Bienvenue à l`ENSICA
Transcription
Bienvenue à l`ENSICA
Direction Générale Technique Shape optimization for aerodynamic design: Dassault Aviation challenges and new trends Forum TERATEC 2014 Atelier « Conception numérique optimale des systèmes complexes : état de l'art et verrous technologiques » École Polytechnique - Palaiseau- France - July 2nd 2014 VA OÙ TON RÊVE TE PORTE CFD Optimization Team Frédéric Chalot Laurent Daumas Quang Dinh Steven Kleinveld Ximun Loyatho Gilbert Rogé VA OÙ TON RÊVE TE PORTE page : 3 Civil > 50 % Rafale Falcon 7X Spatial UAV NEURON VA OÙ TON RÊVE TE PORTE Outline F8X CFD Aerodynamic Shape Optimization in the framework of Aircraft Design Control Theory, Adjoint, AD SBJ, Sonic Boom, Engine Integration High Lift Configuration Air Duct, Topology + Sizing Opt, Unsteady New Trends Abstract: The aim of this talk is to discuss various cutting edge techniques developed for the aerodynamic shape optimization of Dassault Aviation future products. VA OÙ TON RÊVE TE PORTE Level 1 Global Optimization, Comparative assessments Trade off studies Open framework Surrogate models level 3 ARCHITECTURE MOTEUR FORMES (et AMENAGEMENT) AMENAGEMENT) MASSES (et CENTRAGE) CENTRAGE) Controleur AERO GV PERFOS GV Local Optimization Critical point investigation Quantitative assessments Aerodynamics & Sonic Boom Engine cycle VA OÙ TON RÊVE TE PORTE 5 Fine analysis Airframe Layout Controleur Level 2 & 3 (icl. weight estimation, aeroelasticity optimisation) (icl. certfication issues) level 1 MDO: The art of efficiently managing the design parameters between disciplines and levels level 2 MDO: Multidisciplinarity and Multi-level Airplane design cycle Mission (market requirements) (size, range, weight, ...) Preliminary configuration Aerodynamic shape optimization Structure defined in complete details, control systems, ... Detailed design phase Preliminary design phase Improvements of structural and aerodynamic behavior (wind tunnel testing) VA OÙ TON RÊVE TE PORTE 6 Conceptual design phase Optimization Process Volume mesh displacement Baseline volume mesh Volume mesh deformation Adjoint Volume mesh deformation Adjoint CFD solver Modified volume mesh CFD solver Aerodynamic observations Aerodynamic observations gradient Modified surface mesh & gradient Aerodynamic variables CAD Modeler Cost - Gradient Baseline geometry Objective & constraints Optimizer design variables Cost, constraints & gradients Starting point VA OÙ TON RÊVE TE PORTE 8 Geometric Modeller Large deformation Intersection. Untrimmed surfaces. VA OÙ TON RÊVE TE PORTE Geometric Modeller 9 Shape (e.g. fuselage) Osculator parameters: point, tangent, curvature VA OÙ TON RÊVE TE PORTE 10 Unstructured Meshes y+=1 ~ 10 Millions vertices ~ 60 Millions tetrahedral elements VA OÙ TON RÊVE TE PORTE 11 Navier-Stokes solver RANS, GLS, entropic variables, implicit scheme, GMRES Turbulence modeling: k-epsilon, k-omega, DRSM, … 10 Millions vertices: 20mn on Purflex 512 procs VA OÙ TON RÊVE TE PORTE Tera 1012 Peta 1015 Performance Development 10 Years: Power*100 SUM 1 Eflop/s 100 Pflop/s 10 Pflop/s 10.5 PFlop/s N=1 N=500 1 Pflop/s 100 Tflop/s 10 Tflop/s 1 Tflop/s 100 Gflop/s 10 Gflop/s 1 Gflop/s supercomputer CURIE 2 PFlop/s 100 Mflop/s Dassault Aviation follows Moore law MPI, OPENMP, GPU acceleration VA OÙ TON RÊVE TE PORTE Implementation strategy Formulation for derivatives 1 et 2 Notations: E W X x PDE control theory J-L Lions Dunod, 1968 Non linear system for fluid (Euler or Navier-Stokes) L State, solution of Linear system for mesh deformation J E Volume coordinates Surface coordinates T Fluid Adjoint, solution of T Mesh Adjoint, solution of Second derivative operator 2 G1 ,G2 D Observation Aerodynamic parameters Geometric parameters E J W W L J E T X X X 2 2M 2M T T M M .[V1 ,V2 ] V V1 2V1 V2 V2 V2 2 2 G1 G1G2 G2 T 1 VA OÙ TON RÊVE TE PORTE Implementation strategy Formulation for derivatives 1 et 2 dJ J E T d d 2J W W 2 T 2 DW , J .[ ,1] DW , E.[ ,1] 2 d Implicit CFD Explicit dJ T L x d x 2 d 2J W X W X L x 2 T 2 T D J .[ , ] D E .[ , ] W ,X W ,X d 2 x 2 Explicit Implicit CFD Ludovic Martin PhD, 2010, CANUM Award Implicit deformation VA OÙ TON RÊVE TE PORTE 3D CFD Optimization using Newton ONERA m6 wing Mach = 0,84 , aoa= 3,06° Cz > 0.01 BFGS: cost = 20 (19 NF + 10 Ng) Newton: cost = 16 (15 NF + 8 Ng + 8 Nh ) BFGS Newton BFGS Newton VA OÙ TON RÊVE TE PORTE Wing twist and camber optimization Supersonic cruise at Mach=1.6 Polar curve Symmetric airfoil 0.01 25 20 0.005 Prescribed CL Optimized airfoil 15 Optimized wing Z/C 0 Lift Lift (pt) 10 -0.005 improvement 5 0 -0.01 0 20 40 60 80 100 120 140 160 180 200 -5 -0.015 0 0.025 0.05 0.075 0.1 X/C Symmetric wing Drag Drag (count) 16 -10 9 control sections 4*9=36 design variables 36+1=37 optimization variables VA OÙ TON RÊVE TE PORTE Sonic Boom minimisation process Shape before / after minimisation Wing dihedral Nose camber Extraction / propagation 17 67 optimization variables: • Angle of attack (aoa) • fuselage: scale, thickness, camber angle for 18 sections, 1 dihedral angle (nose) • wing: twist angle, camber parameters for 3 sections, 2 dihedral angles (inner and outer wing) VA OÙ TON RÊVE TE PORTE Same Sonic Boom optimization drag increase allowed HISAC project (IP - 6th FP) Pareto front (dBA vs drag) 88,5 88 Ref (1ms) Optim (1ms) 87,5 87 Optim (5ms) Ref (5ms) 18 Ref ASEL (dBA) Optim • The drag constraint has been relaxed at different levels in order to see if more noise reduction (dBA and dBC) could be achieved. • 2 meteo conditions are considered => Rise time of the ground overpressure is either 1ms or 5 ms. 86,5 86 85,5 85 84,5 84 83,5 -2,0% 0,0% 2,0% 4,0% 6,0% 8,0% drag coefficient increase V A O Ù(%) T O N- RRef=99.16 Ê V E T E P O Rcount TE 10,0% Engine integration optimization HISAC project (IP - 6th FP) Gain: 60 % on zero-lift drag Z Y X Y 19 X Z Z KP-G001 0.5 0.458824 0.417647 0.376471 0.335294 0.294118 0.252941 0.211765 0.170588 0.129412 0.0882353 0.0470588 0.00588235 -0.0352941 -0.0764706 -0.117647 -0.158824 -0.2 X Z KP-G001 0.5 0.458824 0.417647 0.376471 0.335294 0.294118 0.252941 0.211765 0.170588 0.129412 0.0882353 0.0470588 0.00588235 -0.0352941 -0.0764706 -0.117647 -0.158824 -0.2 Y X Nose Rear fuselage Cp distribution VA OÙ TON RÊVE TE PORTE Y (Design, Simulation and Flight Reynolds Number testing for advanced High Lift Solutions) Presentation with kind permission of activities funded within Seventh Framework Programme EC – Grant Agreement N° ACP8-GA-2009-233607 Steven Kleinveld VA OÙ TON RÊVE TE PORTE DESIREH- DASSAULT-HIGH LIFT OPTIMIZATION Optimization of High Lift configuration within European project DESIREH 2.5D High Lift optimization Use of various techniques to search for improved performance at take-off and landing DESIREH- DASSAULT-HIGH LIFT OPTIMIZATION SOM FD MOGA VA OÙ TON RÊVE TE PORTE Example of performance improvement through optimization at Take-Off conditions for classical high lift configuration using setting variables (gap,overlap,deflection angle) AoA VA OÙ TON RÊVE TE PORTE DESIREH- DASSAULT-HIGH LIFT OPTIMIZATION 2.5D High Lift optimization DESIREH- DASSAULT-HIGH LIFT OPTIMIZATION 3D High Lift optimization Example of flap position optimization at Take-Off conditions of 3D configuration taking into account variations of the intersection with fuselage VA OÙ TON RÊVE TE PORTE Control and optimization of separated flows 24 • PhD thesis J. Chetboun : Dassault Aviation / Polytechnique / DGA. • Development of automated methods for the control and the optimization of separated flows. • Application to curved air ducts for UCAV. • Use of mechanical vortex generators (VG). VA OÙ TON RÊVE TE PORTE Topological derivative and parametric optimization • Vortex generators modelled by source term added to NS equations. • Creation of a new VG : topological derivative. • Sizing : parametric optimization. • State equation and cost function : E (V , f (V , l )) J ( , l ) j (V ( , l )) E E f dj (V , f (V , l )) P (V ) dV V f V T • Topological and parametric derivatives : g P f (V , l ) T J T E f (V , f (V , l )) P l f l VA OÙ TON RÊVE TE PORTE 25 • Adjoint state equation : Applications : S-duct, U-duct, unsteady computations Swirl DES Complete optimization VA OÙ TON RÊVE TE PORTE 26 Topological derivative Robust Design (1) Cl < 0.3 Minimal drag Cl > 0.3 Final Population Minimal probability ONERA M6 wing, 2 design parameters: twist and TE camber angles Euler, RSM RBF like but with 1rst and 2nd derivatives (original approach, Duchon extension) MOGA, Robust design. Objectives: to control Drag and P(CL<0.3) Ludovic Martin PhD 27 VA OÙ TON RÊVE TE PORTE Robust Design (2) P(Cl<0.3) Minimal drag Pareto Front Initial population Final population E(CD) Minimal probability lift 28 VA OÙ TON RÊVE TE PORTE Robust Design (3) Decision: we accept a probability lift of p = x% with minimal drag Determination of drag mean CD (Pareto front) P(Cl<0.3) Determination of nominal values of geomerical parameters a1 and a2 (camber and twist angles) Minimal drag Minimal drag Minimal probability p Cd E(CD) Minimal probability a1 a2 29 VA OÙ TON RÊVE TE PORTE Conclusion Aerodynamic Shape Design Optimization based on CAD (geometric constraints, …) and Adjoint Euler, RANS, cruise, TO, Unsteady, turbulence and transition modelling Bidisciplinary Optimization (Mass, Flutter, RCS, …) Robust Design, Uncertainties Falcon ++ Aircraft Fighter ++ UCAV ++ VA OÙ TON RÊVE TE PORTE 31 Q&A VA OÙ TON RÊVE TE PORTE