Table of Useful Integrals and Other Quantities of Interest
Transcription
Table of Useful Integrals and Other Quantities of Interest
Table of Useful Integrals, etc. ∞ ∫e − ax 2 0 ∞ 1 ⎛ π ⎞ dx = ⎜ ⎟ 2 ⎝ a ⎠ 2 − ax 2 ∫x e 0 ∞ 0 n − ax ∫ xe dx = 0 − ax 2 dx = 0 1 ∞ 2 3 − ax 2 ∫x e dx = 0 ( ) 1⋅ 3⋅ 5 ⋅ ⋅ ⋅ 2n − 1 ⎛ π ⎞ dx = ⎜⎝ a ⎟⎠ 2 n+1 a n ∞ ∫x e ∞ 2 1 ⎛ π ⎞ dx = 4a ⎜⎝ a ⎟⎠ 2n − ax 2 ∫x e 1 1 ∞ 2 2 1 2a 1 2a 2 2n+1 − ax ∫ x e dx = 0 n! 2a n+1 n! a n+1 Integration by Parts: b b b ∫ UdV = ⎡⎣UV ⎤⎦ − ∫ VdU a a U and V are functions of x. Integrate from x = a to x = b a 1 ∫ sin ( ax ) dx = − a cos ( ax ) ( ) 2 ∫ sin ax dx = ( ) x sin 2ax − 2 4a 1 1 ∫ sin ( ax ) dx = − a cos ( ax ) + 3a cos ( ax ) 3 3 ( ) ( ) ( ) 3 3x 3sin 2ax sin ax cos ax ∫ sin ax dx = 8 − 16a − 4a 4 ( ) ( ) ( ) ∫ sin ax sin bx dx = ( ) ( ) ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) ) sin ⎡⎣ a − b x ⎤⎦ sin ⎡⎣ a + b x ⎤⎦ − 2 a−b 2 a+b ∫ cos ax cos bx dx = sin ⎡⎣ a − b x ⎤⎦ sin ⎡⎣ a + b x ⎤⎦ + 2 a−b 2 a+b where a 2 ≠ b2 ( ( ( ) ( ( ) ) ( ( ) ) ( ) − x cos ( ax ) sin ax a2 a ( ) + cos ( ax ) x sin ax a2 a ( ) sin ax a x ∫ cos ( ax ) dx = 2 + ( ) sin 2ax 4a ( ) x cos 2ax x 3 ⎛ x 2 1 ⎞ x cos ax dx = + − sin 2ax + ∫ 6 ⎜⎝ 4a 8a 3 ⎟⎠ 4a 2 2 2 ( ) ∫ cos ( bx ) e − ax 2 ( ) dx = Taylor Series: ( n) xo n= ∞ f ∑ ( ) n=0 n! eax ( Geometric Series: ∞ 1 ∑ xn = 1 − x n=0 ( ) ( ) ⎡ a cos bx + bsin bx ⎤ ⎦ a 2 + b2 ⎣ ) (x − x ) o ( ) ( ) cos ⎡⎣ a − b x ⎤⎦ cos ⎡⎣ a + b x ⎤⎦ x sin ⎡⎣ a − b x ⎤⎦ x sin ⎡⎣ a + b x ⎤⎦ − + − 2 2 2 2 2 a−b 2 a+b 2 a−b 2 a+b ( ) ( ) 2 ( ) ( ) ∫ x sin ax sin bx dx = ( ) ) ) x cos 2ax x 3 ⎛ x 2 1 ⎞ − ⎜ − 3 ⎟ sin 2ax − 6 ⎝ 4a 8a ⎠ 4a 2 ( ) ∫ cos ax dx = ) ( ) 2 2 ∫ x sin ax dx = ∫ x cos ( ax ) dx = ( ( x 2 x sin 2ax cos 2ax − − 4 4a 8a 2 ( ) 2 ∫ x sin ax dx = ∫ x sin ( ax ) dx = ) − cos ⎡⎣ a − b x ⎤⎦ cos ⎡⎣ a + b x ⎤⎦ − 2 a−b 2 a+b ( ) ( ) ∫ sin ax cos bx dx = n ( ) ( ) Euler’s Formula: eiφ = cos φ + isin φ Quadratic Equation and other higher order polynomials: ax 2 + bx + c = 0 −b ± b2 − 4ac x= 2a ax 4 + bx 2 + c = 0 ⎛ −b ± b2 − 4ac ⎞ x = ± ⎜ ⎟ ⎜⎝ ⎟⎠ 2a General Solution for a Second Order Homogeneous Differential Equation with Constant Coefficients: If: y ʹ′ʹ′ + py ʹ′ + qy = 0 Assume a solution for y: y = esx y ʹ′ = sesx y ʹ′ʹ′ = s 2 esx ∴ s 2 esx + psesx + qesx = 0 and s 2 + ps + q = 0 Hence sx s x y = c1e 1 + c2 e 2 Conversions from spherical polar coordinates into Cartesian coordinates: x = r sin θ cos φ y = r sin θ sin φ x = r cosθ dv = r 2 sin θ drdθ dφ 0<r <∞ 0 <θ <π 0 < φ < 2π Commutator Identities: ⎡ Â, B̂ ⎤ = − ⎡ B̂, Â⎤ ⎣ ⎦ ⎣ ⎦ n ⎡ Â, Â ⎤ = 0 n = 1,2,3, ⎣ ⎦ ⎡ kÂ, B̂ ⎤ = ⎡ Â, kB̂ ⎤ = k ⎡ Â, B̂ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ Â + B̂, Ĉ ⎤ = ⎡ Â, Ĉ ⎤ + ⎡ B̂, Ĉ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ Â, B̂Ĉ ⎤ = ⎡ Â, B̂ ⎤ Ĉ + B̂ ⎡ Â, Ĉ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎡ ÂB̂, Ĉ ⎤ = ⎡ Â, Ĉ ⎤ B̂ + Â ⎡ B̂, Ĉ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ Creation and Annihilation Operators 1 l± l, ml , s, ms = ( l ( l + 1) − ml ( ml ± 1)) 2 l, ml ±1 , s, ms 1 s± l, ml , s, ms = ( s ( s + 1) − ms ( ms ± 1)) 2 l, ml , s, ms ±1 ( ( )) j± j, m j = j ( j + 1) − m j m j ± 1 Atomic Units: 1 2 j, m j ±1 Physical Constants: Operators:
Similar documents
RDS Signal-Generator
>_SX UY^VQSXUb e^T fYU\cUYdYWUb Ycd TYU 2UTYU^e^W TUc B4CCYW^Q\7U^UbQd_bc 87 (!#2@3RUbUY^U^@3]Yd8Y\VUTUb]YdWU\YUVUbdU^C_VdgQbU¾B4C3_^db_\²TYUY^;Q `YdU\#QRCUYdU!&RUc...
More information