Presso la sezione di Roma INFN è attivo da molti anni un gruppo
Transcription
Presso la sezione di Roma INFN è attivo da molti anni un gruppo
Presso la sezione di Roma INFN è attivo da molti anni un gruppo che si dedica allo sviluppo di rivelatori sempre più sensibili di onde gravitazionali (non ancora osservate direttamente) e che oggi fa parte della collaborazione Virgo. R&D Proposte @G23 AA 2012‐13 Misura della conducibilità termica (I) e del fattore di qualità meccanico (II) di fibre di zaffiro (Al2O3) Majorana, Puppo, Rapagnani, Ricci G23, Marconi ELiTES: ET‐LCGT Interferometric Telescopes Exchange of Scientists Work‐Package 1 and 2: cryogenics and suspensions In construction !!! The future ??? KAGRA L 3 km BOTH UNDERGROUND, CRYOGENICS Einstein Telescope TRI 10 km Cryogenic facilities for mechanical quality factor and thermal conductivity at the INFN‐Rome laboratory (University of Rome “La Sapienza”) Cryogen cryostats (3) Cryogen‐free cryostats (2), the most used in last years E. Majorana Vibration measurement of the KAGRA radiation shield Dan Chen, K. Yamamoto, Ettore MajoranaB, Luca NaticchioniB, T. SuzukiA, N. KimuraA, Andrea ConteB, S. KoikeA, T. KumeA, C. Tokoku, Y. Sakakibara, Alexander Khalaidovski, S. Kawamura and KAGRA Collaboration ICRR The University of Tokyo, KEKA, INFNB chendan@icrr.u-tokyo.ac.jp 1.Introduction The Large-scale Cryogenic Gravitational Wave Telescope named KAGRA is under construction in the Kamioka mine in Japan. The main interferometer mirrors will be cooled down to 20K in order to decrease the thermal noise. For cooling, each of these mirrors will be surrounded by a double-stage radiation shield to prevent propagation of 300K radiation and will be connected to two cryocoolers through heat links. The shield vibration can couple into the detector signal via the heat links and scattered light. In order to investigate the impact on the KAGRA sensitivity, we measured the radiation shield vibration while operating the cryocoolers. Then we estimated the influence on the sensitivity of KAGRA. Here, we report the measurement result for the KAGRA cryogenic radiation shield vibration and analysis result. 2.Cryogenic payload Heat links Radiat ion shield 80K 8K Baffle T=20K 2.The scattered laser light is partially reflected by the baffle (connected with shield) and might find its way back into the main laser beam, contaminating the output of detector. Cr yo cooler Measure the vibration of the radiation shield at low temperature, and estimate the influence on the sensitivity of KAGRA. s e is w r io n 0 8 1 9 1 0 0 h z 0 9 .e p s 5 1 0 Coolers OFF 1 0 1 0 Consistent with RION 9 1 0 Increase 1 0 1 0 1 8 1 0 1 0 1 0 0 1 1 1 0 1 Calculate the ratio to estimate the ie ld p e a k a tk a m io k a 0 8 0 7 0 2 0 3 .e p s ( T = 1 0 K ) floor level atsh Kamioka. 7 1 0 f[H z ] 1 8 1 0 1 0 0 Measurement with coolers ON/OFF (horizontal) Assume the same peak level at Kamioka as Yokohama 2 0 1 0 2 2 1 0 2 6 1 0 2 8 1 0 8 V ib r a tio n [m /r tH z ] 1 0 1 1 1 0 1 2 1 0 1 3 1 0 1 3 4 1 0 1 The estimated vibration of the radiation shield at Kamioka has peaks from cryocoolers. 1 0 1 0 2 0 1 0 2 2 1 0 2 4 1 0 2 6 1 0 2 8 1 0 K A G R A d e s ig n s e n s itiv ity N o is e fr o m r a d ia tio n s h ild 3 0 1 0 1 0 0 1 0 co Ver m tic po al ne nt 1 1 0 f[H z ] f[H z ] 1 0 0 The noise from the horizontal vibration component is significantly lower than the requirement. But the noise from the vertical component is higher than the design sensitivity around 20Hz. s h ie ld a tk a m io k a P T O N K a m io k a 1 0 1 8 3 0 1 0 1 0 d e s ig n N o is e fr o m r a d ia tio n s h ild 1 6 1 0 2 4 1 0 3 2 9 1 4 1 0 1 0 1 0 1 0 H co ori m zo po nt ne al nt 1 6 1 0 There are many peaks originating from the coolers. f[H z ] Coincidence measurement with RION (horizontal) lu c a 0 8 1 9 s tr a in 1 0 0 h z .e p s 1 4 1 0 9 1 0 1 0 1 0 In s id e th e c r y o s ta t O u ts id e th e c r y o s ta t 1 1 7 1 0 S tr a in [1 /r tH z ] T = 1 0 .1 K 1 0 P T O N P T O F F 6 7 We inputed our estimated vibration to the attachment points between heat links and shield. We estimated the influence on the sensitivity of KAGRA using a code made by T. Sekiguchi. The scattered light effect is not considered. p to n o ff0 9 2 5 0 1 .e p s 6 1 0 RION ICRR acc. INFN acc. We used a commercial accelerometer(RION) to measure the vibration outside the cryostat. We measured the vibration at low temperature with cryocooler ON/OFF. (Measurement @Toshiba Keihin Product Operations, Yokohama-city). 4.Measurement result and analysis 8 1 0 Inside the shield 1.The vibration of the radiation shield may excite an oscillation of the test mass through the heat links. Cr yo cooler The main sources of the shield vibration: 1. Seismic motion 2. Cryocoolers V ib r a tio n [m /r tH z ] We have to take care of vertical vibration when we design the cryo-payload. 1 0 0 f[H z ] Measurement of sapphire Q for KAGRA mirror suspension 3.Measurement setup Heat links (Al 99.999%) We will use sapphire fibers (φ 1.6 mm) to suspend cooled sapphire mirrors(20K). High thermal conductivity → lower cooling time High Q value → lower thermal noise Requirements Thermal conductivity: 5000 W/m/K Q value: 5x106 etc... Fiber 1: 5000 W/m/K @20K Fiber 2: 9000 W/m/K @20K 0 .0 0 0 5 0 0 5 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 03 0 0 0 03 5 0 0 04 0 0 0 04 5 0 0 0 tim e [ s ] We calculated Q from the ring dawn signal. Excite fiber modes Sensor 4.Measurement result Requirement (5x106@20K) 7 1 0 Im p e x M o n o lith ic f1 ( 9 4 H z ) Im p e x M o n o lith ic f2 1 ( 1 2 6 0 H z ) Im p e x M o n o lith ic f2 2 ( 1 2 6 8 H z ) Im p e x M o n o lith ic f3 1 ( 3 7 1 2 H z ) Im p e x M o n o lith ic f3 2 ( 3 7 4 1 H z ) c a lc ( T E D )9 4 H z c a lc ( T E D )1 2 6 8 H z c a lc ( T E D )3 7 4 1 H z 6 1 0 5 1 0 Im p e x N o n M o n o lith ic f1( 8 8 H z ) Im p e x N o n M o n o lith ic f2 1 ( 1 2 2 0 H z ) Im p e x N o n M o n o lith ic f3 1 ( 3 5 1 5 H z ) c a lc ( T E D )8 8 H z c a lc ( T E D )1 2 2 4 H z c a lc ( T E D )3 5 1 5 H z 6 1 0 Q 2.Sapphire fiber at Rome Modal simulation f1 f2 f3 5 1 0 4 1 0 4 1 0 0.86x106@20K,94Hz 6.4x106@20K,88Hz 3 3 1 0 0 ET meeting 22nd-23rd Oct. 2013 @ Hannover 0 . 0 0 2 0 .0 0 1 5 0 . 0 0 1 Electrostatic act. 7 1 0 Fiber 2 • 9000 W/m/K @20K • HEM quality • Thermopolishing • Non-monolithic • Brazed through alumina S ig n a l f it 0 . 0 0 3 Wires (C85) Our purpose is measuring the Q value of these fibers @ 20K Fiber 1 • 5000 W/m/K @20K • Monolithic 0 .0 0 3 5 0 .0 0 2 5 Cable of act. In Rome we tested two samples with good thermal conductivity. d e ti1 0 1 5 0 0 5 a t1 6 p 4 1 k r . e p s Displacement sensor s ig n a l[ V ] 1.Purpose Q Allen Scheie, PA, US Impact of the radiation shield vibration on the interferometer noise: Cooling b ar Test mass Pulse tube 0.9 W at 4K (2nd) 36 W at 50K (1st) We used an accelerometer developed in Rome Univ. for vertical direction and a Michelson interferometer as an accelerometer developed in ICRR for horizontal direction. S tr a in [1 /r tH z ] Sapphire fiber Laser Dan Chen, Japan 3.Measurement in Toshiba Cryogenic payload: cooled suspension system and mirror V ib r a tio n [m /r tH z ] Due giovani “marziani” discesi nel G23 presso Ed. Marconi a La Sapienza Hanno portato avanti gl esperimenti, ma c’è ancora del lavoro da fare (Q meas)! 5 0 Fiber 1 1 0 0 1 5 0 T [K ] 2 0 0 2 5 0 Low Q 3 0 0 1 0 0 5 0 1 0 0 1 5 0 T [K ] Fiber 2 2 0 0 2 5 0 3 0 0 High Q We measured Q values of two kinds of sapphire fiber whose thermal conductivity is higher than the requirement value. One of them (fiber 2) has high Q which is higher than requirement value. This means even non-monolithic fiber can have high Q. HEM quality and thermopolishing might improve Q value. Proposte @G23 AA 2013‐14 Progetto R&D per Advanced Virgo/ET test optoelettronico di una scheda per la rivelazione omodina di radiazione laser in un apparato di squeezing Majorana,Puppo, Rapagnani, Ricci G23, Marconi SISMICO NEWTONIANO TERMICO SOSPENSIONI TERMICO SPECCHI PRESSIONE RADIAZIONE SHOT RUMORE QUANTISTICO IN UN INTERFEROMETRO MICHELSON INTERFEROMETRO: USA LA LUCE LASER PER MONITORARE LO STATO DI MOTO DEGLI SPECCHI SOSPESI PRINCIPIO DI INDETERMINAZIONE SHOT FLUTTUAZIONE POSIZIONE SPECCHI X2 RUMORE FASE RADIAZIONE RUMORE PRESSIONE RADIAZIONE X1 RUMORE AMPIEZZA RADIAZIONE FLUTTUAZIONE MOMENTO SPECCHI 7 RUMORE QUANTISTICO DELL’INTERFEROMETRO 1 h S H O T (ν ) = L 1 h RP (ν ) = mν 2 L hλ c 2 π Pin h (ν ) = h TOT hPin SHOT (ν ) + hRP (ν ) 2 2π 3λ c ν OTTIMIZZAZIONE ALLA FREQUENZA RISPETTO ALLA POTENZA = h SQL 2 h 2 2 2 π mL ν SQL Popt = π cmλν 2 8 RIVELAZIONE OMODINA BILANCIAMENTO OTTICO: STESSA POTENZA INCIDENTE SUI DUE FOTODIODI BILANCIAMENTO ELETTRONICO: STESSE PRESTAZIONI DELL’ELETTONICA DEI DUE FOTODIODI STESSE PRESTAZIONI DELL’ELETTONICA DI SOMMA E DIFFERENZA BASSO RUMORE: ALMENO 10 VOLTE SOTTO LO SHOT NOISE DEL LOCAL OSCILLATOR PROTOTIPO DI OMODINA SOMMA SELF SUBTRACTION 11 TEST DEL PROTOTIPO MISURA DEL RUMORE ALLE USCITE DEI BLOCCHI E DELLE FUNZIONI DI TRASFERIMENTO MISURA DEL RUMORE DEL LOCAL OSCILLATOR CON AUTO‐OMODINA PROTOTIPO DI OMODINA COMMON MODE AMPLIFICATORI A TRANSIMPEDENZA 13