A 3-D map of the AGN distribution and relation to the zCOSMOS
Transcription
A 3-D map of the AGN distribution and relation to the zCOSMOS
A 3-D map of the AGN distribution and relation to the zCOSMOS density field John Silverman (ETH-Zurich) XMM/COSMOS: G. Hasinger (PI; MPE), M. Brusa (MPE), V. Mainieri (ESO), Nico Cappelluti (MPE), A. Finoguenov (MPE), H. Brunner (MPE), A. Comastri (INAF-Bologna), R. Gilli (INAF-Bologna), C. Vignali (INAF-Bologna) & others zCOSMOS: S. Lilly (PI; ETH), Katarina Kovac (ETH), V. Mainieri (ESO), G. Zamorani (INAF-Bologna), O. Le Fevre (LAM-Marseille), T. Contini (LATTToulouse), M. Bolzonella (INAF-Bologna), M. Scodeggio (INAF-Milan) & other zCOSMOS members & many other COSMOS folks How does the local environment influence AGN activity? • Merger-driven accretion onto supermassive black holes - Numerical simulations demonstrate that mergers are efficient at transferring gas to the nucleus (Mihos & Hernquist 1996) thus powering AGN (e.g. Hopkins et al. 2008) - Ultraluminous infrared galaxies have high central gas concentrations (see Sanders & Mirabel 1996). • Depletion of fuel (gas) in dense environments - galaxy harrassment or tidal interactions - low redshift (z < 0.3 ) obscured AGN prefer to reside in underdense regions (Kaufmann et al. 2003) - analgous to star formation (e.g. Cooper et al. 2008) Extend environmental studies to higher redshifts (z~1) where the star formation and AGN accretion history peak (e.g. Merloni et al. 2004) and the galaxy merger rate may be higher (e.g. Kartaltepe et al. 2007). JDS et al. 2008, ApJ, 679, 118 COSMOS Galaxy evolution over a wide range of scales up to high redshift PI: Nick Scoville (CalTech) HST/ACS: i’ (Scoville) Spitzer: (Sanders) IRAC-3.6, 4.5, 5.6 8.0µm MIPS-24, 70, 160µm VLA: (Schinnerer) GALEX: (Schiminovich) XMM: (Hasinger) Chandra: (Elvis) VLT: (Lilly) Subaru: (B, V, g, r, i, z; Taniguichi) CFHT (u,i,Ks; McCraken) GEMS Blue: Fully exploited here Red: Derived stellar masses, rest-frame colors (M. Bolzonella et al. in preparation) Scoville et al. 2007 XMM survey of the COSMOS field PI: G. Hasinger (MPE); 1848 point sources (Cappelluti et al. 2007, Hasinger et al. 2007) f0.5-2.0 keV > 5 x 10-16 erg cm-2 s-1 (Soft band) f2-10 keV > 2 x10-15 “ “ (Hard band) ~40% have optical spectroscopic redshifts Magellan (Trump et al. 2007), SDSS, MMT, zCOSMOS 1 (Mpc) 84% have optical/NIR counterpart (Brusa et al. 2007) z 0.7 0.5 0.3 • 321 AGN (0.1 < z <1) having LX > 1042 erg s-1 • Most with 1042 < LX < 1043.7 erg s-1 - cleanly study their hosts properties (e.g. stellar mass) See JDS et al. 2008, ApJ, 675, 1025 0.1 zCOSMOS ETH-Zurich, LAM Marseille, LAMP Toulouse, INAF-Milan, INAF-Bologna, MPE-Garching PI. Simon Lilly (ETH) Large VLT/VIMOS program (600 hrs) 10k ‘Bright’ sample (1.5 sq. deg) • ‘Bright program’: 20k spectra i<22.5 (1.7 deg2) ~5500-9600 Å z < 1.2 • ‘Deep program’: 10k spectra R < 25 (0.9 deg2) ~3300-6700 Å 1.5 < z < 2.5 High sampling rate (~70%) Compulsory targets: X-ray (XMM, Chandra) and VLA radio sources 7543 galaxies with secure spectroscopic redshifts 152 AGN (0.1 < z <1) identified by zCOSMOS having LX > 1042 erg s-1 AGN zCOSMOS ETH-Zurich, LAM Marseille, LAMP Toulouse, INAF-Milan, INAF-Bologna, MPE-Garching PI. Simon Lilly (ETH) Large VLT/VIMOS program (600 hrs) 10k ‘Bright’ sample (1.5 sq. deg) • ‘Bright program’: 20k spectra i<22.5 (1.7 deg2) ~5500-9600 Å z < 1.2 • ‘Deep program’: 10k spectra R < 25 (0.9 deg2) ~3300-6700 Å 1.5 < z < 2.5 High sampling rate (~70%) Compulsory targets: X-ray (XMM, Chandra) and VLA radio sources 7543 galaxies with secure spectroscopic redshifts 152 AGN (0.1 < z <1) identified by zCOSMOS having LX > 1042 erg s-1 zCOSMOS: 3-D density field zCOSMOS galaxy density field Katarina Kovac et al. 2008, (in preparation) • Zurich developed density estimator 10k (spectroscopic) + 30k (photometric) • Nearest neighbor (3rd, 5th, 10th, 20th) • Projected density (± 1000 km s-1) Overdensity (δ): 1 + δ = ρ/<ρ> z 1 0.7 0.5 0.3 0.1 Yingjie Peng (ETH-Zurich) 1000-1500 Mpc h-1 500-1000 Mpc h-1 AGN X-ray clusters (Finoguenov et al. in prep) Yingjie Peng (ETH-Zurich) 2000-2500 Mpc h-1 1500-2000 Mpc h-1 AGN X-ray clusters (Finoguenov et al. in prep) Local environments of AGN Log M* > 10.4 AGN Galaxies • No apparent dependence on environment for all galaxies (Miller et al. 2003) • Mass dependency - high mass hosts reside in underdense environments (Kauffmann et al. 2004) • No dependence on X-ray luminosity or absorption Local environments of AGN Log M* > 10.4 AGN Galaxies • No apparent dependence on environment for all galaxies (Miller et al. 2003) • Mass dependency - high mass hosts reside in underdense environments (Kauffmann et al. 2004) • No dependence on X-ray luminosity or absorption Concluding remarks Environment • X-ray selected AGN trace the overall galaxy distribution • AGN in massive host galaxies (log M* > 11) prefer underdense environments Similar environmental/mass dependence of AGN activity and star formation JDS et al. 2008b, soon to be submitted to ApJ What factors are critical for AGN activity? • Massive, bulge-dominated galaxy (log M* > 10.5) • Plentiful gas supply as inferred through concurrent star formation (1-100 M* yr-1) JDS et al. 2008a, companion paper, ApJ Posters: N. Cappelluti “Coevolution of AGN and galaxy clusters in COSMOS” T- Miyaji “X-ray AGN-galaxy cross-correlation and AGN halo occupation” Talk: R. Gilli “Spatial clustering of X-ray selected AGN at z~1”