Towards the absolute zero
Transcription
Towards the absolute zero
Towardsthe absolutezero physicists nature,using Low-temperirture aresurpassing Pomeranchuk dilutionrefrigeration, coolingandnucleardemagnetization phenomena hithertounknownin the universe. to investigate OlliV. Lounasmaa tdes bded on thes€colsideraiions. One Low temperature physicists are con stantly trying to extendthe temperahrre exahple involves looking aL very weak to expedmenialinvesti- coupli.ss. When orderihginvolvesdelrangeaccessible sations closerad .loser to tle absolute icaie and cohplicated ansular conela tions,asit doesi. superfluidHe3 B, iiwill ,ero. While ihe ihird law ofthernody nadics prevenisiheir everreachins0 X. be desiroyed very €asilr by incoherent lhet have long since surpassedNature scatieringaDdwill appearonly whenth€ herself. The tempemture of the cosmic temperatur€is so low that th€ scattering becksroundradiation is 3 K below 3 K, mechanisn is sufficienttyreduced. The fornation ofCooperpairsin many we are creatihg new physics. hitherto unknown io the universe- And this has mel,alsand allo)'s the phenomenonof superconductivity-takes place below 23 been done without aby lese erpenditues of manpower or equipment the nost K. So far only S wavepairinc has been sophisti.ated weaponsat the .old frontier obseNedithe sophisticatedP wavecouplinghas not be€nfoud yet. Thisnay ofphysics arc inexpensiv€indeed. There are furth€r good reasonsfor he due to th€ fact thet in real metals th€ P-wave interaction is eltreheb \reak and, continuing tle endeavor. Such funda meDiallyihportmt propertiesof malter consequently, that still lower temperas superconductiviiy and superfluidity tures ee neededto seeit. Equallywell it is possiblethat P wavepaidng do€snot occuronly at low tehperaiures. lt is al says possible that ,ew, equally inteF exist in metals at all. On the other hand, estins phenomenawould be found if se in supeduid He! P-wave.oupiins do€s could nake neasurementsat liill lower It is generally believed that P wave tempelatures. A good example is the dis.overy,l in 19r-2,of the supeduid pairing is most likely to be found in phasesof liquid He3 below 3 mK. (By strongly paramagn€ticmetu]s,in which cort.ast. Hea becomessupeduid at 2.2 erchangeoflong lived spin fluctuations K.) Nuclearcoop€.ativepheDomena,,.3("lirtuat pa.amasDons")favors triplei over singlei pairing. Of pure metalF that is, nuclea. felrohagnetism and nu clearantifeuonagneusm,coDstitutean palladium is the nost promising candioth€r example;temperaturcslessthd 1 date, bui. recent calculations showlhai ihe njcrolelvin are neededfor investisations transition temperarureis ofthe order of 10 microkelvins. Two other systems, -Another,less spectacularbut equally Ni Rh and ZrZnr, in whichthe degreeof important .eason for elperiments near parahasneiism can be varied by chansins the absotutezero is dr desireto study ],hecompositionor th€ externallyapplied hatter uder conditions at which thermal presFure,respectively,apped io be more disorder is snall. It is then possibleio prohising candidatesfo! experihehtal investigale,lbr erample,th€ angulardisFrom the lheoreticalpoini ofviewthe tribution of gammarars emiited ftoh a main interesi in P-wavesupercohdu.ti!' radioactivesourceof ofderednuclei. ity is that exchangeof vi.tual paratuag nons would probably oeate d disot.opic Generally speaking,physicsheal the phase like supeduid He3'A. But the absolutezerc is the physicsoforder, and currents found in such superconducto$ the mo.e sultle the type of o.der i6, ihe would coupledirecily io ihe eleciromagloFer is ihe temperatureneededto seeit. netic field dd would thus be huch nore Anthony Lessett recentlydiscussed'the easilyd€tectedthan the electricallyneuprospects1br ihlestigatihg some inter- tral currents in He3. Ore could thus esiing phenomehaat uitralow t€hpera- study the iopoLogicalpropeiiies of the new superfluid phasein sreai detail. Anoiher exampl€ that LeggeNidisprolessorollhe OlliV. Lounashaais research Academy ol Finand and directorol the Low cusses could be called "high ene.sy Tehperatlire Laboralofyal the HelsinkiUnl- physicsat ultralow temperarure." Cur rent theo es of €lementary particles PHYSCSTODAY DECEMBEB 1979 predict very $eak srmmetry violating efiecis (see,for etanple, "Cosnolosf od elementay panicle physics"by Miclael S. Turner dd David N. Schranm, lHtslcs ToDAY, Septenber, page 42), and ore could look for such effecis in hishly o.dered superfluids. Fo. instdce, one couldsiudy the elechon nucteo! interaction due to nedtral .urents, whi.h is inva.iant under time reve$al bui noi under spatialinversion,by neasuring1-he eleciic dipole nonent ofHe3 B; in this liquid the Cooperpairs h exp€ciation value of the lector produci of the spin and orbital angular momenta, which is a condilionrequiredto makeihe dipole noment neasurable. Three new methods fo. cooling io 10 nK and below have rather recently be' comeavailable. They de He3-Headjlution refriseration,Pomeranchukcoolns, €nd adiabatic nuclear demasnetizationA dilution rehigeraior can mainiam temleratures asior as 2 mK continuously and in the presenceofa quite lsge heai leak. Poner&chuk's method,coolinsby adiabaiic compressio. of a liquid solid mixture of He3,is capableof producing temperaturcs down to t hK. Nu.l€ar demasnetization has enabled experi melters io reach a spin temperat$e of 50 nK ed io cool coEductionelectronsin a metal to a tedperature of 50 mic.okelvins Fisure I showsan ermple of this type ot I shall now desc.ibethesetechniques, emphasizinsnuclaar refrigeration, and exDerimentsai ihe lowest presenuyac_ c€;sibletemperatures,including sevetal €xamplesof recent results. For mo.e details on lechhiques, refer to mY Dilulionreldgeration The operatinglrinciple of ihe dih't'on rcf.ise.ato. is based on the pecuxar Cascadenuclearrelrigeratorco.slructedano 5laboraiory n Finlano operatinaIn Lounaemaa The super.ondu.tin! magnerzseemblr'(bluer afd the radalion shieldsare belns nstareo' The nucear spin systemol copper has beeo cooedto50 nanokevn n this apparalus rv rurrher deraiLs, seeI lures and.i","lrT"; i does. Consequentl!, one ftay describe the Hea ih the dilure phase as a "sdpporting m€djum" or "mechanicalvacu' trh" for th€ "dilute gas" of active Her We can now explain the operating pri.ciple ol the dilutjon refrigerator by comparingit sith ordinary evaporation. 1'he concentratedphase of nea.lt pure Her, {here rhe active atoms are closetogeiher,.orrespondsto the liquid phasein the evaporationrefiiseraior. The dilute phase,in which the Hdr atoms are sepa.ated b] superfluid Hea,coresponds to ile vapor phase in the evaporationre f.ige.atoi. In both cases,energy is re qui.ed to separateihe atons becauseof ati.active torcesahongthem; so moving holeculesupivad fiom the liquid to ihe vapo. phaseior atoms of Hetrdownward from the con.ehtrated to th€ dilute phase, lowe.s the tehperature of the liquid or concentraied phase. By constantly pumping molecules f.om the vapor in the evaporation reftigerator or He3 atoms fioh the dilute phasein the dilutjon refrigeratoi-one ce producea subsi&tial For instance, the cooling power under idealconditionsis givenby the difference between the heat ca.ied by He3 fron ihe last heat eachangerDd the coolingp.o- Q='ir(ao-ac) wbe.€n 3 is the circulationnte of H€3,,tlD is the enthalpy of the diluie phaseat *e temperatureof the mixing chanber, ?M, and ,,rc is the enthrlpy of the concen traied phse at the temperatu€ of tbe last heat exchanser,?N. The enthlpies cd be deternined from the p.ope.ti€s of liquid He3;they are proportionsl to th€ squaresof the temperatures. Putting in the vslues for the proporiionaliiy con- P H Y S C ST O D A Y/ D E C E M E E 1R9 7 9 l 2 t t 2 3 Q = ,3[(e5 J/K',no])"M'2 - (13 J,4t'mol)7N'z1 For a perfect heai exchaDger,7M = ?-. tr Q = t3(82 J/K'nol)?M:r ; ,I p The coolingpower is proporiional to the squar€ of the mixing chanber tempersItis noweasyto seeihe importanceof ture. This is $hy the externalheat leal{ the 6..1E0 solubility ofHe3 in Hea. In ah eveniually catchesup ed further.ooling ordilary evaporation refrigeralor the siops, even though the consiant 6.470 vapor phasebecomesdepleied of n1ole- solubjlity of ger inio liquid Hea ensues cules rathe. soon, becausethe vapor that d3 is not a function of 7M. (schematic).pressure dilutionrelrigeralor CoNenliona! Heliun dilution .ef.iseratorshar€now decreaseserponentially wiih Toincrease thethermalcontactarea,thefrain tenperature, whereasin the dilution .e been in senersl use for nore than a dechealexchanqers arelllledwitha sinteredcopper polver withclearholesinthefriddle fijgerator the concentration of He3 atoms ade. During this time their cooling orsilversponge, factor 100 ahd the phase has indeased by a of in th€ dilute remains constant as 2 flowofhe ium-3. FiSure 1oranlnimpeded low t€mpemiure limit has been pushed th€ temperature is lowercd below 40 nK. Thus, the nunber of H€3 atoN that cross from 10 to 2 hK. The dilution refriserth€ ph6e bomdny per unit time is in aror has already fully established itseH as the DoBi importaht iool for reseach ai propertieselhibited b! mixiu.es of He3 dependentof temperature. The pdncipaL paris of a dilution !e- uliralow tempe.atures, replacins adia and He1 ai Low temperatues. Below ebout 0.8K aliquidmiltur€ ofthese iwo friserator are schemaucallyiilustraied in batic demagnetizationof paramagnetic isoiopesspontaneouslt sepaates iniio two fisur€ 2. Cooiinsby diluiior is achieved sslts. MdJ experiments ihat wodd hav€ components,one of the phasesbeingrich in the mixiDgchamber. The process.an been difficult or impossiblebelo{ 0.3 K in He3and ihe oiher ich in Hea. Becaue be nade continuousby circulatinsHer in ae .ow perfo.med routihely with dilution of its low€r density, the H€3 dch phase the systemby a pump ai room tempeia' H€inz London firsi suggeited the ture. Incominggasis first precooledand floats o! top of ihe Herrich phase. As the tedperature is loweredfurther, ljquefied in the condenser,which G at- principle of ihe dilution refrigerator in the .elative ahounts of He3 and He4 in iachedto the He4pottuaibtainedatabout 1951ihe, iogethe. wiih Geoffrey Cldke ihe filo phaseg.hange; b€low about 40 1.1 X. The He3 then ente6 the still end. Edc Mendoza elsborated on ihe mK the upper, or concentmtedphaseis heat exchanger{whereiis energyis given suesestionin 1962. Pankej Das,Rudolf practicallypure Her andihelower, or di- io evaporaieHe3 on ihe r€tum paih) at d€Bruin Oubote. and Kijn Taconis buiti luie phse is made of 6.4 atomic perceni about 0.7 X and passesthrough a sei of the first dyostat of this twe at Leiden rn of He3dd 93.6c'of Hea. The possibiliiy heat exchangersto cool it further before 1965;it wasableto rcach0.22K Wiih'n a vea Boris Negaov, Nicolai Boisov 8nd of dissolving a la.ge amount of Her in ii enten the mixing c anbe.. -{fter dossing the phase boundary Mihail Libury atDubna asweil asHenrv liquid He4 evenai ihe absolutezerc is of at laramount importancefor the successof ihere, the He! atohs, driven by an os Hall, Pete. lord and Keith Thompson motic pressuregradient, proceedin re- Manchesterbuilt dilution machinesca tbe diluiion retuisentor. The other dejor reasonfor ihe slccess verseorder throughthe heatexchange.s, pable of rcaching much lower temperaof th€ dilutjon ref.iSerator comesfroh the alons an unbroken column of ihe dilute tures. JolD \Vheatley, mong others, hs renakably diftereni lowtemperature superfluid phase,to the still Fhere ihe done a considerablemount of develop rneni llork at the Unive$ity of Cslifornia behavlor of liquid Hea and llquid He3. Becauseofits zeronuclear$pin,an atom Vapor is renoved from the still by ai SaDDiego. I have recently Miiten t pumping, which is how He3 is separated shori reviewon ihe subject.6 ofHea js a boson;beloF about 0.5 K,liq Gioryio F.ossati and his coworkersat uid Hea is, effectiveiy in iis quanium' iiom Hea: Becausethe vapor pressureof nechanical ground sta'ie. Veiy few Hea is almosi neslisible even at 0.? K, G.enobl€haverecentlybuilt a refrisela lhonoN are exciied and the liquid is a more than 90E of the outcominggas is to/ that reaches2.0 mX in continuous ihermell! ine superfluid. The lisht He3 if a suitahleorifice for reducinsthe operation;this is the lowesttempe.aturc so fsr producedbv the diLulionmeinod isoi.ope, He3,hasa nuclearspin of %; it is flow of l,heHe+filh is installed. The Grenoble sroup has worked lbr nany the refrigerator fernion and does noi erhihit The analJsis of a dilution thus a sort of slnple Bose condensationHea can be pui on a mo.e quantitative basis. ]'€ds and wiih goodreslli. to improte ihe 34 I k, F iI 0 ;, t tl H P. a, pertbrnlhce oI dilutior cryosiats. The successof ahy dilurion refiseraior dete..jd. crtri rll\ on tlF rannnr tjon dnd e t r e r r r e n t s $o t t h e h e a t e i . l r J . g e r s ,o n Llr noble.reiiserrtor shich js srrrtar schFDdrictt]ja tjeure r r n en m i 4 L h a b g o I d i l j n s \ e r yf i n e 3rver powoerto hcreasethe cohiacirrer bPis@. liqujd H. rnd ihe exclanger oooy. rne renperrture of ti€ hert e\ ctla.Lger.sl,ageej as measlred irom rhe d r n - o n i n s d i l u r e m r r r e j d e . e a s e jr n r n e r o r ^ 1 1 r nsg€ q L r e r c e2. 5 . 6 . j _4 . 0 .2 7 Il.1ld20hX. T h e c o o l j n s p . $ e re, , r s runw qlth Bgr, cirrutrtj^, n),t2A\) O/urion oyosrais cd easity be adapred to vanous erp€rimental needs. A sood eldmD\€ ls \,\e \saibNa\ re\\Eeialsr built by Tapio Nii.ikoski.s The ;uslat .onsi ction was diciated by the geome try ot magnet pole pieces and by ihe counung-auang€rnentslor experihenrs o n s p r ni . o z e . . p o t a r i z epdr o r o nt a r g e i s . has a very larse coolirs lower 10 -D\V at 200 DI( wilh rr = 7 erdpt€. Ilnre hDiral \alue. f.r drluion re&iser.t!6;ft 20 hrcroiratf at 20 mK, 600 mic.owari at 100 n1r, rhd 2 milliwatr at 200 nX A very imporiant use of ditution ma chinesis the prccootingofponeianchuk retige.ato$ and rhe vadous kihds of nuclea..etrigerato$,whichneedstarring iemperaturesbeiween 10 abd 30 hilli, Poftersnchukcooting In 1950IsaacPoneranchuk proDosed a reiiiserato. tased on adj;baiicetiv c o h p f e s s i l sl i q u i d H e l t o a s o t i d . y u r i Anutrievbuilt rhe tirst toneranchuk rehge.ator in 1965at Moscow F l g u e 3 s } o \ , t h e p h a s ed r . g r a b o f -. r L e . N . r r c et h c i t h eq t o p eo f t h en e t t D s f u r \ e i s n F g a t i \ eb e t u w0 . 3 2K A t i o : u"idsolid mixture of He ihereturerools r rr is cobpressed3t ieDperaturesbelow 0.32 K- Duing the process,tiquid js c o . r , n u o u q tcJ^ r l e r i e d i r t u s o t i d . ' l . h e b r r r p x p e rm e r t a t d i f f i c u t r \ h r h a i compressoncannorbe achievedfron the oltside simply by pumpi.s Dore He3ihto Lne 1owtehperaiu.e celt, becausethe heliuh in the connectinsiube hasio Dass lhroush staies in the sotid region ofthe d'agram as ii is cool€df.ontishe. teh peraiuresithe conn€.ting rube thus be . m e sb l o L k e d ffrb s.tidHer. Oreb!( rnererufeconpre.s the cel some ottcf i o r e x M p l e b \ s q u € e z i nist q i t h a lJy peraiure,I arishirg at absotuiezero. . In rh€ solid-He3atomsae iied io i,heir lathca siies and their irave fun.tions oleflap only paniatly. Every atoD is thus lairly independentof irs neishb.rs a n d r h e n u c l e a sr p i ne n t r o p l . t c r a r a t u e clusero,?1n2,whjcf correspondsto c!o_ plete disorde.. Thus. at low ?, the sotid entropy ca be largerthanthe tiqujd enPon€ranclLuk's rechnique has beer very iDloiiant for studies of the suDer{ i u i dp f o p e r t i c ,o f H e r . I n f a . t , D o u c l d osh.roff Rolert Richdd\un ,nd Ddid l-ee usedjust tl;s meihod of cootins ro l0 30 100 300 1000 o r s c o \ e rt h € n e w , s u p e d u i d , p h a s e r . i t g r . e1 G a , r i e r n a L i , 1 h s n n o f a D) n TEIIIP€RA|UREINK) provedversior of thei. cell. The device Phase diagrad ol hetium-3 showing the 6orid incollor{ias a h!&a$ic ohae. rhe me(iqq cuNe Ni\iRuR arq 32K.1he $ress\\e rsnormai Fermi liquid phase andfie supeFltuids plifier that consists of B; Cu beltows heliuh-3,A and heiium,3-B. Noto lhat the conneciedby meansof a risid shafi. A transition iemperature at zeropressures 1.1 moderate Hea pressure chanse in the mK thisis 2000rimese3srhanrhe\_pointor t'pper chamber GhoM to the dshr in the Fiqurel tryur€), compressesthe lower cohpartment suticiently to solidify the entie Hei .hdge. At a t\Tjcal r.ie oi \otrdjficshln, zu nrtronovrc cooling proceedsai 4 iereDcebeiweentiquid abd sotid.emains r n L c f o k e l v i n A e c . Tle low terperaiure p u s i t ' \ e M d l e c a L r sde? / d ? i d n e s a t i \ e L r D t r s a b u u t1 m K Uel.q 0.J2 It the entrupy oi solid Hel A very rec€nt exampte of rhe use of musi.be lafger ihan the enbopy of the P u D e . a n L l u k c . o l j n si s p r o \ i d e db r i h e xqurd at tenpe.atures below the nett work !fMaurice ChapeiLiec. rDg-curvemmrmum. Thjs indease jn Finn-BergRaqnussene Frossatr.and on snih-Dolej2ed entrop\ upon treezjrg is the basis for iiqrid Her. Owing to the Fernj deeen t s o n e r a n c h ucko o l j n g . F r a c vt h e s u s c e p t i b i l i toyf t i q u i d H a - j s ^ ore can easilyunde.stand the reaon l o w s d s i S n i f i c a i p o l d i z a t i o D sc a n n o t 1or ihe entfopy differeDceby tookjns al b e o b t a i n e d e\en by apptjing a hish t h eJ t . u . i u r e so i r h e l i q u r da n dr h e s o t i d . masnet,cfreLd ned 1 DK. In sutid He3 li fhe liquid, rh€ He" stoms rfe tueer. the susceptibiiity is much ldce.. Ber roam about and iheir wave funciions nad Castains and Philippe No,ia.es overlap extensivelyithe thernodyhamic Eugg.ett€d that o ne ould produces pota p r u p e r t i e s6 r e t l u s d e t e r D i . e d b j r i e n z e dr , q ! r db j m e t t j n g s o t iH d e 3t h a i n a d r e r m r \ l a r F t i r s . ( T h es i t u s t r u na a n , t - preliously been polarizedjn s masneiic ogds tu thc conduction €teLrronsin s r e r d a t l o w t€Dperaiues, d e r a L . r l n F e r r r o p ) ,o f t h e t i o u r d s. . i s ChapeiLie. dd his coileaeues sotidjfied t n e r e t ^ k a l i n e i t u n c t i o no a r h e i p m about 35%ofa He3 sampti durine con- I .The shapeot thF meltjng curveofHeJ, wfLr.h rorbs the basieof tie ttrurv of Pomeranchukcoolins, is of .ourse.-determined by the Oausius,Ctapeyron dP sr_s. d" vr_y" BecauseYr - ys, ihe nota votuDe dif- iirli:il"1,'J#1fi i{iiii:i'.iffi $h'3*itfu ::*!fri"nilr:i}:i PHYSCS TODAY/ DECEMBEF1979 p.essionwhile itcooledfrom40tu 2 mX in an externalfie1dof 2.6 tesla,thus obtai.ins a highly polarized solid. They then reieded the pressures! fficiehl,l) so that the solid melted dd honitored the pola.ization via the nuclear hagneticresondce sighal. The resultsshowthat the poldization decr€ases exponentially from the high iniiial value to the low ralue characte.isticof Ferni tiquids;the group recorded initial liquid poldizations as high as about 20nhand relaxation times as These and Binila obseNations bv Gemrd Schunacher,Daniel Thoulouze. Casiai.s, Yves Chabre,Pierre Segransm, sd JacquesJoffrin open up the possibiliry of studies of polarizedliquid He . Iuther, it has been 'rredici€dthat the nelting curle E hlch lowered at hjgh spjDpoldjzations dd thst the minimum may complet€ly disapped. The netting pressuremay even b€ suppressedbelow the vapor pr€ssure,in which caseone o. two triple points would apped in the phasediasram of fisure 3. Nuclearrefrigerati6n Nicholas Xu.ti at Olford University wa! the fi.st io se, in 195?,the technique of adiabatic nucled demagnetization. The basicpinciple of this i€chnique is the sanreaslbr parahagnedcsalts,but ihere are very sisnificant diffe.encesin practiceBecausenuclear magneticmom€nts are aboui 2000times smsllerthan thei. electronic counierparh. it is morc difficult to produce significant changesin ihe nucled{pin ehtropJ by external means. In tact, one hust start with ienpe.atures b€]ow20 hX and ns€Ietic fields in excess of 5 T for nuclear .oolihs, whe.easfor s0LJr0 pdamagneiic sslts ihe corrcsponding nuhbe.s arc 1K and 1T. Fortunately, ihe starting condilionsfor nuclee magnetization can be reachedraUrer easily with dilution retuigeratorsand supeF conduciing masnets. (These are the The cascadenucl€arrel.igeratorat felsl.ki.3 conditionsIor the so cslled"b.ute force" The firsl atage is made ol 600 qrams of insllal6d nuclearcoolinsnethod. I shali alsodis- 0.s mm copper wies; the second stage is a cusshr"efine-enhanced nuclearrefris- 2-grambundleo120000.04-mn copperwn€s. e.ation Dd dFamic polaization, to A dilulior refrigeratoiprecoolsthewnesto l0 which different starting conditions nK. Themagnersappylelds ol8 andTTtorhe ftsl and second stages before dehagneliztion. aPPl,.) (Thisis the workingendol the apparalusshown The hain advstag€ of nuclearcooling is the very lowtemperatufe thatone can rea.h. Nuclei order sponianeously, denagnetizationthen coolsthe smple to owins to their mutual dipote dipole in- a finsl tenperai.ureZr given by teractions, Fell belo$ I nicrokelvin. Becace spontareous ordering i6 ihe limit r, = 1. Il,, +tt IJ, of any cooling process,temperaturesin the sub-hic.olelvin resiob can be reached where b is ihe effeciivefield of the inter, by nucl€d demagneii2ation.For cerium action betseen the nuciei. Thus, for er: magnesiumnitrat€, shich is theweakesi ahple, ifw€ start wii,bBi = 8 T, ?i = 16 pdamagneiic sali. th€ orderingiemper DK, ad we linish with Bf = 0, and the ature is slishtly below2 nK. material has b = 0.3 mT then the final The techDiqueofnuclear cootinscon, temperatue of the sampleis 0.6 hic.o sists ofmagnetizing tne sampleisotheF kelvin. mally. raising the hasnetic field fion 0 to Ai ve.y low temperat'Ies ii nakes Br at ihe (low) iniriai temperatu.e ?i. senseto distinsuish bet{een the ten One then isolates1,hesmple and reduces peratureof th€ nuclearspins,?.. and the the external field to Br. T|e adiabati. temperatu.eof the conductionelecifons, 38 PHYSICSTODAY/ DECEMBER1979 ?,. The nuclei reach i,lernal equilibri. um among thehselves in the slin sljn .elaxationtime rr, and the nuclearspins and conduction elect ons equilibrat€ {ith respectio ea.h othei in the spin laitice relaxationtine,rr. Atverylowt€mper aturest2 ishuch shorterthd rr, sothat the spins reach thermal equilibiium amolg themsehesvery repidly Fhile only lloely equilibraiins with the rehailder of the syst€m- Nucleardehagnetizaiion cools ?", leavins 7e more or lessunaffected. One must thus wait for times larser than il for the cold nucl€i to cool the remainde. of the syslem. For mo6t metalsrr is the orderof secondsat l0mKi for jDsulators 11is days or elen Feeks. it G lhus cl€arthat onemust useneials for brut€lbrce nuclearreft igeration. The snall 11 in netals is due to conduction elecironsthat act as inierhredi aies betwe€nthe nuclearspins and the laltice. Only electroni near the Fe.ni surfaceconhibutej their nutuber is proportional to ?e, making rr propo.tionsl to i/7", that is, rlTe = x she.e { is calledthe Koninga consiaht. In practj.e ohly copp€rand indium have been used for brute-force nuclear oagUnavoidably,exieinal heat leaksinto the conduciion electron syslem. This heat flow has an important effect on equilibriun between7. and ?". lf the rate, Q, at which the heat floBs in is too ldge, the spin lattice relaxation proc€ss is not sufficjently rapid for cooling the conductionel€chonsad€quately,and the difference between the electron and nu clear temperatureswill be iarge. Quan pttx|) Ta_1= T" L@2 + b2) where p0 is the p€rmeability of fie€ space ald I is the nuclearCurie constant. Nuhe.ical calculationsshow thal in mahl cases to keopthe sanple cold tor sufficienily long tiDes or to obiair sig nificant refriseraiionof conductionelectroDs o. an ext€.nal specim€n one should not carry the nucles demagDeiization all th€ way to Br = 0 but shooLd stop atsome intermediatefield. In particular, one reachesthe lowest 7. b!'-de' Br(opt) = r/porQTT In tlis case?./T, = 2 The most importat useofnuclearre friseratorsso far has heenthe coolingof liquid He3. Ai l€asi a dozen such.rto siats arc nos ih operation;they have ar readyse.vedfo. alarye number ofexcjt ing measurebents. One difficuliy €n counter€d jn these erpedments i6 tbe Xapitza ihermal boundary resistance beilreer liquid He3 and a sr,lid bodr,. i,uclill' this difficuliy can be partielly orercomebecause ihe nuclea spinsofHer are coulled to Lhenagr€ti. ihpu tieson A srouprworkirgatthe HetsinkiUri the copDersurlaces,which oarkedly re ve$ir,! of lechnologjhasreceDrt!. .on .luc€s the ihcrmal resisiance. tn 19t8 stfu.ted a c4,oslat, ltiih tlro nu.lea. Osh€rolf and \'Iikko Paatanen at Beu d e m a 8 n F h z l r i unn. g s n t e r x h . g r . s e Laloratoies were aLle to use this techr i s . I n { h r c h i h p r p i n so f , p p e r i L i t p i n i q u et o c o o l l u r el i q u i d H e r t o 0 . 2 g n K , have beencooledto ?" - 50 nK. This is the loilesr tempefature yet rea.hed for ttre Lowest tempe.ature ever produced. liquid Her. Severatorhe. taboiaroiies rhe apparatusG illustrated in fisures 1 boih in the US and in Eufope, have atso beenable to cool supeduid Hesio betow The secondnuclearstase.which is also 0 . 5n X . the specimen, is cooledby the fi$i ructed With mixture! ofHe3 and Hel rhe sii retngerator fo 0.2 mK in a fietd of ? T; uation is nuch nofe difficuti b€causea uDder these conditions the equilibriuh layer o1noD-hasretic He4ou alt sufaces huclear-spir polarizarion is over 99o/o. p r e \ e n t ! m . g n € t i . b o u n d d r )c o u p t r . g . Thefe is no heat swiich bet*een the 'wo lr.e po!fbl€ drrpr.€.|.wlricl has beeo nu.lee strges.so one hasro demagredze tded but so fa. unsuccessfully,is first to ine Bpecrhe! and carry out the actual cool pure liquld H€r by nuclearreftieer ea!€rimenls in a tihe shorr in conparison ation and then dilute ii with Her. wrth 7r to reduce lossesof poiarization Liquid nixiures ofHe3 ed Hel a ow due to relaration. In zeroeriern:t fiFld temp€mtures,ee ertiemely interesting. 7r rs about 20 hin. \l'e obtainedthe ex Heo becomesa superfluid at veN tow pedmenial information aboufthe nucled tehperatures by a pai.ing heclmish spin systen ofcopper,ln fieids fron 0 io analogousto that rcsponsiblefor suDer1i mT, from nnr measurementsdon€ conductivity iD the Bardeen Coo;e.wiih Josephsondevices(SQUID8). Schrieffer ileory. The conpar;ble We fouhd the tehperaiure ?" in the iheort' ior helium predictsthat for ditute second stage aftei demasneijzaiionbv soluti.ns of Her in Hea the Dairihs ivill enploying dircctlv the second law of produceS states.likethe C""p* p"i*in therhodraamicsasappliedro asystemin superconductors; at high con.eni.ations. = dQ/dS. We thermal equilhdum: hoiveler, the siable paiN should be in brought a heat inpuNdO " io rhe huclearPaiales, as they are in pure He3. spiD systeh by applying a snall rfputse The long .anse.oherencep.operriesof at the hr peaLabsorpiionfrequercvod the supeduidphases can producetdgeobiain^eddS b\ mFasuins ihe potdzascrle effecis from atomic phenomena. Becausethe atomic phenomenath€mAft€r consiruciingthe entropydiagrm selvesare tro small io measuredir€ctlv. of copper ve found thai the mea$,red the supedlLridsare very att.aclive ex temperatureswerelessrhan thosecalcupe.imental ioois for exdihing them, as laied for an interactingparamagneiF,ith Legsettdiscussesin his reviewarricle.4 a constanilocalfield. tr'ofinstece, at ai One slmple exampleis the vert' smau entropyof0..l5 4 in 4 the measuredte$ orbilal magneticmoment po.bassociated perature is 50 nK insteadofthe 110nX \rith lhe rotation of a homonuclea. di that one calculatesfrom I locaLfield 0.34 atomicmoleclrle. 'Ihe magneticmoment mT. By analogt'with elecironichasne is obviously directed alons rhe orbital iism, a plot ofihe invene statjcsusc€Dti aDgularmomeniuD vector. Howeve.,in bility as a fuhction of tenperarLrre M o.diDdy dialomic sas ihe hotecutar sLrsg€ststhat the nuclee spins prefer a\es of.oiation are oriented completely ahltte omasnetjc order, with a Weiss ar mndom, €ren ii a hish field, because t Tlre .uclear rerrigeraror ot An.lres at Be[ Lab_ e m p e r a i u . eo f 1 5 0 . K . /ldb is so small ihat it is undeteciable. On the other hahd. we found no ctear The hyperJine structureot th.,a The situation is radically differenr in oratories.rr praseodymum chdngr in the entropy diagrah o. in the nickel greaUy crysra enha.ces the anGotropicsupe luid phasc He3-A. the etreclivefietd at rhe nucte,therebyalso nmr daia indicaiing a iransition to ihe In this casewe heveCooperpairs.vhich enhancrnq thecooinadle lo adabaitcnuc4r o..lered state. This nighi be due to ex .ray be considcred as giant diatoDic demagneUzaton Ths apparalus hascooted p e r i h e n t a lr n a c c u r a c r e sI t. r s s l s on o s . nolecuies. Bui, in conlrast to an ordi- helium-3 to 1 mitttketvin. Fcu.e6 s i l , l e $ c t i h e n u c l e dsr p r n . y s i e n$ 6 n o i ndrJgas,thepairsautohaticallycondense a b l et o h r l e r h e t r a n s i t i . . r o \ v r r st o r h e Dto the same state ("tsose cond.ns,- He! is an elception owiDgio the sirong fatnerraprddemrrnerjzaiior) or lhat rtrF tion"), sothai the aresofrotatioh are ail quahiun-hechanicai exchanse force.) actual N6el Lemperetureis belos 50 nX. in ihe samedireciion. The snall orbitdl Thus, to invesiigate nuclearcooperative In elecironicaniiferromaenetsthe ratio hasnetrc moments then add up coher phenomena, such as ruclear fe.roDas of Weiss to N6el tehper;tures is often €ntly, we havea maoos.opic etYeci,and nettsh and aniifenomasnetism in a considerabtylarger than 1. tn any case_ tne systembehavesas averyweaktiquid m€ta1,onenust bring ihe temperaiureof theseexpetmehts showthai thenuclear ferronagnet. Douglas Paulson ;nd the _sjstem io the .anokehin .egjon. spjn s)'stemof coppef clearly faro$ dn Wh?stLevlD ha\ e acruallydetef ed rro,bin ]-ucrrrryrt $ not neces6aryto cooi the H e - A , t l r e \ D F a . u r e dt h e a n i s o h o p \o f ohoL€specimen,cnlv the nuctear spins. zero sound attenuation in a nuclear re- The conductionelect.onsnav renaL at Hype{ine enhancement ftige.ation cryostat. This is the fi|sL ob- a considerabh hisher temperature beAroiher iechnique of nuct€a.cooiins. servaiion of a senuinely chenical efect in causethe spin lattice relaxation tine 11, "hypofinp oha.tFd rr lear refrigera heliun, the fornation of "nolecLrtes.', e \ e n I n d m e t a l j s s u f t i . i e . i l \ , l o n ed r i rron lrGrp Fnrllbe ne \Er}sarLesful. For most substances,as I have hen u . l e t d i o k e e p r h e i u r l F J r s p i n c This nethod has beeh devetopedsince { x LLoned.spontadeous nuclear orderins r n g n c d l o n ge n l u g h t . p e r f o r mr h € e r . 1 9 6 7m a i n l r b y K l a u s A n d r e se . d h i s c o occumwell beloir t hic.okelvin. (Sotid wo.keis at the BeLlLaLo.atories.'1 PHYSTCS TODAY/ DECEMEER 197s 39 In .ertain paramasneti. lanthanide alloysin whichthe fare earthion.c.upies a sinslet sround nate split by rhe .r)'sral lield ("Van Vleck alloys"), an applied magneiicfield nires €xcited stetesiaith i,hesround state. '1'heextemalfield i,bus indu.es a large electronic poiari2al,ion, which, in iurn, enhancesthe field ai the sit€sof the ree-earl.h nlclei. ln i,he best specihens, wHch afe ini.ermetalliccompouhdsof praseodlDiuh, ihe lieLd is boostedby a facior varlins The enhancedfi€ld allows one to iehove a comparablyenhancedfraction of the spin .ntropy. \lith an initial magnetic field of2 T and an initialtempefa iure of 20 nX, the eni,ropyof PrNis is reducedby 2570.The stad.iDscondiiions for demasletization aie thu! excellent. Fo. copper the correspondirs entropy redudion is only 0.14'ro. CoDpounds such aq PfNis thus provide a very large cooling ca!a.itl during and after demagnetization. UnfoiLLrnaiell;.thes€ compounosere nor easy [o prepare necaus€they husibe extfenely purein }oih conposjtion and slr!.ture. Even traces of nagnetically oidered impudty phases may leadto irreversibilitiesthatwipe out the entire nu.lear coolins effect. Other drawbacksof ihese sp.cjmens are their otten poor the.mal conductivit]' and the fact rhat spontaneousnuclear orde.i!g, which setsthe lowtemperaiure limit obtainable by ihe h}'peifire'enhanced nu, .led coolins method. occurssonewhere above 0.5 mK, depending on l,h€ com Figure 6 sbows the apparaius that Andres is cunently using. He has, for exanpl€,cooledsuperfluidHe3to 1.0mX. A g.oup worling et the Unlversiiy of Nlinnesotahas recently obseNedu nu clear magnetic order in PrCu6 at 2.5 nK. Jan Huiskanp's sroup in Leiden has lbr some tihe ope.ated a cascadehuclear coolinscryosiatbasedonthe same principle. The first siage js made of Prcud and ihe secondof indium. lran! Pobell and his cowo.ke.sat the KeDforschungselageJtlich in West Germany hav€recentlycompletedareftigeraior in whichthe fiJsi nucled stageis madeof 1.8 ke of PrNis and the secondof 0.6 ks of copper. \Vithout a beai load, PrNii, denagnetized froh 6 T, reached0.48mKi this is thelowesi iemperaturesofarproduced br ihe ht"erfine-enhanced nu clearcoolingmethod. TheirsecondstaF€ produced a record .onduction electron temperature ol 50 microkelvins. The sroup headedbyXazuo Ono etiheihsiitut€ of Solid State Phr_sicsjn Tokyo has rec€ntlJ obtained a nuclear spin temperature of 111mic.okelvins in a sinilar D y n a m i cp o l a r i z a t i o n A group at Saclay,headedby Anatole Abragan ard Mau.ice Goldman.ha! for 40 FHYSICSIODAY / DECEMEEF1979 Nuclear ant eromagnellc slrlctures in thiuh hydrideat pos ive and negariveabsoturetemperatureswh6nthe exlerna f eld is para elto a ll00ldrecton oithe crystal.2 Blackandopen r ' r o r . ' e o e . e r ' l i r ' i u - - /n c p . . d p o i o l . . e s p e r ' n " J manr,rears st!died spontaneousnuclear orderingin insulators,noiablyin caLiuh Uuoride. Their eiperihenial methodof coolingis drnami. polarizationby means of i.le "soljd effeci," followed bt' adiabai.ic ?he specinrenis a small CaF, crystal iDr,o{hich Tm:- ions wereintroducedas electrcni. nagnetic impudtie! ai a coD centration of 10 parts per million. An He3 refrige.ator first .oo1sihe sp€cimen io 0.7 X in a lield of 2-7T. Under ihese conditions the poLdization of r,heiluorine mrclei is alhost zero, ilhereas the elec i".onic nomeDts of Thr+ a.e almost conpleteiy polari,ed. This is, ofcourse, due to the fact that the eled.onic magnetic hohents are aboui ih.ee ordersof maghitude larser ihan lhe nuclear noNext. ihe systcm is supplied with mi crowaee radiai,ion whose ansulai he quen.y oe - o,. is equaltothe difference in l,h€Larnor frequ€nci€sof the Tm,+ electronicand the fluodne nuclear homents (the nLrclearspin of celciun is ,erol. The hicrowavesinduce flip,flop transitions, in which an €lectroric homent originaily pointing up (in rhe di rection of the external fieldl flips dowh aDd a neighboringnuclearmoment oliginallypointingdoFn simultdeouslt tuns up. Owing to its shoft relaxdtion tihe with rhe lattice. ihe electonic moment will quickl) .elurn to its oiiginsl dir€ction atier the ilip flop, shereas the nucleus, becaus€rr is lery loDsin insularors,will .eiain its ne$ ori€ntation. Ihe ifml+ ihpurity then perfo.ms a new flip-flop processilith dother lluorinenucleus,and so on. This is th€ "solid effe.t." Th€ end .esult, jD theory. js i,iat ihe nuclearand electronicpolarizaiioDsivill beconeequal In Fracii.eihere ar€some losses,but ihe Saclat sioup has achie!€d nuclear poladzatjons in €xcessof 90% aiter .1houF of mic.owaveirradieiioh. The nicroilale poweris then cui off and the He3refrige.atorcoolsrhe CaFrspecimen to 0.3 K. It is importaht io note that anucleafpolarizationof90ooat 2.i T correspoldsio at€mperaiure7n = 1nK. Th€ siarting conditions for ruclcar demagbei.izaiion, which is the n€xl srep, areihus excellent. The end temp€rature reachedin the nuclea.spinsis about 300 DK. The lattice slays at 0.il K, but rhis Anoi.he.f€ature of the Saclayexperi ften|s is the possibility of produ.ins negative absolute tempe.atures ih ihe nuclear spin systeh. hradiating the specimenwith micioilavesat a tuequency ofoe + o"$i1l induceflip,flip. insieadof flip flop, transitioDs: the resuli is i,hai the nuclei hecone pola.ized oppositetc ihe externslfield. This meansrhdt after demagnetizalionthe syst.m will reacha nesative absolute tempe.atue ?" of -300 Calcim fluoride behar€squite differentl] at posiiive and negativetemp€ratures. Suscepiibility data show ihat ai positive ?i the systeh .eDains para hagneric down to 300nK, while ai !ega tive 'I" there is a magneticftansitio!appar€ntly to an antiferromagnetic sl,ate wirh a \6el lemperatureof -600 The Saclaygrouphas recentll provenl nuclear antile..omagnetisn in l.lH. Figur€ ? shows ihe order€d sfuu.tures predictedby i.hemee field \Veissiheory. The expedn.ntal neihod is the sameas ihat aheady etplained for CaFr. Ho* ever,in theseexperimeni-s. the exi.ernal field*as 6.5?dd a dilurion relrigerantr precool€dthe sample io 50 nX. Afier ih.ee daysof mi.rosave iuadiation and befor€ demagneiization,ihe Lil nLrcle' rvere80%pola.ized and the t.oI.on !olarizationsas 95%. Neutron dilta.iion siudies lorh at posii.ive and regaijte iemperaturesshowedan erira Br.gs re- llecrion characierisiic of anijierromag T h e . € c e n i . s u c c e s so et nsu c t € a r r e l r i s , eiatron prcmie further progress ir reacnrnglon tempe.atues. It thus ap pea.s that wnile Pomeranchukcootine r n r v r e m a r nr b p o r t a n th s p e o a le a s e s . ouDno. .el gerrtion and n!ct€sr dehagneti2ation ivill be the main iootsf.r tuLure research_ Comptere diturion cryostais are. in fact, alreadv commer cially alailable. The €xamplesof erpedmehiat resulrs ihai I hare discussedin rtis reviewdem n " t r a t eI I o ! e , t h a i i h e i pi s a B F a r d e a t n r r D n o ; n e n r l l t Jr h p o r t d . t D h \ s i c sr s leech lobe doheinrhemili , nnro and !anokelrrn .egions of temDer,tIrrF Nlany of the Dewphenohena io be dis cove.edwill probabtyinvotvemac.oscopic q u a n t l h . o h e r e n @ I t a p p e d Bi.n i a c t , o o r nr r o mt h F e x p e i m e . t a ]a o d r h e o f e r _ rcalpoints ofview, rhat lolr-Lemperarure pnysr.snasoncedsan enteredanewa.d exciring era on the road io absotute But, ofcourse,we can neverreachihat goal. This should noN discouraeeus. The thid law of thernodynmicils no mnorance to progress. If sohe new lnenomelon occursai a temperaiue rhat nasprevrouslynot been.eached.it is at_ sal's possible,boih in p.inciple ahd in practr.e,to employ ihis phenohenon io srepdo$nluriier and reachthis oasjs.f ,nterest. Only ri nothhs hs!p€n.. if r n e r e) q! n t y , d e s e r rb e t q e e nu u r l o s e c r r€mperaiurc and the absoturezero we cannoNprogressluriher. bur rhere js ro scientificihleiest for ir either. L D D_-O\ho.fr R C R.l,rrdson.Ir N. L e t t 2 8 . 8 S 5( r 9 i t r . L Y . R o m e lV . B o u r f u d .U L B a ,c h e t aI t . Prot P l\liriel p Roubpau,O.Aienei, vL.Lodrfu A Abrdsm pht!.Re\ Lef.. 4 1 .1 5 ? 2( 1 9 ? 8 ) . 3. C J. Ehnhotnj, J. P. Ekstrnn, J f. Jac q u i n l r M 1 . L l J o n e f , O .\ I o u n a s r r r l J K S,ini th\\ fie\ tetr 1:, riu.z ,1.A. J Lecsetr, J. physiaue 39. C6 116,1 (19?81. i O \ l - o u r d . m a JF , f p e n ? e a t o rF r d r rt^ ud M Lhall BPlor , x qlJncmi( fre- Londu & Nctryirk 19irl r O \ L o u n B . s d a ,. 1 . p h y , I 1 2 . bi,a r19i9) T G. F.ossiti, J. phrsiqu. t9, C6 t5t8 (1978i. 8. T. O. Nii l.sli, Pra. 6th tntetndt ctlaeeni: Lneineeti.e Canl , tpc Soence ard Te.hology Pres (19t6)rpase102. 9 Nl. Clap€llier. c }.rossari.F.B. Rasnus s.n, Phrs. Re1..Latr. ,1:.90,1(19?u) L0 D. N. Paulsor,J. C \!hoartey, plrs.Rev L e i i . , 1 0 , 5 5{71 9 i 8 ) . rt. Ii. Andres Cr!oserics 18,,1.r3i19?8). 1 1 .J B r h , r k J K i e r . T N t J n h ! ,r ! . \ ! e , h d o n n .P h . , . R p \ . T p f t $ . 3 . 0 l]9791 Ithacop-resents a fewchoicr wordsaboutpreamps.