Identificación de factores de la anadromía en trucha
Transcription
Identificación de factores de la anadromía en trucha
Departamento de Bioquímica, Genética e Inmunología Área de Genética Identificación de factores de la anadromía en trucha (Salmo trutta) y su aplicación a programas de conservación Memoria presentada por Francisco Marco Rius para optar al Grado de Doctor por la Universidade de Vigo Vigo, Mayo de 2013 ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ FINANCIACIÓN Y BECAS Esta tesis doctoral ha sido parcialmente financiada por los siguientes proyectos de investigación: • Título: “Bases ecológicas y genéticas para la recuperación de poblaciones de reo (Salmo trutta)” financiado por el Ministerio de Educación y Ciencia con referencia CGL2007-60572/BOS. Octubre 2007 - Septiembre 2010. • Título: “Estudios durante la etapa marina para la recuperación de poblaciones de reo (Salmo trutta): Bases ecológicas e identificación de secuencias reguladoras asociadas al comportamiento migrador” financiado por el Ministerio de Educación y Ciencia con referencia CGL2010-14964. Enero 2011 – Diciembre 2013. Durante el desarrollo de la presente tesis doctoral, Francisco Marco Rius ha disfrutado de las siguientes ayudas: • Ayuda Predoctoral de Formación de Personal Investigador con referencia BES-2008-001973. • Contrato como investigador Predoctoral en el Departamento de Genética de la Universidad de Vigo. ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ La presente tesis doctoral ha dado lugar a las siguientes publicaciones: • Marco-Rius, F., Caballero, P., Morán, P., & García de Leániz, C. (2012). And the last shall be first: heterochrony and compensatory marine growth in sea trout (Salmo trutta). PLoS ONE, 7(10), e45528. • Marco-Rius, F., Caballero, P., Morán, P., & García de Leániz, C. (2013). Mixed-effects modelling of scale growth profiles predicts the occurrence of early and late fish migrants. PLoS ONE, 8(4), e61744. • Morán, P., Marco-Rius, F., Megías, M., Covelo-Soto, L., & PérezFigueroa, A. (2013). Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture, 392-395, 77–83. • Marco-Rius, F., Sotelo, G., Caballero, P., Morán, P. (2013). Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta). Aceptado en Canadian Journal of Fisheries and Aquatic Sciences. • Marco-Rius, F., Caballero, P., Morán, P., & García de Leániz, C. Can migrants escape from density-dependence?. Aceptado en Ecology and Evolution ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ ÍNDICE DE CONTENIDO RESUMEN .......................................................................................................... 4! INTRODUCCIÓN ................................................................................................ 8! La trucha común .............................................................................................. 9! Regulación de la pesca de trucha .................................................................. 10! La anadromía en la trucha ............................................................................. 11! El problema .................................................................................................... 12! Trabajos incluidos en la presente tesis doctoral: unidad de coherencia temática y objetivos........................................................................................ 14! I. RELACIÓN ENTRE LA FASE DE AGUA DULCE Y AGUA MARINA ..... 15! II. METODOLOGIA BASADA EN EL ANÁLISIS DE ESCAMAS ................ 15! III. RELACIONES ENTRE LA ABUNDANCIA DE REOS Y LA COMPETENCIA. ANÁLISIS TEMPORAL DE LAS POBLACIONES. ......... 16! IV. DIRECTRICES PARA LA PLANIFICACIÓN DE UN PROGRAMA DE REPOBLACIÓN DE REO ........................................................................... 17! V. METILACIÓN Y ADAPTACIÓN AL AGUA DE MAR .............................. 19! Referencias .................................................................................................... 20! DISCUSIÓN ...................................................................................................... 31! Introducción y antecedentes .......................................................................... 32! Técnicas desarrolladas y utilizadas en la presente tesis doctoral ................. 35! TÉCNICAS GENÉTICAS EMPLEADAS ..................................................... 36! TÉCNICAS ECOLÓGICAS Y ESTADÍSTICAS EMPLEADAS ................... 38! APORTACIONES DE LA PRESENTE TESIS DOCTORAL ....................... 39! Perspectivas futuras....................................................................................... 44! Referencias .................................................................................................... 48! 2! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ CONCLUSIONES .............................................................................................. 57! REPRINTS DE LAS PUBLICACIONES ............................................................ 60! And the last shall be first: heterochrony and compensatory marine growth in sea trout (Salmo trutta) .................................................................................. 61! Mixed-effects modelling of scale growth profiles predicts the occurrence of early and late fish migrants ............................................................................ 72! Can migrants escape from density-dependence? ......................................... 80! Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta) ................................................................................................. 92! Environmental induced methylation changes associated with seawater adaptation in brown trout ............................................................................. 110! FACTOR DE IMPACTO Y CALIDAD DE LAS PUBLICACIONES .................. 118! 3! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ RESUMEN 4! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ RESUMEN La trucha común, Salmo trutta, es una especie de salmonido que exhibe diferentes comportamientos de migración dependiendo del ambiente. Algunas poblaciones contienen juveniles que migran frecuente al mar mientras en otras, los movimientos son muy restringidos y los individuos tienden a quedarse toda la vida en agua dulce. El término migración parcial se usa para describir el fenómeno por el cual la población se divide entre individuos migradores y residentes. Normalmente, en ríos localizados en áreas costeras con acceso al mar, la trucha anádroma o reo y la trucha residente viven en simpatría. Cuando los adultos migradores vuelven al río de origen para el desove, las truchas y los reos pueden reproducirse entre ellos y los juveniles crecen sin distinción alguna en el mismo río. Cuando llega la época del esguinado, la decisión entre migrar o permanecer en el río se toma cuando se excede cierto umbral de condiciones ecológicas y genéticas, lo que representa un claro ejemplo de plasticidad fenotípica. Las poblaciones de trucha se someten continuamente a programas de repoblación por el gran interés socio-económico de la especie. Lo que ocurre es que estos programas de repoblación están destinados principalmente a las poblaciones residentes. A pesar del gran interés del reo desde el punto de vista recreativo, las repoblaciones no aumentan el numero de estos individuos debido a que la domesticación ocurrida en la piscifactoría hasta la suelta produce efectos sobre la capacidad de anadromía. Por ello, en los últimos años la cantidad de reos se ha visto disminuida respecto a la cantidad de trucha. Los objetivos principales de este trabajo han sido tratar de cuantificar las condiciones genéticas y ecológicas que van a determinar la migración de la trucha e intentar aplicar los resultados para llevar a cabo un programa de 5! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ repoblación que aumente la fracción anádroma de los individuos soltados en poblaciones naturales. En primer lugar se realizó un control de los individuos migradores de seis poblaciones naturales distintas con el objeto de observar diferencias entre ellas y determinar la necesidad de condiciones particulares en la conservación de la especie dependiendo de la cuenca. Además también se cuantificó la relación en el crecimiento entre la fase de río y la de mar para conocer los efectos de la migración sobre el crecimiento. En segundo lugar, se observaron las diferencias en el crecimiento y las relaciones denso-dependientes en una serie temporal de 13 años en dos poblaciones. Esto permitió observar y cuantificar la relación del crecimiento con la abundancia de individuos en la cuenca y su tendencia en los años estudiados. La relación que existe entre el número de individuos y el crecimiento resulta importante en la gestión de las repoblaciones, ya que deben adaptarse los individuos repoblados a la capacidad de carga de la cuenca donde son soltados. Además, a lo largo de este estudio se desarrolló una técnica de análisis mediante el uso de escamas y métodos estadísticos que permitió diferenciar los individuos migradores de los tardíos en función del crecimiento juvenil. Paralelamente, se realizó una repoblación mediante huevos plantados y juveniles de un año de edad teniendo en cuenta ciertos parámetros genéticos, como el tipo de reproductor usado en el cruce (migrador o residente) o el grado de similitud entre el MHC (de las siglas en inglés Major Histocompatibility Complpex) de los progenitores. Tras completar su ciclo vital, cierto número de individuos fueron capturados antes de desovar en una estación de captura. Se observó que los parámetros genéticos de los progenitores son clave para el 6! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ aumento de la fase anádroma, aunque también se registraron individuos residentes provenientes de todos los cruces. Finalmente, como consecuencia de la necesidad de nuevas técnicas genéticas para el estudio de la anadromía y su adaptación a técnicas de repoblación, se desarrolló un estudio de metilación de los tejidos. Se comprobó como una dieta rica en sal está relacionada con cambios en la metilación de las branquias, y a su vez, como los individuos alimentados con esta dieta durante un tiempo específico son capaces de sobrevivir mejor en agua salada. Por tanto, la metilación es un proceso reversible que puede coordinarse con los programas de repoblación para resultar en un diseño óptimo de estrategias para el aumento de la fase anádroma. 7! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ INTRODUCCIÓN 8! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ INTRODUCCIÓN La trucha común La trucha común (Salmo trutta L.) es el pez más abundante en aguas continentales de la región paleártica (Elliot 1994). La distribución geográfica de esta especie se extiende de forma natural desde el océano Ártico (norte de Noruega) y el mar Blanco (Rusia) hasta las montañas del Atlas en el norte de África, y desde Islandia hasta el mar Aral en Afganistán y Pakistán. La trucha muestra una considerable variación y plasticidad en muchos aspectos de su morfología, ecología y comportamiento (Klemetsen y col. 2003; Jensen y col. 2008; Fraser y col. 2011). La gran diversidad de adaptaciones ecológicas y de comportamiento explica que durante mucho tiempo se haya clasificado en más de 50 especies diferentes (Behnke 1972) atendiendo a su forma, color, tamaño, etc. Todas las truchas tienen capacidad migradora, aunque en función del lugar donde realizan su ciclo de vida (hábitat de agua dulce o salada) se distinguen dos tipos: trucha residente y trucha migradora o anádroma (reo; Jonsson y Jonsson 1993; Caballero y col. 2012). Aunque todas las truchas que habitan en Europa pertenecen a una sola especie, ésta presenta diferentes subespecies o variedades locales (GarcíaMarín y col. 1999; Bernatchez 2001; Ayllon y col. 2006). Parece claro que gran parte de las poblaciones de trucha actualmente existentes en Europa se originaron a partir de trucha migradora al mar, en una recolonización que tuvo lugar hace unos 14.000 años, y que en los lugares en donde existen varios tipos de trucha el estado ancestral reciente es la anadromía. Posteriormente las poblaciones de los diferentes ríos y lagos evolucionaron de forma independiente (Ferguson 2006). 9! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Las dos variedades de trucha que habitan en España, tradicionalmente clasificadas erróneamente como subespecies y denominadas trucha común y reo, son en realidad morfotipos (o fenotipos) que se han adaptado a unas determinadas condiciones de vida y a unos ciclos biológicos concretos (Caballero y col. 2012). La trucha marina o reo (tradicionalmente S.trutta trutta) es un migrador anádromo que realiza la mayor parte de su ciclo vital en agua dulce y en un momento dado de su ciclo de vida (en general a partir del segundo año de vida en el río) esguina (se vuelve de color plateado) y se desplaza a los estuarios para completar su crecimiento en un tiempo que oscila entre unos pocos meses y años (Elliott 1994; Caballero y col. 2012). El reo se puede encontrar en los ríos que drenan al Cantábrico y los que lo hacen al Atlántico por encima de la latitud 42º N (río Limia en el norte de Portugal; Bouza y col. 1999; Caballero 2006). La trucha común (tradicionalmente S. trutta fario) es la variedad residente que desarrolla toda su vida en aguas dulces. Esta variedad sólo migra aguas arriba durante la época de reproducción en busca de lugares idóneos para la freza, pero siempre en aguas dulces. La trucha permanece presente en muchos ríos de la península aunque se ha extinguido en varios de ellos (Toledo y col. 1993; Hervella y Caballero 1999). Regulación de la pesca de trucha En Galicia, la trucha está sujeta a explotación regulada legalmente. Únicamente está permitida la pesca con caña en el río, mientras que la pesca en el mar bien con caña o con redes está totalmente prohibida y económicamente penalizada. La ley que rige la pesca fluvial en Galicia es la Ley 7/1992 de 24 de julio y el reglamento que la desarrolla, se rige por el Decreto 130/1997 de 14 de mayo, por el que se aprueba el Reglamento de Ordenación de la Pesca Fluvial y de los ecosistemas Acuáticos. El periodo hábil de pesca oscila entre mediados de marzo y finales de agosto, existiendo en los ríos zonas de veda (prohibición de pesca), zonas libres y cotos 10! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ regulados. Para pescar es necesario estar en posesión de la correspondiente licencia emitida por las diferentes comunidades autónomas. La diferencia entre la trucha residente y la trucha anádroma es de tal magnitud que la mayoría de los pescadores deportivos creen que se trata de dos especies diferentes, a lo que contribuye sin duda la regulación de la pesca (a efectos de número de capturas y tamaños mínimos) donde claramente se diferencia entre trucha y reo a nivel administrativo. La anadromía en la trucha La anadromía es señal de cambios fisiológicos, ya que los requisitos para vivir en agua dulce y agua salada son diferentes, así como los patrones de alimentación y comportamiento (Caballero y col. 2006). Existen diferentes evidencias de que existe una base genética para muchos de los cambios mencionados, aunque la mejor explicación para la anadromía es considerarla como un carácter cuantitativo controlado por múltiples genes y con influencia del ambiente. Cuando la combinación de estos factores excede un valor umbral, la consecuencia será la migración al mar (Jonsson y Jonsson 1993; Ferguson 2006). Numerosos trabajos examinan y comparan la variabilidad genética en muestras de trucha anádroma y residente del mismo río utilizando alozimas, DNA mitocondrial y marcadores nucleares como mini y microsatélites (Petersson y col. 2001; Hansen y col. 2002; Hovgaard y col. 2006). A pesar de su gran interés, estos estudios presentan dos grandes problemas. El primero de ellos es la posibilidad de que las truchas analizadas no sean siempre parte de la misma población, ya que dentro de un río pueden coexistir varias poblaciones, sobre todo en ríos con numerosos afluentes. El segundo de los problemas recae en la dificultad para distinguir durante la fase juvenil a los individuos residentes de los migradores (véanse criterios en Bagliniere 2000), ya que al producirse el esguinado en diferentes épocas del año, una trucha clasificada como residente en primavera podría ser migradora en otoño. Aunque la mayoría de estos estudios concluyen que no existen diferencias 11! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ genéticas entre las dos variedades de trucha, esto no se traduce de manera directa en ausencia de base genética de la anadromía, ya que al tratarse de un carácter cuantitativo umbral, los resultados obtenidos con marcadores moleculares neutros no son contradictorios (Ferguson 2006). Además, existen patrones de expresión génica diferenciados entre ambos tipos de trucha (Giger y col. 2006) y también existen evidencias del control genético de comportamiento anádromo en trucha y otras especies afines. Algunas de estas evidencias son: • Pérdida de anadromía en poblaciones con la construcción de barreras físicas (Jonson 1982; Morita y col. 2009) • Poblaciones de reo diferentes muestran diferentes patrones de migración (Jonsson y L'Abee-Lund 1993; Jonsson y col. 2001) • En estudios experimentales la progenie de reo produce más reo que la progenie de trucha residente (Skrochowska 1969) • Comportamiento migrador diferente entre machos y hembras de una misma población (Fleming 1993; Caballero y col. 2012) • Control genético de la dirección de migración (Nielsen y col. 2001) • El patrón temporal de migración aguas arriba y abajo está determinado genéticamente en el salmón Atlántico (Nielsen y col. 2001; Stewart y col. 2002) El problema En los últimos años las poblaciones de trucha en España han disminuido, tanto en número como en tamaño e independientemente de la pertenencia a poblaciones anádromas o residentes. La principales causas están envueltas en esta diminución son la contaminación, las obras públicas (principalmente construcción de presas y canalización de ríos), y la sobreexplotación. Esta situación es general en los países industrializados, si bien hay que señalar que 12! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ la situación de la trucha en la mayoría de los ríos españoles no es preocupante. Con el objeto de restaurar o incrementar algunas de las poblaciones, es habitual que en determinados ríos se realicen actuaciones concretas como repoblaciones con individuos procedentes de piscifactoría, transferencia de individuos de unas poblaciones a otras o cría en cautividad y posterior suelta de alevines y juveniles del propio río. Estas actuaciones han tenido un éxito desigual dependiente de los ríos y métodos utilizados (Morán y col. 1991; Izquierdo y col. 2006; Almodóvar y col. 2006). En las poblaciones de trucha que habitan en las partes bajas de los ríos conviven y se reproducen individuos que completan todo su ciclo de vida en agua dulce con aquellos que realizan migraciones al mar. En las repoblaciones realizadas en estas zonas parece claro que las truchas que sobreviven carecen, en su mayor parte, de componente migrador al mar, por lo que es muy difícil con las metodologías utilizadas hasta la fecha, recuperar poblaciones de reo. En muchos casos este fracaso es atribuible al stock utilizado. Así por ejemplo en España durante muchos años se utilizó en la repoblación un stock centroeuropeo de piscifactoría que, debido a su cría continua en agua dulce, es posible que hubiera perdido su capacidad de migración (Morán y col. 1991; Serrano y col. 2009). Lo sorprendente es que cuando se reproducen en cautividad reos salvajes y sus alevines son criados en piscifactoría durante un periodo inferior a un año, al utilizarlos para suplementar los ríos, su capacidad de migración se ve enormemente disminuida (Serrano y col. 2009). Está contrastado por experiencias en otros países, que la repoblación, sobre todo si se utilizan stocks domesticados, disminuye drásticamente el potencial de anadromía de las poblaciones salvajes (Østergaard y col. 2003; Ruzzante y col. 2004) y que el simple hecho de mantener las truchas en piscifactoría durante la etapa juvenil disminuye este potencial, posiblemente debido a la alimentación (Glover y col. 2004). Por tanto, parece claro que la trucha de repoblación no contribuye a aumentar la fracción anádroma de las poblaciones de trucha con acceso al mar. 13! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Trabajos incluidos en la presente tesis doctoral: unidad de coherencia temática y objetivos. La presente tesis doctoral es un compendio de cinco publicaciones científicas, de las cuales todas ellas han sido aceptadas. La tesis se realizó siguiendo la normativa de la Universidad de Vigo y se centra en el estudio de las bases ecológicas y genéticas de la anadromía en las poblaciones de trucha común. Como se mencionó anteriormente, la relación entre ambas disciplinas (ecología y genética) es clave para la obtención de nuevos conocimientos sobre el fenotipo migrador de esta especie. Además, los estudios llevados a cabo en la presente tesis doctoral sirven para sentar las bases de un programa de repoblación enfocado a aumentar el fenotipo migrador de las poblaciones de trucha. La tesis se puede dividir en dos bloques ligeramente diferenciados, aunque totalmente dependientes entre ellos. El primer bloque se centra en aspectos puramente ecológicos que ocurren durante las primeras etapas de desarrollo de los individuos, tanto en el río como en el mar. También se evalúan otros factores importantes como la competencia denso-dependiente y su relación con la cantidad de individuos presentes en el río o dispuestos a migrar. Ambos aspectos se estudiaron utilizando técnicas de análisis de escamas. Paralelamente a los estudios citados anteriormente, se desarrolló una nueva técnica para el análisis de las escamas basado en el crecimiento reflejado en cada anillo depositado (Elliott y Chambers 1996) y el análisis mediante modelos lineales de efectos mixtos (Zuur y col. 2009). Con esta técnica analítica es posible diferenciar individuos potencialmente migradores en las primeras etapas de agua dulce. Este método se utilizó también para observar la variación en el crecimiento individual de los 14! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ juveniles dependiendo de la cantidad de individuos adultos capturados antes de la reproducción. I. RELACIÓN ENTRE LA FASE DE AGUA DULCE Y AGUA MARINA El crecimiento en etapas tempranas es, en muchas especies, un buen indicador del crecimiento en etapas posteriores, ya que los juveniles con tamaño superior a la media pueden tener ventajas competitivas (Mangel y Stamps 2001). No obstante, en especies migradoras la relación entre el crecimiento juvenil y adulto está poco claro. Varios estudios de campo revelan diferentes presiones de selección para la talla en salmónidos anádromos en diferentes ambientes (i.e. agua dulce y marina: Jonsson y col. 1991; Scarnecchia y col. 1989). Estos datos sugieren la existencia de mecanismos de compensación de crecimiento entre el río y el mar. Además, la relación entre la talla de migración y la talla en la primera etapa marina (post-esguín) tampoco está clara. Debido a que la selección actúa intensamente sobre la talla de los salmónidos (Garcia de Leaniz y col. 2007) en el Reprint I: “And the last shall be first: heterochrony and compensatory marine growth in sea trout (Salmo trutta)” se explora el coeficiente de variación del tamaño corporal con objeto de cuantificar la variación fenotípica (Agrawal 2001) a través del estudio en diferentes fases vitales de individuos anádromos de seis poblaciones diferentes (Einum y col. 2002; Jonsson y Jonsson 2007). Específicamente, la hipótesis de partida es que el coeficiente de variación en el tamaño corporal difiere entre el río y el mar, reflejando compensaciones en el tamaño a lo largo de la ontogenia. II. METODOLOGIA BASADA EN EL ANÁLISIS DE ESCAMAS El crecimiento es usado comúnmente como un indicador de la fitness, pero es sólo valido si la variación de este crecimiento se representa en relación con sus 15! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ congéneres. Desafortunadamente, en condiciones naturales, evaluar la variación de las tasas de crecimiento resulta problemático debido a que los individuos tienen que ser marcados y a que la obtención de varias medidas de un mismo individuo a lo largo del tiempo es difícil, ya que las recapturas de individuos suelen ser muy limitadas. Por ello, en el Reprint II: “Mixed-effects modelling of scale growth profiles predicts the occurrence of early and late fish migrants” se utiliza un método basado en el análisis del espacio entre anillos de crecimiento consecutivos de la escama (circuli) para reconstruir perfiles individuales de crecimiento. Además, se utiliza un análisis estadístico basado en las diferencias en la intersección y las pendientes con el objetivo de aumentar la potencia, la exactitud y precisión de los resultados (van de Pol 2012). El método descrito se utilizó para predecir la migración temprana o tardía de los individuos de dos poblaciones distintas en función del crecimiento registrado durante la primera fase del crecimiento de agua dulce. Además, también se comparó el modelo lineal de efectos mixtos utilizado para el análisis de escamas con un modelado clásico como el de Von Bertalanffy (1938). III. RELACIONES ENTRE LA ABUNDANCIA DE REOS Y LA COMPETENCIA. ANÁLISIS TEMPORAL DE LAS POBLACIONES. Entender las fluctuaciones temporales en el crecimiento, así como el número de individuos que forman parte de una población es desde hace mucho tiempo un desafío clave en ecología de poblaciones (Krebs 2009). La densodependencia es quizás uno de los reguladores endógenos clave en muchas especies (Brook y Bradshaw 2006) y por el cual el crecimiento es controlado en función de los recursos existentes y la cantidad de individuos que se aprovechan de ellos. La consideración de la regulación denso-dependiente es importante para la gestión de poblaciones explotadas como las poblaciones de truchas, ya que la mortalidad asociada a la pesca puede tener importantes efectos en la densidad (Minto y col. 2008). Los sistemas de agua dulce son típicamente más limitados en recursos que los marinos (Ross 1986) y por tanto, se considera que el crecimiento denso-dependiente en ríos está causado por la 16! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ competencia en la obtención de alimento más que por la competencia por interferencia del espacio (Grant e Imre 2005). A pesar de ello, ambos mecanismos de competencia pueden operar y resultar en idénticas relaciones denso-dependientes (Ward y col. 2007). Por el contrario, en el mar el efecto de la densidad en salmónidos se considera que está mediada exclusivamente por la competencia de alimento (Peterman 1984) ya que se asume que es muy difícil para los individuos monopolizar el espacio o defender los recursos en el mar (Snover y col. 2005). En el Reprint III: “Can migrants escape from density-dependence?” (en revisión en Ecology and Evolution) se comprobó que la variación del crecimiento en agua dulce de los reos muestra cambios dependiendo de la abundancia anual de truchas debido al aumento de la competencia. Contrariamente a lo esperado, la variación del crecimiento en el mar también registró cambios dependientes de la abundancia de juveniles que migran al mar, sugiriendo que las truchas migradoras no pueden ‘escapar’ completamente al efecto de la competencia. El segundo bloque de esta tesis doctoral se centra en los aspectos genéticos del fenotipo anádromo de la trucha. IV. DIRECTRICES PARA LA PLANIFICACIÓN DE UN PROGRAMA DE REPOBLACIÓN DE REO La trucha común está a menudo sujeta a programas de repoblación debido a la pesca recreativa a la que se ven sometidas ciertas poblaciones (Juanes y col. 2011). Por esta razón, es común utilizar truchas criadas en cautividad para aumentar las poblaciones en los ríos o lagos (Jonsson y Jonsson 2011). Numerosos autores han establecido pros y contras de esta práctica (Fleming y col. 1997; Jonsson y col. 2003) y los resultados parecen estar íntimamente ligados con el stock parental utilizado en los programas de repoblación, ya que el éxito de la progenie se reduce cuando se utilizan truchas domesticadas (Morán y col. 1991; Martínez y col. 1993; Dahl y col. 2006). Por otra parte, el 17! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ ambiente de la piscifactoría normalmente favorece rasgos completamente diferentes de los que la selección natural favorece en la vida salvaje (Rogell y col. 2012). Uno de los rasgos más afectados por la piscifactoría es el componente de la anadromía (Serrano y col. 2009). En el Reprint IV: “Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta)” se proponen las bases para el desarrollo de un programa enfocado a la repoblación de poblaciones anádromas basado en la selección de los reproductores, el uso de diferentes edades de repoblación y su relación con la tasa de retorno tras la migración marina y el coste económico. Las herramientas usadas para el estudio genético de estos stocks han variado desde técnicas de paternidad mediante el uso de microsatélites hasta el estudio del MHC clase II gen-β (de las siglas en inglés, Major Histocompatibility Complex) o la metilación de tejidos. Además se relacionaron los resultados con efectos maternos como el tamaño o número de huevos y con efectos paternos como el fenotipo paterno. Este experimento en el medio natural ha servido de base para la comparación de las tasas de retorno de individuos repoblados pertenecientes a los mismos cruces y criados en cautividad. Con estas comparaciones se han podido vislumbrar ciertos patrones necesarios para la realización de protocolos que sirvan para aumentar la abundancia de este fenotipo migrador. A su vez, sirvió para comprobar que la de mayoría de los cruces se obtuvieron individuos anádromos y a su vez individuos residentes, lo que sirvió como comienzo de la búsqueda de nuevos aspectos genéticos en el estudio de la anadromía. 18! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ V. METILACIÓN Y ADAPTACIÓN AL AGUA DE MAR En condiciones naturales, los dos fenotipos de trucha se diferencian claramente durante el segundo año de sus vidas debido a la habilidad de algunos juveniles para llevar a cabo el esguinado (Økland y col. 1993). Este proceso implica importantes adaptaciones fisiológicas y morfológicas al agua marina, preparando así al individuo a la vida en mar abierto antes de haber migrado. Los cambios en la morfología externa incluyen cambios en la forma del cuerpo y en los patrones de coloración (Björnsson y col. 2011). Los cambios fisiológicos están principalmente relacionados con el incremento de la tolerancia al agua salada y cambios en sus tasas de crecimiento metabólico. Además, el incremento de la tolerancia al agua marina requiere la diferenciación y la activación del transporte epitelial, así como de la síntesis de nuevas proteínas de transporte (McCormick 2001). Como consecuencia de la necesidad de nuevas técnicas genéticas para el estudio de la anadromía, la epigenética (i.e. metilación de los tejidos) puede ayudar a entender el proceso de esguinado en la trucha. El esguinado es un proceso reversible que puede ser estimulado por factores externos, ya que individuos genotípicamente iguales pueden mostrar diferentes fenotipos. En el Reprint IV: “Environmental induced methylation changes associated with seawater adaptation in brown trout” se investigó si los cambios en la metilación global del ADN pueden estar relacionados con la anadromía y si el nivel de metilación puede cambiar en respuesta al estrés osmótico inducido por estímulos externos como dietas ricas en sal. Entender los efectos de los estímulos externos va a permitir un mejor manejo de los peces, y a su vez se podrían incrementar las tasas de esguinado según la necesidad. 19! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Cada uno de los reprints en los que se divide esta tesis doctoral sirve para avanzar en el conocimiento de la biología de la trucha migradora. El reo, supone en Galicia un gran recurso natural y económico. Esta tesis aborda su estudio desde un punto de vista multidisciplinar, donde aspectos metodológicos variados y novedosos sirven para conocer aspectos genéticos y ecológicos de esta especie. Referencias Agrawal, A. A. (2001). Phenotypic plasticity in the interactions and evolution of species. Science, 294, 321–326. Almodóvar, A., Nicola, G. G., Elvira, B., & García-Marín, J. L. (2006). Introgression variability among Iberian brown trout Evolutionary Significant Units: the influence of local management and environmental features. Freshwater Biology, 51, 1175–1187. Ayllon, F., Moran, P., & Garcia-Vazquez, E. (2006). Maintenance of a small anadromous subpopulation of brown trout (Salmo trutta L.) by straying. Freshwater Biology, 51, 351–358. Baglinière, J.-L., Ombredane, D., & Marchand, F. (2000). Critères morphologiques pour l'identification des deux formes (rivière et mer) de truite (Salmo trutta) présentes sur un même bassin. Bulletin Français de la Pêche et de la Pisciculture, 357/358, 375–383. Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology, 10, 181–213. 20! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Behnke, R. J. (1972). The systematics of salmonid fishes of recently glaciated lakes. Journal of the Fisheries Research Board of Canada, 29, 639–671. Bernatchez, L. (2001). The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution, 55, 351–379. Björnsson, B. T., Stefansson, S. O., & McCormick, S. D. (2011). Environmental endocrinology of salmon smoltification. General and Comparative Endocrinology, 170, 290–298. Bouza, C., Arias, J., Castro, J., Sanchez, L., & Martinez, P. (1999). Genetic structure of brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Molecular Ecology, 8, 1991–2001. Brook, B. W., & Bradshaw, C. J. A. (2006). Strength of evidence for density dependence in abundance time series of 1198 species. Ecology, 87, 1445– 1451. Caballero, P., & Cobo, F. (2006). Life History of a Sea Trout (Salmo trutta L.) Population from the North West Iberian Peninsula (River Ulla, Galicia, Spain). In G. Harris & N. MIlner (Eds.), Sea Trout: Biology, Conservation and Management (pp. 234-247). Blackwell Scientific Publications. 21! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Caballero, P., Morán, P., & Marco-Rius, F. (2012). A review of the genetic and ecological basis of phenotypic plasticity in brown trout. In S. Polakof & T. W. Moon (Eds.), Trout: from physiology to conservation (pp. 9-26). Nova Science, Hauppauge, NY. Dahl, J., Pettersson, E., Dannewitz, J., Järvi, T., & Löf, A.-C. (2006). No difference in survival, growth and morphology between offspring of wild-born, hatchery and hybrid brown trout (Salmo trutta). Ecology of Freshwater Fish, 15, 388–397. Einum, S., Thorstad, E., & Næsje, T. (2002). Growth rate correlations across life!stages in female Atlantic salmon. Journal of Fish Biology, 60, 780–784. Elliott, J., & Chambers, S. (1996). A guide to the interpretation of sea trout scales. National Rivers Authority, Bristol, UK. R&D Report, Vol. 22. Elliott, J. M. (1994). Quantitative ecology and the brown trout. Oxford University Press, Oxford. Ferguson, A. (2006). Genetics of sea trout, with particular reference to Britain and Ireland. In G. Harris & N. MIlner (Eds.), Sea Trout: Biology, Conservation and Management (pp. 155–182). Blackwell Scientific Publications. Fleming CC (1983). Population biology of anadromous brown trout (Salmo trutta L.) in Ireland and Britain. PhD Thesis, The Queen’s University of Belfast. 475pp. 22! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Fleming, I., Lamberg, A., & Jonsson, B. (1997). Effects of early experience on the reproductive performance of Atlantic salmon. Behavioral Ecology, 8, 470480. Fraser, D. J., Weir, L. K., Bernatchez, L., Hansen, M. M., & Taylor, E. B. (2011). Extent and scale of local adaptation in salmonid fishes: review and metaanalysis. Heredity, 106, 404–420. Garcia de Leaniz, C., Fleming, I. A., Einum, S., Verspoor, E., Jordan, W. C., Consuegra, S., et al. (2007). A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biological reviews of the Cambridge Philosophical Society, 82, 173–211. García-Marín, J.-L., Utter, F. M., & Pla, C. (1999). Postglacial colonization of brown trout in Europe based on distribution of allozyme variants. Heredity, 82, 46–56. Giger, T., Excoffier, L., Day, P. J. R., Champigneulle, A., Hansen, M. M., Powell, R., & Largiadèr, C. R. (2006). Life history shapes gene expression in salmonids. Current biology, 16, 281-282. Glover, K. A., Taggart, J. B., Skaala, Ø., & Teale, A. J. (2004). A study of inadvertent domestication selection during start feeding of brown trout families. Journal of Fish Biology, 64, 1168–1178. 23! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Grant, J. W. A., & Imre, I. (2005). Patterns of density-dependent growth in juvenile stream-dwelling salmonids. Journal of Fish Biology, 67, 100–110. Hansen, M. M., Ruzzante, D. E., Nielsen, E. E., Bekkevold, D., & Mensberg, K.L. D. (2002). Long-term effective population sizes, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Molecular Ecology, 11, 2523–2535. Hervella, F., & Caballero, P. (1999). Inventario piscícola dos ríos galegos. Conselleria de Medio Ambiente, Xunta de Galica, Santiago de Compostela. Hovgaard, K., Skaala, Ø., & Naevdal, G. (2006). Genetic differentiation among sea trout, Salmo trutta L., populations from western Norway. Journal of Applied Ichthyology, 22, 57–61. Izquierdo, J. I., Castillo, A. G. F., Ayllon, F., Hoz, J., & Garcia-Vazquez, E. (2006). Stock transfers in spanish brown trout populations: a long-term assessment. Environmental Biology of Fishes, 75, 153–157. Jensen, L. F., Hansen, M. M., Pertoldi, C., Holdensgaard, G., Mensberg, K. L. D., & Loeschcke, V. (2008). Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proceedings of the Royal Society B: Biological Sciences, 275, 2859–2868. Jonsson, B. (1982). Diadromous and resident trout Salmo trutta: is their difference due to genetics? Oikos, 38, 297–300. 24! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Jonsson, B., L'Abee-Lund, H., Heggberget, T., Jensen, A., Johnsen, B., Næsje, T., & Sættem, L. (1991). Longevity, body size, and growth in anadromous brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciencies, 48, 1838–1845. Jonsson, B., & L'Abee-Lund, J. H. (1993). Latitudinal clines in life-history variables of anadromous brown trout in Europe. Journal of Fish Biology, 43, 1– 16. Jonsson, B., & Jonsson, N. (1993). Partial migration: niche shift versus sexual maturation in fishes. Reviews in Fish Biology and Fisheries, 3, 348–365. Jonsson, B., Jonsson, N., Brodtkorb, E., & Ingebrigtsen, P. (2001). Life-history traits of brown trout vary with the size of small streams. Functional Ecology, 15, 310–317. Jonsson, N., Jonsson, B., & Hansen, L. (2003). The marine survival and growth of wild and hatchery-reared Atlantic salmon. Journal of Applied Ecology, 40, 900–911. Jonsson, N., & Jonsson, B. (2007). Sea growth, smolt age and age at sexual maturation in Atlantic salmon. Journal of Fish Biology, 71, 245–252. 25! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Jonsson, B., & Jonsson, N. (2011). Ecology of Atlantic salmon and brown trout: habitat as a template for life histories. Fish and Fisheries Series 33, Springer, Dordrecht. Juanes, F., Gephard, S., La Hoz, De, J., Moran, P., Dopico, E., Horreo, J. L., & Garcia-Vazquez, E. (2011). Restoration of native Atlantic salmon runs in northern Spain: do costs outweigh benefits? Knowledge and Management of Aquatic Ecosystems, 402, 22. Klemetsen, A., Amundsen, P., Dempson, J., Jonsson, B., Jonsson, N., O'Connell, M., & Mortensen, E. (2003). Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecology of Freshwater Fish, 12, 1–59. Krebs, C.J. (2009). Ecology: The Experimental Analysis of Distribution and Abundance. Benjamin Cummings, San Francisco, USA. Mangel, M., & Stamps, J. (2001). Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evolutionary Ecology Research, 3, 583–593. Martinez, P., Arias, J., Castro, J., & Sanchez, L. (1993). Differential stocking incidence in brown trout (Salmo trutta) populations from Northwestern Spain. Aquaculture, 114, 203–216. McCormick, S. D. (2001). Endocrine control of osmoregulation in teleost fish. American Zoologist, 41, 781–794. 26! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Minto, C., Myers, R. A., & Blanchard, W. (2008). Survival variability and population density in fish populations. Nature, 452, 344–347. Morán, P., Pendás, A. M., Garcia-Vazquez, E., & Izquierdo, J. (1991). Failure of a stocking policy, of hatchery reared brown trout, Salmo trutta L., in Asturias, Spain, detected using LDH-5* as a genetic marker. Journal of Fish Biology, 39, 117–121. Morita, K., Tsuboi, J., & Nagasawa, T. (2009). Plasticity in probabilistic reaction norms for maturation in a salmonid fish. Biology Letters, 5, 628-631. Nielsen, C., Holdensgaard, G., Petersen, H. C., Bjornsson, B. T., & Madsen, S. S. (2001). Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. Journal of Fish Biology, 59, 28– 44. Økland, F., Jonsson, B., Jensen, A. J., & Hansen, L. P. (1993). Is there a threshold size regulating seaward migration of brown trout and Atlantic salmon? Journal of Fish Biology, 42, 541–550. Østergaard, S., Hansen, M. M., Loeschcke, V., & Nielsen, E. E. (2003). Long term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Molecular Ecology, 12, 3123– 3135. 27! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Peterman, R. M. (1984). Density-dependent growth in early ocean life of sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciencies, 41, 1825–1829. Pettersson, J. C. E., Hansen, M. M., & Bohlin, T. (2001). Does dispersal from landlocked trout explain the coexistence of resident and migratory trout females in a small stream? Journal of Fish Biology, 58, 487–495. Rogell, B., Dannewitz, J., Palm, S., Petersson, E., Dahl, J., Prestegaard, T., et al. (2012). Strong divergence in trait means but not in plasticity across hatchery and wild populations of sea-run brown trout Salmo trutta. Molecular Ecology, 21, 2963–2976. Ross, S. T. (1986). Resource partitioning in fish assemblages: a review of field studies. Copeia, 1986, 352–388. Ruzzante, D. E., Hansen, M. M., Meldrup, D., & Ebert, K. M. (2004). Stocking impact and migration pattern in an anadromous brown trout (Salmo trutta) complex: where have all the stocked spawning sea trout gone? Molecular Ecology, 13, 1433–1445. Scarnecchia, D. L., Ísaksson, Á., & White, S. E. (1989). Oceanic and riverine influences on variations in yield among icelandic stocks of Atlantic salmon. Transactions of the American Fisheries Society, 118, 482–494. 28! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Serrano, I., Larsson, S., & Eriksson, L.-O. (2009). Migration performance of wild and hatchery sea trout (Salmo trutta L.) smolts—Implications for compensatory hatchery programs. Fisheries Research, 99, 210–215. Skrochowska, S. (1969). Migrations of the sea-trout (Salmo trutta L.) brown trout (Salmo trutta M. Fario L.) and their crosses. Polish Archives of Hydrobiology, 16, 149–180. Snover, M. L., Watters, G. M., & Mangel, M. (2005). Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciencies, 62, 1219–1230. Stewart, D. C., Smith, G. W., & Youngson, A. F. (2002). Tributary-specific variation in timing of return of adult Atlantic salmon (Salmo salar) to fresh water has a genetic component. Canadian Journal of Fisheries and Aquatic Sciencies, 59, 276–281. Toledo, M. M., Lemaire, A. L., Baglinière, J.-L., & Braña, F. (1993). Caractéristiques biologiques de la truite de mer (Salmo trutta L.) au Nord de l'Espagne, dans deux rivières des Asturies. Bulletin Français de la Pêche et de la Pisciculture, 330, 295–306. van de Pol, M. (2012). Quantifying individual variation in reaction norms: how study design affects the accuracy, precision and power of random regression models. Methods in Ecology and Evolution, 3, 268–280. 29! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Ward, D. M., Nislow, K., Armstrong, J. D., Einum, S., & Folt, C. L. (2007). Is the shape of the density-growth relationship for stream salmonids evidence for exploitative rather than interference competition? Journal of Animal Ecology, 76, 135–138. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology With R. Springer, NY. 30! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ DISCUSIÓN 31! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ DISCUSIÓN Introducción y antecedentes A continuación se discuten, de manera conjunta, los resultados obtenidos en la presente tesis doctoral para dotar de coherencia y unidad el conjunto de los trabajos presentados. La migración de la trucha común se atribuye a la ventaja adquirida por los individuos migradores sobre los congéneres que han permanecido en el río, como por ejemplo una mayor fecundidad (Jonsson y Jonsson 1993), selección de pareja (Revisado en Esteve 2005) o un aumento de la fitness de la progenie debida a efectos maternos (Crespi y Teo 2002). No obstante, estos mecanismos son poco conocidos. Numerosos estudios sugieren que la migración en la trucha es el resultado de la interacción entre genética y ambiente de modo que cuando se alcanza un determinado umbral el individuo va a migrar (Ferguson 2006). Sin embargo, la cuantificación de ese umbral es complicada y la gran mayoría de los trabajos se han centrado en aspectos diferentes e independientes entre sí y que pueden ser agrupados y clasificados según la propuesta de Rounsefell (1958) que descompone la anadromía en seis partes: (1) La distancia recorrida durante la migración marina, analizada comúnmente mediante métodos de marcado-recaptura (Caballero y col. 2006). (2) La duración de la estancia en el mar, que es muy variada en los reos, pudiendo ir desde unos pocos meses hasta cuatro años antes de volver al río a desovar por primera vez (Elliott 1994). 32! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ (3) El estado de maduración y desarrollo alcanzado en el mar, que varía dependiendo del tiempo que el individuo pasa en el agua marina. En hembras reproductoras se traduce en una gran variabilidad en el tamaño y cantidad de huevos (Jonsson y Jonsson 1999; Mousseau y Fox 1998). (4) Los hábitos de desove y hábitats de los reos, que están íntimamente ligados a la estrategia elegida por los individuos. Así, los reos que vuelven a desovar al río tienen ventajas a la hora de elegir los sitios de desove debido a su mayor tamaño. Por el contrario, pierden fitness, a medida que se desplacen aguas arriba, cuando se comparan con los individuos residentes, ya que el gasto energético es muy superior (Bohlin y col. 2001). (5) La mortalidad tras el desove, es decir el porcentaje de iteroparidad (Crespi y Teo 2002; Caballero y col. 2006). (6) La aparición de formas residentes de la especie, donde la trucha puede completar su ciclo sin tener que migar al mar. Esta forma residente se desarrolló a partir de un ancestro anádromo que se refugió de la última glaciación (Ferguson 2006) y evolucionó en los casos donde las poblaciones perdieron su salida al mar. De la misma manera, las poblaciones actuales residentes a las que, por mejoras de hábitat, se les proporciona una salida al mar pueden tener la capacidad de desarrollar formas anádromas (KallioNyberg 2010). Todos estos componentes de la anadromía deben unirse a otro rasgo propio del género Salmo que está íntimamente ligado con su ciclo de vida, el homing (i.e. retorno a desovar al río de origen; Stabell 1984; Jonsson y Jonsson 2012). 33! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Finalmente, hay que añadir el papel que tienen en la migración las diferencias genéticas entre individuos. Una gran parte de los trabajos enfocados a la búsqueda de diferencias genéticas entre individuos migradores y residentes de una misma población concluyen que no hay diferenciación genética ente individuos de ambos fenotipos (Cross y col. 1992; Pettersson y col. 2001), y que la reproducción entre ambos fenotipos es habitual (Skaala y Naevdal 1989). Por otra parte, también se analizaron poblaciones separadas por obstáculos naturales (Pettersson y col. 2001) y no se encontraron diferencias genéticas entre truchas residentes y anádromas que conviven simpátricamente por debajo del obstáculo. Además, los análisis de asignación, no demostraron que truchas residentes fueran inmigrantes de la población establecida aguas arriba del obstáculo, con lo que se descartó que los individuos hubieran emigrado aguas abajo. Un aspecto ecológico no relacionado directamente con el proceso de anadromía y tratado en la presente tesis doctoral es el crecimiento y la supervivencia denso-dependiente (Lobón-Cerviá 2007). Este sistema endógeno de regulación adquiere una notable importancia en las poblaciones parcialmente migradoras por diversas razones. (1) El estado energético del individuo esta relacionado con la migración (Forseth y col. 1999) e íntimamente ligado con el reparto de recursos en la población. (2) La variabilidad anual en el crecimiento de los juveniles es grande e influye en la decisión de la táctica vital (Cucherousset y col. 2005). (3) Los ambientes donde crecen los juveniles están relacionados con la táctica vital (Morinville y Rasmussen 2006). 34! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ El estado energético de los individuos supone que la asignación proporcional de energía entre individuos migradores es menor que la asignación entre los que permanecen en el río más tiempo. Esa reducción en la proporción de energía entre el primer y el segundo año es mayor en los individuos anádromos (Forseth y col. 1999) y es una explicación de por qué la mayoría de los individuos migran con dos años. Por tanto, los individuos que crezcan más rápido tenderán a cambiar su nicho antes que aquellos que lo hacen más despacio. La tasa de crecimiento, dependiente entre otras cosas de las relaciones de densidad que existe en la población, marca la tendencia en la dispersión y migración de los juveniles (Kaspersson y Hojesjo 2009). Por otra parte, es de gran importancia determinar cómo cambian esas relaciones en el tiempo para poder gestionar mejor las poblaciones. Por ejemplo, la competencia entre cohortes y el tipo de ambiente donde se desarrollan los individuos influye en el cambio de las relaciones entre los individuos de una población (Cucherousset y col. 2005), lo que sugiere que las variaciones en el ambiente a pequeño nivel pueden determinar, a causa de la relación que existe entre costes metabólicos y estrategia, la táctica del individuo (Morinville y Rasmussen 2006). Técnicas desarrolladas y utilizadas en la presente tesis doctoral Durante el transcurso de esta tesis doctoral se han desarrollado y aplicado nuevas técnicas para el estudio de la anadromía en las poblaciones de trucha. La metodología utilizada tiene el objetivo de mejorar la gestión de las poblaciones para favorecer el fenotipo migrador de la trucha. A continuación se detallan estas técnicas y se señalan las mejoras respecto a trabajos anteriores o bien su aplicación novedosa al campo del estudio de la trucha común. 35! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ TÉCNICAS GENÉTICAS EMPLEADAS Análisis de paternidad. Esta herramienta se emplea de forma habitual en numerosos estudios de genética poblacional de trucha con diferentes objetivos. Por ejemplo, para documentar el sistema de apareamiento en el medio natural mediante el estudio de los potenciales reproductores de una población y la descendencia con el objetivo de determinar cómo la proximidad y el tamaño corporal influyen a la hora del apareamiento (Servezob y col. 2010) o para la asignación de la progenie a cruces híbridos (Castillo y col. 2010). El objetivo perseguido con el análisis de la paternidad en esta tesis doctoral ha estado destinado a la asignación de los individuos capturados a un cruce determinado, realizado en la piscifactoría. La asignación fue empleada paralelamente como herramienta para el estudio del crecimiento, supervivencia y dispersión en condiciones naturales de huevos plantados a lo largo de dos años, aunque sirvió especialmente para el reconocimiento de adultos de retorno tras completar su ciclo vital (Reprint IV: “Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta)”). MHC. Los análisis del MHC (tanto clase I como II) son frecuentes en salmónidos y en particular en trucha común (Campos y col. 2006; Coughlan y col. 2006). El MHC clase I está implicado en la elección de la pareja y los posibles efectos beneficiosos que tiene esta elección sobre la fitness de la descendencia. Aunque algunos autores sostienen una relación positiva entre la selección de la pareja y la fitness de la descendencia (Consuegra y Garcia de Leaniz 2008), distinguir entre los efectos de la elección de pareja y otros factores de la selección sexual es complicado (Kokko 2001). En salmón Atlántico, los estudios sugieren que cuanto mayor es la variabilidad en el MHC clase I de los padres, mayor es la resistencia a parásitos marinos de su 36! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ descendencia (Consuegra y Garcia de Leaniz 2008). Por otra parte, en el estudio del MHC clase II en poblaciones aisladas de trucha se observaron variabilidades muy distintas dependiendo de la localidad (Campos y col. 2006), lo que sugiere que en la gestión de las poblaciones debería incluirse esta variable. En consonancia con estos estudios, en el estudio de la tasa de retorno en función de las familias empleadas y el tipo de repoblación llevado a cabo en el Reprint IV: “Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta)”, se cuantificó la variabilidad en el MHC de los cruces empleados con el objetivo de observar si esta variable está relacionada con la supervivencia y migración de los descendientes. Metilación global. La metilación es uno de los principales mecanismos epigenéticos de regulación génica que existen junto con la modificación de histonas y el ARN no codificante. La metilación consiste en la adición de un grupo metilo a la citosina, situadas en las islas CpG. Esto está relacionado con el silenciamiento de genes (De Smet y col. 1999; Jones y Takai 2001). Existen evidencias que demuestran la importancia de factores epigenéticos en la modulación de la plasticidad fenotípica (Johnson y Tricker 2010). Por tanto, el estudio del grado de metilación global durante el proceso del esguinado supone una novedosa técnica aplicada al estudio de la anadromía en especies parcialmente migradoras como la trucha. Con el objetivo de cuantificar las diferencias en metilación global, y si éstas pueden ser modificadas por estímulos ambientales, en el Reprint V: “Environmental induced methylation changes associated with seawater adaptation in brown trout”, se utilizó la técnica de MSAP (de las siglas en inglés methylation-sensitive amplified polymorphism; Reyna-Lopez y col. 1997) para cuantificar los cambios de metilación global en branquias de trucha alimentadas con dietas enriquecidas en sal (Perry y Rivero-López 2012). Estas dietas, fáciles de 37! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ preparar, podrían tener gran efecto en las políticas de gestión de poblaciones migradoras. TÉCNICAS ECOLÓGICAS Y ESTADÍSTICAS EMPLEADAS Técnicas de análisis de escama. Las escamas son pequeñas placas rígidas que crecen en la piel de muchos animales. En concreto, las escamas de las truchas son cicloideas y contienen una serie de anillos que se van acumulando a medida que el individuo crece. Con ello, es posible estudiar el crecimiento de un individuo desde la fecha de nacimiento hasta su captura sin que el animal sufra daños (i.e. como en el estudio de los otolitos). Otra de las características que hacen a las escamas muy útiles para el estudio del crecimiento en salmónidos es que se puede establecer su edad, ya que los crecimientos de la escama en invierno son fácilmente diferenciables (Elliott and Chambers 1996). Por tanto es posible identificar la edad total del individuo. Finalmente, también es posible identificar de manera sencilla la fase de agua dulce de la marina y cuándo se produce la transición entre ambos medios. El estudio de escamas es común en muchas especies, incluso existen protocolos descritos por la FAO para su análisis (Bilton 1975; Gayanilo y col. 2005). La mayoría de los métodos de estudio se basan en (1) el cálculo de la edad (o punto especifico, i.e. esguinado) a partir de la escama y (2) el retrocálculo del tamaño de la escama (revisado en Francis 1990) para obtener una medida de longitud del individuo durante cada año de su vida en función de lo que mide la escama en dicho punto (Morita y Fukuwaka 2006; Gagne y Rodriguez 2008; Kuparinen y col. 2009). Esta técnica es ampliamente utilizada en pesquerías para la obtención de curvas de crecimiento como la de Von Bertalanffy (1938). 38! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Friedland y Haas (1996) sustituyeron el uso de tamaños de la escama a una edad específica por el uso de los anillos de la escama, en concreto eso del espacio existente entre dos anillos consecutivos. Estos anillos de crecimiento, que se sitúan entre los puntos para determinar la edad, habían sido desechados anteriormente para el estudio del crecimiento. Aún así, estos autores, al igual que se ha hecho en el análisis de crecimiento basado en el tamaño a diferentes edades, usaron un método de análisis enfocado en el análisis de las medias de varios individuos. La técnica desarrollada en la presente tesis doctoral para el análisis de las escamas se basa en el espacio de crecimiento entre anillos consecutivos junto con un modelado de efectos lineales mixtos (Zuur y col. 2009) en sustitución al análisis de medias. Además se corrigieron aspectos técnicos como la correlación de los errores. Este tipo de análisis, explicado en el Reprint II: “Mixed-effects modelling of scale growth profiles predicts the occurrence of early and late fish migrants”, se utilizó en el estudio de una serie temporal de 13 años en la cual se analizaron escamas de truchas de dos ríos con el objetivo de evaluar cómo la abundancia de juveniles en el agua dulce y de esguines en el mar afecta al crecimiento (Reprint III: “Can migrants escape from density-dependence?”). Las técnicas de modelado con efectos mixtos proporcionan al estudio una potencia, precisión y exactitud mayor que los análisis de medias (van de Pol 2012), ya que está basado en mediciones múltiples de un mismo individuo y su variación en las intersecciones y pendientes de crecimiento. APORTACIONES DE LA PRESENTE TESIS DOCTORAL Las aportaciones de la presente tesis doctoral se pueden dividir en cuatro bloques diferentes, y todas ellas enfocadas a la gestión de las poblaciones. 39! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ (1) Estudio del crecimiento en agua dulce y agua salada mediante el uso de escamas. La gestión adecuada de un recurso como el reo pasa por conocer con exactitud cómo es el desarrollo de los individuos en los dos ambientes donde crecen y cuál es la relación entre ellos. Además, la gestión óptima de las poblaciones puede ser diferente debido a las adaptaciones locales de los salmónidos (revisado en Fraser y col. 2011) y sus diferencias a lo largo de la ontogenia (Parra y col. 2011). En la presente tesis doctoral se aportan las diferencias registradas en varias poblaciones de reo en relación con el desarrollo en las distintas fases del ciclo vital y en relación al crecimiento agua dulce-agua salada. La importancia del ambiente marino aparece como un factor determinante en el desarrollo de los adultos, ya que va a permitir a aquellos individuos mas desfavorecidos en el río (i.e. menores tallas), alcanzar e incluso sobrepasar a los más favorecidos. Además, también se proporcionan las diferencias existentes en la talla y edad de esguinado y las edades de retorno al río con el objeto de complementar la información recogida mediante pesca eléctrica en el río. El conocimiento de las relaciones entre agua dulce y marina en distintas poblaciones es necesario para su gestión. Estas diferencias se pueden registrar anualmente, entre distintas cuencas. A su vez, si existe un registro de años anteriores, se pueden observar tendencias y desequilibrios en las poblaciones con objeto de poder actuar sobre el ambiente o sobre cierta parte del ciclo vital donde se registra el problema (i.e. disminución de la talla de esguinado, bajo crecimiento marino, reducción de la edad de maduración, desequilibrio en la compensación de talla en el mar). En conjunto, la mejora de la gestión puede ser notable mediante una observación constante de todos los parámetros descritos. (2) El desarrollo de una nueva metodología como herramienta para el análisis de escamas. El estudio de las escamas supone en la gestión de las poblaciones una importante fuente de información fácilmente aprovechable 40! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ (Bilton 1975). En los ríos existen estaciones de captura que proporcionan, información de los reproductores que remontan el río para el desove (Saura y col. 2006; Caballero 2002). Es ahí donde se pueden recoger y almacenar las escamas sin que los individuos sufran daño alguno. Con la recogida de datos tales como peso, longitud y sexo, más la información presente en las escamas, es posible obtener gran cantidad de datos que pueden aplicarse en la gestión de poblaciones, tanto en el río como en el mar. Con el desarrollo de esta técnica basada en un método estadístico de efectos mixtos y en la información individual repetida a lo largo de la escama se mejoran los siguientes aspectos en la gestión: • La variación individual y la estacionalidad del crecimiento que registra este nuevo método puede suplir carencias de otros métodos populares como el de Von Bertalanffy (1938). La variación en los rasgos que afectan a la fitness (i.e. crecimiento o talla) necesitan ser interpretados en relación con lo registrado por los congéneres. El gran número de puntos comparados en cada individuo permite que dichas comparaciones entre individuos tengan mayor robustez que aquellos resultados donde sólo se registran dos puntos de cada individuo (como normalmente ocurre en el marcado-recaptura; van de Pol 2012). Por tanto, la fiabilidad de los resultados obtenidos aumenta considerablemente cuando se utilizan las escamas en lugar de mediciones sobre el tamaño corporal. • Se implementa la relación entre la competencia y el crecimiento entre individuos de una misma población. La influencia sobre el crecimiento del número de juveniles presentes en una cuenca o el número de esguines que emigran hacia el mar se puede registrar mediante el uso de las escamas y el método descrito. Es de gran importancia en los programas de repoblación saber cuál va a ser el impacto del número de individuos liberados en el río, ya que un número elevado de individuos 41! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ soltados va a provocar, a parte de la interferencia con las poblaciones salvajes, que el reparto de los recursos se vea perjudicado por el aumento de la competencia (Lobón-Cerviá 2007). La aportación de esta tesis doctoral mediante la técnica de escamas señala la importancia de considerar en conjunto el número de juveniles que existen en el río y su crecimiento. Típicamente, la denso-dependencia se asocia al crecimiento en agua dulce (Jenkins y col. 1999; Bohlin y col. 2002; Lobón-Cerviá 2007). En cambio, mediante el análisis de dos poblaciones a lo largo de un periodo de 13 años, se observó cómo la densidad de esguines afecta también al crecimiento marino. Esto aflora la importancia de tener en cuenta no sólo la diferencia entre ríos en la conservación de las poblaciones, sino que además hay que empezar a tener en cuenta la perspectiva costera en su gestión. (3) Comparación de métodos de repoblación y resultados positivos en el aumento del fenotipo migrador. Los métodos de repoblación pueden variar según la estación, meteorología y objetivos de la repoblación. La principal aportación de esta tesis doctoral ha sido desarrollar un programa de repoblación óptimo basado en protocolos clásicos de repoblación para aumentar los individuos migradores de una población. Este protocolo se basa en factores fácilmente manejables por los órganos de gestión y con la consideración de aspectos económicos con el fin de reducir al máximo los costes de la repoblación. El método está basado en el estudio de dos rasgos observables en la piscifactoría: el tamaño de los huevos de la hembra (Einum y Fleming 2002) y el fenotipo del padre usado en el cruce (Skrochowska 1969). Además, en el laboratorio se realizó un análisis genético de los reproductores para observar el grado de similitud entre los alelos del MHC clase II (Campos y col. 2007). 42! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Por otro lado se compararon distintos métodos de repoblación: la plantación de huevos y la repoblación de individuos de un año para maximizar la producción de esguines (Jokikokko y Jutila 2004). Tras realizar las medidas correspondientes en la piscifactoría del tamaño de los huevos, se identificó el fenotipo paterno y se midió la variabilidad genética de los padres en el MHC. Tras ello, se esperó a que los individuos completaran su ciclo vital en ambos tipos de repoblación (i.e. plantado de huevos y suelta tras un año en la piscifactoría). La tasa de retorno entre los años 2010 y 2011 supuso casi un 10% del total de la población de reos que retornaron a desovar. Además, esta tasa de retorno se consiguió usando sólo una pequeña sección de un afluente del río principal. Es importante indicar que los volúmenes tanto de huevos como de individuos repoblados fueron sensiblemente inferiores a los que normalmente se utilizan en programas de repoblación de salmón Atlántico. Con estos resultados se abre un proceso para adoptar nuevos protocolos de repoblación (4) Implementación de nuevas técnicas genéticas para la mejora frente al estrés osmótico en individuos de repoblación. Uno de los problemas de las repoblaciones, a parte de las interacciones con las poblaciones salvajes (revisado en Naish y col. 2008), es la pérdida de los rasgos propios de las poblaciones salvajes para completar el ciclo vital (Rogell y col. 2012). La pérdida de la anadromía es una de las características que más afectan en la conservación de las poblaciones parcialmente migradoras, ya que el uso de individuos domesticados puede reducir el número de individuos migradores (Serrano y col. 2009). 43! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ En la presente tesis doctoral se aportan soluciones para la cría de truchas en cautividad basadas en estudios de la interacción ente metilación y factores ambientales. Concretamente, se han identificado y cuantificado los cambios de metilación global en branquias provocados por una dieta rica en sal. Con los resultados obtenidos es posible establecer un protocolo de alimentación óptimo, para minimizar el estrés osmótico que se produce al inicio de la migración. Perspectivas futuras La investigación relacionada con salmónidos anádromos necesita continuas mejoras para la conservación de las especies. Debido a la explotación tanto del recurso como del ambiente en el que se desarrollan, las dificultades de las poblaciones salvajes se mantienen o incluso empeoran con el paso del tiempo. Una de las principales herramientas que se deberían desarrollar en el campo de la conservación está relacionada con la combinación entre las mejoras de hábitat (Griffiths y col. 2011), la explotación sostenible del recurso (EIFAC 2008) y los programas de repoblación. Para tener una visión de la situación de los últimos años en esta materia se puede tomar como ejemplo la región de la provincia de Pontevedra: • Cada año en función de la situación del recurso, hay regulaciones en materia de pesca donde se limita el número de individuos que se pueden capturar independientemente de las licencias expedidas (Xunta de Galicia 2013). • Los programas de repoblación realizados en ambas especies contribuyen a la recuperación de numerosos ríos tras su práctica extinción (Saura y col. 2006). 44! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ No obstante, en los los últimos diez años se han registrado numerosas catástrofes indirectamente relacionadas con la destrucción del hábitat: • Vertidos devastadores que afectaron tramos enteros de río (Umia en 2006, Lagares en 2007). • Obras públicas que colmataron el lecho impidiendo la supervivencia de peces (Barxa en 2009, Cabanelas en 2009). En estos casos, los programas de repoblación junto con políticas de mejora de hábitat pueden mitigar los efectos negativos. Por ello, es trascendente para la conservación de las especies anádromas desarrollar un programa de conservación que sea efectivo, fácil de realizar (a nivel de piscifactoría y en medio natural) y económicamente viable. El programa de repoblación mostrado en la presente tesis doctoral cumple, inicialmente, los tres requisitos, aunque existe un gran margen de mejora en la efectividad. Por ello: (1) Se hace necesario la continua mejora de las estrategias de repoblación, en especial las poblaciones de reo, ya que, al formar parte de una especie parcialmente migradora, es necesario maximizar la proporción de individuos anádromos. Debido a la existencia de numerosas estaciones de captura, sería posible analizar si los métodos propuestos pueden ser utilizados independientemente de la cuenca donde se llevan a cabo. 45! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ (2) Es necesario comparar el método descrito en el Reprint IV con el método de repoblación basado en individuos criados en la piscifactoría mediante métodos de mejora frente al estrés osmótico Reprint V. Este último puede ser más costoso pero a su vez puede proporcionar resultados más rápidos debido al uso de individuos criados en piscifactoría en vez de plantados en el medio natural como huevos. Su uso para zonas de urgente recuperación podría ser más adecuado. (3) El estudio del estrés osmótico demostró una supervivencia superior de los individuos alimentados con dietas enriquecidas en sal al ser trasvasados a agua salada. Esta mejora en la adaptación debe ser explorada en un futuro con el objetivo de investigar qué genes en particular se activan o desactivan por agentes externos, lo que permitiría criar truchas en condiciones óptimas que faciliten la supervivencia durante los cambios de salinidad. Esto puede influir en las estrategias de repoblación, ya que se podrían sustituir las repoblaciones en río por las repoblaciones en aguas salobres o incluso en agua oceánica. (4) Adaptar las repoblaciones, tanto en forma de huevo, como juvenil a las densidades que existen de juveniles en el río como a la densidad de esguines que emigran al mar. Las poblaciones de reo parecen ser sensibles a la densodependencia tanto en el río como en el estuario y por tanto, ese factor debe ser considerado en los planes de repoblación. Un excesivo número de individuos en las sueltas pueden llegar a producir una reducción en el crecimiento de los individuos, tanto en poblaciones salvajes, repobladas como en ambos ambientes. Por tanto, los mecanismos de adaptación relacionados con el tamaño (esguinado, estado de maduración, etc.) pueden estar negativamente afectados por el exceso de individuos sobre la capacidad de carga. El número óptimo de individuos debe ponderarse mediante estudios específicos en cada río y es necesario tener estimas tanto del número de individuos presentes en el río (juveniles de un año específicamente) como del número de esguines. 46! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Considerar los mecanismos de adaptación a la osmorregulación y los mecanismos de denso-dependencia pueden mejorar los planes de repoblación. Junto con los análisis de los reproductores en la piscifactoría y una mejora de la gestión del hábitat sería posible que la conservación de la especie estuviera más cerca de un diseño óptimo. 47! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Referencias Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology, 10, 181–213. Bilton, H. (1975). Factors influencing the formation of scale characters [in Pacific salmon]. International North Pacific Fisheries Commission Bulletin, 32, 102–108. Bohlin, T., Pettersson, J., & Degerman, E. (2001). Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: evidence for a migration cost. Journal of Animal Ecology, 70, 112–121. Bohlin, T., Sundstrom, L., Johnsson, J., Höjesjö, J., & Pettersson, J. (2002). Density-dependent growth in brown trout: effects of introducing wild and hatchery fish. Journal of Animal Ecology, 71, 683–692. Caballero, P. (2002). Ciclo vital reo (Salmo trutta Linnaeus, 1758) en la cuenca del río Ulla. Memoria Diploma de Estudios Avanzados. Santiago de Compostela. Caballero, P., & Cobo, F. (2006). Life History of a Sea Trout (Salmo trutta L.) Population from the North!West Iberian Peninsula (River Ulla, Galicia, Spain). In G. Harris & N. MIlner (Eds.), Sea Trout: Biology, Conservation and Management (pp. 234-247). Blackwell Scientific Publications. 48! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Campos, J. L., Posada, D., & Morán, P. (2006). Genetic variation at MHC, mitochondrial and microsatellite loci in isolated populations of Brown trout (Salmo trutta). Conservation Genetics, 7, 515–530. Castillo, A. G. F., Beall, E., Morán, P., Martinez, J. L., & Garcia-Vazquez, E. (2010). Indirect Benefits for Female Salmon from Mating with Brown Trout. Journal of Heredity, 101, 461–468. Consuegra, S., & Garcia de Leaniz, C. (2008). MHC-mediated mate choice increases parasite resistance in salmon. Proceedings of the Royal Society B: Biological Sciences, 275, 1397–1403. Coughlan, J., McGinnity, P., O’Farrell, B., Dillane, E., Diserud, O., Deeyto, E., et al. (2006). Temporal variation in an immune response gene (MHC I) in anadromous Salmo trutta in an Irish river before and during aquaculture activities. ICES Journal of Marine Science, 63, 1248–1255. Crespi, B. J., & Teo, R. (2002). Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes. Evolution, 56, 1008– 1020. Cross, T. F., Mills, C. P. R., & Courcy Williams, M. (1992). An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L., in western Ireland. Journal of Fish Biology, 40, 25–32. Cucherousset, J., Ombredane, D., Charles, K., Marchand, F., & Baglinière, J.-L. (2005). A continuum of life history tactics in a brown trout (Salmo trutta) 49! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ population. Canadian Journal of Fisheries and Aquatic Sciencies, 62, 1600– 1610. De Smet, C., Lurquin, C., Lethé, B., Martelange, V., & Boon, T. (1999). DNA methylation is the primary silencing mechanism for a set of germ line-and tumor-specific genes with a CpG-rich promoter. Molecular and cellular biology, 19, 7327–7335. EIFAC [European Inland Fisheries Advisory Commission]. (2008). EIFAC Code of Practice for Recreational Fisheries. Rome: EIFAC. Occasional Paper No. 42, 45 pp. Einum, S., & Fleming, I. A. (2002). Does within population variation in fish egg size reflect maternal influences on optimal values? The American Naturalist, 160, 756–765. Elliott, J., & Chambers, S. (1996). A guide to the interpretation of sea trout scales. National Rivers Authority, Bristol, UK. R&D Report, Vol. 22. Elliott, J. M. (1994). Quantitative ecology and the brown trout. Oxford University Press, Oxford. Esteve, M. (2005). Observations of spawning behaviour in Salmoninae: Salmo, Oncorhynchus and Salvelinus. Reviews in Fish Biology and Fisheries, 15, 1–21. 50! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Ferguson, A. (2006). Genetics of sea trout, with particular reference to Britain and Ireland. In G. Harris & N. MIlner (Eds.), Sea Trout: Biology, Conservation and Management (pp. 155–182). Blackwell Scientific Publications. Forseth, T., Nesje, T. F., Jonsson, B., & Harsaker, K. (1999). Juvenile migration in brown trout: a consequence of energetic state. Journal of Animal Ecology, 68, 783–793. Francis, R. (1990). Back-calculation of fish length: a critical review. Journal of Fish Biology, 36, 883–902. Fraser, D. J., Weir, L. K., Bernatchez, L., Hansen, M. M., & Taylor, E. B. (2011). Extent and scale of local adaptation in salmonid fishes: review and metaanalysis. Heredity, 106, 404–420. Friedland, K., & Haas, R. (1996). Marine post smolt growth and age at maturity of Atlantic salmon. Journal of Fish Biology, 48, 1–15. Gagné, S., & Rodríguez, M. (2008). Modelling seasonal increments in size to determine the onset of annual growth in fishes. Journal of Fish Biology, 73, 153–168. Gayanilo, F.C. Jr, Sparre, P., & Pauly, D. (2005). FAO-ICLARM stock assessment tools II (FiSAT II). Revised version. User's guide. Computerized Information Series: Fisheries, No. 8, rev. FAO, Rome. 51! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Griffiths, A. M., Ellis, J. S., Clifton-Dey, D., Machado-Schiaffino, G., Bright, D., Garcia-Vazquez, E., & Stevens, J. R. (2011). Restoration versus recolonisation: The origin of Atlantic salmon (Salmo salar L.) currently in the River Thames. Biological Conservation, 144, 2733–2738. Jenkins, T. M. Jr, Diehl, S., Kratz, K. W., & Cooper, S. D. (1999). Effects of population density on individual growth of brown trout in streams. Ecology, 80, 941–956. Johnson, L. J., & Tricker, P. J. (2010). Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity, 105, 113–121. Jokikokko, E., & Jutila, E. (2004). Divergence in smolt production from the stocking of 1-summer-old and 1-year-old Atlantic salmon parr in a northern Baltic river. Journal of Applied Ichthyology, 20, 511–516. Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070. Jonsson, B., & Jonsson, N. (1993). Partial migration: niche shift versus sexual maturation in fishes. Reviews in Fish Biology and Fisheries, 3, 348–365. Jonsson, N., & Jonsson, B. (1999). Trade-off between egg mass and egg number in brown trout. Journal of Fish Biology, 55, 767–783. 52! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Jonsson, B., & Jonsson, N. (2012). Naturally and hatchery produced European trout Salmo trutta: do their marine survival and dispersal differ? Journal of Coastal Conservation. doi:10.1007/s11852-012-0224-1. Kaspersson, R., & Höjesjö, J. (2009). Density-dependent growth rate in an agestructured population: a field study on stream-dwelling brown trout Salmo trutta. Journal of Fish Biology, 74, 2196–2215. Kallio-Nyberg, I., Jutila, E., Koljonen, M. L., Koskiniemi, J., & Saloniemi, I. (2010). Can the lost migratory Salmo trutta stocks be compensated with resident trout stocks in coastal rivers? Fisheries Research, 102, 69–79. Kokko, H. (2001). Fisherian and “good genes” benefits of mate choice: how (not) to distinguish between them. Ecology Letters, 4, 322–326. Kuparinen, A., Garcia de Leaniz, C., Consuegra, S., & Merilä, J. (2009). Growth-history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Marine Ecology Progress Series, 376, 245–252. Lobón-Cerviá, J. (2007). Density-dependent growth in stream-living brown trout Salmo trutta L. Functional Ecology, 21, 117–124. Morinville, G. R., & Rasmussen, J. B. (2006). Does life-history variability in salmonids affect habitat use by juveniles? A comparison among streams open and closed to anadromy. Journal of Animal Ecology, 75, 693–704. 53! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Morita, K., & Fukuwaka, M. (2006). Does size matter most? The effect of growth history on probabilistic reaction norm for salmon maturation. Evolution, 60, 1516–1521. Mousseau, T. A., & Fox, C. W. (1998). Maternal effects as adaptations. Oxford University Press, Oxford. Naish, K. A., Taylor, J. E., Levin, P. S., Quinn, T. P., Winton, J. R., Huppert, D., & Hilborn, R. (2008). An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Advances in marine biology, 53, 61–194. Parra, I., Almodóvar, A., Ayllón, D., Nicola, G. G., & Elvira, B. (2011). Ontogenetic variation in density!dependent growth of brown trout through habitat competition. Freshwater Biology, 56, 530–540. Perry, S. F., & Rivero-Lopez, L. (2012). Does the presence of a seawater gill morphology induced by dietary salt loading affect Cl− uptake and acid-base regulation in freshwater rainbow trout Oncorhynchus mykiss. Journal of Fish Biology, 80, 301–311. Pettersson, J. C. E., Hansen, M. M., & Bohlin, T. (2001). Does dispersal from landlocked trout explain the coexistence of resident and migratory trout females in a small stream? Journal of Fish Biology, 58, 487–495. Reyna-Lopez, G. E., Simpson, J., & Ruiz-Herrera, J. (1997). Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by 54! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ amplification of restriction polymorphisms. Molecular and General Genetics, 253, 703–710. Rogell, B., Dannewitz, J., Palm, S., Petersson, E., Dahl, J., Prestegaard, T., et al. (2012). Strong divergence in trait means but not in plasticity across hatchery and wild populations of sea-run brown trout Salmo trutta. Molecular Ecology, 21, 2963–2976. Rounsefell, G. A. (1958). Anadromy in North American Salmonidae. US Fish Wildlife Service Bulletin, 58, 171–185. Saura, M., Caballero, P., Caballero, A., & Morán, P. (2006). Genetic variation in restored Atlantic salmon (Salmo salar L.) populations in the Ulla and Lérez rivers, Galicia, Spain. ICES Journal of Marine Science, 63, 1290–1296. Serbezov, D., Bernatchez, L., Olsen, E. M., & Vøllestad, L. A. (2010). Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Molecular Ecology, 19, 3193–3205. Serrano, I., Larsson, S., & Eriksson, L.-O. (2009). Migration performance of wild and hatchery sea trout (Salmo trutta L.) smolts—Implications for compensatory hatchery programs. Fisheries Research, 99, 210–215. Skaala, Ø., & Naevdal, G. (1989). Genetic differentiation between freshwater resident and anadromous brown trout, Salmo trutta, within watercourses. Journal of Fish Biology, 34, 597–605. 55! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Skrochowska, S. (1969). Migrations of the sea-trout (Salmo trutta L.) brown trout (Salmo trutta M. Fario L.) and their crosses. Polish Archives of Hydrobiology, 16, 149–180. Stabell, O. (1984). Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biological Reviews, 59, 333-388. van de Pol, M. (2012). Quantifying individual variation in reaction norms: how study design affects the accuracy, precision and power of random regression models. Methods in Ecology and Evolution, 3, 268–280. Xunta de Galicia. (2013). Licencias expedidas para la pesca recreativa. http://www.cmati.xunta.es/c/document_library/get_file?folderId=164453&name= DLFE-21704.pdf. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology With R. Springer, NY. 56! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ CONCLUSIONES 57! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ CONCLUSIONES 1. La compensación marina en el crecimiento de los esguines de menor tamaño permite recuperar una talla óptima y por tanto eliminar la desventaja inicial adquirida en agua dulce. 2. El estudio retrospectivo sobre el crecimiento de la trucha migradora en el río y en el mar indica que los individuos de una misma edad alcanzan tallas parecidas en el momento del desove pese a haber experimentado diferentes trayectorias de crecimiento. 3. El nuevo método utilizado para examinar la variación en las trayectorias de crecimiento de las escamas basado en un modelo lineal de efectos mixtos permite establecer que las relaciones entre la abundancia de individuos y su crecimiento son claves en la gestión de los hábitats tanto de agua dulce como de agua salada. 4. Los experimentos de repoblación realizados indican que la repoblación durante la fase de huevo es más eficaz para el aumento de la parte anádroma de la población que la repoblación con individuos de mayor edad. Este método reduce además sensiblemente el coste de las repoblaciones. 5. En la selección de reproductores para la reproducción artificial los aspectos más importantes que deben considerarse son el fenotipo paterno y la diversidad del MHC. La elección de hembras anádromas y machos anádromos (siempre que sea posible) aumentan las posibilidades de migración de la descendencia. 58! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ 6. Los experimentos realizados en piscifactoría indican que la dieta puede regular, mediante mecanismos epigenéticos, la expresión de genes. La alimentación con dietas ricas en sal mejora significativamente la supervivencia de las truchas en agua de mar. 59! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ REPRINTS DE LAS PUBLICACIONES 60! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ And the last shall be first: heterochrony and compensatory marine growth in sea trout (Salmo trutta) 61! ! And the Last Shall Be First: Heterochrony and Compensatory Marine Growth in Sea Trout (Salmo trutta) Francisco Marco-Rius1, Pablo Caballero2, Paloma Morán1, Carlos Garcia de Leaniz3* 1 Departamento de Bioquı́mica, Genética e Inmunologı́a, Universidad de Vigo, Vigo, Spain, 2 Consellerı́a de Medio Rural, Servizo de Conservación da Natureza, Xunta de Galicia, Pontevedra, Spain, 3 Department of BioSciences, Swansea University, Swansea, United Kingdom Abstract Early juvenile growth is a good indicator of growth later in life in many species because larger than average juveniles tend to have a competitive advantage. However, for migratory species the relationship between juvenile and adult growth remains obscure. We used scale analysis to reconstruct growth trajectories of migratory sea trout (Salmo trutta) from six neighbouring populations, and compared the size individuals attained in freshwater (before migration) with their subsequent growth at sea (after migration). We also calculated the coefficient of variation (CV) to examine how much body size varied across populations and life stages. Specifically, we tested the hypothesis that the CV on body size would differ between freshwater and marine environment, perhaps reflecting different trade-offs during ontogeny. Neighbouring sea trout populations differed significantly in time spent at sea and in age-adjusted size of returning adults, but not on size of seaward migration, which was surprisingly uniform and may be indicative of strong selection pressures. The CV on body size decreased significantly over time and was highest during the first 8 months of life (when juvenile mortality is highest) and lowest during the marine phase. Size attained in freshwater was negatively related to growth during the first marine growing season, suggesting the existence of compensatory growth, whereby individuals that grow poorly in freshwater are able to catch up later at sea. Analysis of 61 datasets indicates that negative or no associations between pre- and postmigratory growth are common amongst migratory salmonids. We suggest that despite a widespread selective advantage of large body size in freshwater, freshwater growth is a poor predictor of final body size amongst migratory fish because selection may favour growth heterochrony during transitions to a novel environment, and marine compensatory growth may negate any initial size advantage acquired in freshwater. Citation: Marco-Rius F, Caballero P, Morán P, Garcia de Leaniz C (2012) And the Last Shall Be First: Heterochrony and Compensatory Marine Growth in Sea Trout (Salmo trutta). PLoS ONE 7(10): e45528. doi:10.1371/journal.pone.0045528 Editor: Casper Breuker, Oxford Brookes University, United Kingdom Received April 20, 2012; Accepted August 20, 2012; Published October 1, 2012 Copyright: ! 2012 Marco-Rius et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by grants from Ministerio de Ciencia y Tecnologı́a (CGL2007-60572 and CGL2010-14964), and Fondos FEDER (PGIDIT03PXIC30102PN; Grupos de Referencia Competitiva, 2010/80). Francisco Marco-Rius was supported by a pre-doctoral fellowship from the Spanish Government (BES-2008-001973). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: c.garciadeleaniz@swansea.ac.uk Introduction size) and growth during the first marine season (post smolt growth) are perhaps the traits that differ the most amongst populations [7,13–14], probably because homing behaviour tends to result in geographical isolation and locally adapted populations [15]. Maturation schedules also tend to differ greatly amongst populations [16], even among fish inhabiting neighbouring rivers [13,17] suggesting the existence of different and spatially localised trade-offs. Field studies have revealed contrasting selection pressures for body size of anadromous salmonids in freshwater and marine environments [18–21] suggesting the existence of different tradeoffs in rivers and sea. Yet, the relationship between pre-migratory growth in freshwater (i.e. smolt size) and post-migratory growth in the sea (i.e. post-smolt growth) is not clear. There appear to be as many studies reporting a negative relationship between smolt length and marine growth [16,22–24] as there are studies reporting a positive or no relationship [25–27]. This suggests that there can be considerable variation in the way individuals adapt to environmental change during their transition from freshwater to marine environments. Here we used scale image analysis to reconstruct individual growth trajectories of migratory brown (sea trout, Salmo trutta) in Many animals pass through some migratory stage during their lives [1–2], typically in relation to feeding or reproduction. Migrations are thought to maximise age-specific fecundity and the probability of surviving from one breeding season to the next [3– 4], and have been interpreted as a response to adversity [5]. Migrations are energetically costly and a trade off may be expected to exist between the costs of migrations and the fitness benefits accrued by a larger body sizes [1], as well as between predator avoidance and feeding gains [6]. Migrants typically achieve a larger body size than non-migrants, but may also sustain higher mortality rates than resident individuals [7–8]. Such tradeoffs between growth and mortality are common in many species and can reflect a balance between foraging and predation risk, growth and maturation, and growth and resistance to diseases, amongst others [9]. These may result in individuals achieving similar fitness, despite having grown at widely different rates [10]. Amongst anadromous salmonids, which must migrate between very different freshwater and marine environments, the risk of predation increases at sea [11] and a relatively narrow optimum size at migration appears to exist [12]. Yet, size at migration (smolt PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout determine scale growth slopes, measured between the scale focus and the scale edge [38]. order to examine the relationship between smolt size and post smolt growth in six neighbouring populations. As selection can act strongly on body size and size-related traits in juvenile salmonids [15], we used the coefficient of variation on body size (CV) in order to quantify the extent of phenotypic variation [28] across different life stages. Specifically, we tested the hypothesis that the coefficient of variation on body size of migratory trout would differ between the freshwater and marine environment, perhaps reflecting different trade-offs during ontogeny [22–23]. Furthermore, because selection in fishes tends to be strongest during the early juvenile stages - when mortality is highest but when body size is also smallest [29–30] - we also expected to find a negative relationship between developmental stage and the extent of individual variation in body size. Reliability of Scale Analysis A paired t-test was used to assess non-random deviations in scale radii between the original scales and their acetate impressions (n = 30) in order to quantify potential bias in scale measurements arising from pressure from the hand roller. To ascertain the precision of the scale analysis, we estimated the repeatability of the point of entry into the sea and of the end of the first marine growing season by measuring the scales of 30 individuals twice in a double blind fashion and calculating the intra-class correlation coefficient (a-Cronbach) as per [33]. The Pearson correlation coefficient was used to evaluate the strength of the association between scale radius and body size of fish in each river. The coefficients of variation (CV = SD/mean) were then examined to compare the precision of body size and scale measurements. Precision in scale measurements (0.01 mm; CV = 13.9%) was better than that of body size measurements (cm; CV = 15.3%), and the former was therefore preferred to examine growth variation among migratory trout. In order to evaluate if the relationship between somatic growth and scale radius changed with age or body size, we tested for homogeneity of slopes in an ANCOVA model [39] using either age (five age classes) or body size (four size quartiles) as covariates. We also checked that the relationship between age and body size (Log10) was linear within the limits of this study (F1,126 = 17.392, P,0,001), and not different among rivers (River F5,126 = 0.323, P = 0.898; River6Age interaction F5,126 = 0.060, P = 0.998). Methods Study Populations Migratory sea trout were caught between August and October 2002 on their returning migration by government officials in upstream traps or by angling by licensed sport fishermen in six neighbouring rivers in NW Spain (Fig. 1). Study populations differed in physical as well as in key demographic parameters, including population abundance (as inferred from rod and line caches), age and body size, and expected survival (as inferred from incidence of multiple spawners and maximum longevity; Table 1). Upstream migrants were assumed to have been caught on their river of origin as these populations had shown isolation by distance and restricted gene flow, which are suggestive of strong homing behaviour [31]. Statistical Analysis Ethics Statement Analyses were carried out using SYSTAT 10.0 and the R software [40]. The R MASS package [41] was used to model variation in post smolt growth (PSG) in relation to smolt size, smolt age and river identity, and the Akaike information criteria (AIC) was used for model selection. We employed the CV to quantify phenotypic variation in body size [28] among populations and across four different key life stages (first freshwater winter, moment of entry into the sea, first marine growing season, and return as adult to the river). Only individuals that had spent 2 years in freshwater (S2 smolts) were used, as this was the dominant smolt age in the study populations and the number of fish of other smolt ages was low. Approximate 95% confidence limits were constructed by bootstrapping 1,000 replicates, and the Fligner-Killen test (a non-parametric version of Levene’s test which is robust to departures of normality [42]) was used to compare differences in CV among stages of development and among rivers. We visualized growth reaction norms during the freshwater to marine transition by plotting individual growth trajectories between the moment of entry into the sea (smolt size) and the growth of the first marine growing season (PSG). These trajectories described how individuals responded to environmental change according to population of origin and smolt age. Variation in individual growth trajectories was analysed by repeated measures ANCOVA using river of origin as a fixed factor and smolt age and sea age as covariates. We then calculated the partial correlation coefficient to test the strength of association between freshwater and marine growth once the effects of freshwater and sea age had been statistically partialled out. This was achieved by calculating the correlation between the residuals of freshwater and marine growth after each had been regressed on freshwater and sea age. Finally, in order to estimate the extent and magnitude of compensatory marine growth we computed the size rank of Collection of scale samples was carried out by fisheries staff of the Regional Government of Galicia (Wildlife Service) using a nonintrusive procedure and according to current Spanish Regulations. No specific permits were required for the described field studies, and these did not involve endangered or protected species. Scale Analysis and Growth Profiles Scales of 30 individuals per river were stored dry in paper envelopes, along with information on their body size (fork length, mm). Between three and five scales with a clear (non–regenerated) nucleus were selected per individual to prevent bias due to loss of growth rings [32]. Acetate impressions were made with the aid of a pressure roller and the resulting impressions were then scanned with a Minolta MS 6000 microfilm scanner at 23–506 magnifications and saved as high resolution TIFF images as in [33]. The software Image-J v. 1.4.1 [34] was employed to digitize the position of each growth ring (circuli), to identify the annual growth rings (annuli), and to measure the inter-circuli spacing along the 360u scale axis with reference to a calibrated scale bar in order to derive measures of scale growth [35]. The freshwater and marine ages were determined based on the number of annuli [36], and the points of entry of smolts into the sea (beginning of marine phase) and end of the first marine growing season (post-smolt growth, PSG) were noted [16]. Twenty three finnocks (individuals which had returned to freshwater before completing one full winter at sea [37]) were excluded from analysis as these provided no comparable data on post-smolt growth. Individual growth profiles were obtained by plotting circuli number against scale size at four key life stages: (a) first freshwater winter, (b) moment of entry into the sea, (c) end of first marine growing season, and (d) return of adults into freshwater from the sea. Ordinary Least Squares (OLS) regression was then used to PLOS ONE | www.plosone.org 2 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout Figure 1. Study sea trout (Salmo trutta) populations in Galicia, NW Spain. doi:10.1371/journal.pone.0045528.g001 (F5,136 = 1.002, P = 0.419) allowing us to use scale measurements to reconstruct changes in body size regardless of river identity. Testing of interactions terms in ANCOVA indicated that the relationship between somatic growth and scale radius was not affected by age or body size (age6scale radius F7,102 = 0.983, P = 0.447; body size6scale radius F14,91 = 1.344, P = 0.197), i.e. slopes were homogeneous across age and size classes. individual fish before and after migrating into the sea, and calculated Spearman rank correlation coefficients (rs) between freshwater and marine growth for each river. In the absence of compensatory marine growth, we would expect to find a positive correlation between smolt size and postsmolt growth, as larger than average smolts would continue to be larger than average at sea. On the other hand, if fish exhibited compensatory marine growth, we would expect to find no association between smolt size and postsmolt growth, as smaller than average fish would be able to catch-up (and move up the size rank) at sea. Variability in Life Histories Among Populations Sea trout populations differed significantly in sea age (F5,132 = 5.39, P,0.001), but not on smolt age (F5,132 = 0.55, P = 0.736). Populations did not vary in the size of smolts (F5,126 = 1.87, P = 0.104), once the overriding effect of smolt age (F1,126 = 110.53, P,0.001) had been statistically controlled for, but there was an interaction between smolt age and river of origin on smolt size (F1,126 = 110.53, P = 0.029) suggesting that different populations experienced different freshwater growth patterns before migrating to sea. Sea trout populations also differed in size of returning adults (F5,126 = 3.20, P = 0.009) once the important effect of sea age had been statistically accounted for (F1,126 = 25.51, P,0.001). Results Reliability of Scale Measurements There was no significant distortion of scale radius due to the impression process (t29 = 0.547, P = 0.465), indicating that acetate impressions gave an accurate, unbiased representation of scale size. Repeatabilities of scale size were high, both for smolt scale length (a-Cronbach = 0.879) and for scale size attained at the end of the first marine growing season (a-Cronbach = 0.918). Scale radius and fork length were positively correlated (r = +0.654, P = 0.001), and the relationship was not different among rivers PLOS ONE | www.plosone.org 3 October 2012 | Volume 7 | Issue 10 | e45528 4 We concentrated on modelling post-smolt growth (PSG) during the first marine growing season, as this was the stage where there was greatest variation among individuals, and we could obtain data from all fish regardless of time spent at sea. We used as predictors the age and size of smolts, as well as the river of origin, to test the prediction that early growth performance during freshwater life was a good predictor of growth performance later in life at sea. Analysis of individual growth reaction norms (Fig. 4) indicated that smolt size at the moment of entry into the sea was negatively correlated with subsequent growth during the first marine growing season, once the effects of sea age and freshwater age had been statistically partialled out (partial correlation r = 20.233, df = 134, P = 0.006). Following stepwise multiple regression, variation in post-smolt growth (PSG) was accounted for by river of origin (F5,106 = 11.079, P,0.001), smolt scale length (F1,106 = 7.838, P,0.001) and smolt age (F2,106 = 3.975, P = 0.048), in addition to a significant 3-way interaction among river, smolt age and smolt scale length (F7,106 = 2.967, P = 0.007). The minimal adequate model explained about 53% of the variance in PSG (F31,106 = 3.68, P,0.001, AIC = 2474.72) and provided evidence of a negative relationship between size attained in freshwater and subsequent growth at sea. Compensatory marine growth (revealed by the frequency of fish moving up the size rank following entry into the sea) was substantial and widespread. Thus, all populations exhibited compensatory growth, as suggested by non-significant rank correlation coefficients between smolt size and post-smolt growth (these ranged from rs = 20.442, P = 0.051 in the R Tambre to rs = 0.043, P = 0.846 for the R. Eume). The results also indicate that between 45% (R. Tambre) and 54% (R. Ulla) of fish displayed a gain in size rank at sea, depending on population of origin. Average change in post-migratory size rank of those fish displaying compensatory growth ranged from 7.6 positions in the R. Ulla to 10.4 positions in the R. Lerez, suggesting that size rank changes are likely to be biologically meaningful. 480 351 6 doi:10.1371/journal.pone.0045528.t001 4 3.3360.13 Compensatory Marine Growth 238 2803.6 102.3 79.7 Ulla PLOS ONE | www.plosone.org Individual variation in reconstructed growth profiles was high among individuals (Fig. 2; CV = 71.2%) and increased significantly over time (Fligner-Killen Test, x2 = 59.91 df = 3, P,0.001) as fish followed diverging growth trajectories. The CV on body size, as inferred from variation in scale size and calculated for those returning adults that had spent two winters in freshwater and one winter at sea (the dominant age class), varied significantly among life stages (Fig. 3;Fligner-Killen test x2 = 55.51, df = 3, P,0.001), being highest during the first 8 months of life (when juvenile mortality is highest) and lowest when adults returned from the sea. Populations differed significantly in CV for body size only during the first winter in freshwater (Fligner-Killen test x2 = 14.50, df = 5, P = 0.013), but not at later stages (smolt x2 = 5.33, df = 5, P = 0.376; PSG x2 = 9.036, df = 5, P = 0.107; returning adults x2 = 1.678, df = 5, P = 0.891). 220612.4 2.1260.12 5 3.5560.11 2.3060.12 1530 54.2 Tambre 5.7 133 6 356 550 205611.4 3.4360.15 2.0460.13 6 4.1060.19 2.1460.09 17469.1 490 540 479 6 5 5 449.5 64 456.9 21.3 Lerez 25.1 14.2 Mandeo 20.7 99 21067.1 3.3560.13 2.2060.11 4 3.6960.14 2.1260.08 21267.5 450 440 537 113 5 5 269.6 10 470.2 7.2 Landro 22.6 19.3 Eume 13.3 64 Rod and line catch Stream order Watershed (Km2) Mean annual flow (m3/s) River Accessible reach (Km) Estuary (Km2) 22465.8 Mean age at return (yr) 5 Individual Variation in Reconstructed Growth Profiles Mean smolt age (yr) Mean smolt size (mm) Max. body size (mm) Table 1. Physical and demographic parameters (means 6 SE) of study populations of migratory brown trout (Salmo trutta). Max. longevity (yr) Compensatory Marine Growth in Sea Trout Discussion Our study on migratory trout indicates that there is a negative relationship between the size of juveniles in freshwater prior to migration and their subsequent growth at sea, once the effects of age on growth are controlled for. In general, a positive relationship between freshwater and marine growth is expected if marine food resources are patchily distributed, and dominant individuals can monopolize resources, as they tend to do in freshwater [43]. In 4 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout Figure 2. Individual scale growth profiles of migratory sea trout. Shown are estimated scale sizes (a proxy for body size) at each circuli number. Dark line represents mean values (95 CI) adjusted for a common smolt age and sea age at four key life stages (first winter in freshwater, entry into the sea – dotted line, end of first marine growing season, and adult returning to freshwater). doi:10.1371/journal.pone.0045528.g002 comparisons), though not statistically so (x2 = 3.0 df = 1, P = 0.083). Our study, like most other studies, suggests that juvenile size is a poor predictor of subsequent growth at sea because individuals that grow slowly in freshwater are able to compensate with enhanced post-migratory growth later in life. There are various possible reasons for this. Firstly, it is possible that gender differences (which were not measured in our study) may introduce a source of variation in the relationship between pre- and post-migratory body size, for example if males and females achieve different sizes [45] or are under different selection pressures [46–47]. However, studies where gender has been controlled for [22] failed to find a positive relationship between freshwater size and marine growth, or found contrast, when marine resources are evenly distributed, resource monopolization is not possible, or the costs of resource defence simply outweigh its benefits, a negative or no correlation between freshwater and marine growth can be expected [44]. Negative correlations between pre and post-migratory growth have been reported in many studies of anadromous salmonids and suggest the existence of trade-offs, whereby traits that promote fast growth in one environment do not translate into rapid growth in other environments. Indeed, analysis of 61 datasets representing four salmonid species (Table 2) indicates that there is no significant association between smolt size and marine growth in the majority of studies (55.7%), and that negative relationships (29.5% of cases) tend to be more likely to occur than positive ones (14.8% of PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout Figure 3. Temporal trends in the coefficient of variation (CV) for scale size (a proxy for body size) of three year old sea trout (2.1. age class) at four key life stages, stratified by population of origin. Shown are mean values and approximate 95% confidence intervals derived from 1,000 bootstrap replicates. doi:10.1371/journal.pone.0045528.g003 an inverse relationship, suggesting that the lack of association is a common phenomenon. Lack of association between pre- and post-migratory growth may also be due to low statistical power. For example, with our sample size (n = 138) we were able to detect a correlation greater than 0.21 or lower than 20.21 with 80% power, but power to detect weaker associations (and to reject the null hypothesis of no correlation) may have been too low in previous studies [48]. Thirdly, random measurement error would tend to blur any relationship between freshwater and marine growth. This may be particularly true if back-calculation of body size (instead of scale growth) is used because in situ measurements of fish size may lack precision in the field [49]. On the other hand, scale size measured in the laboratory has been shown to be a reliable indicator of smolt size in salmonids [50], and our study shows that repeatability in scale size was high and that no bias due to the scale impression process could be detected. Therefore, we are confident that our estimates of scale growth are reliable, and that these allow us to reconstruct changes in growth of migratory trout and to compare growth trajectories of individuals. Using size comparisons to infer rate of growth implicitly assumes that individuals have grown over the same period of time. This would be true only if all fish had emerged and smolted at the same time, and grown over the same length of time in the marine environment. Otherwise, variation in growth rates may be confounded by variation in the length of the growing season, and this may mask the detection of size trade-offs. All adults used in our study were caught in freshwater over a relatively short period of time (August–October), and we excluded from analysis those fish that had spent less than one full winter at sea to reduce additional sources of variation. Information on timing of alevin emergence was not available in our study, but development in southern brown trout populations is rapid and emergence is likely to be short and less protracted than in more northern latitudes [51–52]. Data from a downstream smolt trap in one of the study rivers (R. Ulla) indicates that the timing of smolt migration is PLOS ONE | www.plosone.org highly clumped, with 50% of smolts moving downstream over a relatively narrow time window (average during 1998–2001 was 16 days, range = 6–28 days). This suggests that the observed variation in the size of individuals cannot solely be explained by differences in the timing of emergence, timing of smolting, or in length of the growing season, which are thought to have been similar among individuals in our study. Other studies have also shown that such differences are small in relation to variation in smolt size and post-smolt growth [22]. Compensatory growth, where individuals that grow poorly during periods of nutritional deficit are then able to accelerate their growth and ‘‘catch-up’’ when conditions improve [10,53], is the most plausible explanation for the observed inverse relationship between freshwater and marine growth shown in our study. Migration has been viewed as a strategy to ‘‘escape’’ from harsh conditions, typically caused by predation and competition from increasingly larger conspecifics [54]. Among facultative anadromous salmonids, migration is thought to represent a trade-off between better growth opportunities at sea, but also greater risk from predation [7,55]. Although there is some evidence for density-dependence in salmonid marine survival [56], the evidence is not compelling. In contrast, evidence of density-dependent marine growth is much more common [57–59], though this is most readily apparent during the late marine phase, presumably because the costs of reduced growth are less likely to have an impact on survival later in life [60]. Often the mean scale radius of salmonid migrants is significantly smaller than that of returning adults from the same cohort, suggesting that small migrants sustain high mortality at sea [49]. More generally, large individuals often have a survival advantage over small conspecifics, both in freshwater and in the sea [50,61–64] adding some support to the ‘bigger is better’ hypothesis. However, there are also many cases when no such size advantage is apparent [65], or when sizeselective mortality favours a large body size in some years and a small size in others [66–67], perhaps because phenotypic adjustment is the norm in salmonid populations [15,68]. 6 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout Figure 4. Individual growth reaction norms during the freshwater to marine transition in six sea trout populations, stratified by smolt age (# 1 yr, n 2 yr. +3 yr). Shown are matched comparisons between scale size at the moment of entry into the sea and subsequent scale growth increment during the first marine growing season (PSG) for each individual fish. doi:10.1371/journal.pone.0045528.g004 During the first stages of their lives, brown trout juveniles tend to be subjected to strong selection mediated by both densitydependent and density-independent processes [73], the relative strengths of which may differ markedly from site to site, and also from year to year [70,74–75]. Early density dependent processes are thought to decrease at smolting, when territoriality in migratory salmonids disappears and the strength of intra-specific competition weakens in preparation for the marine migration [55]. Osmoregulation amongs smolts is accompanied by tissue differentiation of gut, gill and kidney [55,76], and juveniles must reach a minimum threshold smolt size or will not smolt [55]. Smolt size, not age, is the primary determinant of marine survival in anadromous salmonids [76], and strong selection for smolt size may therefore be expected to exist. Indeed, our study indicates that there was relatively little variation for smolt size in migratory brown trout, and a significant decrease in CV from the first freshwater winter onwards. Individual variation in salmonids body size has been shown to decrease after periods of intense selection, for example following size-selective predation [77–78] or poor feeding conditions at sea [61]. Whatever the precise direction of selection, a recent metaanalysis [69] has shown that fish are subjected to extreme selection on body size during early life, the strength of which typically decreases over time. This is consistent with our results on migratory trout, which indicate that the CV for body size (as inferred from variation in scale size) varies markedly over the life time of individuals, decreasing with time as fish migrated from freshwater into the sea. With the exception of the first freshwater winter, no differences were found among six neighbouring populations, suggesting that once the critical time for survival has passed [70–71], selection probably operates in a similar way in neighbouring rivers. The coefficient of variation (CV) is useful for quantifying phenotypic variation [28] and for examining ontogenetic size changes in longitudinal studies [51]. CV is expected to decrease when stabilizing selection acts upon a continuous trait, and can be useful as a preliminary step towards more detailed selection analysis [72]. Individual variation in growth rates decreases with increasing competition in brown trout [29,46], suggesting that changes in the CV could track changes in selection intensity. PLOS ONE | www.plosone.org 7 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout Table 2. Studies on anadromous salmonids investigating the relationship between smolt size and post-smolt growth. Relationship between smolt size and post-smolt growth Type of Fish Species Location 2 NS + Period S. salar Matre Aq St. 0 0 1 1981 MR H [27] S. salar R. Narcea 5 1 0 1986–1990 BC W [16] S. salar R. Esva 3 2 0 1986–1990 BC W [16] S. salar R. Cares 1 1 0 1987–1988 BC W [16] S. salar R. Penobscot 0 0 1 1973–1990 SG H [18] S. salar Finland 0 0 1 1980–1991 MR H [26] S. salar R. Imsa 1 0 0 1981–2003 MR H [23] S. salar R. Alta 1 0 0 1993–1995 MR W [22] S. salar Gulf St. Lawrence 0 1 0 1982–1984 SG W [25] S. salar R. Asón 1 0 0 1948–2003 BC W [33] S. salar R. Miramichi 0 1 0 1956–2003 BC W [87] S. trutta Finland 1 0 0 1915–1989 Cline W [14] O. kisutch Oregon 0 9 2 1991–2000 BC W [44] O. kisutch Washington 0 8 2 1991–2000 BC W [44] O. kisutch British Col. 2 9 0 1991–2000 BC W [44] O. kisutch British Col. 1 0 0 1990 MR H [88] O. mykiss British Col. 0 0 1 1990 MR H [88] S. laucomaenis R. Nairo & Haraki 1 2 1 1990–1991 BC W [24] S. trutta 6 rivers, NW Spain 1 0 0 2002 SG W This study Total 18 34 9 Method Reference Studies that found a negative relationship (2), no significant relationship (NS), and a positive relationship (+) are indicated. Method: MR mark and recapture, BC backcalculation of juvenile size, SG scale growth. Type of fish : H hatchery, W wild. doi:10.1371/journal.pone.0045528.t002 Some authors have found that variation in smolt size and age decrease with increasing stream size (e.g. [79]), apparently because the success of large juveniles is more variable and less predictable in small than in large streams [46]. However, no such relationship was apparent in our study populations, which displayed the same narrow variation in smolt size in spite of relatively large differences in stream size and in demographic parameters (Table 1), again suggesting that smolt size is probably under strong selection. In summary, our study indicates that there is an inverse relationship between pre- and post-migratory size in migratory trout, which we interpret as indicative of marine compensatory growth. The CV on body size was highest during the first freshwater winter and decreased during the marine phase, and this appears to track changes in juvenile mortality. In addition to heritable variation, phenotypic plasticity and genotype6environment interactions, ontogenetic variation due to changes in the timing or rate of developmental events (growth heterochrony [80]) can be an important source of body size variation [81–82]. This is particularly true in fishes, which have indeterminate growth, and where even small changes in heterochrony can result in large morphological differences among individuals [83–84]). Gene duplication may have also allowed large phenotypic diversification amongst the teleosts [85], as it provides ‘‘extra genetic material freed from the need to function in only one way, and therefore available for experimental [evolutionary] change’’ [81]. We suggest that despite a widespread selective advantage of large body size in freshwater, freshwater growth is a poor predictor PLOS ONE | www.plosone.org of final body size amongst migratory fish because selection may favour growth heterochrony leading to marine compensatory growth. Marine compensatory growth allows size-depressed individuals to catch-up later in life and may, therefore, negate any initial size advantage acquired in freshwater. Such a mechanism could be responsible for the heterogeneity in growth trajectories observed in our study, a pattern not readily detected in captivity [86], where food is generally plentiful and natural selection relaxed. Ultimately, growth heterochrony could help maintain phenotypic variation in sea trout because anadromous individuals could attain similar sizes at spawning (and hence have similar fecundities) despite having experienced very different growth trajectories early in life. Acknowledgments We wish to thank Pilar Alvariño and Diego Figueroa for technical assistance and Sonia Consuegra and four anonymous referees for useful comments on previous versions of this manuscript. Author Contributions Conceived and designed the experiments: FMR PC PM CGL. Performed the experiments: FMR PM CGL. Analyzed the data: FMR CGL. Contributed reagents/materials/analysis tools: PC PM CGL. Wrote the paper: FMR CGL. Commented on the manuscript: PM PC. 8 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout References 34. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Int 11: 36–42. 35. Fisher JP, Pearcy WG (1990) Spacing of scale circuli versus growth-rate in young coho salmon. Fish Bull 88: 637–643. 36. Rifflart R, Marchand F, Rivot E, Baglinière JL (2006) Scale reading validation for estimating age from tagged fish recapture in a brown trout (Salmo trutta) population. Fish Res 78: 380–384. 37. Maisse G, Mourot B, Breton B, Fostier A, Marcuzzi O, et al. (1991) Sexual maturity in sea trout, Salmo trutta L., running up the River Calonne (Normandy, France) at the ‘finnock’ stage. J Fish Biol 39: 705–715. 38. Schröder V, Garcia de Leaniz C (2011) Discrimination between farmed and free-living invasive salmonids in Chilean Patagonia using stable isotope analysis. Biol Invasions 13: 203–213. 39. Shafer DJ (2000) Evaluation of periodic and aperiodic otolith structure and somatic-otolith scaling for use in retrospective life history analysis of a tropical marine goby, Bathygobius coalitus. Mar Ecol-Prog Ser 199: 217–229. 40. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 41. Venables WN, Ripley BD (2002) Modern applied statistics with S. New York: Springer. 495 p. 42. Jacobs MW, Podolsky RD (2010) Variety is the spice of life histories: comparison of intraspecific variability in marine invertebrates. Integr Comp Biol 50: 630– 642. 43. Tiira K, Laurila A, Enberg K, Piironen J (2009) Short-term dominance: stability and consequences for subsequent growth. J Fish Biol 74: 2374–2385. 44. Snover ML, Watters GM, Mangel M (2005) Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 62: 1219–1230. 45. Martin Smith KM, Armstrong JD (2002) Growth rates of wild stream-dwelling Atlantic salmon correlate with activity and sex but not dominance. J Anim Ecol 71: 413–423. 46. Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, et al. (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12: 1–59. 47. Consuegra S, Garcia de Leaniz C (2007) Fluctuating sex ratios, but no sexbiased dispersal, in a promiscuous fish. Evol Ecol 21: 229–245. 48. Nicieza AG, Álvarez D (2009) Statistical analysis of structural compensatory growth: how can we reduce the rate of false detection? Oecologia 159: 27–39. 49. Anderson RO, Neumann RM (1996) Length, weight, and associated structural indices. In: Fisheries techniques. American Fisheries Society, Bethesda, Maryland. 50. Henderson MA, Cass AJ (1991) Effect of smolt size on smolt-to-adult survival for Chilko Lake sockeye salmon (Oncorhynchus nerka). Can J Fish Aquat Sci 48: 988– 994. 51. Garcia de Leaniz C, Fraser N, Huntingford FA (2000) Variability in performance in wild Atlantic Salmon, Salmo salar L., fry from a single redd. Fish Mgmt Ecol 7: 489–502. 52. Parra I, Almodóvar A, Ayllón D, Nicola GG, Elvira B (2011) Ontogenetic variation in density-dependent growth of brown trout through habitat competition. Freshw Biol 56: 530–540. 53. Ali M, Nicieza AG, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fisher 4: 147–190. 54. Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90: 3445– 3454. 55. McCormick SD, Hansen LP, Quinn TP, Saunders RL (1998) Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55: 77–92. 56. Emlen JM, Reisenbichler RR, McGie AM, Nickelson TE (1990) Densitydependence at sea for coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 47: 1765–1772. 57. Mathisen OA, Fair L, Beamish RJ, Bugaev VF (2007) Density-dependent growth of sockeye salmon in the North Pacific Ocean. N Pacif Anad Fish Com 4: 299–310. 58. Martinson EC, Helle JH, Scarnecchia DL, Stokes HH (2008) Density-dependent growth of Alaska sockeye salmon in relation to climate-oceanic regimes, population abundance, and body size, 1925 to 1998. Mar Ecol-Prog Ser 370: 1– 18. 59. Hansen LP, Quinn TP (1998) The marine phase of the Atlantic salmon (Salmo salar) life cycle, with comparisons to Pacific salmon. Can J Fish Aquat Sci 55: 104–118. 60. Ruggerone G, Nielsen J, Farlet E, Ignell S, Hagen P, et al. (2006) Long-term trends in annual Bristol Bay sockeye salmon scale growth at sea in relation to sockeye abundance and environmental trends, 1955–2000. NPAFC Tech Rep 4: 56–58. 61. Zabel RW, Williams JG (2002) Selective mortality in Chinook salmon: what is the role of human disturbance? Ecol Appl 12: 173–183. 62. Cross AD, Beauchamp DA, Moss JH, Myers KW (2009) Interannual variability in early marine growth, size-selective mortality, and marine survival for Prince William Sound Pink salmon. Mar Coast Fish 1: 57–70. 1. Milner-Gulland EJ, Fryxell JM, Sinclair ARE (2011) Animal migration. Oxford University Press, USA. 269 p. 2. McKeown, BA. 1984. Fish migration. London Croom Helm. 3. Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103: 247–260. 4. Bohlin T, Pettersson J, Degerman E (2001) Population density of migratory and resident brown trout (Salmo trutta) in relation to altitude: evidence for a migration cost. J Anim Ecol 70: 112–121. 5. Taylor LR, Taylor RA (1977) Aggregation, migration and population mechanics. Nature 265: 415–421. 6. Brönmark C, Skov C, Brodersen J, Nilsson PA, Hansson LA (2008) Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS ONE 3: e1957. 7. Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3: 348–365. 8. Kinnison MT, Unwin MJ, Quinn TP (2003) Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon. J Evol Biol 16: 1257–1269. 9. Mangel M, Stamps J (2001) Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evol Ecol Res 3: 583–593. 10. Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16: 254–260. 11. Friedland KD, Chaput G, MacLean JC (2005) The emerging role of climate in post-smolt growth of Atlantic salmon. ICES J Mar Sci 62: 1338. 12. Nicieza AG, Braña F (1993) Compensatory growth and optimum size in oneyear-old smolts of Atlantic salmon (Salmo salar). Can Spec Publ Fish Aquat Sci 118: 225–237. 13. Cucherousset J, Ombredane D, Charles K, Marchand F, Baglinière JL (2005) A continuum of life history tactics in a brown trout (Salmo trutta) population. Can J Fish Aquat Sci 62: 1600–1610. 14. Jonsson B, L’Abee-Lund JH (1993) Latitudinal clines in life-history variables of anadromous brown trout in Europe. J Fish Biol 43: 1–16. 15. Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, et al. (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev Camb Philos Soc 82: 173–211. 16. Nicieza AG, Braña F (1993) Relationships among smolt size, marine growth, and sea age at maturity of Atlantic salmon (Salmo salar) in northern Spain. Can J Fish Aquat Sci 50: 1632–1640. 17. Hutchings JA, Jones M (1998) Life history variation and growth rate thresholds for maturity in Atlantic salmon, Salmo salar. Can J Fish Aquat Sci 55: 22–47. 18. Friedland KD, Haas R (1996) Marine post-smolt growth and age at maturity of Atlantic salmon. J Fish Biol 48: 1–15. 19. Jonsson N, Hansen LP, Jonsson B (1991) Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J Anim Ecol: 60: 937–947. 20. Scarnecchia DL (1984) Climatic and oceanic variations affecting yield of Icelandic stocks of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 41: 917– 931. 21. Scarnecchia DL, Ísaksson Á, White SE (1989) Oceanic and riverine influences on variations in yield among Icelandic stocks of Atlantic salmon. Trans Am Fish Soc 118: 482–494. 22. Einum S, Thorstad E, Næsje T (2002) Growth rate correlations across life-stages in female Atlantic salmon. J Fish Biol 60: 780–784. 23. Jonsson N, Jonsson B (2007) Sea growth, smolt age and age at sexual maturation in Atlantic salmon. J Fish Biol 71: 245–252. 24. Yamamoto T, Ueda H, Higashi S (1998) Correlation among dominance status, metabolic rate and otolith size in masu salmon. J Fish Biol 52: 281–290. 25. Friedland KD, Clarke LM, Dutil J, Salminen M (2006) The relationship between smolt and postsmolt growth for Atlantic salmon (Salmo salar) in the Gulf of St. Lawrence. Fish Bull 104: 149–155. 26. Salminen M (1997) Relationships between smolt size, postsmolt growth and sea age at maturity in Atlantic salmon ranched in the Baltic Sea. J Appl Ichthyol 13: 121–130. 27. Skilbrei O (1989) Relationships between smolt length and growth and maturation in the sea of individually tagged Atlantic salmon (Salmo salar). Aquaculture 83: 95–108. 28. Valladares F, Sanchez Gomez D, Zavala M (2006) Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. J Anim Ecol 94: 1103–1116. 29. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford: Oxford University Press. 30. Einum S, Fleming IA (2007) Of chickens and eggs: diverging propagule size of iteroparous and semelparous organisms. Evolution 61: 232–238. 31. Campos JL, Posada D, Caballero P, Morán P (2007) Spatio-temporal genetic variability in sea trout (Salmo trutta) populations from north-western Spain. Freshw Biol 52: 510–524. 32. Shearer WM (1992) Atlantic salmon scale reading guidelines. ICES Coop Res Rep 188: 46. 33. Kuparinen A, Garcia de Leaniz C, Consuegra S, Merilä J (2009) Growth-history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Mar Ecol-Prog Ser 376: 245–252. PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e45528 Compensatory Marine Growth in Sea Trout 76. McCormick SD, Saunders RL (1987) Preparatory physiological adaptations for marine life of salmonids: osmoregulation, growth, and metabolism. Am Fish Soc Symp 1: 211–229. 77. Parker RR (1971) Size selective predation among juvenile salmonid fishes in a British Columbia inlet. J Fish Res Bd Can 28: 1503–1510. 78. Post JR, Prankevicius AB (1987) Size-selective mortality in young-of-the-year yellow perch (Perca flavescens): evidence from otolith microstructure. Can J Fish Aquat Sci 44: 1840–1847. 79. Jonsson B, Jonsson N, Brodtkorb E, Ingebrigtsen PJ (2001) Life-history traits of brown trout vary with the size of small streams. Funct Ecol 15: 310–317. 80. Smith KK (2001) Heterochrony revisited: the evolution of developmental sequences. Biol J Linn Soc 73: 169–186. 81. Gould SJ (1977). Ontogeny and phylogeny. Cambridge, MA. Belknap Press of Harvard University Press. 82. West-Eberhard MJ (2003). Developmental plasticity and evolution. New York. Oxford University Press. 83. Holtmeier CL (2001) Heterochrony, maternal effects, and phenotypic variation among sympatric pupfishes. Evolution 55: 330–338. 84. Parsons KJ, Sheets HD, Skúlason S, Ferguson MM (2011) Phenotypic plasticity, heterochrony and ontogenetic repatterning during juvenile development of divergent Arctic charr (Salvelinus alpinus). J Evol Biol 24: 1640–1652. 85. Santini F, Harmon LJ, Carnevale G, Alfaro ME (2009) Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes. BMC Evol Biol 9, 194. 86. Björklund M, Hirvonen H, Seppä T, Peuhkuri N, Piironen J (2003) Phenotypic variation in growth trajectories in the Arctic charr Salvelinus alpinus. J Evol Biol 16: 543–550. 87. Friedland KD, Moore D, Hogan F (2009) Retrospective growth analysis of Atlantic salmon (Salmo salar) from the Miramichi River, Canada. Can J Fish Aquat Sci 66: 1294–1308. 88. Johnsson JI, Blackburn J, Clarke WC, Withler RE (1997) Does presmolt growth rate in steelhead trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) predict growth rate in seawater?. Can J Fish Aquat Sci 54: 430–433 63. Duffy EJ, Beauchamp DA (2011) Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington. Can J Fish Aquat Sci 68: 232–240. 64. Einum S, Fleming IA (2000) Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution 54: 628–639. 65. Hendry AP, Letcher BH, Gries G (2003) Estimating natural selection acting on stream-dwelling Atlantic salmon: implications for the restoration of extirpated populations. Cons Biol 17: 795–805. 66. Good SP, Dodson JJ, Meekan MG, Ryan DA (2001) Annual variation in sizeselective mortality of Atlantic salmon (Salmo salar) fry. Can J Fish Aquat Sci 58: 1187–1195. 67. Carlson SM, Olsen EM, Vøllestad LA (2008) Seasonal mortality and the effect of body size: a review and an empirical test using individual data on brown trout. Funct Ecol 22: 663–673. 68. Niva T, Jokela J (2000) Phenotypic correlation of juvenile growth rate between different consecutive foraging environments in a salmonid fish: a field experiment. Evol Ecol 14: 111–126. 69. Perez KO, Munch SB (2010) Extreme selection on size in the early lives of fish. Evolution 64: 2450–2457. 70. Elliott JM (1990) Mechanisms responsible for population regulation in young migratory trout, Salmo trutta. III. The role of territorial behaviour. J Anim Ecol 59: 803–818. 71. Lorenzen K, Enberg K (2002) Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc R Soc B 269: 49–54. 72. Arnold SJ (1986) Limits on stabilizing, disruptive, and correlational selection set by the opportunity for selection. Am Nat 128: 143–146. 73. Vøllestad LA, Olsen EM (2008) Non-additive effects of density-dependent and density-independent factors on brown trout vital rates. Oikos 117: 1752–1760. 74. Elliott JM (1986) Spatial distribution and behavioural movements of migratory trout Salmo trutta in a Lake District stream. J Anim Ecol 55: 907–922. 75. Elliott JM, Hurley MA (1998) Population regulation in adult, but not juvenile, resident trout (Salmo trutta) in a Lake District stream. J Anim Ecol 67: 280–286. PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e45528 Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Mixed-effects modelling of scale growth profiles predicts the occurrence of early and late fish migrants 72! ! Mixed-Effects Modelling of Scale Growth Profiles Predicts the Occurrence of Early and Late Fish Migrants Francisco Marco-Rius1, Pablo Caballero2, Paloma Morán1, Carlos Garcia de Leaniz3* 1 Departamento de Bioquı́mica, Genética e Inmunologı́a, Universidad de Vigo, Vigo, Spain, 2 Consellerı́a de Medio Rural, Servizo de Conservación da Natureza, Xunta de Galicia, Pontevedra, Spain, 3 Department of BioSciences, Swansea University, Swansea, United Kingdom Abstract Fish growth is commonly used as a proxy for fitness but this is only valid if individual growth variation can be interpreted in relation to conspecifics’ performance. Unfortunately, assessing individual variation in growth rates is problematic under natural conditions because subjects typically need to be marked, repeated measurements of body size are difficult to obtain in the field, and recaptures may be limited to a few time events which will generally vary among individuals. The analysis of consecutive growth rings (circuli) found on scales and other hard structures offers an alternative to mark and recapture for examining individual growth variation in fish and other aquatic vertebrates where growth rings can be visualized, but accounting for autocorrelations and seasonal growth stanzas has proved challenging. Here we show how mixed-effects modelling of scale growth increments (inter-circuli spacing) can be used to reconstruct the growth trajectories of sea trout (Salmo trutta) and correctly classify 89% of individuals into early or late seaward migrants (smolts). Early migrants grew faster than late migrants during their first year of life in freshwater in two natural populations, suggesting that migration into the sea was triggered by ontogenetic (intrinsic) drivers, rather than by competition with conspecifics. Our study highlights the profound effects that early growth can have on age at migration of a paradigmatic fish migrant and illustrates how the analysis of inter-circuli spacing can be used to reconstruct the detailed growth of individuals when these cannot be marked or are only caught once. Citation: Marco-Rius F, Caballero P, Morán P, Garcia de Leaniz C (2013) Mixed-Effects Modelling of Scale Growth Profiles Predicts the Occurrence of Early and Late Fish Migrants. PLoS ONE 8(4): e61744. doi:10.1371/journal.pone.0061744 Editor: Josep V. Planas, Universitat de Barcelona, Spain Received September 30, 2012; Accepted March 13, 2013; Published April 16, 2013 Copyright: ! 2013 Marco-Rius et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was funded by grants from Ministerio de Ciencia y Tecnologı́a (CGL2007-60572 and CGL2010-14964), and Fondos FEDER (PGIDIT03PXIC30102PN; Grupos de Referencia Competitiva, 2010/80). Francisco Marco-Rius was supported by a doctoral scholarship from the Spanish Government (BES-2008-001973). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: Carlos Garcia de Leaniz is a member of the Editorial Board of PLOS ONE. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. * E-mail: c.garciadeleaniz@swansea.ac.uk Introduction and migratory individuals commonly coexist and alternative reproductive tactics are often size-dependent [18,19] reflecting considerable phenotypic plasticity [20,21]. Thus, the choice to remain in freshwater or to migrate to sea is often determined by size and/or growth thresholds [22] and these may in turn depend on metabolic efficiency [23]. However, movement can be triggered by two very different and seemingly opposing conditions in relation to energy acquisition and individual performance. Poor growers may be forced to move in response to competition and low food acquisition [24,25], while fast growers may move because they have increasingly high food demands, as high metabolic rates are difficult to maintain in freshwater [26]. Thus, although movement can be viewed as a generalized response to adversity [27], the underlying causes can be very different and will likely have different fitness consequences. Individual growth is often estimated as the difference in body size between two or more arbitrarily chosen time events, but in most field studies not all marked individuals can be recaptured, or even sampled at the same times [28], making individual comparisons difficult. More commonly, researchers are limited to inferring growth from changes in the average size at successive ages or time events [29–31], often based on different individuals. Growth is then analyzed using models based in the Von Bertalanffy [32] approximation [33–35], but this ignores individ- Body size is often the direct target of natural selection [1–3] and examining how different individuals grow can reveal much about how they respond to competition and adapt to environmental change [4,5]. However, modelling animal growth has proved challenging because there is considerable heterogeneity among species and individuals, and because accounting for such diversity is inherently difficult at the analytical level [6]. For example, homoeothermic and poikilothermic organisms show markedly different constraints on evolution of body size [7], and hence on growth. Growth can also vary markedly throughout the lives of organisms, and regional-scale processes can affect individuals very differently depending on season [8,9]. Individuals may cease feeding or augment food intake depending on temporal cues but environmental thresholds may vary markedly among individuals giving rise to divergent growth trajectories even among neighbouring conspecifics exposed to the same cues [10–12]. In addition, growth is intimately linked to many life history traits [13], and cannot be considered in isolation. For example, rate of growth has a pervasive effect on age at maturity in fishes [14–16], and on longevity in mammals [17]. Anadromous salmonids are good models to examine the fitness consequences of individual variation in growth because resident PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61744 Mixed-Effects Modelling of Fish Growth precision of body size and scale measurements. Precision in scale measurements (0.01 mm; CV = 17.1%) was better than that of body size measurements (cm; CV = 19.2%), and the former was therefore preferred to examine growth variation among migratory trout. Thus, and in common with other recent studies [44–45], we did not convert scale measurements into body size estimates, as this would have merely introduced additional errors resulting from (1) low precision of body size measurements taken on live fish in the field, and (2) uncertainty about the precise nature of the function linking scale growth to body growth. ual variation in growth trajectories [36] and assumes that age is accurately measured [37], something that is not always possible. Here we used a method based on the analysis of the spacing between consecutive growth rings found in the scales (growth circuli) to reconstruct individual growth trajectories of migratory brown trout (sea trout, Salmo trutta) before they migrated to sea. We specifically compared the growth trajectories of individuals that migrated to sea after only one year in the river (early migrants) with those that delayed seaward migration for one or more additional years (late migrants). We hypothesized that early migrants would have grown faster than late migrants during their first year of life if migration was triggered by high food demands (i.e. intrinsic drivers), but would have grown more slowly if migration was the result of extrinsic constraints, for example competition resulting in low food acquisition. Data analysis In order to model individual variation in freshwater growth, we examined the spacing between consecutive growth circuli (intercirculi spacing), the number of growth circuli deposited in the scales, and the growth of the scales (scale length) attained at the end of the first year. We only modelled variation in freshwater growth as we are interested in explaining drivers of seaward migration, and this allowed us to compare the common part of the scales of all migratory individuals, irrespective of the time they had spent at sea. We employed binary logistic regression to model the likelihood of early vs. late seaward migration as a function of growth during the first year of life, and assessed model fit by the log-likelihood ratio using SYSTAT 10.0. The first three circuli of the scale were not taken into account due to the possibility of missing growth rings during early life [44]. We used REML to model individual variation in inter-circuli spacing with the ‘nlme 3.1–86’ package [46] on the R 2.14 language [47]. A preliminary analysis of 20 randomly chosen individuals per river suggested that the inclusion of random effects was required to account for individual variation in slopes and intercepts (Figure S1, Supporting information). The inclusion of higher order polynomials allowed us to examine differences in the seasonal growth of one and two year old smolts, according to the following expression (Equation 1): Methods Study populations Migratory brown trout (sea trout) were caught in upstream traps or by angling in the rivers Ulla and Lerez (Galicia, NW Spain) during 1999–2010. The two populations differ in key physical and demographic parameters, including accessible length (Lerez = 25.1 Km, Ulla = 102.3 Km), watershed area (Lerez = 449.5 Km2, Ulla = 2803.6 Km2) and stream order (Lerez = 5, Ulla = 6). Mean angling catch of migratory trout during (used as a proxy for population size) was 101 individuals in the R. Lerez and 1,934 individuals in the R. Ulla. Sea trout smolts in the R. Ulla tend to be older (mean smolt age 2.260.45 yrs) and larger (mean smolt size 216644 mm) than those in the R. Lerez (mean smolt age 2.160.58 yrs; mean smolt size 191652 mm), while mean age at return shows the opposite pattern (R. Ulla, 3.1560.84 yrs; R. Lerez, 3.5160.78 Scale analysis and reconstruction of growth profiles Scales of 60 individuals per river and year were stored dry in paper envelopes, along with information on their body size (fork length, mm). Between three and five scales with a clear nucleus were selected per individual to minimize bias due to scale regeneration [38]. Acetate impressions were made with the aid of a pressure roller and the resulting impressions scanned at 23– 506 magnifications (Minolta MS 6000) as in [39]. The software Image-J v. 1.4.1 [40] was employed to digitize the position of each growth ring (circulus) and to measure inter-circuli spacing with reference to a calibrated scale bar [41]. Freshwater and marine ages were determined based on the number of annuli [42], and the point of entry of smolts into the sea identified by a change from concave to convex circuli (i.e. the point where circuli open outwards on the posterior zone of the scale) and presence of broken growth rings [43]. 2 Ri,j ~b0 zb1 Pi zb2 Yi,j zb3 Ai,j zb4 Ci,j zb5 Ci,j zb6 (Ai {1)| 3 4 zb7 Ci,j zb8 Ri |Ci,j zb9 Li zai zbi Ci,j zei,j Ci,j where R is the scale radius of individual i at circulus j, P is the population (R. Lerez, 0, R. Ulla 1), Y represents the different smolt years, A is the freshwater age, C is the scale circuli and L is the fork length of the fish returning from the sea. Random slopes (b) and intercepts (a) were assumed to be independent and normally distributed with zero means and variances s2a and s2b, respectively; errors ei,j were also assumed to be independent and normally distributed. We allowed for autocorrelation in intercirculi spacing by considering an autoregressive (AR) model of order one in the autocorrelation structure, as this provided a better fit to the data than a model without correlated serial errors. The Bayesian Information Criteria (BIC) was used for model selection of fixed effects, mixed effects and autocorrelation structure of errors terms [48]. We employed the coefficient of variation (CV) to quantify individual variation in inter-circuli spacing at each circulus [21]. For the classical Von Bertalanffy growth model, a nonlinear least-squares (nls) regression was used to estimate the growth parameters (L‘, k and t0) from the scales, using all the scale circuli (Equation 2): Reliability of scale analysis A paired t-test was used to assess non-random deviations in scale radii between the original scales and their acetate impressions (n = 30) in order to quantify potential bias in scale measurements arising from pressure from the hand roller. To ascertain the precision of the scale analysis, we estimated the repeatability of the point of entry into the sea and of the end of the first freshwater growing season by measuring the scales of 30 individuals twice in a double blind fashion and calculating the intra-class correlation coefficient (a-Cronbach) as per [21]. The Pearson correlation coefficient was used to evaluate the strength of the association between scale radius and body size of fish in each river. The coefficients of variation (CV) were then examined to compare the PLOS ONE | www.plosone.org ! " L(t) ~L? 1{e{k(t{t0 ) 2 April 2013 | Volume 8 | Issue 4 | e61744 Mixed-Effects Modelling of Fish Growth Effect of first year growth on age of seaward migration Individual growth curves were fitted to each fish and comparisons were made between fitted and observed values. Results The minimal adequate model that best explained age of seaward migration included scale growth (estimate = 24.5, SE = 0.96, t = 24.66, P,0.001) and mean inter-circuli spacing during the first year (estimate = 565.5, SE = 85.20, t = 6.64, P,0.001) as predictors. This provided a reasonably good fit to the data (McFadden rho2 = 0.138, x2 = 60.263, df = 2, P,0.001) and correctly classified 89.4% of fish into early and late migrants. The inclusion of other terms and their interactions did not improve model fit. In both rivers, early migrants (i.e. one year old smolts) were those that had attained higher rates of scale growth until their first winter (Fig. 1a; R. Lerez F3,448 = 13.123, P,0.001; R. Ulla F3,486 = 6.328, P,0.001). This was chiefly achieved by depositing more growth rings for a given scale length (Fig. 1b; R. Lerez F3,448 = 14.279, P,0.001; R. Ulla F3,486 = 5.906, P = 0.001). Thus, scale length and number of growth rings were positively correlated in both early and late migrants, but inter-circuli spacing and number of growth rings were not (Figure 2). Reliability of scale analysis Individual variation in freshwater growth The impression process produced no significant distortion of scale radius (t29 = 0.547, P = 0.465), indicating that acetate impressions gave an accurate, unbiased representation of scale size. Repeatabilities of scale size were high, both for smolt scale length (a-Cronbach = 0.879) and for scale size attained at the end of the first freshwater growing season (a-Cronbach = 0.898). Scale radius and fork length were positively correlated (r = 0.747, P = 0.001), and the relationship was not different between rivers (F1,636 = 0.542, P = 0.589) allowing us to examine individual variation in scale growth regardless of river identity. The minimal adequate model for inter-circuli spacing in freshwater included an autocorrelation term as well as random slopes and intercepts (Table 1). Although random slopes and intercepts were relatively small, their inclusion significantly improved model fit, indicating that growth rates during early development, as well as initial size differences, differed significantly among individuals and affected subsequent growth. The positive and significant effect of fork length reflects the positive association found between body size and scale size, whereas the four polynomial terms of the model reflect the seasonality in intercirculi spacing that was found to be necessary to include in order to capture seasonal growth stanzas (Figure 3), and which differed significantly between rivers. Thus, inter-circuli spacing for the Ethics Statement We made use of scales samples collected routinely for ageing purposes by trained fisheries staff of the Regional Government of Galicia (Wildlife Service). Scales were collected from anaesthetized fish (clove oil) using a small fish knife and according to current Spanish Regulations, as described in a previous study [21]. After the fish had fully recovered from the anaesthesia (approx. 30 min), they were returned live to a point immediately upstream of the point of capture. No specific permits were required for scale collection, as these did not involve endangered or protected species and the work was carried out by government fishery officers under the supervision of one of the co-authors (PC), who is a government fish veterinarian. Figure 1. Marginal means (± SE) of (a) scale growth and (b) no. of growth circuli deposited during the first year in sea trout of different smolt ages (age of seaward migration). doi:10.1371/journal.pone.0061744.g001 PLOS ONE | www.plosone.org 3 April 2013 | Volume 8 | Issue 4 | e61744 Mixed-Effects Modelling of Fish Growth Figure 2. Scatterplot matrix showing relationships between scale growth parameters (no. of growth circuli, mean interciculi spacing, and scale length during the first year in freshwater) of returning sea trout migrating to sea as early migrants (1 year old smolts) or late migrants (2–4 year old smolts). Each variable is compared against the other two and the relationship between pairs of variables is shown by a solid red line representing a locally weighted scatterplot smoothing (LOWESS) and by the strength of the Pearson correlation coefficient (***P,0.001; **P,0.01). Frequency histograms for each variable are shown along the diagonal. doi:10.1371/journal.pone.0061744.g002 River Ulla was significantly higher than for the River Lerez. In contrast, inter-circuli spacing did not vary significantly over the 11 years of study. Trout which emigrated to sea after only one year of growth in freshwater (early migrants) tended to have smaller than average inter-circuli spacing during the first months of life than those that delayed migration for one or two additional years. Such an effect was evident in both populations (Figure 1), and was largely the consequence of having deposited more growth rings for a given scale length. Analysis of temporal trends in CV indicates that variability in scale length increments increased until the first winter in both rivers (Figure S2), suggesting that initial differences in growth performance among individuals became amplified PLOS ONE | www.plosone.org Figure 3. Fitted values of the mixed-effects model of intercirculi spacing in the freshwater phase of migratory brown trout. Growth trajectories of one ( ) and two-year old smolts ( ) are indicated. Correspondence between circuli number and calendar month is only approximate and is used to visualize the timing of seasonal growth stanzas. doi:10.1371/journal.pone.0061744.g003 N during early life. Model checks indicate a moderately good fit between observed and predicted values (Supporting information, Figure S3) and well behaved residuals. On the other hand, model fitting using individual Von Bertalanffy growth curves was very 4 April 2013 | Volume 8 | Issue 4 | e61744 Mixed-Effects Modelling of Fish Growth regulation during early life may determine the extent of individual variability in growth, so that fish which achieve high growth rates during their first year are able to maintain a size advantage later in life [57]. Small individuals within a cohort are more influenced by intra-specific competition than large ones [58]. In this sense, incorporating random effects in the model, allows a better insight into the nature of within-individual variation in growth patterns. Egg size has been found to have a large effect on early growth and survival of salmonids [59,60] and it is possible that the large individual differences revealed by our analysis might be related to variation in egg size (maternal effect; [61]) in addition to differences in early rearing [62]. In addition, we found significant differences in the freshwater growth of sea trout inhabiting two neighbouring rivers. This serves to highlight the large influence that, in addition to maternal effects [62], local-scale rearing conditions may have on juvenile salmonids during early life [53,63]. The significant effect of body size in our model further suggests the growth experienced in freshwater has a positive effect on length at maturity. Marine survival of anadromous fish is thought to depend not just on growth attained at sea (e.g. [64]), but also on the size attained by juveniles before seaward migration (smolt size). Indeed, large smolts typically survive better than smaller ones, particularly on bad years [65–67], and as our analysis illustrates, the retrospective analysis of inter-circuli spacing may reveal periods when differences among individuals become most pronounced. An additional advantage of modeling growth based on the seasonal deposition of growth circuli is to remove bias caused by an arbitrary choice of sampling events. For example, growth of softwoods varies markedly between wood formed in spring and wood formed in summer and autumn [68], and an analysis of nonannual growth rings can provide valuable information on individual growth variation that would be lost if only annual growth rings are examined (as it is often the case in fishery science). Accounting for individual variation in fitness traits is becoming increasingly important in ecological and evolutionary studies [69– 72], because fitness is essentially a relative concept that needs to be interpreted in relation to performance shown by conspecifics [73]. Growth is commonly used as a proxy for fitness [74], yet comparing large number of serially correlated points, typical of growth studies, presents a considerable challenge [75]. Mixed effects modelling [76,77] is useful in this respect, as it allows for the inclusion of random slopes and intercepts that can be used to describe the growth of individuals, as well as for the incorporation of an auto-correlation structure. Recent studies have highlighted the advantages of such an approach, and have stressed the importance of avoiding sampling individuals only twice [78], a condition common to many growth studies. In summary, we have illustrated how a new method based on mixed-effects modelling can be used to examine individual variation in growth trajectories, reconstructed from multiple repeated measurements of the spacing between consecutive growth rings, thereby affording greater statistical power than simple growth estimates based on two or few arbitrarily chosen points in time. Fish scales can be collected non-destructively and stored dry for considerable time, providing unique archival material to address long-term population changes (e.g. [79–81]). Our approach makes it possible to quantify individual variation and seasonality in growth stanzas, something that popular methods such as the Von Bertalanffy growth model cannot do. The method has shown good reproducibility, and can be readily extended to the analysis of growth of other aquatic organisms having hard structures where growth rings can be visualized, such as otoliths, vertebrae, shells, or bones. We illustrate the application Table 1. Parameter estimates in mixed-effects modelling of inter-circuli spacing of sea trout in two study rivers. Effects Estimate Std. Error t-value P-value Fixed Intercept 0.0389 0.00071 54.54 ,0.0001 FW age 22.667 1024 3.520 1024 20.75 0.449 River [Ulla] 0.0395 7.599 1024 52.07 ,0.0001 3.754 1025 272.52 ,0.0001 1.815 1026 67.33 ,0.0001 0.453 1028 249.72 ,0.0001 0.190 1027 0.024 1028 53.01 ,0.0001 27 1.401 1028 7.22 ,0.0001 River [Ulla]6Circuli 6.200 1027 8.256 1026 0.07 0.946 Fork length 3.480 1026 1.234 1026 2.82 0.004 22.722 10 Circuli 1.222 1024 Circuli2 Circuli 3 20.453 10 Circuli4 FW age6Circuli 23 3 1.001 10 27 Random (SD) Intercept 2.683 1023 Slope (Circuli) 8.706 1025 Residual 5.796 1023 Correlation structure corr 0.742 Random effects are indicated by the standard deviation of slopes and intercepts. doi:10.1371/journal.pone.0061744.t001 poor (R2 = 0.04), and gave exponential or even negative growth for many fish (data not shown). Discussion How does one examine individual variation in growth rates when subjects cannot be marked or few are ever recaptured? We believe that the analysis of growth rings may provide an answer. Fish scales are routinely collected in fisheries for ageing, but it has long been recognised that the spacing between growth circuli (inter-circuli spacing) can also reveal much about the growth of individuals [49]. However, this information has traditionally proven difficult to analyze [50]; often researchers simply backcalculate body size at a given age, work on average size increments at particular times, or apply corrections to the degrees of freedom in an attempt to account for autocorrelations in inter-circuli spacing (e.g. [45]). We employed mixed effects modelling to compare inter-circuli spacing in the scales of migratory brown trout, and used this information to reconstruct juvenile growth trajectories in freshwater. To model seasonal changes in consecutive length increments, we included first to fourth order polynomial terms as a smoothing function of time [51,52] and compared the results to those obtained by applying individual Von Bertalanffy equations. Our results indicate that variation in early summer growth differed significantly among individuals (as evidence by the existence of random intercepts and slopes), and that individual differences in early growth became amplified over the first months of life (as evidenced by an increase in the coefficient of variation). Large individual differences in early growth have been documented in salmonids soon after emergence from the redd [53] and these appear to be closely related to dominance status [54], metabolic rate [55], and timing of hatching in relation to prior residency effects [56]. It is likely that the strength of density-dependent PLOS ONE | www.plosone.org 5 April 2013 | Volume 8 | Issue 4 | e61744 Mixed-Effects Modelling of Fish Growth of the method by examining growth of migratory brown trout from two populations, based on digitized impressions of fish scales. Analysis of inter-circuli spacing during the first year of life accurately predicted whether trout migrated to sea as early (one year old) or late (2–4 year old) smolts, highlighting the profound effect that early growth can have on age at migration of anadromous fish. The fact that early migrants grew faster than older ones suggests that seaward migration was primarily triggered by ontogenetic (intrinsic) drivers, possibly in response to changes in energetic state [26], rather than by extrinsic forces such as competition with conspecifics or low food availability [24,25]. Figure S2 Coefficient of variation (CV = SD/mean) of inter-circuli spacing of freshwater growth in two populations of sea trout. Grey bands represent point-wise 95 CI envelopes derived from bootstrapping. (TIFF) Supporting Information We thank Pilar Alvariño and Laura Cal for technical assistance, and Sonia Consuegra, Josep V Planas, and two anonymous reviewers for helpful comments on the manuscript. Figure S3 Observed versus fitted values for the mixedeffects model of sea trout inter-circuli spacing in two populations of sea trout (R. Ulla, R. Lerez). (TIFF) Acknowledgments Figure S1 Variation in random slopes (time) and intercepts of the mixed-effects model of inter-circuli spacing during the first year of freshwater growth for a random sample of 20 sea trout from each of the two study rivers (R. Lerez, R Ulla). (TIFF) Author Contributions Conceived and designed the experiments: FMR CGL. Performed the experiments: FMR PC PM CGL. Analyzed the data: FMR CGL. Contributed reagents/materials/analysis tools: PM CGL PC. Wrote the paper: FMR CGL. References 21. Marco-Rius F, Caballero P, Morán P, Garcia de Leaniz C (2012) And the last shall be first: heterochrony and compensatory marine growth in sea trout (Salmo trutta). PLoS ONE 7(10): e45528. 22. Aubin-Horth N, Dodson JJ (2002) Impact of differential energy allocation in Atlantic salmon (Salmo salar) precocious males on otolith–somatic size proportionality: a longitudinal approach. Can J Fish Aquat Sci 59: 1575–1583. 23. Morinville GR, Rasmussen JB (2003) Early juvenile bioenergetic differences between anadromous and resident brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 60: 401–410. 24. Thorpe JE, Mangel M, Metcalfe NB, Huntingford FA (1998) Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evol Ecol 12: 581–599. 25. Wysujack K, Greenberg LA, Bergman E, Olsson IC (2009) The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecol Freshw Fish 18: 52–59. 26. Forseth T, Nesje TF, Jonsson B, Harsaker K (1999) Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68: 783–793. 27. Taylor LR, Taylor RAJ (1977) Aggregation, migration and population mechanics. Nature 265: 415–421. 28. Letcher BH, Coombs JA, Nislow KH (2011) Maintenance of phenotypic variation: repeatability, heritability and size-dependent processes in a wild brook trout population. Evol Appl 4: 602–615. 29. Jacobsen JA, Lund RA, Hansen LP, O’Maoileidigh N (2001) Seasonal differences in the origin of Atlantic salmon (Salmo salar L.) in the Norwegian Sea based on estimates from age structures and tag recaptures. Fish Res 52: 169– 177. 30. Jonsson N, Jonsson B (2002) Migration of anadromous brown trout Salmo trutta in a Norwegian river. Freshw Biol 47: 1391–1401. 31. Beechie T, Buhle E, Ruckelshaus M, Fullerton A, Holsinger L (2006) Hydrologic regime and the conservation of salmon life history diversity. Biol Conserv 130: 560–572. 32. Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws. II). Hum Biol 10: 181–213. 33. Velasco G, Reis EG, Vieira JP (2007) Calculating growth parameters of Genidens barbus (Siluriformes, Ariidae) using length composition and age data. J Appl Ichthyol 23: 64–69. 34. Gagné S, Rodrı́guez MA (2008) Modelling seasonal increments in size to determine the onset of annual growth in fishes. J Fish Biol 73: 153–168. 35. Anderson JH, Faulds PL, Atlas WI, Pess GR, Quinn TP (2010) Selection on breeding date and body size in colonizing coho salmon, Oncorhynchus kisutch. Mol Ecol 19: 2562–2573. 36. Wang YG, Thomas MR (1995) Accounting for individual variability in the von Bertalanffy growth model. Can J Fish Aquat Sci 52: 1368–1375. 37. Britton JR, Cowx IG, Peirson G (2004) Sources of error in the ageing of stocked cyprinids. Fisheries Manag Ecol 11: 415–417. 38. Shearer WM (1992) Atlantic salmon scale reading guidelines. ICES Coop Res Rep 188: 46. 39. Kuparinen A, Garcia de Leaniz C, Consuegra S, Merilä J (2009) Growth-history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Mar Ecol-Prog Ser 376: 245–252. 40. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Int 11: 36–42. 1. Rundle HD, Schluter D (2004) Natural selection and ecological speciation in sticklebacks. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D, editors. Adaptive Speciation. Cambridge University Press. pp.192–209. 2. Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, et al. (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev Camb Philos Soc 82: 173–211. 3. Takahashi T, Watanabe K, Munehara H, Rüber L, Hori M (2009) Evidence for divergent natural selection of a Lake Tanganyika cichlid inferred from repeated radiations in body size. Mol Ecol 18: 3110–3119. 4. Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010) Modelling the ecological niche from functional traits. Philos T Roy Soc B 365: 3469–3483. 5. Angilletta MJ, Sears MW (2011) Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr Comp Biol 51: 653–661. 6. Nicholson JK, Holmes E, Lindon JC, Wilson ID (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22: 1268–1274. 7. Albert JS, Johnson DM (2011) Diversity and evolution of body size in fishes. Evol Biol 39: 324–340. 8. Fukaya K, Okuda T, Nakaoka M, Hori M, Noda T (2010) Seasonality in the strength and spatial scale of processes determining intertidal barnacle population growth. J Anim Ecol 79: 1270–1279. 9. English S, Bateman AW, Clutton-Brock TH (2011) Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model. Oecologia 169: 143–153. 10. Ali M, Nicieza AG, Wootton RJ (2003) Compensatory growth in fishes: a response to growth depression. Fish Fisher 4: 147–190. 11. Gurney WSC, Jones W, Veitch AR, Nisbet RM (2003) Resource allocation, hyperphagia, and compensatory growth in juveniles. Ecology 84: 2777–2787. 12. Dieterman DJ, Hoxmeier RJH, Staples DF (2012) Factors influencing growth of individual brown trout in three streams of the upper Midwestern United States. Ecol Freshw Fish 21: 483–493. 13. Stearns SC (1992) The evolution of life histories. New York: Oxford Univ. Press. 249 p. 14. Scott RD, Heikkonen J (2012) Estimating age at first maturity in fish from change-points in growth rate. Mar Ecol-Prog Ser 450: 147–157. 15. Bono LM, Rios-Cardenas O, Morris MR (2011) Alternative life histories in Xiphophorus multilineatus: evidence for different ages at sexual maturity and growth responses in the wild. J Fish Biol 78: 1311–1322. 16. Morris MR, Rios-Cardenas O, Lyons SM, Tudor MS, Bono RM (2012) Fluctuating asymmetry indicates the optimization of growth rate over developmental stability. Funct Ecol 26: 723–731. 17. Kopp EB, Medzhitov R (2009) Perspective: infection and inflammation in somatic maintenance, growth and longevity. Evol Appl 2: 132–141. 18. Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11: 92–98. 19. Gross M, Repka J (1998) Stability with inheritance in the conditional strategy. J Theor Biol 192: 445–453. 20. Caballero P, Morán P, Marco-Rius F (2012) A review of the genetic and ecological basis of phenotypic plasticity in brown trout. In: Polakof S, Moon TW, editors. Trout: from physiology to conservation. Hauppauge: Nova Science. pp.9–26. PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61744 Mixed-Effects Modelling of Fish Growth 41. Schröder V, Garcia de Leaniz C (2011) Discrimination between farmed and free-living invasive salmonids in Chilean Patagonia using stable isotope analysis. Biol Invasions 13: 203–213. 42. Rifflart R, Marchand F, Rivot E, Baglinière JL (2006) Scale reading validation for estimating age from tagged fish recapture in a brown trout (Salmo trutta) population. Fish Res 78: 380–384. 43. Baglinière JL (1985) La détermination de l’age par scalimétrie chez le Saumon Atlantique (Salmo salar) dans son aire de répartition méridionale: utilisation pratique et difficultés de la méthode. Bull Fr Pêche Piscic 298: 69–105. 44. McCarthy JL, Friedland KD, Hansen LP (2008) Monthly indices of the postsmolt growth of Atlantic salmon from the Drammen River, Norway. J Fish Biol 72: 1572–1588. 45. Hogan F, Friedland KD (2010) Retrospective growth analysis of Atlantic salmon Salmo salar and implications for abundance trends. J Fish Biol 76: 2502–2520. 46. Pinheiro JC, Bates DM (2009) Mixed-effects models in S and S-Plus. Berlin: Springer-Verlag. 530p. 47. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 48. Konishi S, Kitagawa G (2008) Information criteria and statistical modeling. New York: Springer. 276p. 49. Bagenal TB, Tesch FW (1978) Age and growth. In: Bagenal TB, editor. Methods for assessment of fish production in fresh waters. Oxford: Blackwell Scientific Publications. pp.101–136. 50. Hinrichsen HH, Buehler V, Clemmesen C (2007) An individual-based model for the direct conversion of otolith into somatic growth rates. Fish Oceanogr 16: 207–215. 51. Wood SN (2006) Generalized additive models: an introduction with R. Boca Raton: Chapman Hall/CRC. 52. Köhn F, Sharifi AR, Simianer H (2007) Modeling the growth of the Goettingen minipig. J Anim Sci 85: 84–92. 53. Garcia de Leaniz C, Fraser N, Huntingford FA (2000) Variability in performance in wild Atlantic salmon, Salmo salar L., fry from a single redd. Fish Mgmt Ecol 7: 489–502. 54. Nakano S (1995) Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat. J Anim Ecol 64: 75–84. 55. Régnier T, Bolliet V, Labonne J, Gaudin P (2010) Assessing maternal effects on metabolic rate dynamics along early development in brown trout (Salmo trutta): an individual-based approach. J Comp Physiol B 180: 25–31. 56. Huntingford FA, Garcia de Leaniz C (1997) Social dominance, prior residence and the acquisition of profitable feeding sites in juvenile Atlantic salmon. J Fish Biol 51: 1009–1014. 57. Crozier LG, Zabel RW, Hockersmith EE, Achord S (2010) Interacting effects of density and temperature on body size in multiple populations of Chinook salmon. J Anim Ecol 79: 342–349. 58. Einum S, Forseth T, Finstad AG (2011) Individual variation in response to intraspecific competition: problems with inference from growth variation measures. Method Ecol Evol 3: 438–444. 59. Elliott JM (1994) Quantitative ecology and the brown trout. Oxford: Oxford University Press. 286 p. 60. Rollinson N, Hutchings JA (2010) Why does egg size increase with maternal size? Effects of egg size and egg density on offspring phenotypes in Atlantic salmon (Salmo salar). Evol Ecol Res 12: 949–960. 61. Einum S, Fleming IA (2002) Does within-population variation in fish egg size reflect maternal influences on optimal values? Am Nat 160: 756–765. PLOS ONE | www.plosone.org 62. Rollinson N, Hutchings JA (2011) Body size-specific maternal effects on the offspring environment shape juvenile phenotypes in Atlantic salmon. Oecologia 166: 889–898. 63. Einum S, Nislow KH (2005) Local-scale density-dependent survival of mobile organisms in continuous habitats: an experimental test using Atlantic salmon. Oecologia 143: 203–210. 64. Peyronnet A, Friedland KD, Maoileidigh NÓ, Manning M, Poole WR (2007) Links between patterns of marine growth and survival of Atlantic salmon Salmo salar, L. J Fish Biol 71: 684–700. 65. Jonsson N, Jonsson B, Hansen LP (2003) The marine survival and growth of wild and hatchery-reared Atlantic salmon. J Appl Ecol 40: 900–911. 66. Saloniemi I, Jokikokko E, Kallio-Nyberg I, Jutila E, Pasanen P (2004) Survival of reared and wild Atlantic salmon smolts: size matters more in bad years. ICES J Mar Sci 61: 782–787. 67. Kallio-Nyberg I, Jutila E, Jokikokko E, Saloniemi I (2006) Survival of reared Atlantic salmon and sea trout in relation to marine conditions of smolt year in the Baltic Sea. Fish Res 80: 295–304. 68. Downes GM, Drew D, Battaglia M, Schulze D (2009) Measuring and modelling stem growth and wood formation: an overview. Dendrochronologia 27: 147– 157. 69. Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, et al. (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161: 1–28. 70. DeAngelis DL, Mooij WM (2005) Individual-based modeling of ecological and evolutionary processes. Annu Rev Ecol Evol Syst 36: 147–168. 71. Moyes K, Morgan BJT, Morris A, Morris SJ, Clutton-Brock TH, et al. (2009) Exploring individual quality in a wild population of red deer. J Anim Ecol 78: 406–413. 72. Clutton-Brock TH, Sheldon BC (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25: 562–573. 73. Wilson DS (2004) What is wrong with absolute individual fitness? Trends Ecol Evol 19: 245–248. 74. Schluter D (1994) Experimental evidence that competition promotes divergence in adaptive radiation. Science 266: 798–801. 75. Zens MS, Peart DR (2003) Dealing with death data: individual hazards, mortality and bias. Trends Ecol Evol 18: 366–373. 76. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. New York: Springer. 574p. 77. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Method Ecol Evol 1: 3–14. 78. van de Pol M (2012) Quantifying individual variation in reaction norms: how study design affects the accuracy, precision and power of random regression models. Method Ecol Evol 3: 268–280. 79. Consuegra S, Garcia de Leaniz C, Serdio A, González Morales M, Straus LG,et al. (2002) Mitochondrial DNA variation in Pleistocene and modern Atlantic salmon from the Iberian glacial refugium. Mol Ecol 11: 2037–2048. 80. Consuegra S, Verspoor E, Knox D, Garcia de Leaniz C (2005) Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Cons Genetics 6: 823–842. 81. Ciborowski KL, Consuegra S, Garcia de Leaniz C, Wang J, Beaumont MA, et al. (2007) Stocking may increase mitochondrial DNA diversity but fails to halt the decline of endangered Atlantic salmon populations. Cons Genetics 8: 1355– 1367. 7 April 2013 | Volume 8 | Issue 4 | e61744 Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Can migrants escape from density-dependence? 80! ! Contemporary ocean warming and freshwater conditions are related to later sea age at maturity in Atlantic salmon spawning in Norwegian rivers Can migrants from density-dependence? Jaime Otero , Arne J. Jensen escape , Jan Henning L’Abée-Lund , Nils Chr. Stenseth , Geir O. Storvik, & 1 2 3 1,4 1,5 Leif Asbjørn Vøllestad1 Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, of Oslo, P.O. Box 1066 N-0316, Oslo, Francisco Marco-Rius1, Pablo Caballero2, University Paloma Morán1, Blindern, Carlos Garcia de Norway 3 Norwegian Institute for Nature Research, P.O. Box 5685 Sluppen, N-7485, Trondheim, Norway Leaniz Norwegian Water Resources and Energy Directorate, P.O. Box 5091 Majorstua, N-0301, Oslo, Norway 1 2 3 4 Institute of Marine Research, Flødevigen Marine Research Station, N-4817, His, Norway 15 Department of Mathematics, University of Oslo, P.O. Box de 1066Bioquímica, Blindern, N-0316, Genética Oslo, Norway Universidad de Vigo, Departamento e Inmunología, Vigo 36310, Spain. 2 Xunta de Galicia, Consellería de Medio Rural, Servizo de Conservación da Natureza, Pontevedra 36071, Spain 3 Swansea University, Department of BioSciences, Swansea SA2 8PP, UK Keywords Abstract discharge, maturation, Norway, Salmo salar, sea surface temperature. Keywords: Correspondence Individual approach, brown trout, Jaime Otero, Centre for Ecological and statistical modelling, growth, density, Evolutionary Synthesis (CEES), Department of migration. Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway. Tel: +47 Correspondence 22854400; Fax: +47 22854001; Carlos Garcia de Leaniz, Swansea E-mail: j.o.villar@bio.uio.no University, Department of BioSciences, Swansea SA2 8PP, UK; Funding Information E-mail: This study was funded by the Research c.garciadeleaniz@swansea Council of Norway project nº 183989/S30. .ac.uk Received: 6 February 2012; Revised: 20 June Atlantic salmon populations are reported to be declining throughout its range, raising major management concerns. Variation in adult fish abundance may be due to variation in survival, growth, and timing of life history decisions. Given Abstract the complex life history, utilizing highly divergent habitats, the reasons for declines may be multiple and difficult to disentangle. Using recreational angling is thought to maximize by enabling data 1. of twoMigration sea age groups, one-sea-winter (1SW) and growth two-sea-winter (2SW) fish originated fromtothe same smolt yeardensity-dependence, class, we show that sea agebut at maturity individuals escape from this has of the returnsbeen has increased rivers over level the cohorts 1991– rarely testedin 59 at Norwegian the individual in natural 2005.populations. By means of linear mixed-effects models we found that the proportion of 1SW2. fish spawning in Norwaylinear has decreased We employed mixedconcomitant modellingwith of the theincreasing spacing sea surface temperature experienced by the fish in autumn during their first between consecutive scale growth rings to reconstruct year at sea. Furthermore, the decrease in the proportion of 1SW fish was influindividual growth profiles of a paradigmatic fish migrant, the enced by freshwater conditions as measured by water discharge during summer sea1 year troutahead (Salmo trutta) and related thesesuggest to estimates months of seaward migration. These results that part of of year class strength overcan a 13-year period. the variability in age at maturity be explained by the large-scale changes 3. Variation in scaleAtlantic growthpelagic was food 1.3 times greater among occurring in the north-eastern web affecting postsmolt individuals than in within individuals in freshwater, and growth, and by differences river conditions influencing presmolt growth rate10 times greater at sea. Scale growth was inversely related to and later upstream migration. Funding Information 2012; Accepted: 22 June 2012 Funding for this work was provided by grants from Ministerio de Ciencia y Ecology and Evolution 2012; 2(9): 2192–2203 Tecnología (CGL200760572 and CGL2010doi: 10.1002/ece3.337 year class strength, but density-dependence was c. 2.5 14964), and Fondos FEDER times stronger in freshwater (before migration) than at sea but is also highly plastic (Hutchings 2011). This is also (PGIDIT03PXIC30102PN; Introduction (after migration). the case for the Atlantic salmon (Salmo salar) (Garcı́a de Grupos de Referencia 4. effects Competition distributed Competitiva, 2010/80). Recent climate change is promoting multiple at Leániz for et al.patchily 2007), a highly charismaticresources species with is greatthe most plausible explanation for It isthe negative densityFrancisco Marco-Rius was and ecosystem levels population, community, inducing economic and social value. therefore of great concern supported by aecological doctoral changes well documenteddependent observed freshwater and, to a across lesser extensive from vari- growth that Atlantic salmon in production has been declining scholarship from the extent, in the most marine environment. ous terrestrial, freshwater, and marine systems (Letcher of the species’ distributional range over the past Spanish Government (BES2009). The impacts of climate variability on 5. aquatic ecodecadessome (Hindar al. 2011). Our studyrecent provides ofetthe strongest evidence for a 2008-001973). systems are diverse and affect key life history processes, The life history ofinAtlantic salmon ispartial complexmigrations (Thorstad role of density-dependence determining including reproduction and maturation of fishbecause (Rijnsdorpalthough et al. 2011). Spawning in freshwater October– Received: 11 February migrants can occurs maximize growthinby moving 2013. et al. 2009). Age at reproduction is among the most January. After hatching in spring the juveniles (parr) stay into the sea, they do not appear to become free from important life history traits, having profound fitness in freshwater 1–6 years before transforming into smolt. density-dependence constraints completely. This has effects and also important demographic implications The smolts then leave their rivers to pursue oceanic implications for conservation and suggests that sea trout (Stearns 1992). In fish, age at maturity has a significant feeding migrations during spring and early summer. Postand other fish displaying partial may additive genetic component (Carlson and Seamons 2008), anadromous smolt Atlantic salmon spend 1–4 years migrations at sea until the 2192 Introduction not be best managed on a river by river basis, but rather from a broader, coastal perspective. ª 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Understanding temporal fluctuations in the abundance and growth of organisms has long been a key challenge in population ecology (Krebs 2009) and density- dependence is perhaps one of the most ubiquitous endogenous regulators (Brook & Bradshaw 2006). Consideration of densitydependence regulation is also important for managing exploited populations because harvest mortality can have markedly 1 different effects depending on density (Minto, Myers & Blanchard 2008). Yet, the effects of density-dependence may not become noticeable unless one repeatedly samples at the individual level (Vøllestad & Olsen 2008) because most organisms become more mobile as they grow, and ontogenetic changes in per capita resource requirements can cause the relationship between density and resource abundance to change over time (Begon, Mortimer & Thompson 1996). This is particularly the case for migratory species, where individuals may be able to ‘escape’ competition by moving between habitats (Poethke, Pfenning & Hovestadt 2007; Mobæk et al. 2009), thereby making it difficult to detect density-dependence regulation. Salmonids are well suited for studying density-dependence because juveniles pass through a critical time for survival soon after emergence from spawning redds (Elliott 1994; Garcia de Leaniz, Fraser & Huntingford 2000) when competition for food and space is intense (Van Zwol, Neff & Wilson 2012), and many populations include both resident and migratory individuals (partial migration, Wysujack et al. 2009; Acolas et al. 2012). Most density-dependence studies have made use of time series based on stockrecruitment relationships to infer densitydependent regulation at the early juvenile stage. For example, researchers have compared egg densities against juvenile survival (Nicola et al. 2008), or against body size (Einum, Sundt-Hansen & NIslow 2006). However, this approach assumes that density is a valid metric of the intensity of competition experienced by individuals, which may not be the case if resources are patchily distributed and sampling area is unrelated to the spatial scale of the species (Berryman 2004). An effect of density on growth may also be difficult to detect in such studies if resident fish have a larger than average size or emigration is sizedependent (Elliott 1994; Jenkins et al. 1999). Density needs to be measured in relation to the mobility of the organism under study (Jenkins et al. 1999) and the spatial distribution of resources (Berryman 2004; Finstad et al. 2009), but these may not always be known. A second limitation of observational studies is that fitness metrics, such as survival or growth, are often collected for a small subset of individuals, typically over a short time period. For example, density estimates of juvenile salmonids are typically inferred (and scaled up) from a necessarily limited number of small sampling stations, which can restrict statistical inferences. Similar limitations also exist for growth studies because the number of individuals that can be recaptured is typically small, which seriously limits the number of repeated measures that can be obtained. In addition, small alevins are usually difficult or even impossible to mark individually (Kaspersson et al. 2009), which is unfortunate since this the stage where the impact of density on fitness is most likely to be manifested (Elliott 1994). Fitness is a relative concept that needs to be interpreted in relation to conspecifics’ performance and which is useful to the extent that one can quantify trait variation among individuals (Wilson 2004). The analysis of the spacing between consecutive growth rings (circuli) found in bone structures such as scales or otoliths can be used to reconstruct the growth trajectories of individuals with much more detail than is usually possible through mark and recapture (Campana & Thorrold 2001). In addition, because the analysis of growth circuli represents repeated measures on the same individuals, linear mixed effects models can be used to increase the power and accuracy of statistical inferences (van de Pol 2012). Here we used a 13-year time series with estimates of year class strength for two populations of migratory brown trout (Salmo trutta) to test the hypothesis that early freshwater growth, but not marine growth, is suppressed at high population densities. We employed upstream trap records of sea trout returning to rivers to spawn to estimate year class strength based on the number of adults caught each year, standardized to a common body size. We tested for density-dependence by examining changes in juvenile growth reconstructed from scale analysis in relation to parental abundance. Freshwater systems are typically more resource limited than marine environments (Ross 1986), and density-dependent 2 Table 1. Parameter estimates of mixed-effects modelling of intercirculi spacing (square root) during the first year in freshwater. Random effects are indicated by the standard deviation of slope and intercept. Minimal adequate 0.5 linear mixed effects model (LMM): Intercirculi spacing) = River + Year class strength + Circuli No. Effects Estimate SE t-value P-value Fixed Intercept Circuli No. River Year class strength 0.167 -0.002 -2 0.305 10 -6 -6.310 10 Random (SD) Intercept Slope (Circuli) Residual 0.011 0.001 0.018 Correlation structure Corr 0.267 growth is thought to be caused by exploitative competition for food, rather than by interference competition for space in freshwater (Grant & Imre 2005), though both mechanisms may operate and result in identical density-growth relationships (Ward et al. 2007). In the sea, in contrast, the effect of density on salmonid growth is thought to be mediated exclusively through completion for food (Peterman 1984) as it is assumed that it would be difficult for fish to monopolize space or defend marine resources (Snover, Watters & Mangel 2005). Our expectation, therefore, was that variation in freshwater growth would track changes in year class strength, whereas variation in marine growth would be largely independent of density if juveniles migrate to ‘escape’ competition. Materials and methods Study populations We examined temporal variation in densitydependent growth in two contrasting populations of migratory brown trout (sea trout) from Galicia (NW Spain), one from a large watershed (R. Ulla – 2,804 km2) and one with a much smaller catchment (R. Lerez – 449 Km2). Sea trout were caught in upstream traps on their returning marine migration each year during 1999-2010, the body size was measured (fork length, mm) and a sample of scales collected before the fish were returned upstream by fishery officers. The two rivers differ markedly in accessible stream length for sea trout (R. Lerez – 25 Km, R. Ulla – 102 Km) and -3 0.813 10 -5 3.703 10 -4 8.567 10 -6 2.711 10 207.70 -47.78 3.56 -2.32 <0.001 <0.001 <0.001 0.020 estuary size (R. Lerez – 99 Km2, R. Ulla – 238 Km2), and also likely in the strength of density-dependent effects (Caballero, Cobo & Gonzalez 2006; Marco-Rius et al. 2012). Thus, sea trout from the much smaller River Lerez migrate to sea at a smaller size (mean 174 ± 9.1 mm) and younger age (mean 2.04 ± 0.13 yrs) than those from the larger R. Ulla (mean smolt size 220 ± 12.4 mm, mean smolt age 2.12 ± 0.12 yrs; Marco-Rius et al. 2012). Scale analysis and growth profiles We randomly chose scales from 60 individuals per river and year from the historical scale collection, and selected 2-5 scales with clear (non–regenerated) nuclei for each fish to prevent bias due to loss of the first few growth rings. We made acetate impressions of the scales withthe aid of a pressure roller, scanned these with a Minolta MS 6000 microfilm scanner at 2350x magnification, and saved them as high resolution TIFF images as in Kuparinen et al. (2009). Image-J v. 1.4.1 (Abramoff, Magalhães & Ram 2004) was employed to digitize the position of each growth ring, to identify the annual growth rings (annuli), and to measure the inter-circuli spacing along the 360º scale axis with reference to a calibrated scale bar in order to derive measures of scale growth (Marco-Rius et al. 2012). The freshwater and marine ages were determined based on the number of annuli and the point of entry of smolts into the sea (beginning of marine phase) was 3 Table 2. Parameter estimates of mixed-effects modelling of intercirculi spacing (square root) during the first marine growing season (post-smolt growth). Random effects are indicated by the standard deviation of slope 0.5 and intercept. Minimal adequate linear mixed effects model (LMM): Intercirculi spacing) = River + Smolt Year strength + Circuli No. Effects Estimate SE Fixed Intercept Circuli No. River Smolt Year strength 0.020 -4 1.504 10 -2 1.797 10 -6 -2.550 10 0.727 10 -5 1.011 10 -3 0.036 10 -6 1.278 10 Random (SD) Intercept Slope (Circuli) Residual 2.718 10 -5 3.949 10 -3 8.565 10 Correlation structure Corr 0.564 -3 t-value P-value 27.57 14.88 4.98 -1.98 <0.001 <0.001 <0.001 0.048 -3 noted based on the change from a concave to a convex curvature of the first marine circulus (Marco-Rius et al. 2012). We considered scale growth patterns between the scale focus and the first freshwater winter as a measure of early juvenile growth in freshwater, and between the point of entry into the sea and the first marine winter as a measure of early marine growth (post smolt growth, PSG; Friedland et al. 2006). Using only the first part of the freshwater and marine phases (common to all individuals) avoids problems due to age effects and assumes that inter-cohort density-dependent effects are similar for yearling and under-yearling individuals in terms of growth potential (Kvingedal & Einum 2011). The first three scale circuli were not taken into account in the analysis due to the possibility of scale regeneration during early growth. In total we analysed scales of 453 sea trout from the R. Lerez and 490 sea trout from the R. Ulla. Reliability of scale analysis A paired t-test was used to assess nonrandom deviations in scale radii between the original scales and their acetate impressions (n = 30) in order to quantify potential bias in scale measurements arising from pressure from the hand roller. To ascertain the precision of the scale analysis, we estimated the repeatability of the point of entry into the sea and of the end of the first freshwater growing season by measuring the scales of 30 individuals twice in a double blind fashion and calculating the intra-class correlation coefficient (α-Cronbach) as per Kuparinen et al. (2009). The Pearson correlation coefficient was used to evaluate the strength of the association between scale radius and body size of fish in each river. The coefficients of variation (CV) were then examined to compare the precision of body size and scale measurements. Precision in scale measurements (0.01 mm; CV = 17.1%) was better than that of body size measurements (cm; CV = 19.2%), and the former was therefore preferred to examine growth variation among migratory trout. Scale measurements were not converted to body size measurements as this introduces additional errors resulting from relatively crude measurements of body size taken in the field. Data analysis We modelled variation in year class strength by considering the annual number of returning sea trout caught in two upstream traps at the end of the fishing season (R. Lerez, mean trap catch = 347 sea trout/year, range: 203-610; R. Ulla mean trap catch = 350 sea trout/year, range: 212-596), standardized to a common body size (Lerez, 347.3 mm; Ulla, 350.3 mm) in order to factor in variation in size-dependent fecundity. We assumed that annual variation in trap catches reflected variation in spawning escapement (and thus on egg deposition) and derived 4 Figure 1. Freshwater scale growth profiles (cumulative scale growth, mm) of sea trout from the R. Lerez (n = 453) and the R. Ulla (n = 490) stratified by year of seaward migration (smolt year). Lerez, 1997 Lerez, 1998 Lerez, 1999 Lerez, 2000 Lerez, 2001 Lerez, 2002 Lerez, 2003 Lerez, 2004 Lerez, 2005 Lerez, 2006 Lerez, 2007 Lerez, 2008 Lerez, 2009 Ulla, 1997 Ulla, 1998 Ulla, 1999 Ulla, 2000 Ulla, 2001 Ulla, 2002 Ulla, 2003 Ulla, 2004 Ulla, 2005 Ulla, 2008 Ulla, 2009 50 50 50 50 50 50 4 3 2 1 0 4 3 Scale length (mm) 2 1 0 4 3 2 1 0 4 3 2 1 0 0 100 1500 100 1500 100 1500 100 1500 100 1500 100 150 Circuli No. indices of year class strength for each cohort and smolt year (i.e. year of seaward migration) taking into account the age structure of these populations (Marco-Rius et al. 2012) to factor in the relative contribution of overlapping age years classes. We employed linear mixed modeling to assess individual variation on the spacing between consecutive growth circuli (intercirculi spacing) using the protocol described in Zuur et al. (2009) for nested data using the Bayesian Information Criteria (BIC). The effects of river and year class strength on freshwater inter-circuli spacing was examinedwith the following fixed effects saturated model: I ~ C x SH x R where I is the freshwater inter-circuli spacing (until the first freshwater winter), C is the circuli pair being considered, SH is the standardized year class strength at hatching adjusted for variation in adult body size and juvenile age structure, and R is the river identity. All the possible interactions were included in the model. Likewise, to model variation in marine scale growth we considered the following saturated structure: I ~ C x R x SM x FW where I is the marine inter-circuli spacing (until the first marine winter), C is the circuli pair being considered, SM is the standardized year class strength at smolting (taking into account the smolt age of the population) adjusted for variation in adult body size, R is the river identity, and FW is the scale radius at the end of the first winter in freshwater. As previously, all interactions were included in the model. We used the squared root of the dependent variable in every model to help normalize error terms. Random effects were tested in both saturated models, and these were assumed to be independent among individuals and to follow a normal distribution with mean zero and variances σ2a and σ2b, respectively; the observation error εi,j, was also assumed to be independent and normally distributed. We calculated variance components todetermine the relative strengths of within and among individual differences in intercirculi spacing, and allowed for autocorrelation in inter-circuli spacing by considering an autoregressive (AR) model of order one in the autocorrelation structure. This provided a better fit to the data than a model without correlated serial errors. We run models incorporating the effect of year class strength at various time lags (-4 to +4) to account for the fact that competition experienced by migrants at sea may also be affected by earlier and later year classes. All analyses were performed on R 2.15.0 language (R Development Core Team 2012) using the nlme 3.1-103 package (Pinheiro et al. 2012). Results Scale reliability There was no significant distortion of scale radius due to the impression process (t29 = 0.547, P = 0.465), indicating that acetate impressions gave an accurate, unbiased representation of scale size. Repeatabilities of scale size were high, 5 Scale radius and fork length were positively correlated (r = +0.747, P = 0.001), and the relationship was not different among rivers (F1,941 = 0.326, P = 0.568) allowing us to use scale measurements to reconstruct changes in body size regardless of river identity. Figure 2. Temporal changes in scale growth (mm, mean ± 95 CI) of sea trout during the first year in freshwater (A-B) and during the first marine growing season (post-smolt growth, C-D ) in the rivers Ulla and Lerez. Ulla 1.0 A 0.8 0.8 ● 0.6 ● ● ● ● ● ● ● ● ● ● ● 0.4 PSG (mm) FW winter length (mm) 1.0 Ulla 0.2 ● ● ● ● ● 0.6 ● ● ● ● 0.4 Determinants of individual variation in freshwater growth 0.2 0.0 0.0 1996 1998 2000 2002 2004 2006 1998 2000 2002 2004 Year of hatching Smolt year Lerez Lerez 1.0 2006 2008 1.0 B 0.8 0.6 ● ● D 0.8 ● ● ● ● ● ● ● ● ● 0.4 ● 0.2 PSG (mm) FW winter length (mm) C ● ● ● 0.6 ● ● ● ● ● ● ● ● ● ● ● ● 0.4 0.2 0.0 0.0 1996 1998 2000 2002 2004 2006 1998 Year of hatching 2000 2002 2004 2006 2008 Smolt year both for smolt scale length (α-Cronbach = 0.879) and for scale size attained at the end of the first freshwater growing season (α-Cronbach = 0.898). Figure 3. Fitted values of mixed effects model describing inter-circuli spacing during the first year in freshwater according to year of hatching. 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 0.18 0.16 0.14 0.12 0.10 Fitted Values 0.18 0.16 0.14 0.12 0.10 0.18 0.16 Inspection of freshwater growth profiles, obtained by plotting circuli number against cumulative scale length (Figure 1), reveals considerable variation in growth slopes among individuals, as well as between rivers and years. Annual scale growth differed significantly among years, both in freshwater (R. Ulla F9,489 = 2.82, P = 0.005, Figure 2A; R. Lerez F11,452 = 7.15, P < 0.001, Figure 2B) and in the sea (R. Ulla F11,489 = 3.43, P < 0.001, Figure 2C; R. Lerez F11,452 = 1.89, P = 0.04, Figure 2D). The minimal adequate model of inter-circuli spacing in freshwater included all three main effects, i.e. circuli number, year class strength, and river identity (BIC= -94350). None of the interactions were significant, and these were removed from the model following Zuur et al. (2009). The inclusion of an autocorrelation structure, as well as of random intercepts and slopes, was found necessary to adequately describe the freshwater growth of sea trout. Inspection of parameter estimates (Table 1) and fitted values (Figure 3) indicates that there is considerable variation in the growth slope of individuals within the same cohort, and that early scale growth decreases rapidly from the first summer until the first freshwater winter. Freshwater growth differs significantly between the two neighbouring rivers, with sea trout from the R. Ulla growing faster (i.e. displaying wider inter-circuli spacing) than those from the R. Lerez. Determinants of individual variation in marine growth 0.14 0.12 0.10 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 Circuli As with freshwater growth, the minimal adequate model of inter-circuli spacing during the first marine growing season 6 included the effects of circuli number, year class strength and river identity (BIC= 106635.4). The terms capturing variation in freshwater size, as well as all the interactions, were not significant and were removed. As with freshwater growth, the inclusion of random effects and a correlation structure was necessary to adequately describe marine growth of sea trout (Table 2). Inspection of fitted values during the first summer at sea displayed in all cases a positive slope, reflecting a period of rapid, accelerated growth (Figure 4). Parameter estimates indicated that sea trout from the R. Ulla grew faster in the sea (as they did in freshwater) than those from the R. Lerez. Figure 4. Fitted values of mixed effects model describing inter-circuli spacing during the first marine growing season (post smolt growth, PSG) according to year of smolting. For comparisons, circulus number one represents transition into the marine environment for all fish. 1997 1998 1999 2000 2002 2003 2004 2005 2001 0.040 0.035 0.030 0.025 contrast, variation in marine growth was much higher among individuals (R. Lerez 27%, R, Ulla 32%) than within individuals (R. Lerez 2%, R. Ulla 3%). Density-dependent growth The negative, statistically significant sign of the parameter estimates for year class strength on inter-circuli spacing indicates that parental abundance (and thus likely offspring abundance) had a negative effect on the subsequent growth of juveniles, though the density-dependent effect on growth was c. 2.5 times stronger in freshwater (Table 1, parameter estimate 6.31 x 10-6, P = 0.020) than at sea (Table 2, parameter estimate -2.55 x 10-6, P = 0.048). The absence of significant interaction terms suggests that the negative effect of density on growth was the same for both rivers. On the other hand, models of marine scale growth lagged at 1-4 years were not significant, with model fitting decreasing with increasing time-lags (BIC lag1= -96965.25, BIC lag 2= -82305.8, BIC lag3= -71133.14, BIC lag4= -63639.08) suggesting that there was little, if any, evidence for interference competition at sea among individuals of different smolt years. Fitted Values 0.040 Discussion 0.035 0.030 0.025 2006 2007 2008 2009 0.040 0.035 0.030 0.025 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 Circuli Partition of variance components Analysis of variance components indicated that variation among individuals in freshwater inter-circuli spacing (R. Lerez 25%, R. Ulla 29%) was larger than within individual variation (R. Lerez 23%, R. Ulla 19%), although differences were small. In Our study suggests that growth of juvenile sea trout, a species exhibiting partial migrations (Wysujack et al. 2009; Acolas et al. 2012) is suppressed at high population densities, not only in freshwater, butto a lesser extent also in the marine environment. Under the assumption that scale size and inter-circuli spacing are both positively related to somatic growth – assumptions that are generally upheld by empirical evidence in salmonids (MarcoRius et al. 2012) and other fishes (Cheung et al. 2007), we found that temporal fluctuations in year class strength had a marked effect on juvenile growth at two different life-history stages, and at two different spatial scales. Annual fluctuations in salmonid abundance are usually large (Nicola et al. 2008) and can be expected to have large effects on intra- and inter-cohort competition (Einum 7 et al. 2011), which should be manifested in changes in individual growth (Parra et al. 2011). Yet, density-dependent growth has been difficult to detect at the individual level in the wild because growth data derived from mark and recapture are often restricted to a few time events and tend to provide only a snapshot of growth performance (Vincenzi, Satterthwaite & Mangel 2008). In contrast, growth circuli continue to be deposited over the entire lives of many fishes, and once formed, remain unchanged (Cheung et al. 2007). These characteristics afford the fine resolution necessary to quantify individual variation in fish growth, and as our study shows, to test for density-dependent effects at the individual level. Selection can act strongly on salmonid body size (Garcia de Leaniz et al. 2007) and we found large differences in scale growth increments of sea trout from two neighbouring rivers, highlighting the marked effect that spatial heterogeneity and local conditions can have on salmonid growth (Foldvick, Finstad & Einum 2010). In general, density–dependent effects were stronger in freshwater than at sea, and also stronger in the river Lerez (with less accessible area and poorer juvenile growth) than in the much larger River Ulla. These results are consistent with resource competition being the chief reason for negative density-dependent effects on salmonid fitness (Finstad et al. 2009). Migratory salmonids typically move in small shoals when they enter the sea in order to minimize predation (Dutil & Coutu 1988) and are able to exploit a wider range of prey resources than in freshwater (Hansen & Quinn 1998), marked density-dependent effects are perhaps less likely to occur at sea. Density-dependent growth at sea has not been reported before for anadromous brown trout, but this may reflect the difficulty of detecting such a process in a coastal species with a relatively short marine phase, as well as the limited power of simple scale growth analysis (MarcoRpus et al. 2012). Negative densitydependent marine growth appears to be relatively common among other migratory salmonids (e.g. Atlantic salmon - Hansen & Quinn 1998; coho salmon – Emlen et al. 1990;sockeye salmon - Martinson et al. 2008), though it is most readily apparent during the late marine phase (Ruggerone et al. 2006). Unlike in freshwater, where density-dependent growth is well explained by territorial behaviour and interference competition, similar underlying mechanisms at sea remain obscure (Snover, Watters & Mangel 2005). Seasonal migrations can result in high concentrations of sea trout close to shore as the species rarely moves more than 100 km offshore in this area (Caballero, Cobo & Gonzalez 2006). Productivity in these coastal waters is regulated by short, localized upwelling episodes that reappear with a frequency of 14 ± 4 days (ÁlvarezSalgado et al. 2000) resulting in patchily distributed and temporally abundant prey that provide the conditions necessary for marine density-dependence effects to develop. On the other hand, we found no evidence for lagged effects on marine growth, suggesting that densitydependence at sea results chiefly from the effect of single smolt cohorts (i.e. smolts entering the sea on the same year) rather than from the effects of multiple year classes. Although our study did not consider the potential effect of other marine fish (including sea trout from other nearby populations, as well as other marine fishes), the two study populations occupy adjacent estuaries and are the largest in the area (Caballero, Cobo & Gonzalez 2006; Marco-Rius et al. 2012). It could also be argued that if marine growth of sea trout depended on the presence of other, unaccounted fish competitors, failure to include these would have likely introduced random noise, making it more difficult (not less) to detect density-dependent marine growth. Our analysis of variance components indicates that variation in inter-circuli spacing was larger between individuals than within-individuals, both in freshwater and at sea. This supports the contention that inter-circuli spacing is a good indicator of individual growth performance (MarcoRius et al. 2012) and can be used to examine how individuals respond to density-dependence regulation. Migration has been viewed as a strategy to ‘escape’ 8 from harsh conditions (Hebblewhite & Merrill 2009) which can protect offspring against density-dependence (Economou 1991). Salmonid alevins are thought to benefit from dispersal early in life through improved growth at the expense of increased risk of predation (Einum et al. 2011), and our study indicates that seaward migration may confer similar benefits as sea trout smolts appear to benefit from reduced density-dependence during the first marine growing season. This is consistent with the existence of marine compensatory growth, whereby individuals that grow poorly in freshwater are able to catch up later during their marine life (Marco-Rius et al. 2012), presumably because competition is weaker during the post-migratory than the premigratory phase (Snover, Watters & Mangel 2005). However, our results also indicate that sea trout do not escape completely from density-dependence constraints by migrating into the sea, and that their marine growth is still impacted by the presence of conspecifics, presumably due to competition for food (Peterman 1984). Recent models predict that densitydependence could help maintain partial migrations if, as our study of sea trout indicates, resident and migratory individuals are subjected to densitydependent forces of varying strength before and aftermigration (Taylor & Norris 2007). The findings of our study have implications for conservation and management because despite strong homing behaviour on this species, the existence of negative density-dependent growth at sea suggests that sea trout should not be managed on a river by river basis and that populations may be better conserved taking a wider, coastal perspective. Acknowledgements We thank Pilar Alvariño and Laura Cal for technical assistance and Sonia Consuegra for helpful comments on the manuscript. References Abramoff, M.D, Magalhães, P.J. & Ram, S.J. (2004) Image processing with ImageJ. Biophotonics International, 11, 36–42. Acolas, M.L., Labonne, J., Bagliniere, J.L. & Roussel, J.M. (2012) The role of body size versus growth on the decision to migrate: a case study with Salmo trutta. Naturwissenschaften, 99, 11-21. Álvarez-Salgado, X.A., Gago, J., Míguez, B.M., Gilcoto, M. & Pérez, F.F. (2000) Surface waters of the NW Iberian margin: upwelling on the shelf versus outwelling of upwelled waters from the Rías Baixas. Estuarine, Coastal and Shelf Science, 51, 821–837. Begon, M., Mortimer, M. & Thompson, D.J. (1996) Population Ecology: A Unified Study of Animals and Plants. Blackwell Science, Oxford. Berryman, A.A. (2004) Limiting factors and population regulation. Oikos, 105, 667–670. Brook, B.W. & Bradshaw, C.J.A. (2006) Strength of evidence for density dependence in abundance time series of 1198 species. Ecology, 87, 1445–1451. Caballero, P., Cobo, F. & González, M.A. (2006) Life history of a sea trout (Salmo trutta L.) population from the North-West Iberian Peninsula (River Ulla, Galicia, Spain). Sea Trout Biology, Conservation and Management (eds G. Harris & N. Milner), pp 234-247. Blackwell Publishing, Oxford. Campana, S.E. & Thorrold, S.R. (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Canadian Journal of Fisheries and Aquatic Sciences, 58, 30–38. Cheung, C.H.Y., Chaillé PM, Randall D.J., Gray J.S. & Au D.W.T. (2007) The use of scale increment as a means of indicating fish growth and growth impairment. Aquaculture, 266, 102–111. Dutil, J.D. & Coutou, J.M. (1988) Early marine life of Atlantic salmon, Salmo salar, postsmolts in the northern Gulf of St. Lawrence. Fisheries Bulletin, 86, 197–212. Economou, A.N. (1991) Is dispersal of fish eggs, embryos and larvae an insurance against density dependence? Environmental Biology of Fishes, 31, 313–321. Einum, S., Sundt-Hansen, L. & Nislow, K.H. (2006) The partitioning of density-dependent dispersal, growth and survival throughout ontogeny in a highly fecund organism. Oikos, 113,489–496. Einum, S, Nislow, K.H., McKelvey, S. & Armstrong, J.D. (2011) The spatial scale of competition from recruits on an older cohort in Atlantic salmon. Oecologia, 167, 1017– 1025. Elliott, J.M. (1994) Quantitative Ecology and the 9 Brown Trout. Oxford University Press, New York, USA. Emlen, J.M., Reisenbichler, R.R., McGie, A.M. & Nickelson, T.E. (1990) Densitydependence at sea for coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 47, 1765–1772. Finstad, A.G., Einum, S., Ugedal, O. & Forseth, T. (2009) Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon. Journal of Animal Ecology, 78, 226–235. Foldvik, A., Finstad, A.G. & Einum, S. (2010) Relating juvenile spatial distribution to breeding patterns in anadromous salmonid populations. Journal of Animal Ecology, 79, 501–509. Friedland, K.D., Clarke, L., Dutil, J. & Salminen, M. (2006) The relationship between smolt and postsmolt growth for Atlantic salmon (Salmo salar) in the Gulf of St Lawrence. Fisheries Bulletin, 104, 149–155. Garcia de Leaniz, C., Fraser, N. & Huntingford, F.A. (2000). Variability in performance in wild Atlantic salmon, Salmo salar L., fry from a single redd. Fisheries Management and Ecology, 7, 489–502. Garcia de Leaniz, C., Fleming, I.A., Einum, S., Verspoor, E., Jordan, W.C. et al. (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biological Reviews, 82, 173– 211. Grant, J.W.A. & Imre, I. (2005) Patterns of density-dependent growth in juvenile stream-dwelling salmonids. Journal of Fish Biology, 67, 100–110. Hansen, L.P. & Quinn, T.P. (1998) The marine phase of the Atlantic salmon (Salmo salar) life cycle, with comparisons to Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 55, 104–118. Hebblewhite, M. & Merrill, E.H. (2009) Tradeoffs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology, 90, 3445-3454. Jenkins Jr, T.M., Diehl, S., Kratz, K.W. & Cooper, S.D. (1999) Effects of population density on individual growth of brown trout in streams. Ecology, 80, 941–956. Kaspersson, R. & Höjesjö, J. (2009) Densitydependent growth rate in an age-structured population: a field study on stream-dwelling brown trout Salmo trutta. Journal of Fish Biology, 74, 2196-2215. Krebs, C.J. (2009). Ecology: The Experimental Analysis of Distribution and Abundance, 6th edn. Benjamin Cummings, San Francisco, USA. Kuparinen, A., Garcia de Leaniz, C., Consuegra, S. & Merilä, J. (2009) Growthhistory perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Marine Ecology Progress Series, 376, 245–252. Kvingedal, E. & Einum, S. (2011) Intracohort and intercohort spatial density dependence in juvenile brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences, 68, 115–121. Marco-Rius, F., Caballero, P., Morán, P. & Garcia de Leaniz, C. (2012) And the last shall be first: heterochrony and compensatory marine growth in sea trout (Salmo trutta). PLoS One, 7, e45528 Martinson, E.C., Helle, J.H., Scarnecchia, D.L. & Stokes, H.H. (2008) Density-dependent growth of Alaska sockeye salmon in relation to climate-oceanic regimes, population abundance, and body size, 1925 to 1998. Marine Ecology Progress Series, 370, 1–18. Minto, C,, Myers, R.A. & Blanchard, W. (2008) Survival variability and population density in fish populations. Nature, 452, 344–347. Mobæk, R., Mysterud, A., Egil Loe, L., Holand, Ø. & Austrheim, G. (2009) Density dependent and temporal variability in habitat selection by a large herbivore; an experimental approach. Oikos, 118, 209– 218. Nicola, G.G., Almodóvar, A., Jonsson, B. & Elvira, B. (2008) Recruitment variability of resident brown trout in peripheral populations from southern Europe. Freshwater Biology, 53, 2364–2374. Parra, I., Almodóvar, A., Ayllón, D., Nicola, G.G. & Elvira, B. (2011). Ontogenetic variation in density-dependent growth of brown trout through habitat competition. Freshwater Biology, 56, 530–540. Peterman, R.M. (1984). Density-dependent growth in early ocean life of sockeye salmon (Oncorhynchus nerka). Canadian Journal of Fisheries and Aquatic Sciences, 41, 1825– 1829. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & the R Development Core Team .(2012) nlme: Linear and Nonlinear Mixed Effects Models. R package v. 3.1-103. (http://cran.rproject.org/web/packages/nlme/index.html). Poethke, H.J., Pfenning, B., & Hovestadt, T. (2007) The relative contribution of individual and kin selection to the evolution of densitydependent dispersal rates. Evolutionary Ecology Research, 9, 41–50. R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [v. 2.15.0]. 10 Ross, S.T. (1986) Resource partitioning in fish assemblages: a review of field studies. Copeia, 1986, 352–388. Ruggerone, G., Nielsen, J., Farlet, E., Ignell, S., Hagen, P. et al. (2006) Long-term trends in annual Bristol Bay sockeye salmon scale growth at sea in relation to sockeye abundance and environmental trends, 1955–2000. NPAFC Technical Report, 4, 56–58. Snover, M.L., Watters, G.M. & Mangel, M. (2005) Interacting effects of behavior and oceanography on growth in salmonids with examples for coho salmon (Oncorhynchus kisutch). Canadian Journal of Fisheries and Aquatic Sciences, 62, 1219–1230. Taylor, C.M. & Norris, D.R. (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biology Letters, 3, 280–283. van de Pol, M. (2012) Quantifying individual variation in reaction norms: how study design affects the accuracy, precision and power of random regression models. Methods in Ecology and Evolution, 3, 268– 280. Van Zwol, J.A., Neff, B.D. & Wilson, C.C. (2012) The effect of competition among three salmonids on dominance and growth during the juvenile life stage. Ecology of FreshwaterFish, 21, 533-540. Vincenzi, S., Satterthwaite, W.H. & Mangel, M. (2011) Spatial and temporal scale of density-dependent body growth and its implications for recruitment, population dynamics and management of streamdwelling salmonid populations. Reviews in Fish Biology and Fisheries, 22, 813–825. Vøllestad, L.A. & Olsen, E.M. (2008) Nonadditive effects of density-dependent and density-independent factors on brown trout vital rates. Oikos, 117, 1752-1760. Ward, D.M., Nislow, K.H., Armstrong, J.D., Einum, S. & Folt, C.L. (2007) Is the shape of the density-growth relationship for stream salmonids evidence for exploitative rather than interference competition? Journal of Animal Ecology, 76, 135–138. Wilson, D.S. (2004) What is wrong with absolute individual fitness? Trends in Ecology and Evolution, 19, 245-248. Wysujack, K., Greenberg, L.A., Bergman, E. & Olsson, I.C. (2009) The role of the environment in partial migration: food availability affects the adoption of a migratory tactic in brown trout Salmo trutta. Ecology of Freshwater Fish, 18, 52-59. Zuur, A.F., Ieno, E., Walker, N., Saveliev, A. & Smith, G. (2009) Mixed Effects Models and Extensions in Ecology with R. Springer, New York, USA. 11 Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta) 92! ! Insights for planning an effective stocking program in anadromous brown trout (Salmo trutta) Francisco Marco-Rius, Graciela Sotelo, Pablo Caballero, Paloma Morán Abstract: Brown trout is a salmonid species with a high socio-economic value related with recre- ational fishing. Because of that, stocking programs have been developed in many popu- lations, although have focused on resident populations. In order to explore which factors promote that migratory behaviour when implementing stocking actions, 28 brown trout artificial crosses were carried out in a non-commercial hatchery, and the returning success of their offspring was further evaluated. Return rate was examined attending to: male phenotype (anadromous vs. resident), mean egg size, parents’ similarity at major histocom- patibility complex (MHC) class II β-gene, and stocking procedure. At the end of the experiment, 35 of the captured returning adults (9.4%) belonged to 14 of those crosses. Return success shows significantly affected by parental MHC similarities, stocking procedure and male phenotype. Our results indicate that planting fertilized eggs in nursery areas of the river, together with the selection of anadromous males as brood stock and mate pairs with higher similarity at the MHC locus can be an appropriate option to increase the migratory part of trout populations. In addition, nursery areas can allow an important decrease in the cost per stocked individual, being 32 times less expensive than the cost per hatchery-reared individuals. Introduction Conservation of native populations is an important challenge for managers (Waples and Hendry 2008). For instance, many salmonid populations have declined dramatically during the last century because of overexploitation (Almodovar and Nicola 2004; Saura et al. 2010), habitat degradation (Miranda et al. 2012), or climate change (Kennedy and Crozier Received 11 February 2013. Accepted 13 May 2013. Paper handled by Associate Editor Alistair Coulthard. F. Marco-Rius1 and P. Morán. Universidad de Vigo, Departamento de Bioquímica, Genética e Inmunología, Vigo 36310, Spain. G. Sotelo. CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Universidade do Porto, 4485-661 Vairão, Portugal. P.Caballero. Consellería de Medio Rural, Servizo de Conservación da Natureza, Xunta de Galicia, Pontevedra, Spain. 1 Corresponding author (e-mail: fmarco@uvigo.es). 1 2010). Therefore, different solutions have been proposed as habitats restoration (Anton et al. 2011) or population enhancing by supportive breading programs (Saura et al. 2006). In the planning of latter, the component of anadromy is never taken into account and a specific program for anadromous brown trout enhancement is not available for management. In this study, we propose the baseline for develop a program for anadromous populations based on selecting the brood stock, the use of different ages for stocking and the relationship with the returning rate after sea migration and the economic cost. Brown trout (Salmo trutta) is often subjected to stocking due to recreational fishing (Juanes et al. 2011). For this reason, captivity bred trout are released into rivers and lakes to enhance local populations (Jonsson and Jonsson 2011). Various authors have addressed pros and cons of this method (Fleming et al. 1997; Jonsson et al. 2003) and the results appear largely dependent on the parental stock used, where offspring success is reduced when domesticated trout are used (Moran et al. 1991; Martinez et al. 1993; Dahl et al. 2006). Moreover, hatchery environments often favour completely different traits than natural selection does in the wild (Rogell et al. 2012). One of the traits affected by hatchery environments is the component of anadromy of brown trout populations (Serrano et al. 2009). Brown trout is a partly migratory species, i.e. both migratory and resident individuals cooccur in the same population (Jonsson and Jonsson 1993). Migratory individuals return to their natal river (Jonsson and Jonsson 2012) for reproduction after spending one or more years in seawater, where they can attain up to ten times larger size at maturity than resident individuals do (Jonsson 1985). Furthermore, females migrate more than males (Milner et al. 2003), probably because female fitness is most directly related to body size (Jonsson & Jonsson 2011). However, the mechanisms controlling trout migrations are not fully understood, although it is thought that both genetic and environmental factors play important roles (Ferguson 2006; Giger et al. 2006). It has been reported that hatchery-reared trout are less migratory than wild conspecifics (Serrano et al. 2009). Thus, stocking may reduce the migratory predisposition of populations. However, supportive breeding and stocking are still important long-term conservation tools for sustaining harvestable populations (Saura et al. 2006). Stocking of hatchery fish is economically expensive. For example, in Atlantic salmon (Salmo salar) the cost varies from 0.022€ per eyed ova to 1.063€ per one-year-old smolt or 2.127€ per two-year-old smolt in UK (Aprahamian et al. 2003). Hatchery conditions for brown trout are approximately the same and the rearing cost will be equivalent. But still, supportive breeding is assumed necessary in rivers where Atlantic salmon are exterminated. In such cases, the brood stock should be taken from a neighbouring river with similar environmental conditions (Hansen et al. 2006). Iberian Peninsula represents the southern distribution limit of anadromous brown trout. There, many populations have declined due to dams’ construction (Ayllon et al. 2006; Juanes et al. 2011) with negative effects for sport angling while resident trout is still fairly common and exhibit high genetic variability (Campos et al. 2007). In such cases, supportive breading could be the only way to maintain or recover the populations present. Indeed, Atlantic salmon stocks have been restored in rivers where they became extinct in the 1990s (Hervella and Caballero 1999; Saura et al. 2 2006), reflecting the increased damage of anadromous populations. In order to provide a logical framework to develop a successful supportive breeding program for sea trout populations, different brown trout artificial crosses were performed in a non-commercial hatchery in northwest Spain. Only large migratory sea trout females were used , mainly because the high number of eggs that they produce compared to resident females (Jonsson and Jonsson1993). Although age and size at maturity or residency are partly inherited traits, some additional benefits (related with maternal effects) may be expected when using large-sized females. For example, eggs produced by larger females are larger than those produced by small-sized females, and fry from large eggs usually experience lower mortality (Einum and Fleming 1999). On the other hand, both migratory and resident males were included in the crosses. Under natural conditions, males compete for access to females during spawning and as a consequence, large males tend to breed with large females (Jacob et al. 2007). Secondly, in addition to these parental effects, it has been suggested that major histocompatibility complex (MHC) is subject to selection, and ultimately related to local adaptation, through different processes related with class I and II subfamilies. The role of MHC polymorphism in pathogen resistance and reproductive success has been tested in several vertebrates. For example, in rhesus macaques (Macaca mulatta), heterozygous sires in MCH class II showed better reproductive success than homozygous sires (Sauermann et al. 2001). Also, the survival of Chinook salmon (Oncorhynchus tshawytscha) was increased by heterozygosity of the MHC class IIB genes when infected by the haematopoietic necrosis virus (IHNV) (Arkush Fig. 1. Rivers/streams used in the study: The brood stocks were captured in Tea and Deza, the eyed ova were stocked at Cabanelas and the hatchery-reared one-year old brown trout were stocked at Lerez. Galicia Spain Deza ´ Lerez Cabanelas Tea kilometers 0 5 10 20 et al. 2002). Moreover, associations between certain MHC class II alleles and the bacterial infection (forunculosis) were found in Atlantic salmon, suggesting that different alleles are related with high resistance and low resistance to infection (Langefors et al. 2001). Balancing selection has been proposed as the most likely mechanism maintaining genetic variation within and among populations (reviewed in Bernatchez and Landry 2003) and we expect that the same holds for brown trout. In the present experiment we measured the return-rate of adult sea trout either (1) planted 3 Table 1. Number of returned adults captured by the trap located in river Lérez, between 2010 and 2011. It is reported the cross identity, the stocking type performed, the amino acid distances and the male phenotype used (‘A’, anadromous, and ‘R’, resident). Number of returned adults 1 2 1 1 6 3 2 1 2 1 1 3 1 1 1 5 1 Cross number 1 3 4 5 6 7 8 10 12 19 20 24 27 28 Stocking type Eyed ova Eyed ova 1-year-old 1-year-old Eyed ova 1-year-old 1-year-old Eyed ova Eyed ova Eyed ova Eyed ova Eyed ova 1-year-old Eyed ova 1-year-old Eyed ova Eyed ova as eggs in a small nursery tributary stream, or (2) released the fish as hatchery-reared oneyear-old juveniles in the main river. We assessed three parameters: (a) male phenotype (as paternal effect), (b) eggs size (as maternal effect) and (c) MHC similarities. AA distance 0.010 0.169 0.161 0.161 0.005 0.030 0.198 0.165 0.222 0.156 0.067 Male phenotype A R R R A A R R R A A 0.202 0.061 0.156 A A A total of 18 anadromous females, nine anadromous males and 17 resident males were selected for the experiment (Table S1). Each trout was individually identified with a passive integrated transponder (PIT) tag and a small piece of a pelvic fin was clipped and stored in ethanol for subsequent genetic analysis. A total of 28 artificial pair-crosses were done at the hatchery resulting in a total of 8 full-sib families and 20 half-sib families. Eleven crosses involved migratory males, and 17 crosses involved resident males. Egg size was estimated by taking 30 random eggs from each cross and a calliper (0.1mm of precision) was used for the measurement. Then, the average size of the eggs was calculated. Finally, eggs were reared during 30 days in the hatchery using a recirculation system between 5° and 9° C. Materials and methods Experimental design In December 2007, adult trout were caught before the spawning season in an upstream trap located in the low part of Tea and Deza streams (northwest Spain; Fig.1). These streams support two neighbour populations where the anadromous populations abundance have been maintained stable during the last years (Hervella and Caballero 1999). Both streams have an upstream trap to provide samples. A 4 Table 2. GLM parameter estimates, using a Poisson distribution for number of returned adults between 2010 and 2011. The reference group of the factor is in parenthesis.In February 2008, 35,000 eyed eggs were transported and planted intra-gravel with the help of a plastic tube as described in Palm et al. (2009), at Cabanelas stream, a small tributary of the river Lérez (main river; Northwest Spain, Fig. 1). Estimate Std. Error z value Intercept -6.2515 5.8832 -1.06 0.2880 MHC -8.3593 2.6422 -3.16 0.0016 Stock Type (stock 1+) -0.9808 0.3909 -2.51 0.0121 Phenotype (Resident) -1.1221 0.5119 -2.19 0.0284 Egg size 0.1429 0.1099 1.30 0.1936 The remaining 78,000 eggs were reared in the hatchery until spring 2009, resulting in 23,109 one-year-old individuals. Due to space problems in the hatchery, fry from different crosses were mixed in five tanks of 5,000 litres subjected to the same water temperature and daily food quantity. However, this procedure did not allow monitoring the survival achieved by each single cross. These fish, after adipose fin clipping (performed to further distinguish them from planted individuals), were released in March 2009 in the middle course of the main river, very close to the mouth of Cabanelas stream (Fig. 1). We released one-year-old hatchery trout. According to Jokikokko and Jutila (2004), this maximizes smolt production. All sea trout returning between January 2010 and December 2011 were monitored in a trap located 4 km upstream of the river mouth. Each returning adult was measured, weighted and marked with a PIT tag in order to identify possible recaptures of the same individual in subsequent years. The presence/absence of adipose fin was recorded; and a small piece of Pr(> |z|) a pelvic fin was clipped for the genetic analysis. MHC sequencing and MHC diversity analysis To estimate the MHC diversity of the experimental crosses, a 298-301 (253-256 bp excluding primers) bp fragment of the exon 2 of a MHC class II B gene was amplified for parental fish using the primers CL007 (5´GATCTGTATTATGTTTTCCTTCCAG-3´) and AL100 (5´-CACCTGTCTTGTCCAGTA TG-3´) (Olsén et al. 1998). PCR reaction was carried out in a total volume of 20 µl, containing 1 µl of genomic DNA, 2 µl of reaction buffer (10× buffer), 0.5 mM dNTP, 2.5 mM MgCl2, 0.35 µM of each primer and 1 U of Taq DNA polymerase (Bioline). Cycling conditions consisted of 35 cycles of 30 s denaturation at 95 ºC, 30 s annealing at 57 ºC and 45 s extension at 72 ºC, followed by a final 7 min extension at 72 ºC. PCR products were cloned using pGEM®-T Vector System (Promega). Twenty white colonies per cloned product were amplified by PCR using primers T7 and M13. 5 Fig. 2. Relationship between returning success (adults captured between 2010 and 2011) and MHC parental similarity (based on amino acid sequences, see main text). The solid line represents the trend line fitted by GLM and the dash line is a loess line. 0.25 MHC parents' similarity 0.20 0.15 0.10 0.05 0.00 0 2 4 6 8 Number of returned adults Resulting PCR fragments were run in SSCP gels as described in Campos et al. (2006) to identify homozygous/heterozygous individuals. For each identified allelic variant, different PCR products were cleaned and sequenced using a dRhodamine terminator cycle sequencing kit and an automated sequencer ABI PRISM 3100. The MHC diversity of each cross was calculated, following Landry et al. (2001), as the mean pairwise distance between the four parental alleles considering the four allelic combinations (i.e., genotypes) that could be carried by the offspring, in both nucleotide and amino acid sequences. The distances were computed as uncorrected p-distances using Mega 5.05 (Tamura et al., 2011). However, only one of the sequences is presented in the results (the amino acid sequences) due to the high correlation between the sequences (cor=0.993, t12=27.89, P<0.0001). 6 Microsatellites genotyping and parentage assignment To assign returning fish to parental/ experimental crosses both, parents and returning fish, were genotyped using eight microsatellites loci: Str591INRA, Str85 (Presa and Guyomard, 1996), Str60 (Estoup et al. 1993), Satr-UBA (Grimholt et al. 2002), SSsp2201 (Patterson et al. 2004), Ssa85, Ssa197 (O’Reilly et al. 1996) and SsaD157 (King et al. 2005). Microsatellites were amplified by PCR (polymerase chain reaction) in three multiplex reactions: Str60, Str591INRA and Str85 in multiplex I, Ssa85, Ssa197 and Satr-UBA in multiplex II, and SSsp2201 and SsaD157 in multiplex III. PCR reactions were carried out in a final volume of 20 μL, containing 2 μL of extracted genomic DNA, 0.2 μl of Taq polymerase (Green Taq polymerase 5U/μl), 1 μl of MgCl2 50 mM, 1 μl of dNTPs Mix 10mM, and 10mM primer volumes of 0.35 μl (SSsp2210, SsaD157), 0.5 μl (Str60), 0.6 μl (Str85) and 1 μl (Str591INRA, Ssa85, Ssa197, Satr-UBA). Each reaction was carried out for 35 cycles, with the following conditions: for 20 s at 95°C; 20 s at 55°C, and 20 s at 72°C, for multiplex I; 20 s at 95°C; 20 s at 58°C, and 20 s at 72°C, for multiplex II; and 50 s at 95°C; 50 s at 58°C, and 80 s at 72°C, for multiplex III. PCR products were prepared into a final volume of 20 μL. The mix, together with Rox 400, was denatured at 95 °C for 5 min and immediately put on ice. Allele size of fluorescently labelled fragments was measured in a 3100 ABI PRISM (Applied Biosystems, Foster City, CA, U.S.A.) automated sequencer followed by analysis with GeneMapper 3.7 Software (Applied Biosystems). Parentage assignment was done using the software PASOS (Duchesne et al. 2005). This program combines an approach based on parental pair likelihoods with a filtering procedure. The allocation of a descendant in PASOS is based on the search for the most likely pair among all potential pairs of known parents. Putative parent–offspring pairs sharing alleles at the eight loci, or having as maximum one mismatch in one locus, were assigned to parent pairs. To evaluate cross diversity at neutral markers, microsatellite similarity of each cross was calculated as an average correlation coefficient (Rij) between allele sizes for homologous gene copies from two individuals (Streiff et al. 1998), given that, for microsatellite loci evolving under a stepwise mutation model, differences in allele size contain more evolutionary information than just allele identity. This index was computed using SPAGeDi v. 1.4 (Hardy and Vekemans 2002). Statistical analysis A generalized linear model (GLM) with a Poisson distribution was used in order to explore the differences in the number of returning adults (R) captured in the upstream trap: R = M+E+D+T; where M was the male phenotype used in the cross (resident or migratory/anadromous), E was the mean egg size of artificial crosses, D was the MHC diversity of the parental cross estimated from amino acid MHC sequences, and T was the stocking type (planted eggs or released as juveniles) used in the recaptured individual. All interactions were included in the saturated model and model selection was done according Akaike information criteria (AIC). We used the residual deviance to perform a goodness of fit test for the overall model. The Pearson correlation coefficient was used to evaluate the association between cross similarities at MHC class IIB locus and cross 7 diversity at neutral markers to evaluate whether or not values of similarities at MHC locus between parents are caused by similarities in genetic background and hence, biasing the MHC similarities values. Finally, length and weight of the returning trout were compared attending to the stocking procedure used to explore benefits or costs over the final body size in hatchery and wild recaptured individuals. Data were analyzed using the software R 2.15.1 (R Development Core Team 2012). numbers of alleles did not differ between both neighbouring streams used as brood stock. The 28 experimental crosses worked out, and the eggs produced by each female varied approximately between 3,000 and 13,000. Mortality during the first 30 days of rearing conditions varied between 5% and 7%, and it occurred mostly during the first ten days. Between 2 and 4 years after the commencement of the experiment, a total of 351 sea trout adults were recaptured in the upstream trap of the main river. All the fish were successfully genotyped for the eight microsatellites loci and assigned unambiguously to parental crosses. The percentage of analysed individuals that were allocated to experimental crosses was 9.4% (n=33); corresponding to 14 out of 28 crosses (see table 1). Of these 33 individuals, 24 (72.7 %) had been stocked as planted eyed ova, while only 9 had been released as one-yearolds, meaning that hatchery-reared fish contributed only up to the 27.3% of returned adults. Moreover, parental analysis showed that 25 individuals belonged to crosses involving anadromous males, and eight to crosses involving resident males. As well, crosses with more similar MHC alleles showed the highest number of returned individuals, for both stocking procedures (Figure 2). Crosses number 6, 20 and 27 turn to be the most successful in the return rate: they accounted for 15 out of the 33 returning adults (45.5%). Cross 6 was the pair with more similar male-female MHC alleles (p-distance of 0.05), cross 27 was the fourth (p-distance of 0.061) and cross 20 was the fifth in this ranking (p-distance of 0.067) among all performed at the hatchery. The three crosses were performed by use of a single, although different, sea-run male.. Results The final alignment of the exon 2 of the MHC class II β-gene for the 44 individuals involved in the 28 artificial crosses consisted of 256 bp, and resulted in 63 alleles. They were defined by 99 polymorphic sites, including a 3 bp deletion (positions 189-191) present in 33 out of the 63 alleles. Only 12 of the isolated alleles were observed in more than one individual while the remaining 51 were singletons. Among the analysed parents, 12 were homozygous and 32 were heterozygous. When translated into protein sequences, the alignment rendered 59 alleles, 32 comprising 84 amino acids and 27, 85 (due to the mentioned deletion), with a total of 51 polymorphic positions observed. Sixteen alleles were present in more than one individual and 43 were singletons, and among the 44 parents, 14 were homozygous and 30, heterozygous. All the parental trout were successfully genotyped for the eight microsatellites loci. No genotyping errors due to null alleles, large allele dropout or stutter bands were observed. Microsatellite loci were highly polymorphic, and the number of alleles per locus varied from 6 at Str591INRA to 45 at SSsp2201 and the 8 Fig.3. Box plots of fork length and weight of returned adults (at capture), according to the type of stocking used: planted as eyed ova versus released as one-year-old individuals. No significant differences were observed between stocking types for any trait/measure. 500 ● Fork length (mm) 450 400 350 300 250 ● Planted Eyed ova Stocked One$year$old+individuals+ ● 1200 Weight (gr) 1000 800 600 400 200 Planted Stocked One$year$old+individuals+ Eyed ova The GLM model that best fitted the data was: R= M+E+D+T (AIC= 105.83) with no significant interaction present (Table 2). The goodness of fit test showed that this model fitted reasonably well because the chi-squared test was not statistically significant (Res. deviance= 54.86, df=51, P= 0.33). No significant effect of the average egg size was observed on adult return; while MHC parental dissimilarities, stocking type and male phenotype showed significant influences on the returning rate (Table 2). Among parents distance at the MHC locus, evaluated in terms of amino acid sequences, was the most important factor, followed by stocking procedure and male phenotype (Table 2). Correlation coefficient between similarities at MHC locus and microsatellites was not significant (cor=0.147, t13=0.538, P=0.599). This result means that differences associated to MHC dissimilarities are independent from similarities in genetic background and hence, similarities in parental MHC locus reflect that they can be used as specific factor to explore differences in returning rate. Finally, differences in length or mass among the individuals belonging to the experiment were not significantly different regarding the stocking method used (F1,30=1.07, P=0.31 and 9 F1,30=0.77, P=0.39 respectively), which suggests that adult length and mass was not improved by rearing conditions at the hatchery (Fig. 3). Discussion We have evaluated several factors that can be manipulated at the initial stages of a brown trout enhancing program in order to maximise the migratory success of released brown trout individuals. The factors showing an influence on returning success were in order of importance: similarities at MHC class B locus between parents, stocking procedure and male phenotype. On the other hand, no relationship was observed regarding maternal effects (i.e., egg size). Genetic background is an important factor determining a restoration achievement in brown trout populations, as has been previously tested in resident populations (Lepori et al. 2005; Araguas et al. 2009). However, due to difficulties in seaward migration and return rate monitoring, it is difficult to evaluate the genetic background of anadromous populations. In this study we have observed that male selection can determine the achievement or failure of a restoration program together with MHC dissimilarities and stocking procedure. Beyond genetic background, these factors are specific characteristics of the individuals that can be easily manipulated at the hatchery in order to produce more suitable crosses to enhance anadromous populations. However, allele introgression has to be taken into account, trying to conserve the genetic structure as far as possible. Response to climate warming can disrupt the adaptation of natural populations, especially at the southern limit (Horreo et al. 2011) and the use on nonnative brood stock in conservation programs cannot be used over existent native populations (Almodovar et al. 2001). Here we have used two neighbouring with no differences in allelic number. Indeed, spatial scale of local adaptation in brown trout have been tested using microsatellites markers and outliers test for selection, suggesting that differences in adaptation cannot be understood at the level of individual population (Meier et al. 2011). In addition, studies over five microsatellites in Atlantic salmon in the north west of Spain indicated that allelic number, allelic richness and observed and expected heterozygosities did not differ significantly between rivers in recently analysed populations (Saura et al. 2006), suggesting that introgression effects may be small and if existent, an obstacle for the offspring derived from the experiment due to the lower adaptation to the local environment (reviewed in Garcia de Leaniz et al. 2007). Maternal effect First, size at migration represents a threshold that individuals have to reach in order to complete smoltification and survive to marine conditions (Økland et al. 1993). Anadromous brown trout smolt typically at age-2 in Spain, and possible maternal effects may be diluted by this time or in the subsequent sea-sojourn (Heath and Blouw 1998).. Thus, benefits related with egg size (Einum and Fleming 1999) could not be detected in relation to the number of returned adults, despite that maternal effects are crucial in the survival in early stages of life (i.e. emerged fry or alevins; Heath and Blouw 1998; Kamler 2005). Male phenotype When anadromous males are used in artificial crosses performed at the hatchery (together with anadromous females), the possibility that offspring return to the river to spawn increases, 10 representing in this study the 68.8% of the total returned individuals. As pointed out by previous rearing experiments in brown trout, proportion of migratory offspring was higher with anadromous parents than with resident parents (Skrochowska 1969), suggesting that there are some genetic factors in offspring born from both anadromous male and female which may produce (a) more susceptible individuals to migrate and/or (b) individuals with better adaptations to smoltification and sea life conditions. More specifically, many experiments have shown that there are genetic factors inherent to stocks that have a primary influence on migration or on the spatial marine distribution in salmonids (Kallio-Nyberg et al. 1999; Kallio-Nyberg et al. 2002), suggesting that differences in migration success among crosses could be related with differences in tendencies to migrate of different stocks. In our study, due to the lack of a downstream trap for sampling the individuals that started the migration, we cannot distinguish if differences in migratory success among families are because the corresponding offspring remain in the river (do not migrate) or because they experience higher mortality rates at sea. In both cases, the final result is a lower proportion of migrants that come back to the river to spawn. Also Kalio-Nyberg et al. (2010) used resident trout with success when restoring a population of sea trout.. Thus, although anadromous individuals are the most appropriate to be used in order to increase the migratory population of brown trout, also resident individuals can be used when anadromous individuals are exterminated. This suggests that life history variation is influenced by complex interactions between genetic and environmental factors in brown trout (Ferguson 2006), and not only the genetic factors will determine the migratory behaviour (Jonsson and Jonsson 1993; Forseth et al. 1999). This becomes essential in hatchery management because the potential anadromous brood stock from wild populations can become extinct or near extinction due to different processes as contaminations (Kallio-Nyberg et al. 2010) or dams construction (Ayllon et al. 2006; Juanes et al. 2011). In these cases, resident individuals can be used as a first step in the recovery of anadromous populations. In addition, sea trout males represent a lower proportion of migrants, male:female sex ratio is 1:2.2 in the Atlantic Spanish coast (Caballero et al. 2006; Caballero et al. 2012) and 2:3 in the North Sea area (Jonsson and Jonsson 1993), representing an additional difficulty to find the anadromous males for the crosses. In these cases, resident males represent a feasible option. MHC parental similarities Performing artificial crosses taking into account parental similarities at MHC class II B can help to enhance sea trout populations by increasing the offspring’s survivorship at both freshwater and seawater stages. Differences at MCH class II B showed that offspring born from the most similar parents exhibited the best return rate to the river. Although no studies have reported positive relation between MHC class II B similarities and benefits in freshwater or seawater, MHC class I studies performed in Atlantic salmon showed that (i) divergence in MHC class I was positively related with uninfected fish after sea migration (Consuegra and Garcia de Leaniz 2008) or (ii) MHC class I polymorphism was positive associated with resistance to bacterial and viral diseases (Grimholt et al. 2003). However, a recent study carried out in brown trout has observed that balancing selection acts on variation at MHC class I in wild populations 11 suggesting that not only the most dissimilar crosses are favoured by selection but also the most similar (O’Farrell et al. 2012). According to our results and the balancing selection acting over brown trout MHC locus, there is reasonable evidence that return rate of sea trout is mediated in part by similarities at parental MHC locus. In the future, although difficult, it would be desirable to test dissimilarities at MHC loci in resident and migratory full-sibs in order to explore if individuals carrying the most similar allele combinations tend to migrate to the sea more than those with most dissimilar ones. Stocking procedure Stocking procedure had a significant effect over the number of returned adults: 24 returning individuals (6.9 % of total return captures) were recovered from a stocking effort of 35,000 eyed ova. If we take into account the area used for the experiment (0.61 km2), it represents a density of 0.163 one-year-old ind m-2 in the tributary. Monitoring programs implemented by the Spanish government in river Lérez have estimated that mean brown trout density is around 0.285 ind m-2 in a total watershed of 449 km2 (Hervella and Caballero 1999). Thus, our stocking effort of 35000 eggs performed in the 0.13% of the total watershed obtained the 6.9% of total returning adults, while juveniles’ density was lower than registered in the main river. These results suggest that the problem imposed by domestication on anadromy of hatchery-reared individuals can be partially overcome when eyed ova are planted in the river instead of individuals being maintained in the hatchery for later release. Therefore, selecting brood stock from the native river and using tributaries or small channels as nurseries is suggested here as one of the best solutions due to several reasons: (i) because a low stocking effort can result in a relatively high number of sea trout returning adults as observed in this experiment (75% of the total returning adults that belonged to the experiment), (ii) we avoided genetic impacts of hatcheries in wild populations that affects the fitness of hatchery-reared individuals (iii) we avoid direct and indirect effects in wild and hatchery populations when they interact (reviewed in Naish et al. 2008; Seamons et al. 2012) and (iv) we avoid the sea mortality associated to distance from releasing site of brown trout smolts (Jonsson and Jonsson 2012). In addition, as shown in Aprahamian et al. (2003), the difference in economic cost between individuals reared until the first year and the stoked eggs is 32 times more expensive per unit, representing a total saving of 23,800€ at the same time that both returning rates and diversity in the crosses experimented by planted individuals are higher. Thus, the expected advantage of “helping” the fish at the hatchery to increase size and promote survival in the wild is not a prudent measure for brown trout conservation or for increasing the number of migratory individuals and in addition, it results in a noneconomically viable management plan Here we have reported that by manipulating parental MHC dissimilarities, stocking procedure and male phenotype we can obtain significant results in the context of returning rate and they are easily manipulated at the hatchery. Moreover, stocking programs have to be combined with sustainable management according to the FAO-EIFAC Code of Practice for Recreational Fisheries (EIFAC 2008). Water quality (Griffiths et al. 2011), habitat conditions (Anton et al. 2011) combined with a regulated fishing effort is critical for maintaining the brown trout populations. 12 Acknowledgments We wish to thank two anonymous referees and the associate editor for useful comments on previous versions of this manuscript. Funding for this work was provided by grants from Ministerio de Ciencia y Tecnología (CGL2007-60572 and CGL2010- 14964), and Fondos FEDER (PGIDIT03PXIC30102PN; Grupos de Referencia Competitiva, 2010/80). Francisco Marco-Rius was supported by a doctoral scholarship from the Spanish Government (BES-2008-001973). References Almodóvar, A., and Nicola, G. G. 2004. Angling impact on conservation of Spanish stream-dwelling brown trout Salmo trutta. Fisheries Manag. Ecol. 11: 173–182. Almodóvar, A., Suarez, J., Nicola, G. G., and Nuevo, M. 2001. Genetic introgression between wild and stocked brown trout in the Douro River basin, Spain. J Fish Biol. 59: 68–74. Antón, A., Elosegi, A., García-Arberas, L., Díez, J., and Rallo, A. 2011. Restoration of dead wood in Basque stream channels: effects on brown trout population. Ecol. Freshw. Fish 20: 461–471. Aprahamian, M. W., Martin Smith, K., McGinnity, P., Mckelvey, S., and Taylor, J. 2003. Restocking of salmonids— opportunities and limitations. Fish. Res. 62: 211–227. Araguas, R. M., Sanz, N., Fernández, R., Utter, F. M., Pla, C., and García-Marín, J-L. 2009. Role of genetic refuges in the restoration of native gene pools of brown trout. Conser. Biol. 23: 871–878. Arkush, K. D., Giese, A. R., Mendonca, H. L., McBride, A. M., Marty, G. D., and Hedrick P. W. 2002. Resistance to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus tshawytscha): effects of inbreeding and major histocompatibility complex genotypes. Can. J. Fish. Aquat. Sci. 59: 966–975. Ayllon, F., Morán, P., and Garcia-Vazquez, E. 2006. Maintenance of a small anadromous subpopulation of brown trout (Salmo trutta L.) by straying. Freshw. Biol. 51: 351–358. Bernatchez, L., and Landry, C. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J. Evol. Biol. 16: 363–377. Caballero, P., Cobo, F., and González, M. A. 2006. Life history of a sea trout (Salmo trutta L.) population from the North-West Iberian Peninsula (River Ulla, Galicia, Spain). In Sea Trout: Biology, Conservation and Management. Edited by G. Harris and N. Milner. Blackwell Scientific Publications, Oxford. pp. 234–247. Caballero, P., Morán, P., and Marco-Rius, F. A review of the genetic and ecological basis of phenotypic plasticity in brown trout. In Trout: from physiology to conservation. Edited by S. Polakof and T. W. Moon. Nova Science,Hauppauge, NY. Campos, J. L., Posada, D., and Moran, P. 2006. Genetic variation at MHC, mitochondrial and microsatellite loci in isolated populations of Brown trout (Salmo trutta). Cons. Gen. 7: 515–530. Campos, J. L., Posada, D., Caballero, P., and Moran, P. 2007. Spatio-temporal genetic variability in sea trout (Salmo trutta) populations from north-western Spain. Freshw Biol. 52: 510–524. Consuegra, S., and Garcia de Leaniz, C. 2008. MHC-mediated mate choice increases parasite resistance in salmon. Proc. R. Soc. B, 275: 1397–1403. 13 Dahl, J., Pettersson, E., Dannewitz, J., Järvi, T., and Löf, A-C. 2006. No difference in survival, growth and morphology between offspring of wild-born, hatchery and hybrid brown trout (Salmo trutta). Ecol. Freshw. Fish, 15: 388–397. Duchesne, P., Castric, T., and Bernatchez, L. 2005. PASOS (parental allocation of singles in open systems): a computer program for individual parental allocation with missing parents. Mol. Ecol. Notes, 5: 701–704. EIFAC [European Inland Fisheries Advisory Commission]. 2008. EIFAC Code of Practice for Recreational Fisheries. Rome: EIFAC. Occasional Paper No. 42, 45 pp. Einum, S., and Fleming, I. A. 1999. Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Proc. R. Soc. B, 266: 2095–2100. Estoup, A., Presa, P., Krieg, F., Vaiman, D., and Guyomard, R. 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity, 71: 488–496. Ferguson, A. 2006. Genetics of sea trout, with particular reference to Britain and Ireland. In Sea Trout: Biology, Conservation and Management. Edited by G. Harris and N. Milner. Blackwell Scientific Publications, Oxford. pp. 155–182. Fleming, I. A., Lamberg, A., and Jonsson, B 1997. Effects of early experience on the reproductive performance of Atlantic salmon. Behav. Ecol. 8: 470-480. Forseth, T., Nesje, T. F., Jonsson, B., and Harsaker, K. 1999. Juvenile migration in brown trout: a consequence of energetic state. J. Anim. Ecol. 68: 783–793. Garcia de Leániz, C., Fleming, I. A., Einum, S., Verspoor, E., Jordan, W. C., Consuegra, S., et al. 2007. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol. Rev. Camb. Philos. Soc. 82: 173–211. Giger, T., Excoffier, L., Day, P. J. R., Champigneulle, A., Hansen, M. M., Powell, R., and Largiadèr, C. R. 2006. Life history shapes gene expression in salmonids. Curr. Biol. 16: 281–282. Griffiths, A. M., Ellis, J. S., Clifton-Dey, D., Machado-Schiaffino, G., Bright, D., GarciaVazquez, E., and Stevens, J. R. 2011. Restoration versus recolonisation: The origin of Atlantic salmon (Salmo salar L.) currently in the River Thames. Biol. Cons. 144: 2733–2738. Grimholt, U., Drabløs, F., Jørgensen, S. M., Høyheim, B., and Stet, R. J. M. (2002) The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkage analysis and protein modelling. Immunogenetics, 54: 570–581. Grimholt, U., Larsen, S., Nordmo, R., Midtlyng, P., Kjoeglum, S., Storset, A., et al. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics, 55: 210–219. Hansen, M. M., Bekkevold, D., Jensen, L. F., Mensberg, K.-L. D., and Nielsen, E. E. 2006. Genetic restoration of a stocked brown trout Salmo trutta population using microsatellite DNA analysis of historical and contemporary samples. J. Appl. Ecol. 43: 669–679. Hardy, O.J., and Vekemans, X. 2002. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes, 2: 618-620. Heath, D.D., and Blouw, D.M. 1998. Are maternal effects in fish adaptive or merely physiological side effects? In: Maternal 14 effects as adaptations. Edited by: T.A. Mousseau and W. Fox. Oxford University Press, Oxford. pp. 178-201. Hervella, F., and Caballero, P. (1999) Inventario Piscícola dos Ríos Galegos. Consellería de Medio Ambiente. Xunta de Galicia, Santiago de Compostela. Horreo, J. L., Machado-Schiaffino, G., Ayllon, F., Griffiths, A. M., Bright, D., Stevens, J. R., and Garcia-Vazquez, E. 2011. Impact of climate change and human-mediated introgression on southern European Atlantic salmon populations. Glob. Change Biol. 17: 1778–1787. Jacob, A., Nusslé, S., Britschgi, A., Evanno, G., Müller, R., and Wedekind, C. 2007. Male dominance linked to size and age, but not to “good genes” in brown trout (Salmo trutta). BMC Evol. Biol. 7: 207. Jokikokko, E., and Jutila, E. 2004. Divergence in smolt production from the stocking of 1summer-old and 1-year-old Atlantic salmon parr in a northern Baltic river. J. Appl. Ichthyol. 20: 511–516. Jonsson, B., and Jonsson, N. 1993. Partial migration: niche shift versus sexual maturation in fishes. Rev. Fish Biol. Fish. 3: 348–365. Jonsson, B. 1985. Life History Patterns of Freshwater Resident and Sea-Run Migrant Brown Trout in Norway. T. Am. Fish. Soc. 114: 182–194. Jonsson, N., Jonsson, B., and Hansen, L. 2003. The marine survival and growth of wild and hatchery-reared Atlantic salmon. J. Appl. Ecol. 40: 900–911. Jonsson, B., and Jonsson, N. 2011. Ecology of Atlantic salmon and brown trout: habitat as a template for life histories. SpringerVerlag, Dordrecht, the Netherlands. Jonsson, B., and Jonsson, N. 2012. Naturally and hatchery produced European trout Salmo trutta: do their marine survival and dispersal differ? J Coast Conservat. 1-9. doi:10.1007/s11852-012-0224-1. Juanes, F., Gephard, S., De La Hoz, J., Morán, P., Dopico, E., Horreo, J. L., and GarciaVazquez, E. 2011. Restoration of native Atlantic salmon runs in northern Spain: do costs outweigh benefits? Knowl. Manag. Aquat. Ec. 402: 22-53. Kallio-Nyberg, I., Peltonen, H., and Rita, H. 1999. Effects of stock-specific and environmental factors on the feeding migration of Atlantic salmon (Salmo salar) in the Baltic Sea. Can. J. Fish. Aquat. Sci. 56: 853–861. Kallio-Nyberg, I., Saura, A., and Ahlfors, P. 2002. Sea migration pattern of two sea trout (Salmo trutta) stocks released into the Gulf of Finland. Ann. Zool. Fenn. 39: 221–235. Kallio-Nyberg, I., Jutila, E., Koljonen, M-L., Koskiniemi, J., and Saloniemi, I. 2010. Can the lost migratory Salmo trutta stocks be compensated with resident trout stocks in coastal rivers? Fish. Res. 102: 69–79. Kamler, E. 2005. Parent–egg–progeny relationships in teleost fishes: an energetics perspective. Rev. Fish Biol. Fish. 15: 399– 421. Kennedy, R. J., and Crozier, W. W. 2010. Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J. Fish Biol. 76: 1786–1805. King, T. L., Eackles, M. S., and Letcher, B. H. 2005. Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixedfishery analyses. Mol. Ecol. Notes, 5: 130– 132. Landry, C., Garant, D., Duchesne, P., and Bernatchez, L. 2001. “Good genes as 15 heterozygosity”: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc. Roy. Soc. B, 268: 1279–1285. Langefors, A., Lohm, J., Grahn, M., Andersen, O., and von Schantz, T. 2001. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proc. Roy. Soc. B, 268: 479–485. Lepori, F., Palm, D., Brännäs, E., and Malmqvist, B. 2005. Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol. Appl. 15: 2060–2071. Martinez ,P., Arias, J., Castro, J., and Sanchez, L. 1993. Differential stocking incidence in brown trout (Salmo trutta) populations from Northwestern Spain. Aquaculture, 114: 203– 216. Meier, K., Hansen, M. M., Bekkevold, D., Skaala, O., and Mensberg, K. L. D. 2011. An assessment of the spatial scale of local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA loci. Heredity, 106: 488–499. Milner, N. J, Elliott, J. M., Armstrong, J. D., Gardiner, R., Welton, J. S., and Ladle, M. 2003. The natural control of salmon and trout populations in streams. Fish. Res. 62: 111–125. Miranda, R., Martínez-Lage, J., Molina, J., Oscoz, J., Tobes, I., and Vilches, A. 2012. Effects of stress controlled loading of a reservoir on downstream fish populations in a pyrenean river. Environ. Eng. Manag. J. 11: 1125–1131. Morán, P., Pendás, A. M., Garcia-Vazquez, E., and Izquierdo, J. 1991. Failure of a stocking policy, of hatchery reared brown trout, Salmo trutta L., in Asturias, Spain, detected using LDH-5* as a genetic marker. J. Fish Biol. 39: 117–121. Naish, K. A., Taylor, J. E., Levin, P. S., Quinn, T. P., Winton, J. R., Huppert, D., and Hilborn, R. 2008. An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Adv. Mar. Biol. 53: 61–194. O’Farrell, B., Dennis, C., Benzie, J. A., McGinnity, P., Carlsson, J., de Eyto, E., et al. 2012. Balancing selection on MHC class I in wild brown trout Salmo trutta. J. Fish Biol. 81: 1357–1374. Økland, F., Jonsson, B., Jensen, A. J., and Hansen, L. P. 1993 Is there a threshold size regulating seaward migration of brown trout and Atlantic salmon? J. Fish Biol. 42: 541– 550. Olsén, K. H., Grahn, M., Lohm, J., and Langefors, Å. 1998. MHC and kin discrimination in juvenile Arctic charr, Salvelinus alpinus(L.). Anim. Behav. 56: 319–327. O'Reilly, P. T., Hamilton, L. C., McConnell, S. K., and Wright, J. M. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53: 2292–2298. Palm, D., Lindberg, M., Brännäs, E., Lundqvist, H., Östergren, J., and Carlsson, U. 2009. Influence of European sculpin, Cottus gobio, on Atlantic salmon Salmo salar, recruitment and the effect of gravel size on egg predation — implications for spawning habitat restoration. Fish. Manag. Ecol. 16: 501–507. Presa, P., and Guyomard, R. 1996. Conservation of microsatellites in three species of salmonids. J. Fish Biol. 49: 1326– 1329. 16 R Development Core Team. 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Rogell, B., Dannewitz, J., Palm, S., Petersson, E., Dahl, J., Prestegaard, T., et al. 2012. Strong divergence in trait means but not in plasticity across hatchery and wild populations of sea-run brown trout Salmo trutta. Mol. Ecol. 21: 2963–2976. Sauermann, U., Nürnberg, P., Bercovitch, F., Berard, J., Trefilov, A., Widdig, A., et al. 2001. Increased reproductive success of MHC class II heterozygous males among free-ranging rhesus macaques. Hum. Genet. 108: 249–254. Saura, M., Caballero, P., Caballero, A., and Morán, P. 2006. Genetic variation in restored Atlantic salmon (Salmo salar L.) populations in the Ulla and Lérez rivers, Galicia, Spain. ICES J. Mar. Sci. 63: 1290– 1296. Saura, M., Morán, P., Brotherstone, S., Caballero, A., Álvarez, J., and Villanueba, B. 2010. Predictions of response to selection caused by angling in a wild population of Atlantic salmon (Salmo salar). Freshw. Biol. 55: 923–930. Seamons, T. R., Hauser, L., Naish, K. A., and Quinn, T. P. 2012. Can interbreeding of wild and artificially propagated animals be prevented by using broodstock selected for a divergent life history? Evol. Appl. 5: 705– 719. Serrano, I., Larsson, S., and Eriksson, L-O. 2009. Migration performance of wild and hatchery sea trout (Salmo trutta L.) smolts — implications for compensatory hatchery programs. Fish. Res. 99: 210–215. Skrochowska, S. 1969. Migrations of the seatrout (Salmo trutta L.) brown trout (Salmo trutta M. Fario L.) and their crosses. Pol. Arch. Hydrobiol. 16: 149–180. Streiff, R., Labbe, T., Bacilieri, R., Steinkellner, H., Glössl, J., and Kremer, A. 1998. Within-population genetic structure in Quercus robur L., and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol. Ecol. 7: 317-328. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739. Waples, R. S., and Hendry, A. P. 2008. Special issue: evolutionary perspectives on salmonid conservation and management. Evol. Appl. 1: 183–188. 17 Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Environmental induced methylation changes associated with seawater adaptation in brown trout 110! ! Aquaculture 392-395 (2013) 77–83 Contents lists available at SciVerse ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Environmental induced methylation changes associated with seawater adaptation in brown trout Paloma Morán a,⁎, Francisco Marco-Rius a, Manuel Megías b, Lara Covelo-Soto a, Andrés Pérez-Figueroa a a b Dpto. Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, Vigo 36310, Spain Dpto. Bioloxía Funcional, Facultade de Bioloxía, Universidade de Vigo, Vigo 36310, Spain a r t i c l e i n f o Article history: Received 21 September 2012 Received in revised form 30 January 2013 Accepted 3 February 2013 Available online 12 February 2013 Keywords: Salmo trutta Epigenetic Diet MSAP Smoltification Salt a b s t r a c t Migratory trout (sea trout) and sedentary trout (freshwater trout) coexist and interbreed. However, the mechanisms underlying the development of the migrant morphotype are still unclear. At one point parr– smolt transformation is initiated and, as a result, juvenile trout are ready to leave the river and migrate to the sea. The smoltification process has been linked to various factors such as body size, growth rate and the physiological state of the fish. In addition, the process is also strongly influenced by environmental factors such as year, seasonality, water temperature and flow rate. For example, hatchery environment can depress the natural parr–smolt transformation and consequently, the success of the seawater migration of reared trout from these hatchery programmes might be adversely affected. We have investigated whether changes in DNA methylation, by means of MSAP (methylation-sensitive amplified polymorphism), could be involved in anadromy. We identified dramatic differences in genome-wide methylation patterns between hatchery reared and seawater brown trout. Furthermore, we demonstrated that salt enriched diets can trigger short-term genome-wide methylation changes in hatchery reared trout. However, these changes only lasted for a short period of time. Determining the duration of this effect could result in increased survival of hatchery-reared trout in seawater when fed on salt-enriched diets. Altogether, these results suggest that salt-induced alterations in DNA methylation patterns could play an important role in enabling fish acclimation to seawater conditions, potentially with important economic consequences for fish farming. © 2013 Elsevier B.V. All rights reserved. 1. Introduction Two different morphotypes of brown trout (Salmo trutta L.) can be found in rivers from the European Atlantic coast and Baltic Sea: the migratory trout (sea trout) and the resident trout (freshwater trout). Although both life-history forms present morphological, demographic and ecological differences (Bagliniere et al., 2000), they coexist and interbreed (Ruzzante et al., 2001). Juveniles from both morphotypes are indistinguishable. To date, genetic differences between sea trout and sedentary brown trout inhabiting the same river have not been reported (Charles et al., 2005; Cross et al., 1992; Hindar et al., 1991; Pettersson et al., 2001). Brown trout has little importance in commercial fisheries but an extraordinary value for recreational fisheries and hereby for the tourist industry. Consequently, many hatcheries are now focusing on raising stocks from wild parent fish. Under hatchery conditions some stocks of brown trout undergo a domestication process and can be successfully reared in captivity. However, domestication can result in lower fitness when individuals are returned back to the wild. The contribution of hatchery reared ⁎ Corresponding author. Tel.: +34 986813899; fax: +34 986812556. E-mail address: paloma@uvigo.es (P. Morán). 0044-8486/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.aquaculture.2013.02.006 trout to natural populations has been repeatedly shown to be rather small (reviewed by Hansen, 2002). Moreover, the artificial environment in which the anadromous brown trout has been reared can also depress the natural parr–smolt transformation and adversely affect the success of seawater migration and the survival of the fish in the long-term (Sundell et al., 1998). This could represent an important failure of these expensive practices, especially when breeding migratory sea trout populations represent the main goal of the enhancement programme. As an illustrative example, the cost of the Atlantic salmon breeding expenditure relative to the number of captured salmons in a Spanish river has been estimated to be 4000 Euros per captured individual (Horreo et al., 2012). In natural conditions, the two trout morphotypes (i.e. migrant and resident) become well established during the second year of their lives thanks to the ability of some juveniles to undergo smoltification (Økland et al., 1993). This process involves important physiological and morphological adaptations to seawater, thus preparing the trout for the ocean life prior to its downstream migration. Changes in their external morphology include variations in body shape and coloration patterns (Björnsson et al., 2011), those referring to physiological features involve increased salinity tolerance, olfactory sensitivity and changes in its metabolic and growth rates, as well as alterations in haemoglobin and visual pigment concentrations (McCormick et al., 1998). 78 P. Morán et al. / Aquaculture 392-395 (2013) 77–83 What natural selection mediated mechanism does underline the migration decision? Trout smoltification has been linked to various interrelated threshold factors such as body size, growth rate and physiological conditions that could activate migratory pathways (Acolas et al., 2012; Jonsson and Jonsson, 1993). In addition, the smoltification process is also strongly influenced by environmental factors, such as year, season, water temperature and flow rate (Jensen et al., 2012). The smoltification process involves high individual costs but also high benefits in reproductive performance (Jonsson and Jonsson, 1997, 1998). Increasing salinity tolerance requires differentiation and activation of the epithelial transport and the synthesis of new transport proteins (McCormick, 2001). Changes in Na+/K +-ATPase, Na+/K +/2Cl− cotransporter and in the distribution of the mitochondrial-rich cells (MRCs) have been recorded in the gills of the freshwater salmon (Salmo salar) when compared to the seawater morphotype (Hiroi and McCormick, 2007). This is the result of MRCs being distributed on the primary filaments and secondary lamellae of the freshwater salmon but completely absent in those of the seawater salmon (Hiroi and McCormick, 2007). In concordance with physiological changes, differences in gene expression of several genes such as transaldolase 1, constitutive heat-shock protein HSC70-1 and endozepine have also been described between migratory and sedentary brown trout belonging to different populations (Giger et al., 2008). Similar findings have also been reported in populations of Atlantic salmon (Seear et al., 2010). Different experiments have demonstrated the genetic basis of some components of anadromy. In rainbow trout (Le Bras et al., 2011) and Arctic charr (Norman et al., 2011), several QTLs (quantitative trait loci) on three linkage groups have been associated with fish performance in the seawater environment. However, the seawater morphotype can be externally induced and various features of the seawater gill phenotype could be induced by feeding freshwater rainbow trout with a salt enriched diet (Perry et al., 2006). In addition, it is well known that hatchery conditions substantially reduce smoltification (Aarestrup et al., 2000) and seawater migration compared to natural conditions (Marco-Ríus et al., unpublished results). Thus, genetic and environmental factors underlie life-history strategies, which have led to the consideration of anadromy in brown trout as a threshold quantitative trait (Ferguson, 2007). Epigenetics can help in understanding the smoltification process in the brown trout. Smoltification is a reversible process that can be stimulated by external conditions, for example, full-sib individuals might show different behaviours. Thus, we hypothesised that methylation might be part of the acclimation mechanisms of the brown trout to the seawater conditions, since the methylated state is usually associated with gene expression inactivation and conversely, gene activation is associated with demethylation (reviewed by Mazzio and Soliman, 2012). Environmental stimuli are known to alter cytosine methylation throughout the genome at specific loci. For example, Navarro-Martín et al. (2011) have shown that methylation of the gonadal aromatase promoter is involved in temperature-dependent sex ratios in sea bass. In addition, emerging evidences strongly suggest that certain dietary bioactive food components can change gene expression via alterations in DNA methylation and histone modifications (reviewed by Tammen et al., in press). In humans, it has been suggested that the bioactive nutritional component (also called epigenetic diet) could be incorporated into our regular dietary regimen and therapeutically used for medical purposes (Hardy and Tollefsbol, 2011). In this study, we investigated whether changes in DNA methylation might be involved in anadromy and whether the level of DNA methylation might change in response to osmotic stresses induced by environmental stimuli such as a salt enriched diet. Understanding external stimuli effects will allow for better fish management, and in turn, increasing or decreasing the smoltification rates. To achieve this, we designed a hatchery experiment where one-year-old trout were fed a salt enriched diet for a period from 2 to 28 days. Since gill is one of the most sensitive tissues responding to the transition between freshwater and the marine environment, we employed the methylation-sensitive amplified polymorphism (MSAP) methodology that allows detecting the methylation state of a particular recognition sequence. Thus, any methylation changes in the gill tissues in response to different diets and/or salinity concentrations could be measured. Physiological changes promoted by a salt enriched diet were monitored in the gill tissue by inmunocytochemistry analysis using the Na +/K +-ATPase antibody. This was done at different critical phases of the experiment. In order to test the seawater proficiency of the hatchery trout fed with a salt enriched diet, these fish together with a control group were transferred to seawater and the survival rates compared. The final goal of the study was to gain further knowledge about the time from the hatchery until the onset of the migration to the sea, and to try to reduce mortality at this critical period by rearing trout under the most optimal conditions. 2. Materials and methods 2.1. Experimental design The experimental design included two stages. The first one aimed to explore the differences in methylation induced by a salt enriched diet during one month. One-year-old hatchery reared trout were used in this experiment. One hundred full-sibling individuals were bred in a circular fibreglass tank at the Carballedo hatchery facilities (Northwest Spain) and fed daily with commercial trout pellets. Two weeks later six specimens were separated representing the freshwater control group (FW-control). The remaining trout were fed using a diet supplemented with 11% NaCl as described in Perry et al. (2006). Thereafter, six individuals were sampled 2, 4, 6, 8, 10, 14, 21 and 28 days after the beginning of the treatment. Samples were labelled as follows: FW-2, FW-4 FW-6, FW-8, FW-10, FW-14, FW-21, and FW-28. No mortality was recorded during the whole experimental period. All fish involved in the experiment were euthanized using MS-222 (Sigma) and the gill tissue removed. Those individuals which were not euthanized during the experiment were returned to their normal diet and no mortalities were recorded after one week of daily checks. Gills were fixed in ethanol for DNA extraction. For immunocytochemistry, gills were fixed in 4% paraformaldehyde in phosphate buffer 0.1 M pH 7.4 (PB) for two days at 4 °C and then stored in PB. The second part of the experiment intended to explore the differences in seawater survival in relation to the diet. Following the same procedures described above, 100 fish of the same stock and age were used. Fish were separated in two tanks (50 individuals per tank) and reared under the same environmental conditions. In one tank, trout were fed with commercial trout pellets whereas in the other they were fed using a diet supplemented with 11% NaCl as previously described. After 4 days, the adipose fin of those trout fed with commercial trout pellets was removed for identification purposes. Then, the two groups of trout were transported to the O Grove aquarium to be transferred to the same seawater environment. Fish were acclimated to salty water in two phases, starting from 0 ppt to 15 ppt during 24 h followed by a second increase from 15 ppt to 37 ppt by filling the tank with natural sea water. During 24 days, the tank was checked in the morning and mortality was recorded. Survival differences were calculated using a mixed effect linear model with a Poisson distribution (Zuur et al., 2009) in the lme4 package (Pinheiro and Bates, 2009) implemented in R 2.15.1 (R Development Core Team, 2012) where treatment (fed with salt or not) was a fixed factor and time (days of survival) a random effect. Forty individuals (20 of each group), reared in seawater for a period of 10 to 12 days, were analysed further using MSAP (group labelled as GROVE). P. Morán et al. / Aquaculture 392-395 (2013) 77–83 2.2. DNA isolation and MSAP genotyping DNA was extracted from gill tissue using the NucleoSpin® Tissue Kit (Macherey-Nagel). DNA quality was verified by electrophoresis on 1% agarose gels. After DNA quantification using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific), samples were normalized to 100 ng μl −1. Genomic cytosine methylation in CCGG sites of different samples were analysed using MSAP techniques as described in Reyna-López et al. (1997) and Xu et al. (2000). This methodology is based on the use of the isoschizomers HpaII and MspI which recognise the same sequence (5′-CCGG) but differ in their sensitivity to DNA methylation. For each individual, 50 ng of DNA were independently digested and ligated with both EcoRI/MspI and EcoRI/HpaII enzyme combinations (New England Biolabs). The reaction was performed in a final volume of 11 μl containing 5 U EcoRI, 1 U MspI (or HpaII), 5 pmol EcoRI adaptor, 50 pmol HpaI adaptor and 0.4 U of T4 DNA ligase (Roche). The mixture was incubated at 37 °C for a period of 2 h. Preselective PCR reactions were then performed using 4 μl of 1:10 ligation dilution in 20 μl volumes containing 2.5 mM of MgCl2, 187.5 μM of each dNTP, 20 pmol of EcoRI-A and HpaII/MspI-T preselective primers and 1 U of Taq polymerase (Bioline) in 1 × PCR buffer (Bioline). PCR conditions for preselective PCR were as follows: 72 °C for 2 min, 20 cycles of 94 °C for 20 s, 56 °C for 30 s, 72 °C for 2 min, and a final step of 60 °C for 30 min. Selective PCR reactions were performed in 20 μl using 1 μl of 1:200 preselective PCR dilution. Two primer combinations (EcoRI-AAG and HpaII/MspI-TC; EcoRI-ACT and HpaII/MspI-TC) were used. Primer sequences are available in Morán and Pérez-Figueroa (2011). PCR contains 2.5 mM of MgCl2, 187.5 μM of each dNTP, 8.3 pmol of each selective primer and 1 U of Taq polymerase in 1 × PCR buffer. Cycling conditions for selective PCR were 94 °C for 2 min, 10 cycles of 94 °C for 20 s, 66 °C for 30 s, and 72 °C for 2 min, followed by 20 cycles of 94 °C for 20 s, 56 °C for 30 s and 72 °C for 2 min, ending with 60 °C for 30 min. Individual PCR products were analysed along with 500 ROX size standards (Applied Biosystems) in an ABI Prism 3130 Genetic Analyzer (Applied Biosystems). Fragment analysis was performed using GeneMapper v.3.7 software (Applied Biosystems). DNA fragments less than 100 bp in length, longer than 500 bp or less than 70 RFU (Relative Fluorescent Units) were excluded from the analysis due to their low levels of reproducibility. 2.3. Data analyses MSAP profiles, pooled from both primer combinations, were analysed using the R package msap (Pérez-Figueroa, in press. http:// msap.r-forge.r-project.org). Every fragment was scored as follows: present in both EcoRI-HpaII and EcoRI-MspI products (1/1), denoting a non-methylated state; present only in either EcoRI-HpaII (1/0) or EcoRI-MspI (0/1) products, corresponding to a methylated state; or absent from both EcoRI-HpaII and EcoRI-MspI products (0/0), which we considered as an hyper-methylation of the target. Because the investigated hatchery pool shows high methylation rates (patterns 1/0 and 0/1) and low genetic diversity, it seems reasonable to assume that the 0/0 pattern would be the result of hyper-methylation of the restricted targets and not due to genetic differences (i.e. mutation). Individual fragments (loci) were, therefore, classified into “methylation-susceptible loci” (MSL) if the observed proportion of methylated scores (1/0, 0/1 and 0/0) exceeded a 5%, and “methylation-susceptible fragments” if the methylated state was the dominant marker (1 for the methylated state and 0 for the non-methylated state). Only those fragments showing polymorphism, with at least two occurrences of each state, were used for subsequent analyses (Herrera and Bazaga, 2010). Analysis in msap followed a band-based strategy (Bonin et al., 2007). The amount of overall epigenetic variation was estimated using the Shannon diversity index (S). Epigenetic differentiation 79 among groups was assessed by means of principal coordinates analysis (PCoA) followed by analyses of molecular variance (AMOVA; Excoffier et al., 1992). 2.4. Inmunocytochemistry Paraformaldehyde fixed gills were cryoprotected in 30% sucrose dissolved in PB for 24 h, embedded in OCT compound (Tissue-Tek), and rapidly frozen at − 80 °C. Thereafter 20 μm thin sections were obtained using a cryostat (Microm HM505 E) at − 20 °C and collected on superfrost slides (Menzel GmbH & Co.). This was followed by a standard immunocytochemistry. Briefly, sections were rinsed in a PB saline solution (PBS), then immersed in a blocking solution containing 1% bovine serum albumin for 1 h and finally, incubated overnight with a monoclonal anti-Na +/K +-ATPase alpha-1 subunit antibody raised against chicken Na, K-ATPase (1:100; alpha6F, Developmental Studies Hybridoma Bank; Perry et al., 2006) at room temperature. Then, sections were washed with PBS and incubated in a biotinylated goat anti-mouse antibody (1:100; Vector Laboratories) for 1 h. Sections were rinsed again in PBS and incubated in the avidin–biotin complex (ABC; 1:100; Vector Laboratories) for 1 h. Peroxidase activity was developed with 0.5% 3–3′-diaminobenzidine tetrahydrochloride (SIGMA) and 0.01% H202. The reaction was stopped in PBS and sections were subsequently dehydrated and cover slipped. Imnunoreactive cells on the primary filaments and secondary lamellas were individually counted from sagittal sections of the trailing edge of gill filament. Twenty paired secondary lamellas and their corresponding primary filaments were also counted in three different areas of the gills of three fishes from each group: Control, FW-4, FW-8, FW-21, FW-28 and GROVE. A mixed effect linear model (Zuur et al., 2009) was used in order to explore the differences in density of immunoreactive cells. The location (primary filaments and secondary lamellas) and fish group were treated as fixed factors while effects of fish and gill areas were treated as random effects. 3. Results 3.1. Seawater survival Trout mortality was monitored daily after the first phase of acclimation was completed. Mortality during the first 24 h (from 0 ppt to 15 ppt) was significantly higher in the control group (9 out of 50 trout) than in the FW-4 group (3 out of 50 trout) (Z14 = 15.25, p b 0.001). Mortality progressively decreased over the first 15 days but remained higher in the control group than in the treatment group(Fig. 1). Due to an unusual and unexpected increase in seawater temperature, all fish died between 17 and 24 days. 3.2. Methylation analysis The two primer combinations used in the MSAP analysis produced a total of 879 loci, with 875 of them being classified as MSL by the msap package. The frequency of polymorphic MSL was 47% and the Shannon's diversity index was 0.425 ± 0.180 (mean ± SE). The frequency of the different methylation states (expressed as a percentage) in the target sequence (hemimethylation, complete methylation of internal cytosine, full methylation and non-methylated) observed in the different experimental groups is shown in Table 1. Important divergences (up to 10%) were observed in the case of the hemimethylation of the target sequence whereas subtle differences (around 5%) were observed in the other categories. This pattern suggests that during the first days of feeding on a salt enriched diet (FW-2, FW-4 and FW-6) there is an increase in both hemimethylation and internal methylation when compared to the full methylation 80 P. Morán et al. / Aquaculture 392-395 (2013) 77–83 group and GROVE were remarkable (Fig. 3A,B). In hatchery trout, immunoreactive cells were scattered throughout the primary filaments and secondary lamellas, whereas in GROVE trout most immunoreactive cells were located in the primary filaments, with the differences being statistically significant (Z54 = 2.70, p b 0.01). The number of positive cells found in the primary filaments of the GROVE group was concentrated in the base of the lamellas, whereas in the hatchery trout they were more dispersed. In addition, immunoreactive intensity appeared to be higher in the GROVE trout, although this was not properly quantified. Cell counting revealed temporal changes in the immunoreactive cell distribution (Fig. 3C), with differences becoming significant in seawater after seven days (Z6 = − 3.27, p = 0.016 and Z6 = − 4.37, p = 0.005 respectively). It was also observed that the number of immunoreactive cells decreased during the first week of treatment, in the primary filament and in the lamellas of both FW-4 and FW-8 groups. However, the number of positive cells increased progressively in FW-14 and FW-28 groups until they nearly reached those of the control group. 4. Discussion Fig. 1. Survival rate of the control (normal diet) and treatment groups (salt-enriched diet) in seawater. Individuals were acclimatised during the first day by mixing freshwater and seawater to obtain between 0 ppt and 15 ppt seawater. After this, freshwater was gradually replaced to obtain 37 ppt at the end of the second day. (partial demethylation) or unmethylated states (de novo methylation). In a later stage (FW-21, Fw-28), the normal pattern (control) is restored. Differences in the genome-wide methylation rates were statically significant between all tested groups (AMOVA; ΦST = 0.380, p b 0.001). Pairwise analyses (Table 2) revealed significant differences between hatchery trout groups, including control, and all the groups of trout fed with a salt enriched diet, the most different group those trout transferred to seawater conditions (GROVE). Results also reflected a gradual change in methylation patterns, with differences between groups becoming less apparent when samples were close in time. Fig. 2 shows the first and second principal coordinates resulting from PCoA which indicates the epigenetic variation and the degree of differentiation among groups. The first coordinate, accounting for 27.8% of the total variance, identified three distinct clusters: (i) control, FW-14, FW-21 and FW-28, (ii) FW-2, FW-4 FW-6, FW-8, FW-10 and (iii) GROVE group. Furthermore, the most differentiated group is FW-4 and the closest is FW-10, suggesting a progressive and reversible methylation change over time. This is also supported by the slight differences observed between the control group and FW-14, FW-21 and FW-28. 3.3. Immunocytochemistry The existence of Na +/K +-ATPase imnunoreactivity in large cuboidal cells located in the primary filaments and secondary lamellas of the gills had been previously identified (Perry et al., 2006). Differences in the number of positive cells distribution between the control A growing number of evidences demonstrate the importance of epigenetic factors in the modulation of phenotypic plasticity (reviewed by Johnson and Tricker, 2010). Most of the published literature focuses on DNA methylation and many studies use genome-wide methods such as MSAP in order to detect methylation changes after exposure to different environmental conditions (Cao et al., 2011, 2012; Da et al., 2012; Tan, 2010; Wang et al., 2011). These experiments reveal important gaps in our understanding of the effects of diet contaminants, drought, etc. on the individual performance. During the seawater transition, trout undergo physiological transformations involved in osmoregulation, lipid metabolism, oxygen transport and body colour and shape, with many genes involved in these processes (McCormick, 2001). Accordingly, we have observed dramatic differences in genome-wide methylation patterns between hatchery-reared and seawater transferred trout, suggesting that gene activation/deactivation during smoltification may be controlled, at least partially, by epigenetic mechanisms. Because the MSAP analysis only detects a subset of the epigenetic variation caused by C-methylation in the CCGG motif, our results might have underestimated the magnitude of the epigenetic changes; however, they strongly suggest an important role of methylation in the smoltification process. Environmental conditions during early development have proved to alter the epigenetic patterns of fish embryos (reviewed by Faulk and Dolinoy, 2011), and many epigenetic changes with potential evolutionary implications can be inherited (Bossdorf et al., 2008). However, methylation could affect the individual entire lifetime or be limited to certain stages of its life cycle because this process can respond very rapidly to environmental changes, allowing for increasing fish resistance to environmental stress (Angers et al., 2010). Therefore, knowing the time interval in which epigenetic variations might take place, would permit to design new breeding strategies in which environmental stimuli for inducing or repressing gene expression can be applied. By manipulating the fish food intake we have shown that a salt enriched diet can trigger genome-wide methylation changes, suggesting that there could be a link between an external stimulus, smoltification, Table 1 Frequency (%) of the different states of methylation at the target sequence. Target state (band pattern) Control FW-2 FW-4 FW-6 FW-8 FW-10 FW-14 FW-21 FW-28 GROVE Unmethylated (HPA+/MSP+) Hemimethylated (HPA+/MSP−) Internal C methylation (HPA−/MSP+) Full methylation (HPA−/MSP−) 14.3 8.6 15.2 61.8 10.7 13.2 18.7 57.5 8.0 12.9 20.5 58.6 10.1 15.5 15.5 58.9 11.1 10.8 17.9 60.2 10.7 11.0 18.2 60.1 15.7 8.7 15.0 60.5 13.1 9.1 14.2 63.5 13.2 6.9 16.4 63.6 9.5 12.9 14.7 62.8 81 P. Morán et al. / Aquaculture 392-395 (2013) 77–83 Table 2 Pairwise AMOVAs between all pairs of the experimental groups. Control Control FW-2 FW-4 FW-6 FW-8 FW-10 FW-14 FW-21 FW-28 GROVE 0.37 0.39 0.36 0.34 0.26 0.08 0.08 0.10 0.54 FW-2 FW-4 FW-6 FW-8 FW-10 FW-14 FW-21 FW-28 GROVE 0.0022 0.0019 0.0331 0.0019 0.0189 0.0415 0.0022 0.0071 0.0124 0.3400 0.0020 0.0020 0.0077 0.0173 0.0153 0.0022 0.0024 0.0025 0.0017 0.0025 0.0021 0.0043 0.0020 0.0020 0.0020 0.0017 0.0025 0.0023 0.0023 0.0023 0.0020 0.0020 0.0021 0.0022 0.0021 0.4429 b0.0001 b0.0001 b0.0001 b0.0001 b0.0001 b0.000 b0.0001 b0.0001 b0.0001 0.09 0.06 0.10 0.15 0.39 0.32 0.39 0.41 0.06 0.14 0.19 0.45 0.35 0.44 0.31 0.01 0.07 0.41 0.34 0.40 0.35 0.06 0.37 0.32 0.38 0.42 0.32 0.27 0.32 0.43 0.09 0.08 0.59 0.00 0.50 0.54 ΦST below the diagonal. p-values above the diagonal. Bolded values p b 0.01. and epigenetics. In this study, epigenetic divergence between the control group and the salt-fed trout increased sharply after two days. The largest differences were observed after 4 days of exposure to a salty diet and progressively decreased during the following days. Our results (see Fig. 2) provide evidence that reversibility was an important characteristic of the genomic regions that experienced salt-induced epigenetic changes. Surprisingly, after two weeks on the salt-enriched diet appeared to have no effect on the global methylation pattern, suggesting that the epigenetic change induced by the salt was reversible. This finding is also supported by the observed changes in the distribution and number of Na+/K+-ATPase immunoreactive cells in the gill tissues. Importantly, greater methylation changes were preceded by larger differences (FW-8) in Na +/K +-ATPase immunoreactive cells. Although methylation changes were induced by a salt-enriched diet, the methylation patterns in the freshwater reared trout are not identical to those experienced by the seawater reared ones (see Fig. 2). However, our study provides clear evidence for salt intake leading to physiological and morphological changes in freshwater fish that could make them to resemble to the seawater morphotype, although only for a short period of time. The seawater-transfer experiment performed at the O Grove aquarium showed that the survival rate of the salt-fed trout was significantly higher than that of the control group during the first days. Although rearing conditions were not optimal, our results support the idea of salt intake being able to supply the fish with the physiological tools required for a better adaptation to seawater. Overall, our experiment could also provide a more plausible explanation for the hatchery practice of feeding salmonids with a salt enriched diet before releasing them into the river or the sea (Zaugg et al., 1983). Li and Leatherland (2012) reviewed the reasons why epigenomic programming could have implications in aquaculture. Among several factors, they suggested that artificial fertilization and handling practices produce changes in the endocrine system that could induce changes in the epigenome, leading to a reduction in fitness. This idea is supported by the fact that salmonid fish raised in hatcheries do not often perform well in the wild (Araki et al., 2007). However, differences in the genome methylation between wild and hatchery of certain species such as steelhead have not been found (Blouin et al., 2010). We, therefore, suggest that the tissue selected for the analysis was probably not the most informative one, given that there are great differences in the methylation patterns between tissues (Morán and Pérez-Figueroa, 2011). Our results also suggest that salt-induced alterations could play an important role in enabling fish acclimation to seawater conditions. This process could facilitate the seawater migration of the hatcheryreared trout when released into the river as part of enhancing population programmes, and potentially enhance the aquaculture production of the diadromous fish. Our results open new research avenues to explore how changes in other external factors such as rearing temperature, day–night cycles or different diets, could also affect the methylation patterns and increase both fish harvesting and welfare. However, more detailed studies are required since methylation changes might only be temporary affected by environmental changes and potentially misinterpreted. 5. Conclusions Different patterns of methylation have been observed for trout living in seawater when compared to those living in freshwater, suggesting that methylation plays a key role in the smoltification process. Salt intakes in the hatchery reared trout promote temporary genome-wide methylation changes that make them more similar to seawater reared ones. This result is supported by the distribution of the Na +/K +-ATPase immunoreactivity cells in the gill tissue. Feed hatchery-reared trout with a salt-enriched diet increases survival in seawater. Our study reveals how induced epigenetic changes can be successfully applied in fish harvesting. Fig. 2. Results from Principal Coordinates Analysis (PCoA) for the epigenetic differentiation between the experimental groups. The first two coordinates (C1 and C2) are displayed with the indication of the percentage of variance explained in brackets. Scores represent individual samples. Labels indicate the centroids of each group. Ellipses represent the dispersion associated to each value. The long axis of the ellipse shows the direction of maximum dispersion and the short axis, the direction of minimum dispersion. Acknowledgments We wish to thank Pilar Alvariño, Nieves Santamaría and Ma. Jesús Iglesias-Briones for their technical assistance. The hatchery experiment was carried out at the Carballedo hatchery (Xunta de Galicia). 82 P. Morán et al. / Aquaculture 392-395 (2013) 77–83 Fig. 3. Na+/K+-ATPase alpha-1 subunit immunoreactive cells. A. Stained cells in the control trout are located in the secondary lamellas, less frequent in their more distal tip and in the primary filaments. B. Immunoreactive cells in the GROVE group. Note the absence of positive cells in the secondary lamellas and the cell grouping near the base of the secondary lamellas of the primary filaments. C. Number of cells in the secondary lamella corresponding to 10 paired secondary lamellas and those in the primary filaments correspond to the length of 10 consecutive primary lamellas. Scale bar in A and B: 10 μm. Seawater experiments were done at the O Grove aquarium. The authors are also very grateful to Bluedisplay S.A. for allowing us the use of the aquarium for our experiment. In particular, we would like to thank the individual contributions of Ester Alonso for assisting us with trout handling and that of Pablo Caballero for obtaining the necessary licences to carry out this experiment. This work has been funded by grants from the Ministerio de Ciencia y Tecnología (CGL2010-14964), and Fondos FEDER (PGIDIT03PXIC30102PN; Grupos de Referencia Competitiva, 2010/80, Xunta de Galicia). References Aarestrup, K., Nielsen, C., Madsen, S.S., 2000. Relationship between gill Na+, K+-ATPase activity and downstream movement in domesticated and first-generation offspring of wild anadromous brown trout (Salmo trutta). Canadian Journal of Fisheries and Aquatic Sciences 57, 2086–2095. Acolas, M.L., Labonne, J., Baglinière, J.L., Roussel, J.M., 2012. The role of body size versus growth on the decision to migrate: a case study with Salmo trutta. Naturwissenschaften 99, 11–21. Angers, B., Castonguay, E., Massicotte, R., 2010. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Molecular Ecology 19, 1283–1295. Araki, H., Cooper, B., Blouin, M.S., 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103. Bagliniere, J.L., Ombredane, D., Marchand, F., 2000. Critères morphologiques pour l'identification des deux formes (rivière et mer) de truite (Salmo trutta) présentes sur un mêm bassin. Bulletin Français de la Pêche et de la Pisciculture 357 (358), 375–383. Björnsson, B., Stefansson, S., McCormick, S., 2011. Environmental endocrinology of salmon smoltification. General and Comparative Endocrinology 170, 290–298. Blouin, M.S.T., Thuillier, V., Cooper, B., Amarasinghe, V., Cluzel, L., Araki, H., Grunaub, C., 2010. No evidence for large differences in genomic methylation between wild and hatchery steelhead (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences 67, 217–224. Bonin, A., Ehrich, D., Manel, S., 2007. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology 16, 3737–3758. Bossdorf, O., Richards, C.L., Pigliucci, M., 2008. Epigenetics for ecologists. Ecology Letters 11, 106–115. Cao, D., Gao, X., Liu, J., Kimatu, J.N., Geng, S., Wang, X., Zhao, J., Shi, D., 2011. Methylation sensitive amplified polymorphism (MSAP) reveals that alkali stress triggers more DNA hypomethylation levels in cotton (Gossypium hirsutum L.) roots than salt stress. African Journal of Biotechnology 10, 18971–18980. Cao, D., Gao, X., Liu, J., Wang, X., Geng, S., Yang, C., Liu, B., Shi, D., 2012. Root-specific DNA methylation in Chloris virgata, a natural alkaline-resistant halophyte, in response to salt and alkaline stresses. Plant Molecular Biology Reporter 30, 1102–1109. Charles, K., Guyomard, R., Hoyheim, B., Ombredane, D., Baglinière, J.L., 2005. Lack of genetic differentiation between anadromous and resident sympatric brown trout (Salmo trutta) in a Normandy population. Aquatic Living Resources 18, 65–69. Cross, T.F., Mills, C.P.R., de Courcy Williams, M., 1992. An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L., in western Ireland. Journal of Fish Biology 40, 25–32. Da, K., Nowak, J., Flinn, B., 2012. Potato cytosine methylation and gene expression changes induced by a beneficial bacterial endophyte, Burkholderia phytofirmans strain PsJN. Plant Physiology and Biochemistry 50, 24–34. Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491. Faulk, C., Dolinoy, D.C., 2011. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 6, 791–797. Ferguson, A., 2007. Genetics of sea trout, with particular reference to Britain and Ireland. In: Harris, G., Milner, N. (Eds.), Sea Trout: Biology, Conservation and Management. Blackwell Publishing Ltd., Oxford, UK, pp. 157–183. Giger, T., Excoffier, L., Amstutz, U., Day, P.J.R., Champigneulle, A., Hansen, M.M., Kelso, J., Largiadèr, C.R., 2008. Population transcriptomics of life-history variation in the genus Salmo. Molecular Ecology 17, 3095–3108. Hansen, M.M., 2002. Estimating the long-term effects of stocking domesticated trout into wild brown trout (Salmo trutta) populations: an approach using microsatellite DNA analysis of historical and contemporary samples. Molecular Ecology 11, 1003–1015. Hardy, T.M., Tollefsbol, T.O., 2011. Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3, 503–518. P. Morán et al. / Aquaculture 392-395 (2013) 77–83 Herrera, C.M., Bazaga, P., 2010. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. The New Phytologist 187, 867–876. Hindar, K., Jonsson, B., Ryman, N., Ståhl, G., 1991. Genetic relationships among landlocked, resident, and anadromous brown trout, Salmo trutta L. Heredity 66, 83–91. Hiroi, J., McCormick, S.D., 2007. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl− cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar. The Journal of Experimental Biology 210, 1015–1024. Horreo, J.L., de la Hoz, J., Pola, I.G., Machado-Schiaffino, G., Garcia-Vazquez, E., 2012. Ecological and economic costs of supportive breeding: Atlantic salmon (Salmo salar) as a case study. Aquaculture 356–357, 1–6. Jensen, A.J., Finstad, B., Fiske, P., Hvidsten, N.A., Rikardsen, A.H., Saksgård, L., 2012. Timing of smolt migration in sympatric populations of Atlantic salmon (Salmo salar), brown trout (Salmo trutta), and Arctic char (Salvelinus alpinus). Canadian Journal of Fisheries and Aquatic Sciences 69, 711–723. Johnson, L.J., Tricker, P.J., 2010. Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity 105, 113–121. Jonsson, B., Jonsson, N., 1993. Partial migration: niche shift versus sexual maturation in fishes. Reviews in Fish Biology and Fisheries 3, 348–365. Jonsson, N., Jonsson, B., 1997. Energy allocation in polymorphic brown trout. Functional Ecology 11, 310–317. Jonsson, N., Jonsson, B., 1998. Body composition and energy allocation in life-history stages of brown trout. Journal of Fish Biology 53, 1306–1316. Le Bras, Y., Dechamp, N., Krieg, F., Filangi, O., Guyomard, R., Boussaha, M., Bovenhuis, H., Pottinger, T.G., Prunet, P., Le Roy, P., Quillet, E., 2011. Detection of QTL with effects on osmoregulation capacities in the rainbow trout (Oncorhynchus mykiss). BMC Genetics 12, 46. Li, M., Leatherland, J.F., 2012. The implications for aquaculture practice of epigenomic programming of components of the endocrine system of teleostean embryos: lessons learned from mammalian studies. Fish and Fisheries. http://dx.doi.org/ 10.1111/j.1467-2979.2012.00486.x. Mazzio, E.A., Soliman, K.F.A., 2012. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7, 119–130. McCormick, S.D., 2001. Endocrine control of osmoregulation in teleost fish. Integrative and Comparative Biology 41, 781–794. McCormick, S.D., Hansen, L.P., Quinn, T.P., Saunders, R.L., 1998. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55 (Suppl. 1), 77–92. Morán, P., Pérez-Figueroa, A., 2011. Methylation changes associated with early maturation stages in the Atlantic salmon. BMC Genetics 12, 86. Navarro-Martín, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., Di Croce, L., Piferrer, F., 2011. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genetics 7, e1002447. 83 Norman, J.D., Danzmann, R.G., Glebe, B., Ferguson, M.M., 2011. The genetic basis of salinity tolerance traits in Arctic charr (Salvelinus alpinus). BMC Genetics 12, 81. Økland, F., Jonsson, B., Jensen, A.J., Hansen, L.P., 1993. Is there a threshold size regulating seaward migration of brown trout and Atlantic salmon? Journal of Fish Biology 42, 541–550. Pérez-Figueroa, in press. A. msap: a tool for the statistical analysis of MethylationSensitive Amplified Polymorphism data. Molecular Ecology Resources. http://dx. doi.org/10.1111/1755-0998.12064. Perry, S.F., Rivero-Lopez, L., McNeill, B., Wilson, J., 2006. Fooling a freshwater fish: how dietary salt transforms the rainbow trout gill into a seawater gill phenotype. The Journal of Experimental Biology 209, 4591–4596. Pettersson, J.C.E., Hansen, M.M., Bohlin, T., 2001. Does dispersal from landlocked trout explain the coexistence of resident and migratory trout females in a small stream? Journal of Fish Biology 58, 487–495. Pinheiro, J.C., Bates, D.M., 2009. Mixed-Effects Models in S and S-Plus. Springer-Verlag, Berlin. R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria [v. 2.15.1]. Reyna-López, G.E., Simpson, J., Ruiz-Herrera, J., 1997. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Molecular and General Genetics 253, 703–710. Ruzzante, D.E., Hansen, M.M., Meldrup, D., 2001. Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure. Molecular Ecology 10, 2107–2128. Seear, P.J., Carmichael, S.N., Talbot, R., Taggart, J.B., Bron, J.E., Sweeney, G.E., 2010. Differential gene expression during smoltification of Atlantic salmon (Salmo salar L.): a first large-scale microarray study. Marine Biotechnology 12, 126–140. Sundell, K., Dellefors, C., Björnsson, B.T., 1998. Wild and hatchery-reared brown trout, Salmo trutta, differ in smolt related characteristics during parr–smolt transformation. Aquaculture 167, 53–65. Tammen, S.A., Friso, S., Choi, S., in press. Epigenetics: the link between nature and nurture. Molecular Aspects of Medicine. Tan, M., 2010. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiology and Biochemistry 48, 21–26. Wang, W., Pan, Y., Zhao, X., Dwivedi, D., Zhu, L., Ali, J., Fu, B., Li, Z., 2011. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). Journal of Experimental Botany 62, 1951–1960. Xu, M., Li, X., Korban, S.S., 2000. AFLP-Based detection of DNA methylation. Plant Molecular Biology Reporter 18, 361–368. Zaugg, W.S.R., Roley, D.D., Prentice, E.F., Gores, K.X., Waknitz, F.W., 1983. Increased seawater survival and contribution to the fishery of Chinook salmon (Oncorhynchus tshawytscha) by supplemental dietary salt. Aquaculture 32, 183–188. Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York. Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ FACTOR DE IMPACTO Y CALIDAD DE LAS PUBLICACIONES 118! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ FACTOR DE IMPACTO Y CALIDAD DE LAS PUBLICACIONES El factor de impacto de una revista académica es una medida que refleja el número medio de citas de artículos durante un año en particular o durante un periodo concreto. Frecuentemente es usado como una aproximación de la importancia relativa de la revista en su campo. Revistas con factor de impacto superior se considerarán más importantes que las que lo tienen más bajo. El cálculo para el año 2012 de una revista X se realiza de la siguiente forma: A = Citas totales de la revista X en 2012 B = Citas en 2012 de artículos de la revista X publicados en el período 2010-11 (subconjunto de A) C = Número de artículos publicados en la revista X durante el período 2010-11 D = B/C = Factor de impacto de 2012 Los trabajos incluidos en esta tesis doctoral se han publicado o están aceptados en las siguientes revistas: • PLoS ONE • Aquaculture • Canadian Journal of Fisheries and Aquatic Sciences • Ecology and Evolution 119! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ Los datos más relevantes de las revistas se detallan a continuación: • PLoS ONE: eISSN: 1932-6203 Revista electrónica de acceso abierto que funciona como una asociación entre su personal interno, asesores internacionales y consejos de redacción. La revista es editada mediante “Public Library Service” desde el año 2006 y su país de publicación es Estados Unidos. La revista está incluida en el SCI dentro de la categoría: Biología, en la que se sitúa, atendiendo al factor de impacto, la 12ª de un total de 85 revistas. Se sitúa en el primer cuartil. Su índice de impacto en 2011 fue 4.092 y su factor de impacto en los últimos cinco años fue 4.537. En esta revista se han publicado dos artículos. • Aquaculture: ISSN: 0044-8486 Revista internacional para la investigación en agua dulce y marina. Interesada en la explotación, mejora y manejo de los recursos vivos acuáticos. La revista es editada por “Elsevier Science BV” desde el año 1972 y su país de publicación es Holanda. La revista está incluida en el SCI dentro de las categorías: Pesquerías, en la que se sitúa, atendiendo al factor de impacto, la 11ª de un total de 50 revistas y Biología Marina y Agua dulce, en la que se sitúa la 30ª de 97 revistas. Se sitúa en el primer y segundo cuartil respectivamente. Su índice de impacto en 2011 fue 2.041 y su factor de impacto en los últimos cinco años fue 2.696. En esta revista se ha publicado un artículo. 120! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ • Canadian Journal of Fisheries and Aquatic Sciences: ISSN: 0706-652X Revista internacional que publica perspectivas, discusiones, artículos y comunicaciones rápidas relacionadas con investigaciones actuales en células, organismos, poblaciones, ecosistemas y otros procesos que afecten a los sistemas acuáticos. La revista es editada por “National Research Council of Canada” desde el año 1901 y su país de publicación es Canada. La revista está incluida en el SCI dentro de las categorías: Pesquerías, en la que se sitúa, atendiendo al factor de impacto, la 6ª de un total de 50 revistas y Biología Marina y Agua dulce, en la que se sitúa la 21ª de 97 revistas. Se sitúa en el primer cuartil en ambos casos. Su índice de impacto en 2011 fue 2.213 y su factor de impacto en los últimos cinco años fue 2.632. En esta revista se ha publicado un artículo. • Ecology and Evolution: ISSN 2045-7758 Revista internacional publicada por primera vez en 2011. EL ISI la ha catalogado dentro de Contenidos Actuales / Agricultura y Biología y Ciencias Ambientales. Ecology and Evolution recibirá su primer índice de impacto en 2013. La revista es editada por la “British Ecological Society” y publica bajo licencia Creative Commons. En esta revista hay un articulo aceptado. 121! ! Identificación+de+factores+de+la+anadromía+en+trucha+(Salmo&trutta)+ y+su+aplicación+a+programas+de+conservación Francisco+Marco+Rius+ 122! !