- EPJ Web of Conferences
Transcription
- EPJ Web of Conferences
EPJ Web of Conferences 30, 03004 (2012) DOI: 10.1051/epjconf/20123003004 © Owned by the authors, published by EDP Sciences, 2012 džƉĞƌŝŵĞŶƚ ĂŶĚDŽĚĞůůŝŶŐ ŝŶ^ƚƌƵĐƚƵƌĂůEDZ EŽǀĞŵďĞƌ ϮϴƚŚʹ ĞĐĞŵďĞƌ ϮŶĚ ϮϬϭϭ /E^dEʹ ^ĂĐůĂLJ͕&ƌĂŶĐĞ Hartmut Oschkinat Leibniz Institut für Molekulare Pharmakoligie Germany Biosolid state NMR [03004] Organized by Thibault Charpentier Patrick Berthault Constantin Meis thibault.chapentier@cea.fr patrick.berthault@cea.fr constantin.meis@cea.fr Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20123003004 This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bio-SolidState Saclay, 30th of November 2011 Hartmut Oschkinat Leibniz-Institut für Molekulare Pharmakologie Berlin Solid-state NMR as a tool for ‘difficult’ areas of structural biology Heterogeneous, filamentous systems: Æ cytoskelet-associated proteins Æ protofibrils ‘Dynamical complexes’ Æ f-actin and associated proteins Æ focal adhesions Æ full-length aB-crystallin Membrane protein complexes in native lipid environments Æ all states of one ABC-transporter ATP ADP+Pi ATP ADP+Pi 03004-p.2 NMR on membrane proteins Bilayers and liposomes: Solid-state NMR Micelles: Solution NMR Principles of solid state NMR to study biological membranes Spin Hamiltonian given as: Htotal= HZ + HCS+ HJ+ HD+ HQ Zeeman interaction (HZ) chemical shielding (HCS), J-coupling (HJ) dipolar coupling (HD) quadrupolar coupling (HQ) In solids: anisotropic contributions (<3cos2q-1> dependence); q is angle between the angle of the tensor element with respect to the applied field, Bo. For large (Mr » 30k) and slowly tumbling molecules (t r > ~10's kHz), with all orientations of the nucleus present at any one time, give rise to broad, powderlike NMR spectra which are an envelope of the individual orientational frequency dependent lines. Anisotropy is often exploited in a biomembrane system 03004-p.3 Experimental Observation B0 Orientation Studies: 15N labelling The Hamilton Operator of the Dipolar Interaction and the Dipolar Alphabet The Hamilton Operator of the dipolar interaction for 2 particles with spin 1/2 is given by ^ DD H IS 3 & & &&½ = bIS® 2 I rIS SrIS − I S¾ ¯ rIS ¿ ( )( ) with bIS = − μ 0 γ Iγ S ! 4 πrIS3 γ ≡ gyromagnetic ratio of the nuclei ! ≡ Planck䇻s constant ^ DD γ γ ! 3cos2 β − 1 (3I z Sz − I 㽢S) H IS = μ 0 I S 3 μ0 ≡ magnetic permeability 4 πrIS 2 rIS ≡ distance between I and S. 03004-p.4 Effects of magic angle spinning on solids 54.7㼻 magnetic field MAS Speed, ωr 1 1 1 54.7㼻 NMR Probes for solid state NMR 7mm i.d. sample rotor; 400MHz HXY probe 03004-p.5 Practicalities of magic angle sample spinning Sample contained in rotor 1.2 - 9mm diameter; Usually fully hydrated; ~ 10 - 300nmoles of sample of interest; Usually labeled with 13C, 15N, 2H, 19F, etc Physics of Dipolar Recoupling M. H. Levitt et al. J. Chem. Phys. 92, 6347 (1990). X. Feng et al. Chem. Phys. Lett. 257, 314 (1996). 03004-p.6 Typical magnitude in ppm of magnetic interactions for various nuclei Magic angle spinning solid state NMR narrows anisotropically broadened spectra 13C NMR magic angle 54.7㼻 Static NMR spectrum MAS NMR spectrum Anisotropy broadened (in chemical shift/ dipolar couplings) Anisotropy averaged by spinning (wr ~ 1 - 15kHz) Small (Mr ~ 3k) peptide in fluid lipid bilayers 03004-p.7 90 13C Membrane protein structures by solidstate NMR Samples and Strategy 03004-p.8 Systems with short-range order can be investigated by solid-state NMR 3roteins in a micro-crystalline state e.g. SH3 domain 2D crystals of membrane proteins e.g. OmpG Ligand /cofactor bound to a receptor e.g. NT II + nAchR Amyloid fibrils Reconstitution into lipid bilayers and two dimensional crystallisation by dialysis + E. coli total lipid extract detergent mixed lipid detergent micelles refolded protein 2D crystals 03004-p.9 LPR 1.0 3k - dialysis 6 days ‘298 K’ 400MHz 1.0 45 k - dialysis 8weeks LPR 0.75 45 k - dialysis 8weeks ‘298 K’ 400MHz 0.5 45 k - dialysis 8weeks 03004-p.10 900 MHz α-spectrin SH3 Domain Barely soluble at pH 7 Precipitates in microcrystalline form by changing from 3.5 to 7 03004-p.11 Protein structures by solid-state NMR ASSIGNMENTS Proton-driven spin diffusion (PDSD) experiment to detect 13C-13C and 15N-15N long-range correlations 1 H TPPM CP tmix : from 15 to 500 ms CP t1 t mix t2 03004-p.12 Identification of the single amino acids γ α 80 60 40 20 0 0 threonine γ β α HO NH2 20 γ O V58Cγ2-Cβ V58Cγ1-Cβ V58Cγ2-Cα V58Cγ1-Cα T24Cγ-Cβ V58Cγ2-Cγ1 20 T24Cγ-Cα 40 OH α β 80 60 α 30 60 40 0 80 V58Cβ-Cα 40 γ1,γ2 13 β 20 C (ppm) β 50 80 60 valine γ1 γ2 β α NH2 40 β 20 0 0 γ1,γ2 20 O T24Cβ-Cα 60 40 OH α 80 70 60 60 40 20 0 80 70 60 50 40 13 30 20 C (ppm) Chemical shift assignment • Identification of the single amino acids 3 3 Sequential assignment Proton assignment Based on the 13C and 15N resonance assignment 03004-p.13 Chemical shift assignment • Identification of the single amino acids 3 3 Sequential assignment Æ Protonless MAS NMR requires thus a better definition of the amino acid type prior to the sequential assignment Resonance assignments using u-13C, 15N-labelled protein 13C, 15N Backbone assignments: NCA NCO 13C-PDSD 13C NCACX (specific CP!) NCOCX 15N-PDSD Side chain assignments: 13C-PDSD 1H (13C) 13C-RFDR 1H (15N) assignments: 1H-15N assignments: FSLG/PMLG 3D 1H-15N-13C HNCA 1H-13C FSLG/PMLG 1 13 3D H- C-13C FSLG-RFDR 03004-p.14 NCO and NCA spectra of (U-13C,15N) α-spectrin SH3 domains 17.6 T, 278 K, 12 kHz MAS [ppm] G51/Q50 V53/F52 V9/L8 R21/P20 A56/A55 Y57/A56 D40/K39 G28/K27 Y15/D14 T32/L31 E22/R21 I30/D29 L8/E7 R49/D48 K27/K26 W41/D40 K18/E17 S36/N35 L61/K60 N38/T37 K60/K59 L12/A11 Y13/L12 V53 V58 V58/Y57 S19/K18 V23/E22 T37/S36 T37 T24/V23 Q50/R49 F52/G51 K59/V58, E45/V44 K43/W42 M25/T24, K39/N38 D29/G28 E17/Q16 V44/K43 L10/V9 K26/M25 W42/W41 L34/L33 Q16/Y15 T32 I30 K27 V44 L61 E7,E17 K18 S36 L12 A55 L33/T32 L33 NCO 190 180 170 160 65 13 60 120 L10 W42 K26 L34, N38 Q16 A11 L31 K60 A11/L10 N 115 G28 K59 K43 M25 L8 D29 R49 W41 E22 K39 15 110 R21 A56 S19 Y57 N35 D48 Y15 D40 Q50 F52 D14 E45 T24 D14/Y13 Y13 V9 V23 N35/L34 D48/N47 L31/I30 A55/P54 G51 125 130 NCA 55 50 45 [ppm] 13 C C 13 PDSD, NCOCX and NCACX spectra of (U-13C,15N) SH3 domains T32 α T32 β T32 CO T32 γ A55 T24 T24 T37 T32 T37 V23 V23 V44 V58 T32 A55 V53 V44 A56 A11 [ppm] V53 A56 A11 V58 V9 V53 V58 V44 V44 V9 V58 V9 V9 15 V53 V44 V23 I30 V58 V23 V23 V53 20 V9 I30 I30 P20 Q50 E45 D40 P54 E45 E7 W41 E17 V53 E45 V23 V44 V58 P20 Q50 E17 Q50 E22 Q16 E45 E7 E17 E22 E22 E17 N35/N38 D14 D14 D29 E45 P20 P54 Q16 D48 N35/N38 D29 Q50/W42 Q16 Q50 P20 V9 E7 E17 E17 E22 K27 K60 K59 K59 M25 E22 N38 Y13 D40 D40 K26 K59 K27/K43 K18/K60 K27 K60 Y57 D48 N35 D14 D29 F52 E45 E7/M25 M25 E22 R21/R49 17.6 T, 278 K P20 L10 P54 L8 L31 L61 L33/L34 S19 R21/R49 L10 L10 L10 A11 K26/K59 K43 L8 L8 L61 L61 S36 I30 T24 F52 T32 S36 50 A56 A55 55 60 I30 K27/K60 K60 K27 K27 L33 K39/K60 K18 K18/L34 T24 T32 T37 S19 T37 45 L33 L34 L12 L12 L34 L33 L12 I30 K18 L12 35 40 L10 § L10 # 25 30 I30 I30 K26 K26 K18 K18 R21/R49 I30 K43 K43 L61 L61 L61 L12/L33 K L12 L12 L33/L34 L33 L34 L34 L8 L8 R21/R49 L8 L10 C 65 T32 T32 T37 T24 T32 1 T37 PDSD H T24 y C x S19 T37 X T32/T32 T32 β T32α 1 ϕ2 y ϕ3 ϕ4 190 V23 V23 D40 G28 Q50 F52 E22 D14 K59 E22 K43 M25 I30 L8 E7 D29, R49 R49 W41 L10 N38 W42 K26 K26 L61, N38 L61 K60 Q16 L34 A11 L31 A55 Q50 K59 170 75 13 C 03004-p.15 110 A56 115 T24 K59 T32 γ E45 I30 M25 K39 K27 L10 K27 V44 W41 R21 L61 L34 K60 L61/L34 K60 Q16 L12 L31 120 I30 V44 125 A11 A55 130 70 65 135 NCACX-PDSD P20 180 V23 T37 V53 L33 NCOCX -y V53 V58 V9 V58 D48 F52 E45 L33/T32 x V9 R21 A56 x 15 C S19 I30 E7, E17 K39 K27 V44 K18 S36 S36 L34 K60 L12 ϕ 13 Y13 Y57 N35 Y15 T24 T32/L31 V53 V58 V9 V23 A56/A55 N 15 [ppm] G51 -y T37 H 75 x 13 1 70 PDSD T24 T37 60 55 50 45 40 35 30 25 20 15 [ppm] 13 C N NCOCX and NCACX spectra of (U-13C,15N) SH3 domain 15 G51/Q50 G51 V53/F52 N [ppm] G51 V53 V53 110 T37 β 115 Q50 Q50 F52 F52 K39 β F52/G51 120 N38 β 125 17.6 T, 278 K 8 kHz MAS 130 NCOCX P54 NCACX-PDSD P20 180 1H 15 N 15 170 13 C TPPM V58 V9 V23 x t1 -y I30 V44 D40 E45 15 N x TPPM V58 D48 D40 G28 Q50 D14 Y15 Y57 110 V23 115 Q50 D14 E22 F52 E45/K59 120 K39 I30 K43 K43 M25 M25 M25 K27 D29, R49 D29 V44 W41 R49 W41 K18 L10 L10 L10 L34 E17 W42 W42 K26 K26 L34 L61, N38 L61, N38 K60 Q16 Q16 L12 A11 L31 L31 L31 E22 L33 A55 L33 x N35 K59 K39 V53 V9 A56 D48 K27 E7,E17 S36 S36 L34 K60 L12 1H Y13 Y13 S19 Y57 N35 F52 T32 t2 V53 Y15 T24 y 13C T37 TPPM CW N [ppm] G51 S19 x 125 130 L33 TPPM CW 135 13C 75 70 65 135 NCACX-BD P20 t1 60 55 50 45 40 35 30 25 20 15 [ppm] 13 1H-13C-correlations by the frequency-switched Lee-Goldberg technique π /2 θm 2π 1 H + ΔLG −ΔLG +X 13 2π +X -X C LG-CP +Y +Y RAMPCP t2 z A ~ z B θm x z x x~ y, ~ y y 03004-p.16 2D 1H-13C FSLG of 13C-15N SH3 domain (11.5 kHz MAS) Tcp=350 μs Tcp=2.0 ms Assignment of amide protons from 3D HNCA spectrum 400 MHz (9.4 T) MAS : 8 kHz T = 280 K 03004-p.17 Solid-state NMR of full-length αB-crystallin α-crystallins (αA-crystallin and αB-crystallin) where discovered in 1896 in the eye lens They are together a chaperone system for β- and γ-crystallin. cataract αB-crystallin is distributed ubiquitously, acts as a sHSP and mutants are involved in many diseases. (e.g., multiple sclerosis, Alzheimers disease, cardiomyopathie) aB crystallin forms dynamic, polydisperse oligomers of 24 – 32 subunits, ~600kDa, with dimers as basic building blocks alpha-B crystallin is a small heat shock protein S-W-F N-terminus I-X-I conserved core domain (α α-crystallin domain, ~100 aa) extension tail 176 amino acids EM Structure at 3.6 nm resolution adapted from Haley et. al.. J. Mol. Biol. (1998) 03004-p.18 Dataset/approach 3 Samples: uniformly 13C,15N made from 1,3 - 13C - glycerol made from 2 - 13C - glycerol With help from Ponni Rajagopal, Klevit Lab in Seattle! - 3D NCACX (NiCi), NCOCX (NiCi-1) - 3D NCACB (NiCi), NCACBCX (NiCi) - 2D 13C-13C correlations (PDSD) - J-decoupling - Methyl-Filtering L137N-Cα-Cγ L137N-Cα-Cδ∗ 15 1 L137N-S136C-Cβ δ N(L137)=122.9 ppm 1,3G - NCOCX b) τmix = 75 ms 171 2 L137N-S136C-L137Cα L137N-S136C-Cβ δ15N(L137)=122.9 ppm U - NCOCX c) τmix = 35 ms 171 K103N-G102C-Cα L137N-S136C-Cα 15 δ N(S136)=118.3 ppm U - NCACB d) τmix = 2 ms 57 S136N-Cα-Cβ 15 S136N-S135C-Cβ δ N(S136)=118.3 ppm U - NCOCX e) τmix = 35 ms 173 S76N-F75C-Cβ S136N-S135C-Cα 15 S135N-Cα-Cβ E87N-Cα-Cβ 15 δ N(S135)=112.1 ppm 2G - NCACX τmix = 200 ms 57 g) S135N-Cα-T134C 3 δ N(S135)=112.1 ppm U - NCACB f) τmix = 2 ms 57 S135N-Cα-T134Cα 4 15 S135N-T134C-Cα S135N-T134C-Cβ G102N-H101C-Cα S135N-T134C-Cγ2 δ N(S135)=112.1 ppm U-NCOCX τmix = 35 ms h) 173 δ15N(T134)=117.3 ppm T134N-Cα-C T134N-Cα-Cβ T134N-Cα-Cγ2 S139N-Cα-Cβ 03004-p.19 U-NCACX τmix = 25 ms 61 i) 13 δ N(L137)=122.9 ppm U - NCACX τmix = 25 ms a) 53 C(ppm) 15 L137N-Cα-Cβ Structure of alpha-B crystallin in functional oligomers Intermolecular N- and C-terminal interactions are responsible for oligomerisation SAXS investigations An oligomer model can be reconstructed, assuming tetrahedral symmetry SAXS Space filling of dimer 03004-p.20 N-terminus conserved core domain (α-crystallin domain, ~100 aa) extension tail Monomer X S59A F118A T134K-T144R N78G-P86A P TSSLSSADGVLTVN VNLDVKHFSMonomer ΔP155-E165 PERTIPITREE T I P I T pH modulation of the chaperone binding site pH 7.5 pH 6.5 03004-p.21 Solution NMR of flexible residues SAXS measurements at different pH 03004-p.22 Conclusions The structure suggests that the activity of αB-crystallin is tightly connected to its oligomeric state. An intact oligomer should not be active. structural changes at pH 6.5, 9.0 and 4.5 suggest regulation by pH Protein structures determined by MAS solid-state NMR 1M8M, 62 aa SH3 domain Oschkinat 1RVS, 10 aa Transthyretin Jaroniec et al. 2004 1XSW, 38 aa Kaliotoxin Lange et al. 2005 2E8D, 4x 22 aa beta2-microglobulin Iwata et al. 2006 2JSV, 56 aa GB1 (VEAN) Franks et al. 2007 2JU6, 56 aa GB1 (3D protons) Zhou et al. 2006 2JZZ, 76 aa Ubiquitin Manolikas et al. 2008 2K0P, 56 aa GB1 (CS) Robustelli et al. 2008 2K9C, 152 aa MMP-12 (PCS) Balayssac et al. 2008 2KHT, 30 aa alpha defensin HNP-1 Li et al. 2010 2KIB, 8x 7 aa hIAPP Nielsen et al. 2009 2KRJ, 152 aa MMP-12 Bertini et al. 2010 2NNT, 4x 31 aa ww2 domain Ferguson et al. 2006 2RLZ, 2x 85 aa Crh dimer Loquet et al. 2007 2RNM, 5x 71 aa HET-s prion Wasmer et al. 2008 2UVS, 38 aa Kaliotoxin Korukottu et al. 2008 2KLR, 2x 82 aa aB crystallin Jehle et al. 2010 2KWD GB1 (TEDOR Intermolecular) Nieuwkoop et a. 2010 2KQ4, 56 aa GB1 (3D TEDOR) Nieuwkoop et al. 2009 2KJ3, 3x 71 aa HET-s prion Van Melckebeke et a. 2010 03004-p.23 Quality of MAS solid-state NMR structures Whatif quality Z-scores aB crystallin HETs hiAPP HETs K3 β2 WW2 GB1 TTR 2 MMP1 GB1 HNP-1 2 MMP1 GB1 Ubq Crh GB1 GB1 KTX KTX SH3 Solid-state NMR vs. X-ray vs. solution NMR 2K0P = GB1 from ssNMR chemical shifts only 2KLR = aB crystallin dimer 2KRJ = MMP-12 (CHHC + PDSD/DARR + PAR +PAIN + PCS) Molprobity score= f(clashes, rotamer outliers, Ramachandran non-favored) 46 03004-p.24 NMR on membrane proteins ArtMP, an ABC transporter Arginine import system of Geobacillus stearothermophilus ATP ADP+Pi ATP ADP+Pi The holy grail: All functional states of one system in native lipid bilayers 03004-p.25 Preparation of ArtMP Expression in E.coli Lipid extraction of G. stearothermophilus Reconstitution 2D Crystallisation ATP ADP+Pi ATP ADP+Pi Magic-Angle Spinning (M dr bearing NMR-Spectra of ArtMP-2D-Crystals $UW033< ZLWKRXW $73 &&3'6'0+].0LVFK]HLWPV &SSP &SSP 9LYLHQ/DQJH (UJHEQLVVH 03004-p.26 &SSP &SSP $UW037<3 ZLWK $73 1H detection of perdeuterated samples, recrystallized from H2O/D2O = 1:9: SH3 with 1H, 2H, 13C and 15N By Rasmus Linser, Vipin Agarwal, Veniamin Chevelkov, Bernd Reif Linewidths: 24 㼼5 Hz Use of standard pulse solution programs R. Linser et al., Sensitivity Enhancement using paramagnetic relaxation in MAS solid state NMR of perdeuterated proteins, J. Magn. Res, subm. Reconstitution of ArtMP CP 15N ATP ADP+Pi ArtM(P)15N 15N ATP ADP+Pi INEPT 03004-p.27 CP 15N 15N 15N 15N ATP ADP+Pi Art(MP)15N ATP ADP+Pi INEPT 1H detection of perdeuterated samples, recrystallized from H2O/D2O = 9:1 By Rasmus Linser, Vipin Agarwal, Veniamin Chevelkov, Bernd Reif Linewidths: 24 㼼5 Hz Use of standard pulse solution programs R. Linser et al., Sensitivity Enhancement using paramagnetic relaxation in MAS solid state NMR of perdeuterated proteins, J. Magn. Res, subm. 03004-p.28 Optimum Levels of Exchangeable Protons in Perdeuterated Proteins for Proton Detection in MAS Solid-State NMR Spectroscopy: A study at 24 kHz spinning By the way: there are as many exchangeable sites in the side chains of the 20 aa as in the backbone! Effect of 1H% on 1H-Linewidths @ 24kHz-MAS 1H % 1H 03004-p.29 Average* FWHM (Hz) 15N Average FWHM (Hz) 10 19.0 ± 3.3** 11.3 ± 5.4 20 20.2 ± 5.7 12.4 ± 7.2 30 22.5 ± 6.5 15.4 ± 7.5 40 27.5 ± 6.1 16.9 ± 7.3 60 32.5 ± 10.3 25.1 ± 13.5 80 37.5 ± 9.9 32.3 ± 14.3 100 58.3 ± 20.5 41.2 ± 14.4 Another Issue !! Remaining & Dissappearing Signals 2D 1H-15N MAS NMR: Double-CP, 24 kHz, 275K, 400MHz Red: 20% Black: 60% Red: 20% Black: 100% Remaining & Dissappearing Signals Remaining: From the mobile parts, (L61, D62). Dissappearing: From the more rigid parts, (V44, A55). 03004-p.30 S/N: CP S/N per unit-time 1H % 1H T1 (s) Average S/N Ratio (CP) S/N Ratio (CP) per unit-time 10 4.28 18.9 ± 4.7 21.1 20 2.58 33.5 ± 11.4 48.4 30 2.13 41.1 ± 16.4 65.3 40 1.67 44.6 ± 22.6 80.1 60 0.85 26.4 ± 15.7 66.5 80 0.76 18.3 ± 13.9 48.7 100 0.68 11.1 ± 6.3 30.9 Relaxation Delay: 7s. Dynamic Nuclear Polarization Trent Franks, Sascha Lange, Arne Linden, Barth van Rossum 03004-p.31 EWƉƌŝŶĐŝƉůĞ ŶĞĞĚĞĚĂŵŽƵŶƚϱŶŵŽůͬϮϱђů;Ϭ͘ϮŵDͿ DNP Prinzip 0 03004-p.32 DNP Prinzip 1b DNP Hardware Cooling Cabinet controls sample temperature ~95K Gyrotron produces 250 GHz microwaves Standard 400 MHz NMR magnet Gyrotron controller 3 pressurized exchangers within one dewar liquid N2 reservoir 03004-p.33 LJŶĂŵŝĐEƵĐůĞĂƌWŽůĂƌŝƐĂƚŝŽŶʹ ƐŽůŝĚƐƚĂƚĞʹ EDZ technique – nACh-Receptor dĞĐŚŶŝĐĂůŝƚŝĞƐ Different sources of line broadening: radicals, freezing of sample Which labelling pattern gives the best enhancement? Which nuclei should be excited first? 03004-p.34 Effect of the biradical concentration Which nuclei to excite best? 03004-p.35 Polarisation build-up in [s] • Buildup behavior is different for diff. Nuclei • 1H < 13C << 15N • Deuteration increases the IJB significantly • Dipolar coupling & spin diffusion is important. DNP buildup is also a function of spin diffusion 03004-p.36 ^LJƐƚĞŵƐĂŶĚƚŚĞŵĞƐ Systems and themes investigated in Berlin: Membrane proteins without purification Æ Neurotoxin bound to nAchR in native membranes Æ Mystic expressed in E.coli membranes The nascent chain in ribosomes Retinal in Drosophila eyes http://www.dkimages.com/discover/previews/824/5020072.JPG http://www.sevcikphoto.com/images/naja_naja_2.jpg The system 13C, 15N ďůƵĞ͗ďŝŶĚŝŶŐƐŝƚĞƐĚƵĞƚŽ <ƌĂďďĞŶĞƚĂů͕͘:D͕ϮϬϬϵ ŚZ͗ ŵƵƐĐĂƌŝŶŝĐ͗ŵĞƚĂďŽƚƌŽƉŝĐ;'ͲWƌŽƚĞŝŶĐŽƵƉůĞĚ͖ďƌĂŝŶ͕ŚĞĂƌƚ͕ǀĞƐƐĞůƐͿ ŶŝĐŽƚŝŶŝĐ͗ŝŽŶŽƚƌŽƉŝĐ;ůŝŐĂŶĚŐĂƚĞĚŝŽŶͲĐŚĂŶŶĞůƐͿ ƉĂƌĂƐLJŵƉĂƚŚĞƚŝĐĂƵƚŽŶŽŵŝĐŶĞƌǀŽƵƐƐLJƐƚĞŵ͕ŶĞƵƌŽŵƵƐĐƵůĂƌũƵŶĐƚŝŽŶ ƐŝŵŝůĂƌ͗'Ͳ͕'ůƵƚĂŵĂƚͲZĞĐĞƉƚŽƌ͖ĨŝǀĞĚŝĨĨĞƌĞŶƚƐƵďƵŶŝƚƐ 03004-p.37 EĞƵƌŽƚŽdžŝŶ//ďŽƵŶĚƚŽŶĐŚZ room temperature DNP ZĞƐŽůǀĞĚƐƉĞĐƚƌĂ 03004-p.38 ZĞƐŽůǀĞĚƐƉĞĐƚƌĂ ZĞƐŽůǀĞĚƐƉĞĐƚƌĂ ƌŶĞ>ŝŶĚĞŶͶ ϳϲ ϭϱ͘Ϭϱ͘ϮϬϭϮ 03004-p.39 Ed//ĂƚŶĐŚZĐŽŵƉĂƌĞĚƚŽƌŽŽŵƚĞŵƉĞƌĂƚƵƌĞ 10 days 10 hours dŚĞŶĂƐĐĞŶƚĐŚĂŝŶŝŶƚŚĞƚƵŶŶĞůŽĨƚŚĞƌŝďŽƐŽŵĞ -the tunnel is ~100 long -with a diameter of ~10 at a constriction point - and ~20 at the widest region 03004-p.40 DsbASecM: MKKIW LALAG LVLAF SASAA FSTPV WISQA QGIRA GP Enolase-SecM: MSKIV KIIGR REIID SRGNP T FSTPV WISQA QGIRA GP C7 DsbA-SecM vs. 13C Enolase-SecM Ala Ser CP 750 us Mix 1ms Exp.Time 3.8d CP 750 us Mix 1ms Exp.Time 4d Thr 13C Ser - CĮ : Ser - Cβ β: G(B) = 5,5% G(B) = 6,8% G(H) = 48,2% G(H) = 65,1% G(C) = 46,3% G(C) = 28,1% joint-probability: Ser (CĮ,Cβ β) : P(B) = 0,83% P(H) = 70,13% P(C) = 29,04% 03004-p.41 Ser - CĮ : Ser - Cβ β: G(B) = 64,8% G(B) = 54,8% G(H) = 0,1% G(H) = 0,14% G(C) = 35,1% G(C) = 54,1% joint-probability: Ser (CĮ,Cβ β) : P(B) = 69,2% P(H) = 0,0% P(C) = 30,83% Ser - CĮ : Ser - Cβ β: G(B) = 14,9% G(B) = 26,1% G(H) = 29,7% G(H) = 21,4% G(C) = 55,4% G(C) = 26,5% joint-probability: Ser (CĮ,Cβ β) : P(B) = 9,8% P(H) = 16,1% P(C) = 74,1% 03004-p.42 ^ŽŵĞĞdžƉĞƌŝĞŶĐĞƐ͕ĐŽůůĞĐƚĞĚ Samples SH3 Ribosomes Eyes NT II Kinesin Mystic Proline sample amount [nmol/rotor] 2000 16 2 40 50 30 99 sample appearance solid wet pellet wet pellet solid wet pellet wet pellet solid added glycerol [μl] 15 5 5 6 15 5 15 S/N (carbonyls) 194 33 23 86 73 62 67 enhancement 39 16 17 10 11 30 38.5 3,00 2,30 1,40 1,90 0,60 1,20 1,90 T1 H [s] ĐŬŶŽǁůĞĚŐĞŵĞŶƚƐ DNP (NMR) Arne Linden Sascha Lange Ümit Akbey Trent Franks Barth- Jan van Rossum Colleagues at MIT Bob Griffin Torsten Maly Alexander Barnes Björn Erzelius Wet Lab Nils Cremer Anne Diehl and all others Ludwig Krabben Hartmut Oschkinat ƌŶĞ>ŝŶĚĞŶͶ ϴϰ ϭϱ͘Ϭϱ͘ϮϬϭϮ 03004-p.43 Thanks to ... • Oschkinat et. al.: – – – – – – Dr. Bart van Rossum Dr. Trent Franks Dr. Ümit Akbey Sasha Lange Arne Linden Dr. Anne Diehl • Reif et. al.: – – – – • . Prof. Bernd Reif Rasmus Linser Vipin Agarwal Venjamin DNP-Magnet measurements DNPers (Dashing Nitrogen Pushers) Protein structure determination by magic-angle spinning solid-state NMR NMR/structure calculation B. van Rossum OmpG: Trent W. Franks M. Hiller S. Jehle W. Kühlbrandt (Fra) Nascent chain: S. Lange Ö. Yildiz (Fra) Bernd Bukau, Heidelberg A. Linden K. Vinothkumar Anna Rutkowska, Heidelberg V. Lange NeurotoxinII/nAchR: Melanie Rosay, Billerica R. Kühne L. Krabben Leo Tometich, Billerica J. Pauli C. Weise, FUB Bob Griffin, MIT M. Fossi F. Hucho, FUB Thorsten Maly, MIT N. Schröder P. Schmieder WW-Fibrils: aB-crystallin: Preparation SH3 and aB-c: A. Fersht, Cam. Ponni Rajagopal, Seattle K. Rehbein N. Ferguson R. Klevit, Seattle A. Diehl T.D. Sharpe R. Vernon, Seattle ABC-Transporter: M. Petrovich D. Baker, Seattle M. Schneider, HUB AND Bernd Reif, Rasmus H. TidowLinser, Vipin Agarwal, Venjamin Chevelkov.. 03004-p.44
Similar documents
HAG CA trifold_F.indd
WKH UHOLHI SULQW¶V GHYHORSPHQW GRHVQ¶W VWRS WKHUH LW FRQWLQXHV WRGD\ DFTXLULQJ QHZ LQÀXHQFHV along the way. 7KHLPSDFWRI-DSDQHVHFRORUZRRGFXWWDNHVWZRIRUPV7KHLQGLUHFWLQÀXHQF...
More information