F. Lechermann , L. Boehnke , D. Grieger and C. Piefke
Transcription
F. Lechermann , L. Boehnke , D. Grieger and C. Piefke
Correlated Electron States in Realistic Oxide Heterostructures F. Lechermann1, L. Boehnke1, D. Grieger2 and C. Piefke1 1 I. Institut für Theoretische Physik, Universität Hamburg, Germany 2 International School for Advanced Studies (SISSA), Trieste, Italy Phys. Rev. B 87, 241101(R) (2013), arXiv:1401.6105 (2014), JUROPA project hhh08 Prominent Oxide Heterostructures: LaTiO3/SrTiO3 and LaAlO3/SrTiO3 Metallicity and Ferromagnetism at the LAO/STO interface The combination of metallic oxides within a heterostructure architecture allows for the design of materials properties based on the unique interface physics (for a recent review see e.g. [1]). Especially interlacing different insulators (of band or Mott kind), gives rise to an intriguing metallic 2DEG with instabilities towards magnetic and superconducting order. Here large supercell combinations of SrTiO3 (STO), a bulk band insulator with LaTiO3 (LTO), a bulk Mott insulator and LaAlO3 (STO), another bulk band insulator, are studied within charge self-consistent DFT+DMFT. We find that structural relaxations and strong correlations trigger orbital selectivity in LTO/STO. Vacancy-induced correlations in LAO/STO provide moreover an understanding of metallicity and intricate ferromagnetism at the corresponding interface. LDA results and construction of correlated subspace ε-εF (eV) 1.0 • 80-atom supercells with structural relaxation 0.5 0.0 xz/yz xz/yz xz/yz xy -0.5 • defect-free (DF) and oxygen vacancy-hosting (VH) structure M • 25% vacancy-concentration in Ti(12)O2 layer DOS (1/eV) • two electrons at Fermi level for DF: polar-catastrophe avoidance x -y 0 Ti 2 (2) Ti 0 (5) 2 1 0 Ti (5) Ti (1) -0.08 xy x2− y2 xz/yz correlated subspace for VH case: strictly derived from KS-Hamiltonian, |e˜g i ∼ 0.55|z 2i±0.84|x2−y 2i ~140 meV Ti (345) ~155 meV yz xy ~320 meV e~g xz yz xy • no ferromagnetic (Stoner) instability in L(S)DA for both structural cases 2 1 charge self-consistent DFT+DMFT implementation [5] A (1/eV) VH-PM 40 20 νν νν 2 -2 0 -1 1 -0.5 -0.1 0.1 M ~ eg xy ω (eV) 1 2 ω (eV) 0.1 3 4 increased peak heights at Fermi level, DF case shows no ferromagnetic (FM) instability, lower eg -like Hubbard peak at −1.2eV for VH case in agreement with photoemission. kν kνν 0 0.0 0 -0.5 M Orbital Selectivity at the LTO/STO interface Ti(1) Ti(2) Ti(3) DF PM 0.02 0.16 0.02 0.16 0.07 0.05 PM 0.76 0.24 0.79 0.24 0.15 0.06 VH ↑ 0.41 0.19 0.43 0.19 0.07 0.03 FM ↓ 0.36 0.06 0.36 0.07 0.07 0.02 Ti(4) Ti(5) 0.07 0.05 0.08 0.04 0.17 0.06 0.24 0.04 0.08 0.03 0.12 0.02 • mTi(12) ∼0.1 µB Ti(1) 0.08 0.02 0.12 0.02 0 Ti 40 0.0 60 20 40 -0.1 0 40 30 -0.2 -1 β=160 eV (T=72.5K) -1 β=80 eV (T=145.1K) -0.3 -1 20 -0.4 40 2 4 6 8 10 2 iω 0 -2 0 -1 ω (eV) nxz,yz=0.24 nxy =0.25 Z =0.62 xz,yz Ti1 Z =0.67 1 Zxz,yz=0.66 Zxy =0.61 dxz nxz,yz=0.24 dyz nxy =0.26 dxy nxz,yz=0.23 nxy =0.26 Zxz,yz=0.63 nxz,yz=0.20 nxy =0.32 xy 0 • five inequivalent Ti ions, effective 3-band t2g correlated subspace (U = 5eV, JH = 0.7eV) ρ (1/eV) 1 • increased charge transfer towards xy close to interface in DFT+DMFT • stronger pronounced xy QP structure close to εF → orbital selectivity due to relaxations and strong correlations NIC Symposium 2014, February 12-13 2014, Jülich, Germany 0 1 0 1 0 Ti2 Zxz,yz=0.66 Zxy =0.65 Zxy =0.60 nxz,yz=0.13 nxy =0.18 Z =0.75 xz,yz Ti3 Zxz,yz=0.79 Zxy =0.79 nxz,yz=0.04 nxy =0.03 Z =0.91 xz,yz Zxz,yz=0.97 Zxy =0.97 nxz,yz=0.02 nxy =0.01 Z =0.95 xz,yz =0.99 1 Zxz,yz=0.99 nxz,yz=0.06 nxy =0.03 Zxy =0.95 xy -1 nxz,yz=0.08 nxy =0.05 Zxy =0.91 Ti5 0 -2 nxz,yz=0.12 nxy =0.22 ~ -0.3 PM FM-up eg 0.0 0.1 0.2 0.3 0.4 0.5 iω • intricate double-exchange mechanism (with relevant Hund’s exchange JH) responsible for FM state • e˜g electrons less coherent with temperature, stronger electron-electron scattering in PM phase 1 Summary Charge self-consistent DFT+DMFT based on the combination of an accurate Kohn-Sham technique with advanced continuous-time quantum Monte-Carlo can cope with the correlated electronic structure of oxide heterostructures. Correlations ally with structural relaxations in driving orbital selectivity towards xy character in occupation and QP weight at the LTO/STO interface. Quantum-fluctuating ferromagnetism at the LAO/STO interface emerges from vacancyinduced key double-exchange processes in an correlated (e˜g , xy) subspace. References Zxy =0.74 Ti4 Z xy 0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2 10 DFT+DMFT spectrum compared to LDA (black): without (top) and with relaxations (bottom) • without relaxations: white bg, with relaxations: grey bg -0.2 ~ eg • coexisting more localized e˜g level and more itinerant xy level in interface Ti(12)O2 layer • spin polarization most strong in xy orbital, while e˜g dominantly occupied β=40 eV (T=290.1K) 60 • 80-atom supercells xy 0.05 -1 ω (eV) • quasiparticle (QP) weight Z recovers towards STO part, xy minor lowered Z 0.05 β=20 eV (T=580.2K) 0 -10 -8 -6 -4 -2 0 n(r):occupied t2g bands • effective 2-orbital Hubbard problem near quarter filling -0.1 LDA DFT+DMFT (2) • quantum fluctuations reduce the FM moment compared to LDA+U [9] -0.05 Im Σ(iω) 1000 20 (4,4)-2 0.0 -0.05 Im Σ(iω) ρ (1/eV) 30 80 ρ (1/eV) Local Ti(3d) fillings in DF and VH structure. DF: averaged xz, yz and xy values. VH: (e˜g ,xy) on Ti(12) and (xz/yz,xy) on Ti(345). (4,4)x2 10 X [A↑−A↓](k, ω) Γ 0.01 • fully parallelized scheme, numerical cost: ∼50-100 processors for about 2 weeks per calculation 20 0 1 2 3 4 -2 ω (eV) -1 0 1 PM-A(k, ω) Local occupations and scattering properties in vacancy-hosting case 1 + hHU i − Edc, with HU i Tr [Σ(iωn)G(iωn) 2 80 0 The k-resolved DFT+DMFT spectral function reveals correlated fermiology in PM and FM vacancy-hosting phase. o 1 Xn KS ∆N(k) = G (iωn, k) P†(k) Σ(iωn) P(k) − (µ − µKS)1 Gbl(iωn, k) β n 100 X Γ 0.5 -0.1 0 -2 -1 0 2 1 0.0 -1.0 1 0 -3 kν ~ 2 10 0.1 eg xy VH-FM up down 20 • Dynamical Mean-Field Theory (DMFT) using a hybridization continuous-time quantum Monte Carlo solver (for a review see [6]) implemented in the TRIQS code [7, 8] X • charge self-consistency: ρ(r) = hr|Ψ i f (ε̃ )δ 0 + ∆N 0 (k) hΨ 0 |ri 0 3 0 0 i,m6=m ,σ kν Aloc (1/eV) 0 -0.1 ω (eV) 20 0.5 ω (eV) 3 0 kν • correlated subspace: effective 3-orbital (U = 3.5eV, JH = 0.5eV) for DF and effective 2-orbital (U = 2.5eV, JH = 0.5eV) for VH (12) DF-PM o 1 X n 0 † † † † U nimσ nim0σ̄ + U 00 nimσ nim0σ + JH dimσ dim0σ̄ dimσ̄ dim0σ + JH dimσ dimσ̄ dim0σ̄ dim0σ nim↑nim↓ + 2 0 EDFT+DMFT = EDFT + √ √ (4,4)- 2 × 2 LAO/STO 1.0 • Density Functional Theory (DFT) in Local Density Approximation (LDA): mixed-basis pseudpotential electronic structure code • Ti multi-orbital Hubbard Hamiltonian with full rotational invariance • total energy: 4 DFT+DMFT spectral data in paramagnetic and ferromagnetic phase P̄ R0 ∗0 (k) 0 ν m (k) εKS kν ∆Nνν 3 • six electrons for VH: additional electrons with mostly eg -like character in Ti(12)O2 layer: eg weight visible in bonding charge density -0.04 Ti Rmm0 X 2 bonding charge density: (LDA) (LDA) (LDA) ρb =ρtot −ρatomic 0 Ti(2) xz R∗ R P̄νm (k) ΣR mm0 (iωn ) P̄m0 ν 0 (k) im 1 3 4 0 E-EF (eV) 0.04 40 H(int) = U 2 0.08 combine band theory and model Hamiltonians by allowing for dominant local correlations crystal Bloch basis: |kνi Rk ∼ hRm|kνi P̄mν correlated subspace: |Rmi X (4) (3) LDA bands and local density of states interface: projection formalism Σνν 0 (k, iωn) = Ti Ti xy X (5) 2 Ti DFT+DMFT Approach: Materials Science meets Many-Body Theory νν 2 z xz yz xy 0 -1 z2 kνν 0 (3) Ti 2 2 • five inequivalent Ti ions with inplane differentiation Right: LAO/STO, photoemission [4], t2g /eg dichotomy 0 X Γ vacancy-hosting (1) Middle: LTO/STO, photoemission [3], Hubbard peak at −1 eV GRR mm0 (iωn ) = XM Γ (1) Ti eg Ti Left: LTO/STO, structure [2], arbitrary layerings n o −1 R P̄mν (k) [iωn + µ − HKS(k) − Σ(k, iωn)] eg defect-free Experimental data on LTO/STO and LAO/STO interfaces X xy xz/yz 2 3 4 [1] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Materials 11, 103 (2012) [2] A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature 419, 378 (2002) [3] M. Takizawa, H. Wadati, K. Tanaka, et al., Phys. Rev. Lett. 97, 057601 (2006) [4] G. Berner, M. Sing, H. Fujiwara, et al., Phys. Rev. Lett. 110, 247601 (2013) [5] D. Grieger, C. Piefke, O. E. Peil, and F. Lechermann, Phys. Rev. B 86, 155121 (2012) [6] E. Gull, A. J. Millis, A. I. Lichtenstein, et al., Rev. Mod. Phys. 83, 349 (2011) [7] M. Ferrero and O. Parcollet, TRIQS: http://ipht.cea.fr/triqs [8] L. Boehnke, H. Hafermann, M. Ferrero, F. Lechermann, and O. Parcollet, Phys. Rev. B 84, 075145 (2011) [9] N. Pavlenko, T. Kopp, E. Y. Tsymbal, et al., Phys. Rev. B 85, 020407(R) (2012)