01/02
Time
0
Nitrate (mg N/l)
10 20 30 40 50 60 70
S3
Nitrate (mg N/l)
01/02
Time
10
01/96
0
01/90
20
01/02
Time
15
01/96
10
01/90
Nitrate (mg N/l)
0
0
25
30
5
10
20
15
10
5
Nitrate (mg N/l)
25
30
30
S1
01/90
01/96
01/02
Time
TIES
June quality
8 - 13, 2008
L. Clement
and O.ofThas,
BIOSTAT
Figure 5.9: Evolution
of 2008,
the water
at five sampling
locations
the river
21/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Statistical tests
d
−1
β̂(Ψα ) → MVN(β, (XT Σ−1
YN X) )
−1
Σ̂β = (XT Σ−1
YN (Ψ̂α )X) .
A general linear hypothesis to compare the means:
Hβ = 0, where H is the r × q hypothesis matrix.
Test: T = (Hβ̂)T (HΣ̂β HT )−1 (Hβ̂)
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
22/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Statistical tests
H0 :
Mean 2003 equal to
Mean 2001-2002
H1 :
Mean 2003 different from
Mean 2001-2002
Test
2003 ↔ 2001-2002
2003 ↔ general mean
2003 ↔ 2001-2002
2003 ↔ general mean
TIES 2008, June 8 - 13, 2008
contrast
p-value
Main river (“Regional”)
-2.54
0.016
-2.88
0.0005
Joining creek (S3)
-1.32
0.56
-8.40
< 0.0001
L. Clement and O. Thas, BIOSTAT
23/24
Introduction
Methods: Spatio-Temporal model
Parameter Estimation
Case Study: Nitrate concentration in the river Yzer
Statistical tests
H0 :
Mean 2003 equal to
Mean 2001-2002
H1 :
Mean 2003 different from
Mean 2001-2002
Test
2003 ↔ 2001-2002
2003 ↔ general mean
2003 ↔ 2001-2002
2003 ↔ general mean
TIES 2008, June 8 - 13, 2008
contrast
p-value
Main river (“Regional”)
-2.54
0.016
-2.88
0.0005
Joining creek (S3)
-1.32
0.56
-8.40
< 0.0001
L. Clement and O. Thas, BIOSTAT
23/24
References
References
1
Clement, L. and Thas, O. (2007). Estimating and modelling
spatio-temporal correlation structures for river monitoring networks.
Journal of Agricultural, Biological, and Environmental Statistics,
12(2), 161-176.
2
Clement, L., Thas, O., Vanrolleghem, P.A. and Ottoy, J.P. (2006).
Spatio-temporal statistical models for river monitoring networks.
Water, Science and Technology, 53, 9-15.
TIES 2008, June 8 - 13, 2008
L. Clement and O. Thas, BIOSTAT
24/24

Similar documents