PILL-ID
Transcription
PILL-ID
PILL-ID: Matching and Retrieval of Drug Pill Imprint Images Young-Beom Lee1, Unsang Park2, and Anil K. Jain1,2 1Brain and Cognitive Engineering Korea University, Korea 2Computer Science and Engineering Michigan State University, USA http://Biometrics.cse.msu.edu • Legal drug pill or illicit drug pill? • If illicit pill, which cartel manufactured it? • What is the effective way to identify illicit drug? • ~35M in the U.S. used illicit or abused prescription drugs; $14B spent for drug treatment & prevention (2007) • Prescription pills must be identifiable (by color, shape, and imprints) per FDA regulations • Illicit pills (e.g., narcotics) also contain imprints to identify the cartel or distributor • Databases of prescription pills and illegal pills are available (pharmaceutical companies, FBI) Query • • • • • Rank-1 2 Imprint : 5883 Shape : round Color : brown Ingredient : MDMA, BZP, TFMPP Cartel : Gulf contents 3 4 5 6 • Imprint is an indented or printed mark on a pill, tablet or capsule • Symbol, text, digits or their combination Legal drug pills Illicit drug pills • Sobel operator to obtain gradient magnitude image • Segmentation, scale normalization Original Image Gradient magnitude Image • Rotation normalization Primary & Secondary Dominant Orientations • Landmarks (key-points) are selected within a preset radius (SIFT descriptor) Multiple template with Rotation variation • Gradient magnitude images have smaller intra-class variations Original image Gray image Gradient Magnitude image Rank-1 accuracy (%) Method Gradient magnitude Grayscale Optimized SIFT descriptor 90.03 83.55 (using 602 query-gallery dataset) Images that did not match at rank-1 using SIFT but matched using the proposed method (fixed key points + SIFT descriptor) Method Number of key-points Rank-1 accuracy (%) Original SIFT Min Max Avg. 17 340 126 43.02 Our method (SIFT descriptor) 29 90.03 Red dots: SIFT key points, Blue dots: preset key points • Select a set of key-points • Collect gradient magnitude and orientation with Gaussian weighting and tri-linear interpolation • Truncation • Length of feature vector: 4 × 4 × 8 = 128 128 × 29 = 3712 Gaussian weighting Gaussian window centered at a key point Tri-linear interpolation Truncation • LBP histograms with multiple neighborhood parameters (P,R) are created and concatenated P=8, R=1.0 P=4, R=1.0 P=12, R=2.0 • Feature vectors are constructed with the following parameters (P, R) Window size Shift value U(8, 1) 20 X 20 4 U(4, 1) 10 X 10 2 U(12, 2) 30 X 30 6 • Length of feature vector: U(8,1) = 59, (4,1) = 16, U(12,2) = 135 59 X(13 X 13)+16 X(31 X 31)+135 X(7 X 7) = 31,962 • Given a query image (q) and N gallery images (g), the K feature vectors of the query are compared with the Ln feature vectors of the nth gallery images (n = 1 to N, L2 norm). • Ln is different for each gallery image • The ID of the closest match in the gallery is selected as the ID Feature vectors j of gallery images, g n Feature vectors i of a query image, qm Ln (=j) … … … … Km (=i) … N ........ n ........ IDm arg min d (qmi , gnj ) ..... … • 822 illicit drug pill images from the Australian Federal Police; 138 illicit drug pill images and 14,003 legal pill images from the U.S. DEA website, Drug information online and pharmer.org • Image size: from 48 X 42 to 2,088 X 1,550 pixels; 96 dpi • Query set: 602 illicit drug pills with duplicate images of the same imprint pattern (88 distinctive patterns) • Gallery set: 960 (illicit drug pill images) + 14,003 (legal drug pill images) = 14,963 images • Leave-one-out method to match each of the 602 query to all the 14,962 gallery images • SIFT descriptor parameters are optimized for pill imprint matching 1. Smoothing 2. Gradient orientation & magnitude 3. Gaussian weighting 4. Trilinear interpolation 5. Truncation with threshold values of 0.2, 0.5 and 1 Method Rank-1 accuracy (%) Truncation value Rotation Normalization Edge image Grayscale image SIFT with 1, 2, 3, 4, 5 (Original sift) 0.2 No 83.89 83.39 SIFT with 2, 3, 4, 5 0.2 No 87.87 78.74 SIFT with 2, 4, 5 0.2 No 88.70 79.57 SIFT with 2, 5 0.2 No 87.54 81.56 SIFT with 2, 4, 5 0.5 No 87.71 - SIFT with 2, 4, 5 1.0 No 87.71 - SIFT with 2, 4, 5 0.2 Yes 90.03 - • 602 query and 14,962 gallery images Method Rank 1 (%) Rank 20 (%) MLBP 64.78 82.72 SIFT descriptor 82.72 90.20 SIFT (0.7)+MLBP (0.3) 84.39 91.53 Query Top-6 retrievals • Queries that were not correctly retrieved in top 20 matches Query Top-6 retrievals Rank of true mate − Illumination noise in the background 13042 − Similar shape and imprints 12841 3402 3259 1897 − Very similar pattern between query and top retrieved images • Numeric or text information in imprints can be used for matching/filtering 5883 • • • • • Imprint : 5883 Shape : round Color : brown Ingredient : MDMA, BZP, TFMPP Cartel : Gulf Shape : Round Color: Pink Text: no Numbers: no Query … Rank 1 2 3 4 5 6 Using only imprints 7 … 97 … Rank 1 2 3 4 5 6 Using imprint shape and color 7 … 15 Content based matching can reduce retrieval errors • Proposed an image retrieval system for identifying illicit drugs • 84.4% rank-1 (91.53% rank-20) accuracy with ~600 query and ~15K gallery images • Evaluated two image descriptors (SIFT and MLBP) & their fusion; rotation invariant matching scheme was used • Computation time: 2.3 (0.5) sec/image for feature extraction and 13.0 (4.0) sec for each query with ~15K gallery for SIFT (MLBP); code in MATLAB running on 2.8 GHz CPU, 8 GB RAM • Future work – Content based matching/filtering – Evaluation on a larger database; collaboration with AFP – More efficient matching scheme • If we can identify numbers or texts in imprints, content based methods can be used. Number : 5883 Text : WYETH Examples of the number and text imprint • MLBP is also evaluated with a various parameters using 602 querygallery dataset to optimize it for pill imprint matching 1. Number of LBPs 2. Sub-region (window size, shift value) 3. Input image size Method Rank-1 accuracy (%) LBP Sub-region Image size u2 LBP8,1+4,1 No 60 51.01 u2 u2 LBP8,1+4,1+12,2 No 60 54.15 u2 u2 LBP8,1+4,1+12,2 No 70 55.81 u2 u2 LBP8,1+4,1+12,2 (32, 8)(16, 4)(48, 12) 70 63.12 u2 u2 LBP8,1+4,1+12,2 (16, 4)(8, 2)(24, 6) 70 65.78 u2 u2 LBP8,1+4,1+12,2 (20, 4)(10, 2)(30, 6) 70 75.42 Gradient magnitude image Multiple Templates Orientation histogram 15 10 5 …… …… 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Similar documents
Pill-ID: Matching and retrieval of drug pill images
Contents lists available at SciVerse ScienceDirect
More information