Visualizar - Dedini S/A Indústrias de Base

Transcription

Visualizar - Dedini S/A Indústrias de Base
+1
Agenda
1. Caracterização da cana de açúcar
2. Projeções de produção de cana de açúcar no Brasil
3. Evolução das impurezas minerais
4. Evolução das impurezas vegetais
5. Evolução da demanda de energia elétrica
6. Participação do bagaço da cana de açúcar na matrix
energética nacional
7. Ponderações
A Energia da Cana de Açúcar
608 x Mcal/tc
IMPUREZAS
=>
VEGETAIS
• Ponteiro
Etanol
Bagaço
com 50% umid.
598 x Mcal/tc
Colmos
+
Palha
com 15%
512 Mcal/tc
ELETRICIDADE
• Folhas Secas
Açúcar
=>
• Folhas Verdes
+
Projeção de Processamento
853
898
990 1.037
Milhões tc
763 808
719
634 676
944
Fonte: Companhia Nacional de Abastecimento
Impurezas Minerais
Impurezas Minerais
(Kg/tc)
21
19
17
15
13
11
9
7
5
Abril
Maio
Junho
Julho
Agosto
Média safras
Safras 06;07
06, 07ee08
08
Méida
Setembro
Safra 09
Outubro
Novembro
Dezembro
Safra 10
Fonte: GEGIS - Grupo de Estudos em Gestão Industrial do Setor Sucroalcooleiro
Impurezas Minerais
 Média Usinas Brasileiras (GEGIS): 10 kg/tc
 Safra de 632 Mtc => 6,32 Mt IM base seca
 Densidade Média IM: 1,75 t/m³
 Volume IM: 3,61 Mm³/ano
1,4 Pirâmides
de Quéops
ao ano
Pirâmide de Quéops
Volume Pirâmide ... 2,57 Mm3
Impurezas Vegetais
Impurezas Vegetais
(Kg/tc)
90
80
70
60
50
40
30
Abril
Maio
Junho
Julho
Agosto
Médiasafras
Safras06;07
06, 07e e0808
Méida
Setembro
Safra 09
Outubro
Novembro
Dezembro
Safra 10
Fonte: GEGIS - Grupo de Estudos em Gestão Industrial do Setor Sucroalcooleiro
Matriz Energética Brasileira
PARTICIPAÇÃO EFETIVA DAS FONTES DE ENERGIA NA MATRIZ
Bagaço
de Cana
18.516 GWh
4%
9%
1%
7%
80%
2010: Geração de 18.500 GWh, proveniente do bagaço da cana de açúcar - 2,1 GWm (8.760 h)
Fonte: ANEEL - Banco de Informações de Geração
2%
1%
3%
PARTICIPAÇÃO DA BIOMASSA DA CANA
EVOLUÇÃO DA OFERTA DE ENERGIA ELÉTRICA
PARTICIPAÇÃO %
Histórico Geração de Energia Elétrica no Brasil
504 TWh
349 TWh
3,7 TWh
100%
403 TWh
1%
18,5 TWh
2%
7,7 TWh
87%
84%
Hidroelétricas
4%
80%
76%
2000
2005
Outros
Nuclear
Bagaço de Cana
Óleo & Gás
Hidro
Fonte: MME – Ministério de Minas e Energia – Séries Históricas
2010
Premissas – Projeção da Bioeletricidade
 100% Bagaço voltado a produção de energia termelétrica
 Processamento de 33% palha da cana de açúcar para energia
 Garantias físicas concedidas
 Potência equivalente c/200 dias efetivos de safra
 Caldeiras 67 bar x 520oC
 Combinação de turbinas de Contra Pressão e Condensação
 Processamento de cana de açúcar:
 Moagem safra 2015/16 ... 808 Mtc
 Moagem safra 2020/21 ... 1.037 Mtc
Hidroelétricas
Potencial Energético da Cana de Açúcar
Ponderações

Fim das queimadas, no estado de São Paulo

Evolução da mecanização agrícola

Processo de difusão na extração

Alongamento do período de safra

Operação durante o período de entressafra

Aumento das impurezas minerais

Aumento das impurezas (?) vegetais

Aumento da demanda de energia elétrica no Brasil

Forte tendência de utilização de fontes renováveis de energia

Crescimento do setor sucroenergético:
•
Novas fronteiras
•
Formação da mão de obra
•
Formação dos canaviais
Fontes

MME - Ministério de Minas e Energia - Séries Históricas

MME/EPE – Plano Decenal de Expansão de Energia 2020

ANEEL - Agência Nacional de Energia Elétrica - Banco de
Informação de Geração

CONAB – A Geração Termoelétrica com a Queima do Bagaço de
Cana de Açúcar no Brasil

CTC – Biomass Power Generation, Sugar Cane Bagasse and Trash

GEGIS – Grupo de Estudos em Gestão Industrial Sucroalcooleira

Monografia/ESALQ – Aproveitamento Agroindustrial do Palhiço
da Cana de Açúcar
Histórico das Caldeiras Dedini
Licença Zurn p/ Fab. Caldeiras
M. DEDINI
Metalúrgica
DEDINI
D.Z.
ZANINI
ZANINI
Licença Foster Wheeler
Fornecimentos
 Caldeiras a Bagaço ......................................... 1.255
 Caldeiras Industriais ...................................
393
 Caldeiras a biomassa, exceto bagaço .......
3
 Plantas de Cogeração ...................................
114
Total de Caldeiras ...................... 1.651
Obs.: dados até dez/2010
Histórico das Caldeiras Dedini
1920 - FUNDAÇÃO “OFFICINAS DEDINI”
1930 - CALDEIRA DEDINI VERTICAL E FOGOTUBULAR
1940 - CALDEIRA AQUATUBULAR TIPO BABCOCK E STIRLING
1945 - CONTRATO COM COMBUSTION ENGINEERING
1951 - CALDEIRA ZANINI
1960 - PROJETOS DEDINI (V 2/4, V 2/5)
1977 - CONTRATO COM FOSTER WHEELER
1979 – CONTRATO COM ZURN – GRELHA ROTATIVA
1981 - CALDEIRA DEDINI - BMP E AT
1985 – CALDEIRA ZANINI - AZ/ZANITEC
1989 - SELO ASME - FABRICAÇÃO E MONTAGEM (S, U, PP)
2000 – CALDEIRA COGEMAX MULTICOMBUSTÍVEL PARA COGERAÇÃO
2001 – CALDEIRA AT E AZ ATÉ 250 t/h E GRELHA FLAT PIN HOLE
2005 – CALDEIRA AT-SINGLE DRUM ATÉ 400 t/h E 120 bar
ENVIROTHERM
Envirotherm in General
ENVIROTHERM
→ an experienced and qualified engineering partner
→ with an extensive list of references and
→ strong growth based on a portfolio of
proprietary technologies acquired from LURGI
CLEAN ENERGY
Modern
1
CLEAN AIR
(Air Pollution Control - APC)
Highly Efficient
Gasification Technologies
Flue Gas Cleaning
Technologies
Multi-Purpose
Production and Application of
Combustion Technologies
Honeycomb SCR Catalysts
Professional Competence
Cooperation and License Agreements
Clean Energy
 FB/CFB – Power Plants
ENVIROTHERM
• Cooperation with the Slovak Boiler Manufacturer SES, Tlmače
• DEDINI, Brazil, for fluid bed technologies
• Shriram epc, India, fluid bed (CFB) and
fixed bed (BGL) gasification
 Gasification
• Collaboration with CEMEX on CFB gasification in the Cement
Industry (industrial know-how from Ruedersdorf facility)
• University of Clausthal-Zellerfeld, Germany
• CUTEC Institute – R&D in CFB gasification
Clean Air
 SCR Catalysts Production
 SCR-Process
• Joint Venture with Dongfang Boiler Group,
Chengdu, Sichuan, China
• Dongfang, SSEP for SCR process in China
• Cooperation with ERC GmbH, Germany
• Jeongwoo, for ESP in Korea
 Clean Air Activities
• Longking, SSEP, TFEN, DATANG Group
for fabric filter in China
• VT Corp for ESP in India
2
Professional Competence
ENVIROTHERM
Clean Combustion Technologies:
BFB and CFB
3
Professional Competence
Fluidized Bed Combustion:
Available Technologies
ENVIROTHERM
• Bubbling and Circulating Fluidized Bed Technologies are a highly accepted
base technologies in utility and other industries for combustion of coal,
(high/low rank), biomass and various residual materials (sludges, RDF).
• Fluidized Beds represent proven and reliable technologies with numerous
reference plants and excellent emission values.
• Downstream technologies for dry dedusting (Electrostatic Precipitator and
Fabric Filter) are available with Envirotherm and are designed in accordance
with the latest environmental laws/directives.
• BFBs cover the lower capacity range of steam production,
CFBs are available for larger units.
• Both Fluidized Bed Technologies offer their specific advantages for their
specific range of application.
4
Professional Competence
New Bagasse = New Challenge
ENVIROTHERM
• Increase in moisture content (up to 65%):
lower heating value, resulting in higher amount of flue gas
• Increase in chlorine content (up to 0,05%):
high potential for „High Temperature Chlorine Corrosion“ in boilers without
appropriate design
• Increase in content of impurities/ash (up to 10%):
to be considered in boiler and equipment design
• Increase in sulphur content (up to 0,05%):
use of limestone required in order to meet legal SO2 emission limits
All future challenges mentioned will be met
by our BFBs and CFBs
5
Professional Competence
Bubbling Fluidized Bed (1)
ENVIROTHERM
• Use of primary air for fluidization and of secondary air for complete
combustion as well as for enhanced temperature and emission control
• Injection of fuel directly into the bed via several feeding points in order to
support a homogeneous energy input across the combustor cross section
• Proven fluidizing nozzles with low pressure drop,
but even air distribution
6
Professional Competence
Bubbling Fluidized Bed (2)
ENVIROTHERM
• Flue gas recirculation for temperature control in case of varying fuel qualities
(e.g. season / off-season)
• Bottom ash discharge via multiple openings in the fluidization nozzle grate or
via an „open“ nozzle grate in case of high impurities / tramp material content
• Co-combustion of various fuels is
possible, when considered during
boiler design
7
Professional Competence
Bubbling Fluidized Bed (3)
ENVIROTHERM
• Coarse ash classification and re-feed into the BFB combustor in case of
• high amount of ash in the fuel and
• low amount of alkalines in the fuel ash
• Desulphurization is possible via limestone injection
• Operable load range between 50 and 100%
• Application in the lower capacity range
• High reliability due to
• simple and robust design
• good temperature control: avoids agglomerations
• design of coarse ash discharge with sufficient margins
8
Professional Competence
Circulating Fluidized Bed (1)
ENVIROTHERM
Basic Principles of CFB Combustion
• Intense and turbulent mixing of solid fuel,
air and flue gas
• Uniform system temperature: no peaks,
no agglomerations
• No HP-steam bundles in the ash stream:
no bundle erosion
• Low and controlled combustion
temperature due to Fluidized Bed Heat
Exchanger technology
• Generous residence time:
excellent carbon conversion
• Optimum conditions for multiple fuels;
variation of fuel shares feasible during
operation
9
Professional Competence
Circulating Fluidized Bed (2)
ENVIROTHERM
Basic Flow Sheet of a CFB Boiler
10
Professional Competence
Circulating Fluidized Bed (3)
ENVIROTHERM
Emissions and Efficiency
•
Optimum and stable combustion conditions for lowest emissions
•
Efficient sulphur capture in the CFB combustor by limestone injection
•
Low NOx emissions due to
• low combustion temperature
• low excess air ratio
• staged combustion
•
Partial capture of chlorine and fluorine
in the CFB combustor
•
High boiler efficiency due to
• low excess air
• high carbon burnout
• no flue gas recirculation
11
Professional Competence
ENVIROTHERM
Fluidized Beds: Comparison
Bubbling
Fluidized Bed
Circulating
Fluidized Bed
NOx


CO
















min. Part Load Capabilty


Boiler Efficiency


Ability of Firing Varying Fuel Qualities


Ability to Cope with "New Bagasse"








Feature
Emissions
Dust
SO2 Capture
HCl and HF Capture
Combustor Cross Section
Complexity of Combustion System
Particle Residence Time
Uniformity of Combustion Temperature
CAPEX
OPEX
Status of Technology
Clean and reliable combustion technologies showing excellent
features with respect to emissions, efficiency and future bagasse
12
Professional Competence
ENVIROTHERM
“As a participant in Simtec 2011 ENVIROTHERM is very
pleased with the introduction of our technologies into the
Brazilian market, and we reaffirm our complete confidence in
the potential and performance of the Fluidized Bed Boilers.”
“Our partnership with DEDINI reinforces this confidence, and
guarantees that all the advantages of the Fluidized Bed
Boilers will be fully exploited to the benefit of the Brazilian
sugar, ethanol and bioelectricity market.”
Werner-Fr. Staab, ENVIROTHERM GmbH
13
Professional Competence
ENVIROTHERM
Obrigado!
for your attention
Envirotherm GmbH
Werner-Fr. Staab
Head of Sales (Thermal Processes)
Ruhrallee 185 D–45136 Essen Germany
werner_staab@envirotherm.de
www.envirotherm.de
14
Professional Competence
Lançamento
2011
LANÇAMENTO DAS CALDEIRAS COM LEITO FLUIDIZADO
&