Design-support for MSH sections
Transcription
Design-support for MSH sections
Umschlag_2007_engl 15.01.2008 14:43 Uhr Seite 28 VA L L O U R E C & M A N N E S M A N N T U B E S VA L LO U R E C & M A N N E S M A N N T U B E S Vallourec Group V & M 3 B 0 0 11 - 8 G B V & M DEUTSCHLAND GmbH Theodorstraße 90 40472 Düsseldorf · Germany Phone +49 (2 11) 9 60-35 80 Fax +49 (2 11) 9 60-23 73 E-Mail: info.service@vmtubes.de www.vmtubes.com/msh Design-support for MSH sections according to Eurocode 3, DIN EN 1993-1-1: 2005 and DIN EN 1993-1-8: 2005 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 2 Design-Support for MSH sections according to Eurocode 3, DIN EN 1993-1-1: 2005 and DIN EN 1993-1-8: 2005 in cooperation with Prof. Dr.-Ing. R. Kindmann, Dr.-Ing. M. Kraus and Dipl.-Ing. J. Vette, University of Bochum, Dipl.-Ing. O. Josat, Dipl.-Ing. J. Krampen and Dipl.-Ing. C. Remde, Vallourec & Mannesmann Tubes VALLOUREC & MANNESMANN TUBES is world market leader in the manufacture of seamless hot rolled steel tubes for all applications. The company operates 11 state-of-the-art pipe mills worldwide, eight located in Europe (four plants at three locations in Germany and four plants in France), two at a facility in Brazil and one in the USA. With an annual output of up to three million tonnes the world’s largest and most comprehensive range of seamless steel tubes is supplied. Hot rolled circular, square and rectangular Mannesmann Structural Hollow Sections of VALLOUREC & MANNESMANN TUBES have been used successfully for several decades. Modern steel architecture, with its elegant and transparent forms, would be practically impossible to create without them. 2 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 3 Descriptions and basic informations 4 Classification of hollow cross sections 5 Calculation methods/Determination of internal forces 5 Resistance of cross sections 5 Buckling resistance of members 6 Design-support for members in compression Lattice girders 8 9 Joints of lattice girders 10 Design-support for K gap joints with square MSH-chords (SHS) 12 Design-support for K joints with circular MSH sections (CHS) 13 Design-support for K gap joints with rectangular MSH-chords (RHS) 14 Design-support for K overlap joints with square MSH-chords (SHS) 16 Calculation examples 18 Circular MSH sections 22 Square MSH sections 24 Rectangular MSH sections 26 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 4 1 Descriptions and basic informations Table 1 Descriptions and available dimensions circular (CHS) square (SHS) rectangular (RHS) 21.3 mm to 711 mm 40 x 40 mm to 400 x 400 mm 50 x 30 mm to 500 x 300 mm Cross section Outer measurement d, b or h Wall thickness t 2.3 mm to 100 mm Available lengths maximum 20 mm up to 16 m; standard up to 12 m This brochure for the design only covers hot-rolled MSH sections (according to DIN EN 10210). Due to production differences they provide more favourable characteristics than cold formed profiles: • • • • higher load-carrying capacity for columns and members in compression larger cross section areas as a result of smaller corner radiuses substantially better suitability for welding in comparison to cold formed hollow profiles according to DIN EN 10219 there are no restrictions for the ability of welding (DIN EN 1993-1-8:2005) Table 2 Materials: Yield strength fy, tensile strength fu, impact energy KV and carbon equivalent CEV Steel designation DIN EN 10 027 / EN 10 210-1 old fy in N/mm2 fu in N/mm2 n. EN 1993 for t ≤ 40 mm KV* in J at test temp. CEV* in % for t ≤ 16 mm 16 < t ≤ 40 mm Structural steels S 355 J0H 1. 0547 S 355 J2H 1. 0576 S 355 K2H 1. 0512 St 52-3U St 52-3N 355 355 355 510 510 510 0 °C: 27 -20 °C: 27 -20 °C: 40 0.45 0.45 0.45 0.47 0.47 0.47 Normalised fine grain structual steels S 355 NH S 355 NLH S 460 NH S 460 NLH StE 355 N TStE 355 N StE 460 N TStE 460 N 355 355 460 460 490 490 560 560 -20 °C: 40 -50 °C: 27 -20 °C: 40 -50 °C: 27 0.43 0.43 0.53 0.53 0.45 0.45 0.55 0.55 1. 0539 1. 0549 1. 8953 1. 8956 S 690 approval in each individual case * according to DIN EN 10210-1 According to DIN EN 1993-1-1 the yield and tensile strengths fy and fu are either to be taken out of the product standard (DIN EN 10210-1) or simplified from DIN EN 1993-1-1. The values in table 2 correspond to the simplified specifications according to DIN EN 1993-1-1 for t ≤ 40 mm. The DIN EN 10210-1 demands a reduction of the yield strength for wall thicknesses > 16 mm already as well as different tensile strengths. The yield strength according to EC 3 specifies a nominal value for calculations, not the actual minimum value of the material. Detailed information and brochures are available at: www.vmtubes.com 4 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 5 2 Classification of hollow cross sections By the classification of the cross sections the resistance and rotation capacity due to local buckling is supposed to be determined. Table 3 Classification on the bases of c/t- and d/t-ratios of cross section parts subjected to compression Cross section ε= 235/fy fy in N/mm2 Class Pure compression Pure bending 1 c/t ≤ 33 ε c/t ≤ 72 ε 2 c/t ≤ 38 ε c/t ≤ 83 ε 3 c/t ≤ 42 ε c/t ≤ 124 ε 1 d/t ≤ 50 ε2 2 d/t ≤ 70 ε2 3 d/t ≤ 90 ε2 fy ε ε2 235 1.00 1.00 275 0.92 0.85 355 0.81 0.66 Cross sections which do not comply to the conditions of the classes 1, 2 or 3 are classified as class 4. The tables of the sections 14 to 16 include details on the classification using the steel grade S 355. The first digit describes the classification for pure compression, the second for pure bending. 420 0.75 0.56 460 0.71 0.51 3 Calculation methods/Determination of internal forces Internal forces can be determined using an elastic or a plastic structural analysis. A plastic analysis can only be performed, if the structure provides sufficient rotation capacity at the locations where plastic hinges occur. For the structural analysis the design values of the loading have to be taken into consideration, which means that partial safety factors γF and combination factors ψ have to be regarded for the actions. As a result the design values of the internal forces NEd, VEd und MEd. 4 Resistance of cross sections Class: Tension: NEd ≤ 1.0 Npl/γM0 all Compression: NEd ≤ 1.0 Npl/γM0 1, 2 or 3 NEd ≤ 1.0 Aeff · fy/γM0 4 MEd ≤ 1.0 Mpl/γM0 1 or 2 Bending moment: MEd Wel · fy/γM0 Shear: ≤ 1.0 VEd ≤ 1.0 Vpl/γM0 Design-support for MSH sections Partial safety factors: According to DIN EN 1993-1-1 γM0 = γM1 = 1.00 is recommended. The definition will be stated in the national annex, which is not yet available. Npl, Vpl and Mpl for fy = 35.5 kN/cm2: see tables in sections 14 to 16. For a different yield strength the values can be converted using the ratio of the strengths. 3 no shear buckling! 5 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 6 Bending moment and shear force: The influence of the shear force on the bending moment resistance has to be taken into consideration if the shear force VEd exceeds 0.5 · Vpl/γM0.In that case a reduced yield strength has to be regarded for the parts of the cross section subjected to shear: 2 2 · VEd –1 red fy = (1 – ρ) · fy where ρ = Vpl/γM0 Bending moment and axial force: For classes 1 and 2 cross sections the following criterion should be satisfied: MEd ≤ MN,Rd where MN,Rd is the design plastic moment resistance reduced by the axial force NEd. For rectangular hollow sections the following approximation may be used: MN,Rd = 1–n Mpl M · where: MN,Rd ≤ pl γM0 1–0.5·aw γM0 where: n = NEd Npl/γM0 2bt but aw ≤ 0.5 A For circular hollow cross sections EC 3 does not provide any specifications. Analogously the following condition is obtained according to Kindmann/Frickel „Elastische und plastische Querschnittstragfähigkeit“ (Ernst & Sohn publishing, Berlin): aw = 1– 2 MEd NEd + · arc sin π Mpl/γM0 Npl/γM0 ≤ 1.0 5 Buckling resistance of members Buckling resistance of members in compression Uniform members with class 1, 2 and 3 sections shall be verified against buckling as follows: NEd ≤ 1.0 χ · Npl/γM1 1 χ= Φ+ – Φ2 – λ2 aber χ ≤ 1.0 – – Φ = 0.5 · [1+α · (λ – 0.2) + λ2] N =L · f ; N i · π N E – = λ pl cr cr y cr = π2EI L2cr α = 0.21 for buckling curve a (S 235 to S 420) α = 0.13 for buckling curve a0 (S 460) Lcr: buckling length 6 _ λ 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 χ for curve a a0 1.000 1.000 0.989 0.993 0.977 0.986 0.966 0.978 0.953 0.970 0.939 0.961 0.924 0.951 0.908 0.940 0.890 0.928 0.870 0.913 0.848 0.896 0.823 0.876 0.796 0.853 0.766 0.827 0.734 0.796 0.700 0.762 0.666 0.725 0.631 0.687 0.596 0.648 0.562 0.610 0.530 0.573 0.499 0.538 0.470 0.505 _ λ 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.80 2.90 3.00 χ for curve a a0 0.443 0.475 0.418 0.446 0.394 0.420 0.372 0.395 0.352 0.373 0.333 0.352 0.316 0.333 0.299 0.315 0.284 0.299 0.270 0.283 0.257 0.269 0.245 0.256 0.234 0.244 0.223 0.232 0.204 0.212 0.187 0.194 0.172 0.178 0.159 0.164 0.147 0.151 0.136 0.140 0.118 0.122 0.111 0.114 0.104 0.106 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 7 Buckling resistance of members in bending Procedure for the verification of sufficient carrying capacity: – Application of equivalent geometric imperfections – Determination of internal bending moments using a second order theory analysis taking the equivalent geometric imperfections into account (approximations see below) – Verification of sufficient cross section carrying capacity according to section 4 for “bending and axial force” Equivalent geometric imperfections: a) Initial sway imperfections b) Initial bow imperfections φ = 1/200 · αh · αm According to DIN EN 1993-1-1 the initial bow imperfections are recommended as stated in the following table. The definition will be stated in the national annex, which is not available yet. Reduction factor for height h [m] applicable to columns: 2 2 αh = but ≤ αh ≤ 1.0 3 h e0,d / L Reduction factor for the number of columns in a row: αm = 1 0.5 · 1 + m m is the number of columns in a row including only those columns which carry a vertical load NEd not less than 50% of the average value of the column in the vertical plane considered. Buckling curve Elastic analysis Plastic analysis a0 a 1/350 1/300 1/300 1/250 Equivalent loading Equivalent loading Approximations for the bending moment according to second order theory: For the approximation the first order theory bending moment is multiplied by an enlargement factor α: MII ≅ α · MI α= 1+ δ · NEd /Ncr,d Bending moment according to first order theory and correction factors δ for selected cases Hog. moment: MI = - q · L2/2 δ = - 0.40 Hog. moment: MI = P · L δ = - 0.18 Hog. moment: MI = - NEd·φ·L δ = - 0.18 Sag. moment: MI = q · L2/8 δ = + 0.03 Sag. moment: MI = P · L/4 δ = - 0.18 Sag. moment: MI = NEd · e0,d δ=0 1–NEd /Ncr,d Ncr,d = Ncr / γΜ1 Condition: α ≤ 3 L = beam length Hog. moment: MI = - q · L2/8 Hog. moment: MI = - 3 PL/16 Hog. moment: MI ≅ - NEd · e0,d δ = - 0.37 δ = - 0.27 δ = - 0.33 Sag. moment at: 5/8 · L: Sag. moment at: 5/8 · L: I 2 I M = 9 q L /128 Sag. moment: M = 5 PL/32 MI ≅ 0.6 NEd · e0,d δ = + 0.10 δ = - 0.30 δ = + 0.07 Online verification against buckling at www.vmtubes.com (STACOM) Design-support for MSH sections 7 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 8 6 Design-support for members in compression Example 1, P.18 Example 5, P. 21 8 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 9 7 Lattice girders Lattice structures are often designed as single span girders with parallel chords, as for example roof girders of long span constructions. Established structures in practice are: - Warren truss - small amount of work due few joints - long diagonals in compression - few points of load application at the upper chord - Warren truss with vertical posts - many points of load application at the upper chord - many joints - extensive joints at lower chord and large amount of work - Pratt truss Design-support for MSH sections - short diagonals in compression - many points of load application at upper chord - many joints and therefore large amount of work 9 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 10 Compared to plate girders lattice girders with parallel chords using hollow members provide economic advantages for span lengths greater than about 20 m. The split-up of the internal bending moment into tension and compression forces leads to light roof constructions saving material. Additionally hollow profiles provide an ideal cross section shape for centrical compression loading. Support for the construction: - Lattice girders with parallel chords usually have heights from 1/10 to 1/20 of the system lengths. As a guide value for pre-design a girder height of 1/15 of the span length is appropriate. - The angles between the chords and the brace members should be in-between 45° and 60°. In any case an angle greater than 30° has to be chosen. - Joints of lattice structures should be designed in a way that the centrelines of the members intersect in a single point. In the case they show eccentricities chapter 5.1.5 of DIN EN 1993-1-8:2005 has to be regarded (see section 8). - Loadings, as for instance from purlins, should be introduced at the joints of the structure. - Moments at the joints, caused by the actual rotational stiffness of the connections, may be neglected in the design of the members and joints, provided that the range of validity for the joints are observed and the ratio of the system length to the heights of the members is not less than 6. The cross section carrying capacity has to be verified for each member and for those in compression the stability as well. For connections the design joint resistance according to DIN EN 1993-1-8:2005 has to be verified. 8 Joints of lattice girders Each member of a lattice structure is usually loaded by axial forces for which they have to be designed. At joints, several members come together and the directions of force-actions have to be redistributed in order to fulfil the equilibrium. Joints are highly stressed details of the structure for which the design joint resistance has to be determined and verified. Usually hollow profiles are welded at the connections; welds have to be verified separately however. The ends of brace members may not be flattened or pressed together. The following types of joints are often used: K gap joint K overlap joint K joint with vertical post (N joint) KT joint 10 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 11 The following supports for design may be applied for mainly stationary loading. Moments resulting from eccentricities of the centrelines have to be regarded in the design of tension chord members and brace members as well as the design of the connections if the following limits are not fulfilled: CHS: – 0.55 · d0 ≤ e ≤ 0.25 · d0 resp. RHS/SHS: – 0.55 · h0 ≤ e ≤ 0.25 · h0 In the design of compression chord members eccentricities usually have to be taken into account, even if they are within the limits specified above. According to DIN EN 1993-1-8 a partial safety factor of γM5 = 1.00 is recommended for the design of the joints. The definition will be stated in the national annex, which is not available yet. Definition and Notation Table 4 Range of validity for K and N gap joints according to DIN EN 1993-1-8:2005 Circular MSH sections (CHS): Rectangular MSH sections (RHS): 0.35 1. bi/b0 ≥ Max 0.1 + 0.01 · b0/t0 2. 3. 4. 5. bi/ti ≤ 35 und hi/ti ≤ 35 b0/t0 ≤ 35 und h0/t0 ≤ 35 0.5 ≤ h0/b0 ≤ 2.0 0.5 ≤ hi/bi ≤ 2.0 6. g ≥ Max 0.5 · b · (1–(h +t b+ t+ h + b )/(4 · b )) (h + b + h + b ) If g ≥ 1.5 · b · 1 – the joint has to 4·b 0 1 1 i 7. 1. 2. 3. 4. 5. 1 2 2 0 2 1 0 2 2 0 be treated as two separate Y and T joints 8. 9. 6. 0.2 ≤ di/d0 ≤ 1.0 10 ≤ d0/t0 ≤ 50 10 ≤ di/ti ≤ 50 Θi ≥ 30° Class 2 sections in terms of pure bending at least (see section 2) g ≥ t1+t2 Class 2 sections in terms of pure bending at least (see section 2) Θi ≥ 30° Square MSH sections (SHS): Points 1-9 see RHS 10. 15 ≤ b0/t0 ≤ 35 11. 0.6 ≤ b1 + b2 ≤ 1.3 2 · b1 Table 5 Range of validity for K and N overlap joints according to DIN EN 1993-1-8:2005 Rectangular and square MSH sections (RHP/QHP): Circular MSH sections (CHS): 1. 2. Points 1-5 see table 4 6. λ0V ≥ 25% 3. 4. 5. 6. bi/b0 ≥ 0.25 Chord: 0.5 ≤ h0/b0 ≤ 2.0 and class 2 section in terms of pure bending at least Braces (in compression): class 1 sections (pure bending) Braces (in tension): bi/ti ≤ 35 and hi/ti ≤ 35 25% ≤ λ0V ≤ 100% and bi/bj ≥ 0.75 Θi ≥ 30° Design-support for MSH sections 11 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 12 9 Design-support for K gap joints with square MSH-chords (SHS) Preconditions: – Joint has to be within the range of validity given in table 4! – Same yield strength fy for all members Design resistance of the joint N1,Rd = nRd · kn · Npl,0 sin θ1 · γM5 N2,Rd = N1,Rd · sin θ1 sin θ2 nRd see diagram below Note: For circular braces the design resistances Ni,Rd have to be multiplied by the factor π / 4. For that case bi = di is valid. kn is obtained sin Θ is given by: θ sin θ 30° 0.50 for compression chords by: |No,d| · γM5 2 · b0 · ≤ 1.0 kn = 1.3 – 0.4 · Npl,0 b1 + b2 40° 0.64 45° 0.707 50° 0.77 for tension chords by: kn = 1.0 60° 0.87 Example: - Chord member SHS 150x150x6.3 mm (tension) - Brace members SHS 80x80x5 mm - Gradient of the brace members 45° (e = 0 cm) Check of the validity given in table 4: 1. bi/b0 = 8/15 = 0.533 ≥ 0.35 2. bi/ti = hi/ti = 80/5 = 16 ≤ 35 8 7.5 · 1– = 3.5 cm 8 15 6. g = 15 – sin 45° = 3.7 cm ≥ Max 1.0 cm 8 7. g = 15 – sin 45° = 3.7 cm ≤ 1.5 · 15 · (1–8/15) = 10.5 cm 8. Members are at least class 2 sections 9. Θ1 = Θ2 = 45° ≥ 30° 10. 15 ≤ b0/t0 = 150/6.3 = 23.8 ≤ 35 b1 + b2 8 + 8 11. 0.6 ≤ 2 · b = 2 · 8 = 1.0 ≤ 1.3 1 Determination of the design resistance: b1 8 b0 15 With b = 15 = 0.533 and t = 0.63 = 23.8: nRd ≈ 0.18 0 0 The limit brace force for a tension chord is: 0.18 · 1.0 · 1270 N1,Rd = 0.707 · 1.0 = 323.3 kN 12 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 13 10 Design-support for K joints with circular MSH sections (CHS) Preconditions: – Joint has to be within the range of validity given in tables 4 and 5! – Same yield strength fy for all members Conditions for design: nRd · kp · Npl,0 sin θi · γM5 N1,Rd Min ≥ Ni,d 1 – Comp. where i = 2 – Tension di · kΘi · Npl,0 (d0 – t0) · γM5 nRd see diagram below (Interim values may be interpolated) Notes: g<0: overlap joint (table 5) g>0: gap joint (table 4) kp is obtained for compression chords by: |minNo,d| · γM5 |minNo,d| · γM5 (1+ ) ≤ 1.0 kp = 1 – 0.3 · Npl,0 Npl,0 kΘi is obtained by: 1+sin Θi kΘi = 12 · sin2 Θi for tension chords by: kp = 1.0 Example: - Chord member: 101.6 x 6.3 mm (tension) - Brace members: 60.3 x 5mm - Gradient of the brace members: 45° (e = 0 cm) Check of validity given in table 4: 1. 0.2 ≤ di/d0 = 60.3/101.6 = 0.594 ≤ 1.0 2. 10 ≤ d0/t0 = 101.6/6.3 = 16.1 ≤ 50 3. 10 ≤ di/ti = 60.3/5 = 12.1 ≤ 50 4. Θ1 = Θ2 = 45° ≥ 30° 5. Members are at least class 2 sections 6. g = 10.16 – 6.03 = 1.6 cm ≥ t1 + t2 = 1.0 cm sin 45° Design-support for MSH sections Θi kΘi 35° 1.38 40° 1.15 45° 0.99 50° 0.87 60° 0.72 Determination of the design resistance: d1 d0 g with = 0.594, = 16.1 and = 2.54 and by t0 d0 t0 interpolation: nRd ≈ 0.32 (g/t0 ≤ –4), nRd ≈ 0.26 (g/t0 ≥ 8) nRd ≈ 0.26 + (0.32 – 0.26) · (8 – 2.54)/(4+8) = 0.287 The limit brace force for a tension chord is: NRd = Min 0.287 · 669.6 0.707 · 1.0 6.03 · 0.99 · 669.6 (10.16–0.63) · 1.0 = 272 = 272 kN = 419.4 13 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 14 11 Design-support for K gap joints with rectangular MSH-chords (RHS) Preconditions: – Joint has to be within the range of validity given in table 4! – Brace members are equal profiles SHS/CHS – Same yield strength fy for all members – The compression force in the chord shall satisfy: |No,d| γ Npl,0 · M5 ≤ 0.5 (For small bi/b0-ratios and small compression forces or tension forces in the chord the exact verification according to Eurocode can lead to favourable results) Note: For circular braces the design resistances Ni,Rd have to be multiplied by the factor π /4. For that case bi = di is valid. Conditions for design: 1. Condition (Verification of the chord force) N1,d · sin Θ1 · γM5 VEd = Vpl,0 h0 kα = 0.2 b + 0.35 0 · k n0,Rd = 1 – 1 – 1–v2Ed N0,Rd = α n0,Rd · Npl,0 >N0,d γM5 2. Condition (Verification of the brace force) Ni,Rd = Min n1,Rd · Npl,i γM5 n2,Rd · Npl,0 sin Θi · γM5 > Ni,d n1,Rd and n2,Rd see diagrams below Diagram for n1,Rd: 14 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 15 Diagrams for n2,Rd: Design-support for MSH sections 15 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 16 12 Design-support for K overlap joints with square MSH-chords (SHS) Preconditions: – Joint has to be within the range of validity given in table 5! – Brace members are equal profiles SHS/CHS – Same yield strength fy for all members Note: For circular braces the design resistancese Ni,Rd have to be multiplied by the factor π / 4. For that case bi = di is valid. Design resistance of the joint: The overlapping brace n ·N N1,Rd = Rd pl,1 member 2 does not have γM5 to be verified. Determination nRd taking into account: λ0V = q/p · 100% ≥ 25% (see table 5) With the overlap ratio λ0V the following cases can be distinguished: – Case 1: λ0V = 25% – Case 2: 25% < λ0V < 50% linear interpolation of nRd using case 1 and case 3 – Case 3: 50% ≤ λ0V < 80% – Case 4: 80% ≤ λ0V ≤ 100% Diagrams for nRd in case 1 (λ0V = 25%): 16 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 17 Diagrams for nRd in case 3 (50% < λ0V < 80%): Diagrams for nRd in case 4 (80% ≤ λ0V ≤ 100%): Design-support for MSH sections 17 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 18 13 Calculation examples Example 1: Column with hinged supports (L = 6 m): By considering Lcr = L = 6 m the following can directly be taken from the design-support of section 6: CHS 406.4 x 16 NEd ≈ 6250 kN > 6000 kN In comparison to that the verification against buckling according to sect. 5 is carried out: I = 37449 cm4, Npl = 6966 kN (see section 14), buckling length: Lcr = 600 cm (see section 5) Npl 6966 – π2 EI π2 21000 · 37449 = 21560 kN; λ = N = 21560 = 0.57 Ncr = 2 = L cr 6002 cr χ ≈ 0.9 (buckling curve a, see section 5) Verification against buckling: NEd 6000 = = 0.96 < 1.0 χ · Npl/γM1 0.9 · 6966/1.0 Example 2: Column with fixed support (L = 4 m) and lateral loading: The column shown in the figure has to be verified for stability. Due to the lateral loading the verification will be achieved by a second order theory analysis (ly = 9055 cm4). The buckling length of the column is Lcr = 2L = 8 m. Ncr = π2 EI π2 21000 · 9055 = = 2932.4 kN L2cr · γM1 8002 · 1.0 The bending moment at support due to the uniformly distributed load is (see sect. 5): Mql = –15 · 42 = –120 kNm 2 With δ = – 0.40 from the table of section 5 the enlargement factor α is determined as follows: α= 1+δ · NEd/Ncr.d 1– 0.4 · 1300/2932.4 = = 1.48 ≤ 3.0 1–NEd/Ncr,d 1–1300/2932.4 The second order theory moment is gained with the multiplication of the moment at support by the enlargement factor α (see section 5). Mllq = Mql · α = (–120) · 1.48 = –177.6 kNm 1 The initial sway imperfection is regarded with φ = (for the application of equiv. geo. imperfections see section 5) 200 1300 = 6.5 kN; Mϕl = –H0 · l = – 6.5 · 4 = –26 kNm H0 = φ · NED = 200 With δ = – 0,18 (see section 5): α= 1– 0.18 · 1300/2932.4 = 1.65 ≤ 3.0; 1–1300/2932.4 Mllϕ = (–26) · 1.65 = – 42.9 kNm The internal forces according to the second order theory analysis may only be superposed, if the axial compression force of the loading conditions is identical (limited superposition). In this example the axial compression force is regarded with Nd = 1300 kN in combination with the uniformly distributed load qd as well as the sway imperfection φ. ll = Mll Mll = –177.6 – 42.9 = –220.5 kNm MEd q+ ϕ The bending moment resistance is determined according to section 4 with regard of the axial compression force (since V/Vpl is smaller than 0.5, a reduction of the yield strength is not necessary): n= NEd 1300 = = 0.386; Npl/γM0 3370/1.0 MN,Rd = 18 aw = 1– 2·b·t 2 · 25 · 1.0 = 1– = 0.473 A 94.93 1– n 302 1 – 0,386 Mpl ll = 220.5 kNm · = · = 242.9 kNm ≥ MEd γM0 1 – 0.5 · aw 1.0 1 – 0.5 · 0.473 Condition satisfied! VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 19 Example 3: K gap joint with RHS-chord and SHS-brace members Check of validity: (see section 8) 1. bi/b0 = 7 = 0.35 ≥ Max 20 0.35 ⇐ decisive 20 0.1 + 0.01 · = 0.3 1 2. bi/ti = hi/ti = 7/0.5 = 14 ≤ 35 3. b0/t0 = 20/1 = 20 ≤ 35 und h0/t0 = 10/1 = 10 ≤ 35 4. 0.5 ≤ h0/b0 = 10/20 = 0.5 ≤ 2.0 5. 0.5 ≤ hi/bi = 7/7 = 1 ≤ 2.0 10 + 2 · 2.5 7 6. g = tan 40° – sin 40° = 6.99 cm ≥ Max 2·7+2·7 7. g = 6.99 cm ≤ 1.5 · 20 · 1 – 4 · 20 0.5 · 20 · 1 – 2·7+2·7 4 · 20 = 6.5 cm ⇐ decisive 0.5 + 0.5 = 1.0 cm = 19.5 cm 8. Members are at least class 2 sections 9. Θ1 = Θ2 = 40° ≥ 30° Check of eccentricities: e 2.5 – 0.55 ≤ h = 10 = 0.25 ≤ 0.25 0 Condition satisfied, which means, that the moments resulting from eccentricities may be neglected in the design of the connection. The tension chord does not have to be verified for the moments of eccentricities as well. Determination of the design resistance: 1. Condition (Verification of the chord force) Determination of the plastic shear resistance according to DIN EN 1993-1-1:2005: A · h0 fy,d 54.93 · 10 35.5 = 10 + 20 · 1.0 · = 375.3 kN Vpl,0,d = b + h · 0 0 3 3 With ved = 350 · sin 40° 10 1 – 0.5992 · 0.45 = 0.910 = 0.599, kα = 0.2 · 20 + 0.35 = 0.45 and n0,Rd = 1 – 1 – 375.3 N0,Rd can be determined according to section 11 as follows: 1950 N0,Rd = 0.910 · 1.0 = 1774.5 kN ≥ N0,d = 950 kN Condition satisfied! 2. Condition (Verification of the brace force) The following ratios are necessary for the use of the diagrams: ti 5 bi 7 b0 20 h0 10 t0 = 10 = 0.5; b0 = 20 = 0.35; t0 = 1 = 20; b0 = 20 = 0.5; bi 7 ti = 0.5 = 14 With the diagrams n1,Rd ≈ 1,0 and for n2,Rd ≈ 0.135 is provided. The maximum brace force can be determined as follows: Ni,Rd = 1.0 · 452 = 452.0 kN 1,0 0.135 · 1950 = 409.5 kN ⇐ decisive sin 40° · 1.0 Ni,Rd = 409.5 kN ≥ Ni,d = 350 kN Condition satisfied! Design-support for MSH sections 19 Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 20 Example 4: K overlap joint with SHS Check of validity: (see table 5) b1 b2 8 1. b = b = 14 = 0.57 ≥ 0.25 0 0 h0 = 1.0 and class 1 cross section b0 bi hi 3. and 4. = = 20 ≤ 35 and class 1 cross section ti ti 2. 5. λ0V = 4.7 x 100 10.44 = 45% and 6. Θi >30 ≥ 25 % ≤ 100 % bi and b = 1 ≥ 0.75 j Determination of the design resistance: For λ0V = 0.45 case 2 is decisive. nRd has to be interpolated using the cases 1 and 3. With the ratios ti 4 b1 80 b0 140 t0 = 6.3 = 0.63 ≈ 0.6, b0 = 140 = 0.57 and t0 = 6.3 = 22.2 the diagrams provide: Check of eccentricities: Using the eccentricity e the ratio e/h0 can be deternRd,25 ≈ 0.56 nRd,50 ≈ 0.81 mined (see section 8): Interpolation: e = – 3.68 cm (45 – 25) = 0.76 nRd = 0.56 + (0.81 – 0.56) · 25 425.6 = 323 kN N1,Rd = 0.76 · 1.0 Verification of the design joint resistance: 300 N1,Ed = = 0.93 323 N1,Rd – 0.55 ≤ e –3.68 = = – 0.26 ≤ 0.25 h0 14 Condition satisfied, which means, that the moments resulting from eccentricities may be neglected in the design of the connection. For the design of the compression chord the eccentricities have to be regarded. Example 5: Lattice girder L = 40 m Rectangular hollow sections made of S 355 J2H (hot rolled). The example deals with a roof girder designed as a warren truss. The single span girder is loaded by the self-weight, snow and suction forces due to wind. The loads are combined according to DIN EN 1990:2002. Afterwards the verifications against buckling and for the joint resistances are carried out. Loading table: Load case Dead load G P1 9.85 kN P2 19.7 kN Snow S 7.8 kN 15.6 kN Wind (suction) Ws –6.9 kN –13.8 kN (The dead load includes the self-weight of the girder.) Decisive load combinations according to DIN EN 1990:2002: LCC 1: 1.35 * G + 1.5 * S LCC 2: 0.9 * G + 1.5 * Ws Internal forces LCC 1: Load at each node: P1,d = 1.35 · 19.7 + 1.5 · 15.6 = 50 kN P2,d = P1,d/2 = 25 kN Ad = 3.5 · 50 + 25 = 200 kN Bearing reaction: LCC 2: P1,d = –3 kN P2,d = –1.5 kN Ad = –3.5 · 3 – 1.5 = –12 kN – (200 – 25) · 17.5 + 50 · (12.5 + 7.5 + 2.5) = –775 kN 2.5 max. force in lower chord: UM = 775 + 50/2 = 800 kN max. force in upper chord: OM = max. force in braces: 20 D1 = ± (200 – 25) · 2 = ± 247.5 kN OM = 46.5 kN UM = – 48 kN D1 = ± 14.9 kN VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_02-21 15.01.2008 14:40 Uhr Seite 21 Buckling of the upper chord member (SHS 140 x 8): The nodes of the upper chords are fixed laterally. Buckling length for hollow section chord members according to Annex BB.1.3 of DIN EN 1993-1-1: Lcr = 0.9 · 500 = 450 cm. Using the design-support of section 6 the required cross section can be chosen. With. NEd = –775 kN and Lcr = 4.5 m follows a hollow profile 140 x 140 x 8: I = 1195 cm4, Npl = 1475 kN (see section 15). Ncr = – π2 EI π2 21000 · 1195 = = 1223 kN; λ = L2cr 4502 N 1475 = 1223 N pl cr NEd Verification against buckling for OM: χ · N /γ pl M1 = 1.1 ⇒ χ ≈ 0.596 (buckling curve a, see sect. 5) 775 = 0.596 · 1475/1.0 = 0.9 < 1.0 Buckling of the lower chord member (SHS 140 x 6.3) : Perpendicular to the girder-plane the lower chord is fixed at the bearings and in mid-span by structural elements. Buckling length for hollow section chord members according to Annex BB.1.3 of DIN EN 1993-1-1: Lcr = 0.9 · 2000 = 1800 cm Ncr = – π2 EI π2 21000 · 983,9 = = 62.9 kN; λ = L2cr 18002 N 1181 = 62.9 N pl cr = 4.33 ⇒ χ ≈ 0.051 (buckling curve a, see sect. 5) NEd 46.5 Verification against buckling for UM: χ · N /γ = 0.051 · 1181/1.0 = 0.77 < 1.0 pl M1 Buckling of the brace members (SHS 80 x 5): The brace members are welded continuously to the chord members. Since bi = 0.8 cm < 0.6 · b0 = 0.6 · 14 = 8.4 cm and the connection to the chords is presumed as continuously welded the buckling length for the brace members according to Annex BB.1.3 of DIN EN 1993-1-1 is: Lcr = 0.75 · 250 · 2 = 265 cm This length is valid for in-plane as well as out-of-plane buckling of the brace members. 2 2 – Ncr = π 2EI = π 21000 2· 136.6 = 403 kN; λ = L cr 265 N 523 = 403 N pl = 1.14 ⇒ χ ≈ 0.562 (buckling curve a, see sect. 5) cr NEd 247.5 Verification against buckling for D1: χ · N /γ = = 0.84 < 1.0 0.562 · 523/1.0 pl M1 Design joint resistance of node 1: 1. bi/b0 = 8/14 = 0.57 ≥ 0.35 2. bi/ti = hi/ti = 8/0.5 = 16 ≤ 35 3. and 10. 15 ≤ b0/t0 = 14/0.63 = 22.2 ≤ 35 4. and 5. hi/bi = 1 (QHP) 8 ≥ 0.5 · 14 · 1– 14 = 3.0 cm 6. and 7. g = 3.1 cm where e = 2 mm 8 ≤ 1.5 · 14 · 1– = 9.0 cm 14 (The eccentricity is within the range according to section 8) 8. Members are at least class 2 sections 9. Θ1 = Θ2 = 45° ≥ 30° b1 + b2 8 + 8 11. 0.6 ≤ 2 · b = 2 · 8 = 1 ≤ 1.3 1 Determination of Ni,Rd: b1 + b2 With kn = 1.0 (tension chord) and 2 · b = 0.57 the diagram in section 9 provides: 0 0.20 · 1181 nRd ≈ 0.20 Ni,RD = 0.707 · 1.0 = 334 kN Verification of the design joint resistance: Design-support for MSH sections Ni,d 247.5 Ni,Rd = 334 = 0.74 < 1.0 21 Innenteil_2007_engl_22-27 15.01.2008 14:39 Uhr Seite 22 14 Circular MSH sections according DIN EN 10210 Dimensions d t mm mm 42.4 48.3 60.3 88.9 101.6 114.3 139.7 168.3 177.8 193.7 3.2 4 5 6.3 3.2 4 5 6.3 4 5 6.3 8 5 6.3 8 10 12.5 5 6.3 8 10 12.5 5 6.3 8 10 12.5 16 5 6.3 8 10 12.5 16 8 10 12.5 16 20 8 10 12.5 16 20 8 10 12.5 16 20 25 30 A G U cm2 kg/m m2/m 3.094 3.788 4.612 5.609 3.559 4.370 5.339 6.525 5.554 6.819 8.390 10.32 10.35 12.83 15.96 19.46 23.55 11.91 14.81 18.47 22.59 27.47 13.48 16.78 20.97 25.72 31.38 38.79 16.61 20.73 25.98 31.99 39.21 48.81 31.63 39.04 48.03 60.10 73.15 33.50 41.38 50.96 63.84 77.83 36.64 45.30 55.86 70.12 85.67 104.0 121.1 0.133 0.133 0.133 0.133 0.152 0.152 0.152 0.152 0.189 0.189 0.189 0.189 0.279 0.279 0.279 0.279 0.279 0.319 0.319 0.319 0.319 0.319 0.359 0.359 0.359 0.359 0.359 0.359 0.439 0.439 0.439 0.439 0.439 0.439 0.529 0.529 0.529 0.529 0.529 0.559 0.559 0.559 0.559 0.559 0.609 0.609 0.609 0.609 0.609 0.609 0.609 3.941 4.825 5.875 7.145 4.534 5.567 6.802 8.313 7.075 8.687 10.69 13.14 13.18 16.35 20.33 24.79 30.00 15.17 18.86 23.52 28.78 34.99 17.17 21.38 26.72 32.77 39.98 49.41 21.16 26.40 33.10 40.75 49.95 62.18 40.29 49.73 61.18 76.55 93.18 42.68 52.72 64.91 81.33 99.15 46.67 57.71 71.16 89.32 109.1 132.5 154.3 Bending and Torsion l = lT/2 Wel i max S cm4 cm3 cm cm3 7.620 8.991 10.46 11.99 11.59 13.77 16.15 18.74 28.17 33.48 39.49 45.99 116.4 140.2 168.0 196.0 224.8 177.5 215.1 259.5 305.4 354.1 256.9 312.7 379.5 449.7 525.7 612.6 480.5 588.6 720.3 861.9 1 020 1 209 1 297 1 564 1 868 2 244 2 608 1 541 1 862 2 230 2 687 3 136 2 016 2 442 2 934 3 554 4 171 4 817 5 342 3.594 4.241 4.932 5.657 4.797 5.701 6.689 7.761 9.344 11.10 13.10 15.25 26.18 31.55 37.79 44.09 50.57 34.93 42.34 51.08 60.12 69.70 44.96 54.72 66.40 78.68 91.98 107.2 68.80 84.27 103.1 123.4 146.0 173.1 154.2 185.9 222.0 266.7 309.9 173.4 209.4 250.8 302.3 352.7 208.1 252.1 303.0 367.0 430.6 497.4 551.5 1.391 1.365 1.334 1.296 1.599 1.573 1.541 1.502 1.996 1.963 1.922 1.871 2.972 2.929 2.874 2.812 2.737 3.420 3.377 3.321 3.258 3.181 3.868 3.825 3.769 3.704 3.626 3.521 4.766 4.722 4.665 4.599 4.519 4.410 5.675 5.608 5.526 5.414 5.291 6.010 5.943 5.861 5.748 5.624 6.572 6.504 6.422 6.308 6.182 6.030 5.884 2.464 2.960 3.518 4.147 3.260 3.936 4.708 5.598 6.350 7.666 9.227 11.03 17.62 21.53 26.26 31.29 36.81 23.35 28.65 35.13 42.12 49.94 29.89 36.78 45.28 54.56 65.10 77.99 45.38 56.10 69.46 84.28 101.4 123.1 102.9 125.5 152.0 186.2 221.3 115.4 141.0 171.1 210.1 250.3 138.0 168.9 205.5 253.3 303.1 358.4 406.5 Npl kN 139.9 171.3 208.6 253.6 161.0 197.6 241.5 295.1 251.2 308.4 379.4 466.6 467.9 580.4 721.8 879.9 1 065 538.7 669.6 835.1 1 022 1 242 609.5 758.8 948.4 1 163 1 419 1 754 751.1 937.3 1 175 1 446 1 773 2 207 1 430 1 765 2 172 2 718 3 308 1 515 1 871 2 304 2 887 3 520 1 657 2 049 2 526 3 171 3 874 4 704 5 477 fy = 35.5 kN/cm2 Vpl Mpl kN kNm 51.42 62.96 76.65 93.23 59.16 72.64 88.75 108.5 92.31 113.3 139.5 171.5 172.0 213.3 265.3 323.4 391.5 198.0 246.1 306.9 375.5 456.5 224.0 278.9 348.6 427.5 521.6 644.7 276.1 344.5 431.9 531.7 651.8 811.3 525.7 648.9 798.3 998.9 1 216 556.8 687.8 847.0 1 061 1 294 609.0 753.0 928.5 1 165 1 424 1 729 2 013 1.750 2.101 2.498 2.944 2.315 2.794 3.343 3.975 4.509 5.443 6.551 7.829 12.51 15.29 18.65 22.22 26.13 16.58 20.34 24.94 29.90 35.46 21.22 26.12 32.15 38.74 46.22 55.37 32.22 39.83 49.32 59.84 72.03 87.40 73.04 89.08 107.9 132.2 157.1 81.94 100.1 121.5 149.2 177.7 98.00 119.9 145.9 179.8 215.2 254.4 288.6 Class S 355 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 For further available dimensions see MSH technical information 1 22 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_22-27 Dimensions d t mm mm 219.1 244.5 273 323.9 355.6 406.4 457 508 10 12.5 16 20 25 30 8 10 12.5 16 20 25 30 10 12.5 16 20 25 30 36 40 8 10 12.5 16 20 25 30 36 40 10 12.5 16 20 25 30 36 40 10 12.5 16 20 25 30 36 40 10 12.5 16 20 10 12.5 16 20 15.01.2008 A G U cm2 kg/m m2/m 51.57 63.69 80.14 98.20 119.7 139.9 46.66 57.83 71.52 90.16 110.7 135.3 158.7 64.86 80.30 101.4 124.8 152.9 179.8 210.4 229.8 62.32 77.41 95.99 121.5 149.9 184.3 217.4 255.6 280.1 85.23 105.8 134.0 165.5 203.8 240.9 283.7 311.3 97.76 121.4 154.0 190.6 235.1 278.5 328.8 361.4 110.2 137.0 174.0 215.5 122.8 152.7 194.1 240.7 0.688 0.688 0.688 0.688 0.688 0.688 0.768 0.768 0.768 0.768 0.768 0.768 0.768 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 1.018 1.018 1.018 1.018 1.018 1.018 1.018 1.018 1.018 1.117 1.117 1.117 1.117 1.117 1.117 1.117 1.117 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.277 1.436 1.436 1.436 1.436 1.596 1.596 1.596 1.596 65.69 81.13 102.1 125.1 152.4 178.2 59.44 73.67 91.11 114.9 141.1 172.4 202.2 82.62 102.3 129.2 159.0 194.8 229.0 268.0 292.8 79.39 98.61 122.3 154.8 190.9 234.8 277.0 325.6 356.8 108.6 134.7 170.7 210.9 259.7 306.9 361.5 396.6 124.5 154.7 196.2 242.8 299.6 354.7 418.9 460.4 140.4 174.6 221.7 274.6 156.5 194.6 247.3 306.6 14:39 Uhr Seite 23 Bending and Torsion l = lT/2 Wel i max S cm4 cm3 cm cm3 3 598 4 345 5 297 6 261 7 298 8 167 4 160 5 073 6 147 7 533 8 957 10 517 11 854 7 154 8 697 10 707 12 798 15 127 17 162 19 254 20 455 9 910 12 158 14 847 18 390 22 139 26 400 30 219 34 263 36 657 16 223 19 852 24 663 29 792 35 677 41 011 46 737 50 171 24 476 30 031 37 449 45 432 54 702 63 224 72 520 78 186 35 091 43 145 53 959 65 681 48 520 59 755 74 909 91 428 328.5 396.6 483.5 571.5 666.2 745.5 340.3 415.0 502.9 616.2 732.7 860.3 969.7 524.1 637.2 784.4 937.6 1 108 1 257 1 411 1 499 611.9 750.7 916.7 1 136 1 367 1 630 1 866 2 116 2 263 912.5 1 117 1 387 1 676 2 007 2 307 2 629 2 822 1 205 1 478 1 843 2 236 2 692 3 111 3 569 3 848 1 536 1 888 2 361 2 874 1 910 2 353 2 949 3 600 7.401 7.318 7.203 7.075 6.919 6.769 8.366 8.298 8.214 8.098 7.969 7.811 7.658 9.305 9.221 9.104 8.973 8.813 8.657 8.475 8.358 11.17 11.10 11.02 10.90 10.77 10.60 10.44 10.26 10.14 12.22 12.14 12.02 11.89 11.72 11.56 11.37 11.25 14.02 13.93 13.81 13.68 13.51 13.35 13.16 13.03 15.81 15.72 15.60 15.47 17.61 17.52 17.40 17.27 218.8 267.1 330.7 397.7 473.5 540.9 223.8 275.1 336.7 418.4 505.3 604.9 694.7 346.0 424.5 529.1 641.4 771.4 890.2 1 019 1 096 399.3 492.8 606.4 759.1 924.9 1 119 1 300 1 500 1 623 597.4 736.1 923.3 1 128 1 369 1 595 1 846 2 003 785.8 970.1 1 220 1 494 1 821 2 130 2 477 2 696 999.2 1 235 1 557 1 911 1 240 1 535 1 937 2 383 Npl kN 2 332 2 880 3 624 4 441 5 412 6 327 2 110 2 615 3 234 4 077 5 008 6 120 7 177 2 933 3 632 4 586 5 643 6 915 8 130 9 515 10 394 2 818 3 501 4 341 5 494 6 779 8 334 9 833 11 559 12 665 3 854 4 783 6 060 7 486 9 218 10 894 12 832 14 079 4 421 5 491 6 966 8 619 10 634 12 594 14 871 16 345 4 985 6 197 7 869 9 747 5 554 6 908 8 779 10 885 fy = 35.5 kN/cm2 Vpl Mpl kN kNm 857.1 1 059 1 332 1 632 1 989 2 325 775.6 961.3 1 189 1 499 1 841 2 249 2 638 1 078 1 335 1 686 2 074 2 541 2 988 3 497 3 820 1 036 1 287 1 596 2 019 2 491 3 063 3 614 4 249 4 655 1 417 1 758 2 227 2 751 3 388 4 004 4 716 5 175 1 625 2 018 2 561 3 168 3 909 4 629 5 466 6 008 1 832 2 278 2 892 3 583 2 041 2 539 3 227 4 001 155.3 189.6 234.8 282.4 336.2 384.0 158.9 195.3 239.1 297.1 358.8 429.4 493.2 245.7 301.4 375.6 455.4 547.7 632.1 723.4 778.5 283.5 349.9 430.5 539.0 656.7 794.8 923.1 1 065 1 152 424.1 522.6 655.5 800.6 971.9 1 132 1 311 1 422 557.9 688.7 866.2 1 061 1 293 1 512 1 759 1 914 709.4 877.0 1 105 1 357 880.5 1 090 1 375 1 692 Class S 355 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 3 2 1 1 For further available dimensions see MSH technical information 1 Design-support for MSH sections 23 Innenteil_2007_engl_22-27 15.01.2008 14:39 Uhr Seite 24 15 Square MSH sections according DIN EN 10210 Dimensions bxb t mm mm 40 x 40 50 x 50 60 x 60 70 x 70 80 x 80 90 x 90 100 x 100 120 x 120 140 x 140 150 x 150 160 x 160 4.0 5.0 6.3 4.0 5.0 6.3 4.0 5.0 6.3 8.0 4.0 5.0 6.3 8.0 4.0 5.0 6.3 8.0 10.0 5.0 6.3 8.0 10.0 5.0 6.3 8.0 10.0 12.5 5.0 6.3 8.0 10.0 12.5 6.3 8.0 10.0 12.5 16.0 20.0 6.3 8.0 10.0 12.5 16.0 17.5 20.0 6.3 8.0 10.0 A G U cm2 kg/m m2/m ly = lz cm4 4.387 5.284 6.332 5.643 6.854 8.310 6.899 8.424 10.29 12.52 8.155 9.994 12.27 15.04 9.411 11.56 14.25 17.55 21.14 13.13 16.22 20.06 24.28 14.70 18.20 22.57 27.42 33.03 17.84 22.16 27.60 33.70 40.88 26.11 32.62 39.98 48.73 60.14 71.99 28.09 35.13 43.12 52.65 65.17 70.23 78.27 30.07 37.64 46.26 0.1497 0.1471 0.1438 0.1897 0.1871 0.1838 0.2297 0.2271 0.2238 0.2194 0.2697 0.2671 0.2638 0.2594 0.3097 0.3071 0.3038 0.2994 0.2942 0.3471 0.3438 0.3394 0.3342 0.3871 0.3838 0.3794 0.3742 0.3678 0.4671 0.4638 0.4594 0.4542 0.4478 0.5438 0.5394 0.5342 0.5278 0.5188 0.5085 0.5838 0.5794 0.5742 0.5678 0.5588 0.5549 0.5485 0.6238 0.6194 0.6142 11.83 13.37 14.68 24.97 28.88 32.76 45.39 53.26 61.65 69.73 74.69 88.50 103.8 119.8 114.5 136.6 161.9 189.3 213.9 199.6 238.3 281.5 322.3 279.4 335.6 399.6 462.1 522.2 497.7 602.9 726.3 852.1 981.8 983.9 1 195 1 416 1 653 1 916 2 128 1 223 1 491 1 773 2 080 2 430 2 553 2 724 1 499 1 831 2 186 5.588 6.732 8.067 7.188 8.732 10.59 8.788 10.73 13.11 15.95 10.39 12.73 15.63 19.15 11.99 14.73 18.15 22.35 26.93 16.73 20.67 25.55 30.93 18.73 23.19 28.75 34.93 42.07 22.73 28.23 35.15 42.93 52.07 33.27 41.55 50.93 62.07 76.61 91.71 35.79 44.75 54.93 67.07 83.01 89.46 99.71 38.31 47.95 58.93 Bending Wel iy = iz cm3 cm 5.915 6.684 7.339 9.990 11.55 13.10 15.13 17.75 20.55 23.24 21.34 25.29 29.67 34.22 28.61 34.15 40.47 47.32 53.47 44.35 52.95 62.55 71.61 55.89 67.11 79.92 92.42 104.4 82.95 100.5 121.1 142.0 163.6 140.6 170.7 202.3 236.1 273.7 304.0 163.1 198.7 236.4 277.4 324.0 340.4 363.2 187.4 228.9 273.2 1.45 1.41 1.35 1.86 1.82 1.76 2.27 2.23 2.17 2.09 2.68 2.64 2.58 2.50 3.09 3.05 2.99 2.91 2.82 3.45 3.40 3.32 3.23 3.86 3.80 3.73 3.64 3.52 4.68 4.62 4.55 4.46 4.34 5.44 5.36 5.27 5.16 5.00 4.82 5.85 5.77 5.68 5.57 5.41 5.34 5.23 6.26 6.18 6.09 lT cm4 Npl kN 19.48 22.50 25.36 40.39 47.56 55.19 72.51 86.40 102.0 118.2 118.2 142.0 169.5 199.7 180.0 217.4 261.5 311.7 360.0 315.5 381.8 459.0 536.0 439.4 534.2 646.2 761.0 879.0 776.5 950.2 1 160 1 382 1 623 1 540 1 892 2 272 2 696 3 196 3 634 1 909 2 351 2 832 3 375 4 026 4 267 4 617 2 333 2 880 3 478 198.4 239.0 286.4 255.2 310.0 375.8 312.0 381.0 465.3 566.3 368.8 452.0 554.7 679.9 425.6 523.0 644.2 793.5 955.9 594.0 733.7 907.1 1 098 665.0 823.1 1 021 1 240 1 494 807.0 1 002 1 248 1 524 1 849 1 181 1 475 1 808 2 204 2 720 3 256 1 270 1 589 1 950 2 381 2 947 3 176 3 540 1 360 1 702 2 092 fy = 35.5 kN/cm2 Vpl Mpl kN kNm 57.27 68.99 82.67 73.67 89.48 108.5 90.06 110.0 134.3 163.5 106.5 130.5 160.1 196.3 122.9 151.0 186.0 229.1 275.9 171.5 211.8 261.9 316.9 192.0 237.6 294.7 357.9 431.2 233.0 289.3 360.2 439.9 533.6 340.9 425.8 521.9 636.1 785.1 939.8 366.7 458.6 562.9 687.4 850.7 916.8 1021 392.6 491.4 603.9 2.641 3.075 3.516 4.357 5.158 6.037 6.499 7.773 9.229 10.81 9.067 10.92 13.09 15.54 12.06 14.60 17.63 21.13 24.60 18.81 22.83 27.56 32.40 23.56 28.71 34.86 41.26 48.05 34.64 42.47 51.99 62.18 73.42 58.92 72.54 87.36 104.1 124.3 143.0 68.15 84.09 101.5 121.4 145.8 155.0 168.8 78.05 96.49 116.8 Class S 355 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 For further available dimensions see MSH technical information 1 24 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_22-27 Dimensions bxb t mm mm 160 x 160 12.5 16.0 17.5 20.0 180 x 180 6.3 8.0 10.0 12.5 16.0 17.5 20.0 200 x 200 6.3 8.0 10.0 12.5 16.0 17.5 20.0 220 x 220 6.3 8.0 10.0 12.5 16.0 17.5 20.0 250 x 250 8.0 10.0 12.5 16.0 17.5 20.0 260 x 260 8.0 10.0 12.5 16.0 17.5 20.0 300 x 300 8.0 10.0 12.5 16.0 17.5 20.0 350 x 350 10.0 12.5 16.0 400 x 400 10.0 12.5 16.0 20.0 15.01.2008 14:39 Uhr A G U cm2 kg/m m2/m ly = lz cm4 56.58 70.19 75.72 84.55 34.03 42.67 52.54 64.43 80.24 86.71 97.11 37.98 47.69 58.82 72.28 90.29 97.70 109.7 41.94 52.7 65.10 80.13 100.3 108.7 122.2 60.25 74.52 91.90 115.4 125.2 141.1 62.76 77.66 95.83 120.4 130.7 147.4 72.81 90.22 111.5 140.5 152.7 172.5 105.9 131.2 165.7 121.6 150.8 190.8 235.3 0.6078 0.5988 0.5949 0.5885 0.7038 0.6994 0.6942 0.6878 0.6788 0.6749 0.6685 0.7838 0.7794 0.7742 0.7678 0.7588 0.7549 0.7485 0.8638 0.8594 0.8542 0.8478 0.8388 0.8349 0.8285 0.9794 0.9742 0.9678 0.9588 0.9549 0.9485 1.019 1.014 1.008 0.9988 0.9949 0.9885 1.179 1.174 1.168 1.159 1.155 1.148 1.374 1.368 1.359 1.574 1.568 1.559 1.548 2 576 3 028 3 191 3 422 2 168 2 661 3 193 3 790 4 504 4 768 5 156 3 011 3 709 4 471 5 336 6 394 6 794 7 393 4 049 5 002 6 050 7 254 8 749 9 324 10 198 7 455 9 055 10 915 13 267 14 187 15 609 8 423 10 242 12 365 15 061 16 121 17 766 13 128 16 026 19 442 23 850 25 608 28 371 25 884 31 541 38 942 39 128 47 839 59 344 71 535 72.07 89.41 96.46 107.7 43.35 54.35 66.93 82.07 102.2 110.5 123.7 48.39 60.75 74.93 92.07 115.0 124.5 139.7 53.43 67.15 82.93 102.1 127.8 138.5 155.7 76.75 94.93 117.1 147.0 159.5 179.7 79.95 98.93 122.1 153.4 166.5 187.7 92.75 114.9 142.1 179.0 194.5 219.7 134.9 167.1 211.0 154.9 192.1 243.0 299.7 Bending Wel iy = iz cm3 cm 322.0 378.5 398.9 427.8 240.9 295.6 354.8 421.1 500.4 529.8 572.9 301.1 370.9 447.1 533.6 639.4 679.4 739.3 368.1 454.7 550.0 659.5 795.3 847.6 927.0 596.4 724.4 873.2 1 061 1 135 1 249 647.9 787.9 951.1 1 159 1 240 1 367 875.2 1 068 1 296 1 590 1 707 1 891 1 479 1 802 2 225 1 956 2 392 2 967 3 577 Seite 25 lT cm4 5.98 4 158 5.82 4 988 5.75 5 299 5.64 5 760 7.07 3 361 7.00 4 162 6.91 5 048 6.80 6 070 6.64 7 343 6.57 7 833 6.46 8 576 7.89 4 653 7.81 5 778 7.72 7 031 7.61 8 491 7.46 10 340 7.39 11 063 7.27 12 177 8.71 6240 8.63 7 765 8.54 9 473 8.43 11 481 8.27 14 054 8.21 15 072 8.09 16 658 9.86 11 525 9.77 14 106 9.66 17 164 9.50 21 138 9.43 22 732 9.32 25 244 10.3 13 006 10.2 15 932 10.1 19 409 9.91 23 942 9.84 25 766 9.73 28 650 11.9 20 194 11.8 24 807 11.7 30 333 11.5 37 622 11.5 40 587 11.4 45 318 13.9 39 886 13.7 48 934 13.6 60 990 15.9 60 092 15.8 73 906 15.6 92 442 15.4 112 489 Npl kN 2 559 3 174 3 424 3 824 1 539 1 930 2 376 2 914 3 629 3 921 4 392 1 718 2 157 2 660 3 269 4 083 4 418 4 960 1 897 2 384 2 944 3 624 4 537 4 915 5 528 2 725 3 370 4 156 5 219 5 661 6 380 2 838 3 512 4 334 5 446 5 909 6 664 3 293 4 080 5 044 6 355 6 903 7 800 4 790 5 931 7 491 5 500 6 819 8 627 10 640 fy = 35.5 kN/cm2 Vpl Mpl kN kNm 738.6 916.3 988.6 1 104 444.2 557.0 685.9 841.1 1 047 1 132 1 268 495.9 622.6 767.8 943.6 1 179 1 276 1 432 547.5 688.2 849.8 1 046 1 310 1 419 1 596 786.6 972.8 1 200 1 507 1 634 1 842 819.4 1 014 1 251 1 572 1 706 1 924 950.5 1 178 1 456 1 835 1 993 2 252 1383 1 712 2 162 1 588 1 968 2 490 491.4 140.1 169.0 180.1 196.8 99.87 123.9 150.5 181.5 220.5 235.8 259.2 124.4 154.6 188.5 228.1 278.8 298.9 330.1 151.5 188.8 230.7 280.1 344.0 369.5 409.5 246.5 302.0 368.1 454.5 489.3 544.6 267.4 327.9 400.1 494.7 533.0 594.0 359.6 442.2 541.3 672.7 726.4 812.4 608.9 747.8 933.5 802.3 987.6 1.237 1.508 Class S 355 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 3 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 3 1 1 4 2 1 1 For further available dimensions see MSH technical information 1 Design-support for MSH sections 25 Innenteil_2007_engl_22-27 15.01.2008 14:39 Uhr Seite 26 16 Rectangular MSH sections according DIN EN 10210 Dimensions hxb t mm mm 50 x 30 4.0 5.0 60 x 40 4.0 5.0 80 x 40 4.0 5.0 6.3 90 x 50 4.0 5.0 6.3 8.0 100 x 50 4.0 5.0 6.3 8.0 100 x 60 4.0 5.0 6.3 8.0 120 x 60 4.0 5.0 6.3 8.0 10.0 120 x 80 5.0 6.3 8.0 10.0 140 x 80 5.0 6.3 8.0 10.0 150 x 100 5.0 6.3 8.0 10.0 12.5 160 x 80 5.0 6.3 8.0 10.0 12.5 180 x 100 5.0 6.3 8.0 10.0 12.5 16.0 200 x 100 6.3 8.0 10.0 12.5 16.0 A G cm2 kg/m ly cm4 5.588 6.732 7.188 8.732 8.788 10.73 13.11 10.39 12.73 15.63 19.15 11.19 13.73 16.89 20.75 11.99 14.73 18.15 22.35 13.59 16.73 20.67 25.55 30.93 18.73 23.19 28.75 34.93 20.73 25.71 31.95 38.93 23.73 29.49 36.75 44.93 54.57 22.73 28.23 35.15 42.93 52.07 26.73 33.27 41.55 50.93 62.07 76.61 35.79 44.75 54.93 67.07 83.01 4.387 5.284 5.643 6.854 6.899 8.424 10.29 8.155 9.994 12.27 15.04 8.783 10.78 13.26 16.29 9.411 11.56 14.25 17.55 10.67 13.13 16.22 20.06 24.28 14.70 18.20 22.57 27.42 16.27 20.18 25.08 30.56 18.63 23.15 28.85 35.27 42.84 17.84 22.16 27.60 33.70 40.88 20.98 26.11 32.62 39.98 48.73 60.14 28.09 35.13 43.12 52.65 65.17 16.49 18.71 32.83 38.09 68.20 80.28 93.28 107.1 127.3 149.9 173.6 139.6 166.5 197.1 229.9 158.0 189.1 224.8 263.8 248.7 299.2 358.3 424.7 488.1 365.4 439.8 525.3 609.5 534.0 645.8 776.3 908.1 738.7 897.9 1 087 1 282 1 488 744.0 903.2 1 091 1 284 1 485 1 153 1 407 1 713 2 036 2 385 2 777 1 829 2 234 2 664 3 136 3 678 Bending strong and weak axis Wel.y iy lz Wel.z cm3 cm cm4 cm3 6.596 7.486 10.94 12.70 17.05 20.07 23.32 23.80 28.28 33.30 38.57 27.92 33.30 39.42 45.98 31.61 37.82 44.96 52.77 41.46 49.87 59.71 70.79 81.36 60.90 73.30 87.54 101.6 76.28 92.26 110.9 129.7 98.50 119.7 144.9 171.0 198.4 93.00 112.9 136.4 160.6 185.7 128.1 156.4 190.4 226.2 265.0 308.6 182.9 223.4 266.4 313.6 367.8 1.72 1.67 2.14 2.09 2.79 2.74 2.67 3.21 3.16 3.10 3.01 3.53 3.48 3.42 3.33 3.63 3.58 3.52 3.44 4.28 4.23 4.16 4.08 3.97 4.42 4.36 4.27 4.18 5.08 5.01 4.93 4.83 5.58 5.52 5.44 5.34 5.22 5.72 5.66 5.57 5.47 5.34 6.57 6.50 6.42 6.32 6.20 6.02 7.15 7.06 6.96 6.84 6.66 7.084 7.888 17.03 19.53 22.24 25.70 29.16 41.95 49.21 56.99 64.58 46.19 54.30 63.05 71.72 70.52 83.59 98.15 113.3 83.09 98.76 116.4 135.1 151.5 192.9 230.5 272.6 312.6 221.1 264.8 314.2 361.9 392.3 474.1 569.3 665.4 763.1 249.3 299.1 355.8 411.2 464.7 460.1 557.2 671.1 787.4 907.6 1 033 612.5 739.0 868.8 1 004 1 147 4.722 5.258 8.517 9.767 11.12 12.85 14.58 16.78 19.69 22.80 25.83 18.48 21.72 25.22 28.69 23.51 27.86 32.72 37.78 27.70 32.92 38.80 45.05 50.51 48.24 57.62 68.14 78.14 55.28 66.20 78.55 90.47 78.47 94.81 113.9 133.1 152.6 62.32 74.78 88.96 102.8 116.2 92.02 111.4 134.2 157.5 181.5 206.6 122.5 147.8 173.8 200.8 229.5 iz cm lT cm4 fy = 35.5 kN/cm2 Npl Mpl.y Mpl.z kN kNm kNm 1.13 1.08 1.54 1.50 1.59 1.55 1.49 2.01 1.97 1.91 1.84 2.03 1.99 1.93 1.86 2.43 2.38 2.33 2.25 2.47 2.43 2.37 2.30 2.21 3.21 3.15 3.08 2.99 3.27 3.21 3.14 3.05 4.07 4.01 3.94 3.85 3.74 3.31 3.26 3.18 3.10 2.99 4.15 4.09 4.02 3.93 3.82 3.67 4.14 4.06 3.98 3.87 3.72 16.59 18.97 36.66 42.98 55.19 65.05 75.63 97.52 116.4 137.7 160.3 112.8 134.7 159.7 186.4 155.9 187.5 224.4 265.4 200.7 241.8 290.0 344.3 395.7 401.3 486.6 586.6 687.6 499.4 606.5 732.9 862.1 806.7 986.5 1 203 1 432 1 679 600.0 729.6 883.1 1 041 1 204 1 042 1 277 1 560 1 862 2 191 2 564 1 475 1 804 2 156 2 541 2 982 198.4 239.0 255.2 310.0 312.0 381.0 465.3 368.8 452.0 554.7 679.9 397.2 487.5 599.5 736.7 425.6 523.0 644.2 793.5 482.4 594.0 733.7 907.1 1 098 665.0 823.1 1 021 1 240 736.0 912.6 1 134 1 382 842.5 1 047 1 305 1 595 1 937 807.0 1 002 1 248 1 524 1 849 949.0 1 181 1 475 1 808 2 204 2 720 1 270 1 589 1 950 2 381 2 947 3.051 3.560 4.909 5.820 7.744 9.275 11.03 10.60 12.78 15.34 18.25 12.51 15.13 18.23 21.79 13.87 16.81 20.32 24.40 18.41 22.40 27.21 32.91 38.75 26.48 32.30 39.27 46.56 33.48 40.98 50.04 59.67 42.40 52.08 63.92 76.70 90.94 41.20 50.55 61.96 74.20 87.76 55.84 68.79 84.77 102.2 122.0 146.0 81.04 100.1 121.0 144.9 174.3 2.089 2.413 3.663 4.318 4.686 5.560 6.531 6.970 8.353 9.947 11.69 7.623 9.152 10.92 12.89 9.680 11.68 14.03 16.71 11.27 13.63 16.44 19.67 22.85 19.92 24.22 29.31 34.54 22.59 27.52 33.40 39.51 31.99 39.18 47.92 57.24 67.47 25.25 30.81 37.48 44.48 51.98 37.05 45.47 55.76 66.82 79.12 93.55 49.66 60.98 73.21 86.88 103.1 Class S 355 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 2-1 1-1 1-1 1-1 1-1 3-1 1-1 1-1 1-1 1-1 1-1 2-1 1-1 1-1 1-1 1-1 For further available dimensions see MSH technical information 1 26 VALLOUREC & MANNESMANN TUBES Innenteil_2007_engl_22-27 15.01.2008 Dimensions hxb t mm mm A G cm2 kg/m ly cm4 200 x 100 17.5 20.0 200 x 120 6.3 8.0 10.0 12.5 16.0 17.5 20.0 220 x 120 6.3 8.0 10.0 12.5 16.0 20.0 250 x 150 6.3 8.0 10.0 12.5 16.0 17.5 20.0 260 x 140 6.3 8.0 10.0 12.5 16.0 17.5 20.0 260 x 180 6.3 8.0 10.0 12.5 16.0 17.5 20.0 300 x 200 8.0 10.0 12.5 16.0 17.5 20.0 400 x 200 8.0 10.0 12.5 16.0 450 x 250 10.0 12.5 16.0 500 x 300 10.0 12.5 16.0 20.0 89.46 99.71 38.31 47.95 58.93 72.07 89.41 96.46 107.7 40.83 51.15 62.93 77.07 95.81 115.7 48.39 60.75 74.93 92.07 115.0 124.5 139.7 48.39 60.75 74.93 92.07 115.0 124.5 139.7 53.43 67.15 82.93 102.1 127.8 138.5 155.7 76.75 94.93 117.1 147.0 159.5 179.7 92.75 114.9 142.1 179.0 134.9 167.1 211.0 154.9 192.1 243.0 299.7 70.23 78.27 30.07 37.64 46.26 56.58 70.19 75.72 84.55 32.05 40.16 49.40 60.50 75.21 90.83 37.98 47.69 58.82 72.28 90.29 97.70 109.7 37.98 47.69 58.82 72.28 90.29 97.70 109.7 41.94 52.72 65.10 80.13 100.3 108.7 122.2 60.25 74.52 91.90 115.4 125.2 141.1 72.81 90.22 111.5 140.5 105.9 131.2 165.6 121.6 150.8 190.8 235.3 3 870 4 140 2 065 2 529 3 026 3 576 4 221 4 455 4 791 2 610 3 203 3 844 4 560 5 413 6 185 4 143 5 111 6 174 7 387 8 879 9 448 10 306 4 355 5 373 6 490 7 767 9 337 9 936 10 838 5 166 6 390 7 741 9 299 11 245 11 998 13 147 9 717 11 819 14 273 17 390 18 616 20 518 19 562 23 914 29 063 35 738 36 895 45 026 55 705 53 762 65 813 81 783 98 777 14:39 Uhr Bending strong and weak axis Wel.y iy lz Wel.z cm3 cm cm4 cm3 387.0 414.0 206.5 252.9 302.6 357.6 422.1 445.5 479.1 237.3 291.2 349.4 414.5 492.1 562.3 331.4 408.9 493.9 590.9 710.4 755.9 824.5 335.0 413.3 499.3 597.4 718.3 764.3 833.7 397.4 491.5 595.5 715.3 865.0 922.9 1 011 647.8 788.0 951.5 1 159 1 241 1 368 978.1 1 196 1 453 1 787 1 640 2 001 2 476 2 150 2 633 3 271 3 951 6.58 6.44 7.34 7.26 7.17 7.04 6.87 6.80 6.67 8.00 7.91 7.82 7.69 7.52 7.31 9.25 9.17 9.08 8.96 8.79 8.71 8.59 9.49 9.40 9.31 9.18 9.01 8.93 8.81 9.83 9.75 9.66 9.54 9.38 9.31 9.19 11.3 11.2 11.0 10.9 10.8 10.7 14.5 14.4 14.3 14.1 16.5 16.4 16.2 18.6 18.5 18.3 18.2 1 194 1 254 929.0 1 128 1 337 1 562 1 813 1 900 2 019 1 010 1 229 1 459 1 707 1 988 2 222 1 874 2 298 2 755 3 265 3 873 4 098 4 427 1 660 2 032 2 432 2 876 3 400 3 592 3 872 2 929 3 608 4 351 5 196 6 231 6 624 7 215 5 184 6 278 7 537 9 109 9 717 10 647 6 660 8 084 9 738 11 824 14 819 17 973 22 041 24 439 29 780 36 768 44 078 238.8 250.8 154.8 188.1 222.9 260.4 302.2 316.7 336.5 168.4 204.8 243.1 284.5 331.3 370.3 249.9 306.4 367.3 435.4 516.4 546.4 590.3 237.2 290.3 347.4 410.9 485.8 513.2 553.1 325.4 400.9 483.4 577.3 692.3 736.0 801.6 518.4 627.8 753.7 910.9 971.7 1 065 666.0 808.4 973.8 1 182 1 185 1 438 1 763 1 629 1 985 2 451 2 939 Seite 27 iz cm 3.65 3.55 4.92 4.85 4.76 4.66 4.50 4.44 4.33 4.98 4.90 4.81 4.71 4.55 4.38 6.22 6.15 6.06 5.96 5.80 5.74 5.63 5.86 5.78 5.70 5.59 5.44 5.37 5.26 7.40 7.33 7.24 7.13 6.98 6.92 6.81 8.22 8.13 8.02 7.87 7.81 7.70 8.47 8.39 8.28 8.13 10.5 10.4 10.2 12.6 12.5 12.3 12.1 lT cm4 fy = 35.5 kN/cm2 Npl Mpl.y Mpl.z kN kNm kNm 3 137 3 176 3 350 3 540 2 028 1 360 2 495 1 702 3 001 2 092 3 569 2 559 4 247 3 174 4 496 3 424 4 856 3 824 2 315 1 449 2 850 1 816 3 431 2 234 4 087 2 736 4 873 3 401 5 589 4 108 4 054 1 718 5 021 2 157 6 090 2 660 7 326 3 269 8 868 4 083 9 463 4 418 10 368 4 960 3 803 1 718 4 704 2 157 5 698 2 660 6 841 3 269 8 257 4 083 8 800 4 418 9 619 4 960 5 810 1 897 7 221 2 384 8 798 2 944 10 643 3 624 12 993 4 537 13 918 4 915 15 351 5 528 10 562 2 725 12 908 3 370 15 677 4 156 19 252 5 219 20 677 5 661 22 912 6 380 15 735 3 293 19 259 4 080 23 438 5 044 28 871 6 355 33 284 4 790 40 719 5 931 50 545 7 491 52 450 5 500 64 389 6 819 80 329 8 627 97 447 10 640 185.5 202.3 89.71 111.0 134.5 161.6 195.2 208.2 227.9 103.8 128.6 156.1 188.0 228.1 267.5 142.9 177.7 216.8 262.7 321.6 344.9 381.3 145.9 181.5 221.4 268.3 328.4 352.2 389.4 168.6 210.1 256.9 312.2 383.8 412.5 457.6 276.7 339.2 413.7 511.4 550.9 613.6 427.1 525.4 643.7 800.7 710.0 872.4 1 090 921.1 1 134 1 422 1 734 109.1 117.6 62.81 77.44 93.42 111.6 133.7 142.0 154.4 67.90 83.80 101.2 121.1 145.5 168.6 100.3 124.4 151.2 182.5 221.9 237.4 261.1 94.80 117.5 142.7 172.0 208.8 223.2 245.2 130.9 162.9 198.8 240.9 295.0 316.5 350.1 209.1 255.9 311.3 383.4 412.3 457.9 263.7 323.4 394.5 487.9 472.4 578.9 720.3 648.1 796.5 995.3 1 210 Class S 355 1-1 1-1 2-1 1-1 1-1 1-1 1-1 1-1 1-1 3-1 1-1 1-1 1-1 1-1 1-1 4-1 2-1 1-1 1-1 1-1 1-1 1-1 4-1 2-1 1-1 1-1 1-1 1-1 1-1 4-1 2-1 1-1 1-1 1-1 1-1 1-1 3-1 1-1 1-1 1-1 1-1 1-1 4-1 4-1 2-1 1-1 4-1 3-1 1-1 4-1 4-1 2-1 1-1 . For further available dimensions see MSH technical information 1 Design-support for MSH sections 27 Umschlag_2007_engl 15.01.2008 14:43 Uhr Seite 28 VA L L O U R E C & M A N N E S M A N N T U B E S VA L LO U R E C & M A N N E S M A N N T U B E S Vallourec Group V & M 3 B 0 0 11 - 8 G B V & M DEUTSCHLAND GmbH Theodorstraße 90 40472 Düsseldorf · Germany Phone +49 (2 11) 9 60-35 80 Fax +49 (2 11) 9 60-23 73 E-Mail: info.service@vmtubes.de www.vmtubes.com/msh Design-support for MSH sections according to Eurocode 3, DIN EN 1993-1-1: 2005 and DIN EN 1993-1-8: 2005
Similar documents
PDF catalog
Interior finish LINO HABANA TEXTIL Natural Wood floor finish REVIVAL 1L BEIGE 22x220x2,1 cm Decorative profile PRO-PART CROMADO 11 mm
More informationPORCELANOSA Grupo`s new `Home Collection` catalogue
interpretations of nature’s own products. You can find all these things and more on PORCELANOSA’s blog at www.porcelanosa.com: a section with up-to-date news of the group’s stream of products and i...
More information