Litec RF40 - English - Milos Structural System
Transcription
Litec RF40 - English - Milos Structural System
Structural Report RF 40 STAGING SYSTEMS EUROPE RF 40 July 2009 Staging Systems Europe Spa - via Raffaello, 31 - 31021 Mogliano Veneto (TV) www.litectruss.com – info@litectruss.com LT RC RF40 RF 40 Index 1 2 3 4 5 6 Prescriptions: ....................................................................................................... 3 Structure description: ........................................................................................... 4 Reference standards: ........................................................................................... 6 Introduction: ......................................................................................................... 6 Symbols: .............................................................................................................. 7 Materials: ............................................................................................................. 8 6.1 Reference standards ..................................................................................... 8 6.2 Materials identification:.................................................................................. 8 6.3 Aluminium factors (EC 9 §3.2.5):................................................................... 8 6.4 Weldings: ...................................................................................................... 8 6.5 Safety factors on material (EC 9 §6.1.3 e 8.1.1): ........................................... 8 7 Calculation model:................................................................................................ 9 7.1 Main chord: ................................................................................................... 9 7.2 Diagonal:..................................................................................................... 12 7.3 Welded joints:.............................................................................................. 14 7.4 Fork joints: .................................................................................................. 14 8 Summary:........................................................................................................... 17 9 Hypotesis of calculation:..................................................................................... 18 Page 2 / 24 LT RC RF40 RF 40 1 Prescriptions: the calculation configuration and the imposed restraints have to be considered ideal conditions, therefore the user must analyze the structure according to the real load/restraint conditions; this calculation report is considering only static loads; if dynamic actions cannot be limited, they will have to be carefully considered by assembly workers and any personnel in charge of assembly, check and certification; materials must keep their original integrity features. The results of this report will be invalidated by presence of blows, crackings or general damages of the components; the allowed loads qg,amm o Fg,amm are defined as the maximum loads applicable to the truss nodes, not including the dead load of the structure; if the truss would be uplifted through electric chain hoists, the personnel in charge of assembly, check and certification will have to carefully consider dynamic effects; all connections with conical pins must be equipped with R-clips; in case of excessive ovalization of the connection holes, a qualified technician is needed to check the integrity of the structure elements; Present structural report is formed by 24 pages. Preganziol, july 2009 Dott. ing. Raffaele Fuser Ordine degli ingegneri di Treviso Page 3 / 24 LT RC RF40 RF 40 2 Structure description: Reticular structure formed by 4 aluminum chords (hollow section 50x3 mm) and diagonals (hollow section 30x3 mm). The connection between chords and diagonals is realized by fillet weldings. At the ends of the chords there are aluminum forks (spigot), connected with 3 spirol pins. The truss can be connected at the ends with other trusses to form long linear structure. The connections between trusses is realized by steel pins. main chord diagonal Page 4 / 24 LT RC RF40 RF 40 Page 5 / 24 LT RC RF40 RF 40 3 Reference standards: Eurocode 1 EN Eurocode 3 EN Eurocode 9 EN 1991-1-1 1993-1-1 1999-1-1 august august may 2004 2005 2007 4 Introduction: The structural report is based on the limit state design. According to that method, we compare the design resistance of the structure Rd with the design load acting on the structure, according to the following relation: Sd ≤ Rd where: Sd: design loadings, obtained from the design actions amplified by the factors γF ( ≥1); Rd: design resistances, corresponding to a specific failure mechanism, obtained from characteristic values of the materials resistances, reduced by the safety factors γm( ≥1). In this structural report we calculate the design load Fult., which is the maximum load, amplified by the factors γF. We assume the loads applied as permanent loads (amplifying factor 1,35 as foreseen in EC 1), therefore we calculate Famm., which is the maximum allowed load, not including the dead load of the structure Hypothesis of calculation: the calculation configuration and the imposed restraints have to be considered ideal conditions, therefore the user must analyze the structure according to the real load/restraint conditions; this calculation assumes that the applied loads are static; the structure is analyzed as an ideal reticular structure, with loads applied on the nodes without eccentricity; weldings are realized according to UNI EN ISO 15607; we calculate elastic deformation due to the maximum allowed load and to the dead load. Final judgement about the acceptability is left to the personnel in charge of assembly, check and certification; the followings tables are calculated in order to guarantee the strength and the local stability of the members of the truss; the global stability verification is left to the personnel in charge of assembly, check and certification. Page 6 / 24 LT RC RF40 RF 40 5 Symbols: f0,2 fu Amin f0 fa fv E G ν α ρ fw γM1 γM2 γMb γMw D t A Anett I It i L Wel Wele Wpl Wple fs σ τ σc Av conventional yield stress, corresponding to 0.2% strain ultimate stress min. elongation characteristic yield stress characteristic failure stress characteristic shear stress Young's module shear module Poisson' s ratio thermal expansion coefficient density characteristic stress of the weld material safety factor material safety factor in weatyned sections material safety factor for bolted joints material safety factor for welded joints diameter thickness section area reduced section area, due to welding softening moment of inertia torsional inertia moment radius of gyration length elastic section modulus elastic effective section modulus plastic section modulus plastic effective section modulus instability stress normal stress shear stress combined stress shear area Page 7 / 24 LT RC RF40 RF 40 6 Materials: 6.1 Reference standards EN 755-2: extruded rod/bar, tube and profiles; Eurocode 9 EN 1999-1-1 (§3.2.2); EN 10277-3: bright steel products; 6.2 Materials identification: component: pipes, forks pins spirol pins Alloy designation numerical chemical EN-AW 6082 T6 Al Si1 MgMn steel 11SMnPb37 steel C75 S f0 MPa 250 375 510 Characteristic values fu Amin. thick. MPa % mm 290 8 t≤5 460 8 16 ≤ t ≤ 40 640 15 where: f0,2 [MPa] characteristic value of 0,2% proof strength fu [MPa] characteristic value of ultimate tensile stress Amin [%] minimum elongation 6.3 E G ν α ρ Aluminium factors (EC 9 §3.2.5): 70 27 0.3 2.3 e-5 2700 6.4 GPa GPa 1/°C kg/m3 modulus of elasticity shear modulus Poisson’s ratio in elastic range coefficient of linear therma expansion density Weldings: Weldings between the chords and the diagonals are fillet welds with effective throat thickness 4,5 mm. It's a TIG/141 (ISO 4063) weld and uses alloy type S Al4043A (EN ISO 18273) as filler metal. According to EC 9 § 8.6.3.1 – table 8.8 the characteristic strength value of weld metal is 190 MPa. 6.5 Safety factors on material (EC 9 §6.1.3 e 8.1.1): resistance of the cross section, whatever the class is: γM1 1,10 resistance of members to instability assessed by member checks: γM1 1,10 resistance of cross-section in tension to fracture: γM2 1,25 resistance of joints γMb 1,25 Page 8 / 24 LT RC RF40 RF 40 7 Calculation model: 7.1 Main chord: ρ0_haz ρu_haz f0 fu D t A Anett Aeff - ρ0*t Aeff - ρu*t yG Wel Wnet Iel Inet i Wpl D t β f0 ε β1/ε β2/ε β3/ε β1 β2 β3 sezione di classe 2 0.50 0.64 250 290 Materials reduction factor for the heat affected zone reduction factor for the heat affected zone MPa characteristic value of 0,2% proof strength MPa characteristic value of ultimate tensile stress Cross section - main chord 50x3 50 mm diameter 3 mm thickness of cross section 443 mm 2 gross cross section 383 mm 2 net area (EC9 §6.2.2.2) 281 mm 2 effective area (thick. ?0*t) 327 mm 2 effective area (thick. ?u*t) 25 mm area center 4912 mm 3 elastic modulus of the gross section 4912 mm 3 elastic modulus of the net section 122812 mm 4 second moment of the section 122312 mm 4 second moment of the net section 17 mm radius of gyration 6636 mm 3 plastic modulus of gross section Susceptibility to local buckling (EC9 §6.1.4.3) 50 mm diameter 3 mm thickness 12.25 slenderness parameter 250 MPa characteristic value of 0,2% proof strength 1.00 9 13 18 9 13 18 Page 9 / 24 LT RC RF40 RF 40 Tension resistance (EC9 § 6.2.3) 443 mm 2 section area 250 MPa characteristic value of 0,2% proof strength 1.1 partial factor A f0 γM1 N 0, Rd Af 0 M1 Anet fu 383 290 1.25 γM2 N u , Rd 0 .9 Anet f u M2 Aeff fu Aeff f u M2 NRd γM2 N u , Rd A net f u M2 Aeff f0 Tension resistance for general yielding mm 2 net area MPa characteristic value of ultimate tensile stress partial factor kN Tension resistance for local failure at a section with holes mm 2 effective area MPa characteristic value of 0,2% proof strength partial factor 75.96 kN Tension resistance for local failure at a section with HAZ 75.96 kN Tension resistance 88.85 281 250 1.1 γM1 NRd kN Compression resistance (EC9 § 6.2.4) 383 mm 2 net area 290 MPa characteristic value of ultimate tensile stress 1.25 partial factor Anett fu N c , Rd 79.96 327 290 1.25 γM2 N u , Rd 100.67 Aeff f 0 M1 kN Compression resistance in sections with unfilled holes mm 2 effective area MPa characteristic value of 0,2% proof strength partial factor 63.86 kN Compression resistance in other sections 63.86 kN Compression resistance Page 10 / 24 LT RC RF40 RF 40 Buckling resistance (EC9 §6.3.1) 0.65 reduction factor for weldings k 1 2 2 0.89 reduction factor for slenderness 0 . 5 (1 ( 0 ) 2 ) 0.69 A eff f 0 N α 0 N cr 2 EJ L20 A γM1 kAeff f0 M1 γM2 u , Rd W net f u M2 Wpl Wel α f0 γM1 M c , Rd MRd imperfection factor 0.1 limit of horizontal plateau 375 58.70 kN elastic critical force mm 2 section area mm 2 effective area MPa characteristic value of 0,2% proof strength mm 4 second moment of the gross section MPa modulus of elasticity mm buckling length partial factor kN buckling resistance Resistance for bending (EC9 § 6.2.5) 4912 mm 3 elastic modulus of net section 290 MPa characteristic value of ultimate tensile stress 1.25 partial factor Wnet fu M 0.2 443 443 250 122812 70000 476 1.10 Aeff f0 Imin E L0 Ni, Rd 0.54 cr W el f 0 M1 1.14 kNm Resistance for bending of the net section 6636 4912 1.35 250 1.1 mm 3 plastic modulus of the cross section mm 3 elastic modulus of the cross section shape factor MPa characteristic value of 0,2% proof strength partial factor 1.51 kNm Resistance for bending in each cross section 1.14 kNm Resistance for bending Page 11 / 24 LT RC RF40 RF 40 Shear resistance (EC9 § 6.2.6) 0.6 parameter 2 281 mm cross section area 169 mm 2 shear area 250 MPa characteristic value of 0,2% proof strength 1.1 partial factor ηv Aeff - ρ0*t Av=ηv·Aeff f0 γM1 V Rd Av f0 3 M 1 7.2 22.12 kN Shear resistance Diagonal: ρ0_haz ρu_haz f0 fu D t A Aeff - ρ0*t Aeff - ρu*t yG Wel Iel i D t β f0 ε β1/ε β2/ε β3/ε β1 β2 β3 sezione di classe 2 0.50 0.64 250 290 Materials reduction factor for the heat affected zone reduction factor for the heat affected zone MPa characteristic value of 0,2% proof strength MPa characteristic value of ultimate tensile stress Cross section - diagonal 30x3 30 mm diameter 3 mm thickness of cross section 254 mm 2 gross cross section 134 mm 2 effective area (thick. ρ0*t) 169 mm 2 effective area (thick.ρu*t) 15 mm area center 1565 mm 3 elastic modulus of the gross section 23475 mm 4 second moment of the section 10 mm radius of gyration Susceptibility to local buckling (EC9 §6.1.4.3) 30 mm diameter 3 mm thickness 9.49 slenderness parameter 250 MPa characteristic value of 0,2% proof strength 1.00 9 13 18 9 13 18 Page 12 / 24 LT RC RF40 RF 40 Tension resistance (EC9 § 6.2.3) 254 mm 2 section area 250 MPa characteristic value of 0,2% proof strength 1.1 partial factor A f0 γM1 N 0, Rd Af 0 M1 57.83 Aeff fu 169 290 1.25 γM2 N u , Rd Aeff f u M2 NRd kN Tension resistance for general yielding mm 2 effective area MPa characteristic value of 0,2% proof strength partial factor 39.29 kN Tension resistance for local failure at a section with HAZ 39.29 kN Tension resistance Compression resistance (EC9 § 6.2.4) 134 mm 2 effective area 250 MPa characteristic value of 0,2% proof strength 1.1 partial factor Aeff f0 γM1 N c , Rd Aeff f 0 M1 30.52 kN Compression resistance in other sections Buckling resistance (EC9 §6.3.1) 1.00 reduction factor for weldings k 1 2 2 0.70 reduction factor for slenderness 0 . 5 (1 ( 0 ) 2 ) 1.01 A eff f 0 N α 0 N cr 2 EJ L20 A 0.2 imperfection factor 0.1 limit of horizontal plateau 74 254 254 250 23475 70000 468 1.10 Aeff f0 Imin E L0 γM1 Ni, Rd 0.93 cr kAeff f0 M1 40.73 kN elastic critical force mm 2 section area mm 2 effective area MPa characteristic value of 0,2% proof strength mm 4 second moment of the gross section MPa modulus of elasticity mm buckling length partial factor kN buckling resistance Page 13 / 24 LT RC RF40 RF 40 7.3 Welded joints: Resistance of diagonal near to fillet welds 254 mm 2 cross section 190 MPa characteristic value of 0,2% proof strength 1.25 partial factor A fw γMw N s , Rd Af w Mw kN Resistance of diagonal near to fillet welds Resistance of diagonal for fillet welds 50 mm chord diameter 3 mm chord thickness 30 mm diagonal diameter 3 mm diagonal thickness 40 ° angle 15 mm ellipse semiaxis - a 23.3 mm ellipse semiaxis - b 120 mm ellipse perimeter 4.5 mm effective throat thickness 542 mm 2 weld cross section 190 MPa weldings resistance 1.25 partial factor Dc tc Dd td α a b 2p a1 A fw γMw Ns, Rd 38.68 Afw Mw sen 3cos2 2 7.4 55.87 kN Resistance of diagonal for fillet welds Fork joints: fu_chord fu_spirol pin f0_fork fu_fork f0_pin fu_pin 290 640 250 290 375 460 Materials MPa charact. value of ultimate tensile stress - chord MPa charact. value of ultimate tensile stress - spirol pin MPa charact. value of 0,2% proof strength - fork MPa charact. value of ultimate tensile stress - fork MPa charact. value of 0,2% proof strength - pin MPa charact. value of ultimate tensile stress - pin Shear resistance of spirol pin Fv,Rd,spirol pin 62.00 kN Shear resistance of spirol pin Page 14 / 24 LT RC RF40 RF 40 Bearing resistance of main chord (EC9 § 8.5.5 – table 8.5) 35 mm end distance in direction of load 25 mm end distance perp. to the direction of load 10 mm hole diameter 10 mm pin diameter 3 mm chord thickness 290 MPa charact. value of ultimate tensile stress - chord 640 MPa charact. value of ultimate tensile stress - spirol pin 1 parameter e1 e2 d0 d t fu fub αb αd k1 1.17 2.5 1.25 γMb F rif k 1 b f u dt Mb kN Bearing resistance of main chord Bearing resistance of the fork (EC9 § 8.5.5 – table 8.5) 35 mm end distance in direction of load 25 mm end distance perp. to the direction of load 10 mm hole diameter 10 mm pin diameter 6.75 mm chord thickness 290 MPa charact. value of ultimate tensile stress - chord 640 MPa charact. value of ultimate tensile stress - spirol pin 1 parameter e1 e2 d0 d t fu fusp. αb αd k1 1.17 2.5 1.25 γMb Fb , Rd 34.80 parameter parameter partial factor k 1 b f u dt Mb kN Bearing resistance of the fork Tension resistance of the fork for local failure (EC9 § 6.2.3) 644 mm 2 net area 290 MPa charact. value of ultimate tensile stress 1.25 partial factor Anet fu γM2 N u , Rd 78.30 parameter parameter partial factor A net f u M2 134.53 kN Tension resistance for local failure Page 15 / 24 LT RC RF40 RF 40 Bearing resistance for pin connection (EC9 § 8.5.14.3 – table 8.7) 19.8 mm pin diameter 19.8 mm fork thickness 250 MPa charact. value of 0,2% proof strength - fork 1.1 partial factor d t f0 γM1 1 . 5 f 0 dt M1 F rif 133.65 γM2 A net f u M2 N u , Rd 193.56 kN Tension resistance for local failure Shear resistance of pin connection (EC9 § 8.5.14.3 table 8.7) 314 mm 2 shear area 460 MPa charact. value of ultimate tensile stress - pin 1.25 partial factor A fup γMb V Rd 0 . 6 Af up 69.37 kN Shear resistance of pin Mp Bending resistance of pin (EC9 § 8.5.14.3 table 8.7) 20 mm pin diameter 785 mm 3 elastic modulus of the pin 460 MPa charact. value of ultimate tensile stress - pin 1.25 partial factor D Wel fup γMb M Rd 0.8Wel f up Mp 0.23 kNm Bending resistance of the pin Combined shear and bending resistance of the pin (EC9 §8.5.14.3 table 8.7) 69.37 kN shear resistance of the pin 0.23 kNm bending resistance of the pin 11.9 mm fork thickness 0.8 mm semidistance between the forks 106 kN Maximum force allowed 0.23 kNm bending moment VRd MRd t e FEd MEd VEd Bearing resistance for pin connection Tension resistance of the fork for local failure (EC9 § 6.2.3) 927 mm 2 net area 290 MPa charact. value of ultimate tensile stress 1.25 partial factor Anet fu VEd VRd kN 2 M Ed M Rd 2 1 1.00 2.65 verify kN shear force Page 16 / 24 LT RC RF40 RF 40 8 Summary: Ft,Rd Fc,Rd Fb,Rd MRd Fv,Rd 75.96 63.86 58.70 1.14 38.31 Main chord kN Tension resistance kN Compression resistance kN Buckling resistance kNm Resistance for bending kN Shear resistance Ft,Rd Fc,Rd Fb,Rd 39.29 30.52 40.73 Diagonal kN Tension resistance kN Compression resistance kN Buckling resistance Ft,Rd Fc,Rd Weldings between main chord and diagonal 38.68 kN Tension resistance 55.87 kN Compression resistance Fv,Rd Fb,Rd Fb,Rd Ft,Rd Fb,Rd Ft,Rd FEd 62.00 34.80 78.30 134.53 133.65 193.56 106.00 Fork joint kN Shear resistance of spirol pin kN Bearing resistance of main chord kN Bearing resistance of the fork kN Tension resistance for local failure kN Bearing resistance for pin connection kN Tension resistance for local failure kN Maximum force allowed NRd,c NRd,d 58.70 30.52 kN kN Maximum axial force of chord Maximum axial force of diagonal Page 17 / 24 LT RC RF40 RF 40 9 Hypotesis of calculation: When the truss is subjected to bending moment and shear force: - diagonal is subjected only to axial force - main chord is subjected to axial force, bending moment and shear force according to following schema: The allowed load is calculated with the following fomula: q=min(qcorr, qdiag, qcamp) where M 1.35 p. p. 2H M1 2H V1.35 p. p. N Rd , d 2 sen V1 2 sen q corr q diag N Rd ,c qcamp is calculated so that the verify of the chord subjected to axial force and bending moment is satisfied: 1.3 tension-bending moment: N Ed 0 N Rd compression-bending moment: N Ed 0 N Rd M Ed 0 M Rd 0.8 1 0 1.02 M Ed M Rd 1 1.02 1 When the truss is subjected to compression force the main chord is subjected only to axial force. Page 18 / 24 LT RC RF40 RF 40 RF40 S IM P LY S UP P O R T E D - C E N T R E D LO A D ● ● UNIFORM. DISTRIBUITO CENTRATOIN MEZZERIA CONCENTRATOAI TERZI CONCENTRATOAI QUARTI CONCENTRATOAI QUINTI UNIFORMLYDISTRIBUITED CENTREPOINTLOAD SINGLELOAD THIRD POINT SINGLELOAD FOURTH POINT SINGLELOAD FIFTH POINT span qu. qam. qam·L defl. F u. F am. [m] kN/m kN/m kN mm kN kN 3 26.0 19.3 57.8 5.33 34.08 25.2 4 17.0 12.6 50.3 11 28.13 20.8 5 11.51 8.52 42.6 18 23.89 17.7 6 8.32 6.16 37.0 28 20.75 15.4 7 6.18 4.58 32.1 38 18.30 13.6 8 4.76 3.53 28.2 50 16.34 12.1 9 3.77 2.79 25.2 64 14.72 10.9 10 3.06 2.26 22.6 80 13.37 9.9 11 2.52 1.87 20.5 98 12.22 9.1 12 2.11 1.56 18.7 117 11.23 8.3 13 1.79 1.32 17.2 138 10.36 7.7 14 1.53 1.13 15.9 160 9.60 7.11 15 1.32 0.98 14.7 185 8.92 6.60 16 1.15 0.85 13.6 211 8.30 6.15 17 1.01 0.74 12.7 239 7.75 5.74 18 0.88 0.66 11.8 268 7.24 5.36 19 0.78 0.58 11.0 299 6.78 5.02 20 0.69 0.51 10.3 331 6.35 4.71 diagonal failure chord failure F am. defl. F u. kN mm kN 25.2 4 21.51 20.8 7 18.24 17.7 12 15.81 15.4 18 13.94 13.6 26 12.42 12.1 35 11.20 10.9 45 10.18 9.9 57 9.31 9.1 70 8.56 8.3 85 7.91 7.7 101 7.34 7.11 119 6.82 6.60 138 6.36 6.15 158 5.95 5.74 180 5.57 5.36 204 5.23 5.02 230 4.91 4.71 257 4.62 F am. 2F am. defl. kN 15.9 13.5 11.7 10.3 9.2 8.30 7.54 6.90 6.34 5.86 5.44 5.05 4.71 4.40 4.13 3.87 3.64 3.42 kN 31.9 27.0 23.4 20.6 18.4 16.6 15.1 13.8 12.7 11.7 10.9 10.1 9.4 8.8 8.3 7.7 7.27 6.84 mm kN 4 16.49 8 14.29 14 12.59 21 11.23 30 10.12 41 9.00 53 8.04 67 7.24 83 6.58 101 6.01 120 5.52 141 5.09 164 4.71 188 4.37 215 4.07 243 3.79 273 3.54 305 3.31 F u. F am. 3F am. defl. kN 12.2 10.6 9.32 8.32 7.50 6.67 5.95 5.37 4.87 4.45 4.09 3.77 3.49 3.24 3.01 2.81 2.63 2.45 kN 36.7 31.8 28.0 25.0 22.5 20.0 17.9 16.1 14.6 13.4 12.3 11.3 10.5 9.7 9.0 8.4 7.9 7.4 mm kN 4 13.63 9 11.98 15 10.41 24 8.99 34 7.90 45 7.01 58 6.30 73 5.71 88 5.21 106 4.78 125 4.40 146 4.07 169 3.78 193 3.52 218 3.28 246 3.06 275 2.87 306 2.69 F u. F am. 4F am. defl. kN 10.1 8.87 7.71 6.66 5.85 5.19 4.67 4.23 3.86 3.54 3.26 3.02 2.80 2.61 2.43 2.27 2.12 1.99 kN 40.4 35.5 30.8 26.6 23.4 20.8 18.7 16.9 15.4 14.2 13.0 12.1 11.2 10.4 9.7 9.1 8.5 8.0 mm 5 9 16 24 34 45 58 73 89 107 127 149 172 197 223 252 282 314 - qu. or Fu. is the maximum load, not including dead load, to compare with the amplified design load; - qam or Fam. is the maximum allowed load, not including dead load, to apply to the truss; - this table considers centrated load; - the load has to be applied on the nodes; otherwise the point load, applied between two successive nodes, must be no greater than 1,5 kN; - the followings tables are calculated in order to guarantee the strength and the local stability of the members of the truss; the global stability verification is left to the personnel in charge of assembly, check and certification; RF40 - simply supported - centred load 60 50 UDL CPL Load (kN) 40 TPL 30 QPL FPL 20 10 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 span (m) Page 19 / 24 LT RC RF40 RF 40 RF40 SIM P LY SUP P O R T ED - E C C EN T R IC LO A D ● ● UNIFORM. DISTRIBUITO CENTRATOIN MEZZERIA CONCENTRATOAI TERZI CONCENTRATOAI QUARTI CONCENTRATOAI QUINTI UNIFORMLYDISTRIBUITED CENTREPOINTLOAD SINGLELOAD THIRD POINT SINGLELOAD FOURTH POINT SINGLELOAD FIFTH POINT span qu. qam. qam·L [m] kN/m kN/m kN 3 15.3 11.3 34 4 11.4 8.4 33.7 5 8.64 6.40 32.0 6 6.60 4.89 29.4 7 5.02 3.72 26.0 8 3.94 2.92 23.3 9 3.16 2.34 21.1 10 2.59 1.92 19.2 11 2.16 1.60 17.6 12 1.82 1.35 16.2 13 1.56 1.15 15.0 14 1.34 0.99 13.9 15 1.16 0.86 12.9 16 1.02 0.75 12.0 17 0.89 0.66 11.3 18 0.79 0.58 10.5 19 0.70 0.52 9.9 20 0.62 0.46 9.2 diagonal failure chord failure defl. F u. F am. F am. mm kN kN 3.15 24.80 18.4 7 21.47 15.9 14 18.90 14.0 22 16.86 12.5 31 15.17 11.2 42 13.79 10.2 54 12.61 9.3 69 11.60 8.6 84 10.71 7.9 102 9.93 7.4 121 9.23 6.8 142 8.61 6.38 165 8.04 5.96 189 7.53 5.58 215 7.07 5.23 243 6.63 4.91 272 6.24 4.62 304 5.86 4.34 defl. F u. kN mm kN 18.4 3 14.61 15.9 6 13.01 14.0 10 11.71 12.5 15 10.63 11.2 22 9.73 10.2 30 8.95 9.3 39 8.27 8.6 50 7.67 7.9 62 7.14 7.4 76 6.68 6.8 91 6.25 6.38 108 5.87 5.96 126 5.52 5.58 146 5.20 5.23 167 4.90 4.91 190 4.62 4.62 215 4.37 4.34 241 4.12 F am. 2F am. defl. F u. kN 10.8 9.6 8.7 7.9 7.2 6.63 6.13 5.68 5.29 4.94 4.63 4.35 4.09 3.85 3.63 3.42 3.24 3.05 kN 21.6 19.3 17.3 15.8 14.4 13.3 12.3 11.4 10.6 9.9 9.3 8.7 8.2 7.7 7.3 6.8 6.47 6.11 mm 3 6 10 16 24 33 43 56 70 86 104 123 144 167 192 219 248 278 kN 10.19 9.29 8.52 7.87 7.30 6.80 6.35 5.95 5.59 5.27 4.97 4.70 4.42 4.12 3.85 3.60 3.37 3.16 F am. 3F am. kN kN 7.5 22.6 6.9 20.6 6.31 18.9 5.83 17.5 5.41 16.2 5.03 15.1 4.70 14.1 4.41 13.2 4.14 12.4 3.90 11.7 3.68 11.0 3.48 10.4 3.28 9.8 3.05 9.2 2.85 8.6 2.67 8.0 2.50 7.5 2.34 7.0 defl. F u. F am. 4F am. defl. mm 3 6 10 17 25 35 46 60 76 94 114 136 159 183 208 235 263 294 kN 8.54 7.84 7.26 6.75 6.30 5.90 5.51 5.05 4.65 4.30 3.99 3.71 3.46 3.24 3.03 2.84 2.67 2.51 kN 6.3 5.81 5.38 5.00 4.67 4.37 4.08 3.74 3.44 3.18 2.95 2.75 2.56 2.40 2.25 2.11 1.98 1.86 kN 25.3 23.2 21.5 20.0 18.7 17.5 16.3 15.0 13.8 12.7 11.8 11.0 10.3 9.6 9.0 8.4 7.9 7.4 mm 3 6 11 18 27 38 51 65 80 97 116 136 159 183 209 236 265 297 - qu. or Fu. is the maximum load, not including dead load, to compare with the amplified design load; - qam or Fam. is the maximum allowed load, not including dead load, to apply to the truss; - this table considers centrated load; - the load has to be applied on the nodes; otherwise the point load, applied between two successive nodes, must be no greater than 1,5 kN; - the followings tables are calculated in order to guarantee the strength and the local stability of the members of the truss; the global stability verification is left to the personnel in charge of assembly, check and certification; RF40 - simply supported - eccentric load 40 35 UDL Load (kN) 30 CPL 25 TPL 20 QPL 15 FPL 10 5 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 span (m) Page 20 / 24 LT RC RF40 RF 40 RF40 C A N T ILEV E R - C E N T R ED LO A D span [m] 1 2 3 4 5 6 7 ● ● UNIFORM. DISTRIBUITO CONCENTRATO UNIFORMLYDISTRIBUITED POINTLOAD qu. qam. qam·L defl. kN/mkN/m kN mm 29.2 22 21.6 0.71 10.7 7.9 15.8 4 5.57 4.13 12.4 11 3.41 2.52 10.1 22 2.29 1.69 8.5 36 1.63 1.20 7.2 55 1.20 0.89 6.2 77 diago nal failure chord failure F u. F am. F am. defl. kN 21.5 14.0 10.3 8.07 6.59 5.51 4.70 kN 15.9 10.4 7.6 6.0 4.9 4.1 3.5 kN 15.9 10.4 7.6 6.0 4.9 4.1 3.5 mm 1 7 18 34 55 81 111 - qu. or Fu. is the maximum load, not including dead load, to compare with the amplified design load; - qam or Fam. is the maximum allowed load, not including dead load, to apply to the truss; - this table considers centrated load; - the load has to be applied on the nodes; otherwise the point load, applied between two successive nodes, must be no greater than 1,5 kN; - the followings tables are calculated in order to guarantee the strength and the local stability of the members of the truss; the global stability verification is left to the personnel in charge of assembly, check and certification; RF40 - cantilever - centred load 20 UDL CPL Load (kN) 15 10 5 0 1 2 3 4 Span (m) Page 21 / 24 5 6 7 LT RC RF40 RF 40 RF40 C A N T ILE V ER - EC C E N T R IC LO A D ● span [m] 1 2 3 4 5 6 7 ● UNIFORM. DISTRIBUITO CONCENTRATO UNIFORMLYDISTRIBUITED POINTLOAD qu. qam. qam·L defl. kN/mkN/m kN mm 17.8 13 13.2 0.43 7.25 5.4 10.7 3 4.05 3.00 9.0 8 2.60 1.93 7.7 17 1.81 1.34 6.7 29 1.32 0.98 5.9 45 1.00 0.74 5.2 65 diago nal failure chord failure F u. F am. F am. defl. kN 14.6 10.7 8.36 6.81 5.71 4.88 4.21 kN 10.8 7.9 6.2 5.0 4.2 3.6 3.1 kN 10.8 7.9 6.2 5.0 4.2 3.6 3.1 mm 1 6 15 29 48 72 101 - qu. or Fu. is the maximum load, not including dead load, to compare with the amplified design load; - qam or Fam. is the maximum allowed load, not including dead load, to apply to the truss; - this table considers centrated load; - the load has to be applied on the nodes; otherwise the point load, applied between two successive nodes, must be no greater than 1,5 kN; - the followings tables are calculated in order to guarantee the strength and the local stability of the members of the truss; the global stability verification is left to the personnel in charge of assembly, check and certification; RF40 - cantilever - eccentric load 14 UDL 10 CPL Load (kN) 12 8 6 4 2 0 1 2 3 4 Span (m) Page 22 / 24 5 6 7 LT RC RF40 RF 40 Carico di punta N Axial load height Nbuck m 3 6 9 12 15 Nstr Nult Namm. kN 235 235 235 235 235 kN 235 110 52 30 19 kN 174 81 39 22 14 Nbuck is the elastic critical buckling load Nstr is the maximum load to satisfy resistance verify Nult =min(Nbuck, Nstr) Namm= Nult/1,35 RF40 - Axial load Load (kN) - kN 329.0 110.0 52.0 30.0 19.0 200 180 160 140 120 100 80 60 40 20 0 3 5 7 9 11 13 15 height (m) Page 23 / 24 LT RC RF40 RF 40 10 Annex 1: Approximate combined resistance VRd-MRd This graph provides an approximate combined resistance VRd-MRd of truss RF40, to be used exclusively for pre-calculation, and IT DOESN’T REPLACE the structural calculation of the truss which must be performed for any installation. Page 24 / 24 LT RC RF40