Métodos de Sintonía y Autosintonía de PIDs Fraccionarios

Transcription

Métodos de Sintonía y Autosintonía de PIDs Fraccionarios
Jornadas de Ingeniería de Control
Pamplona, 14 y 15 de Marzo de 2006
MÉTODOS DE SINTONÍA Y AUTOSINTONÍA
DE PIDs FRACCIONARIOS
Blas M. Vinagre, Concepción A. Monje
*Escuela de Ingenierías Industriales. Universidad de Extremadura (Badajoz), Spain.
e-mail: cmonje@unex.es; bvinagre@unex.es
1
MÉTODOS DE SINTONÍA Y
AUTOSINTONÍA DE PIDs
FRACCIONARIOS
ÍNDICE
X Cálculo Fraccionario
Y Control Fraccionario
Z Sintonía de controladores PID fraccionarios
[ Autosintonía
\ Conclusiones
2
CÁLCULO FRACCIONARIO
• Definiciones (Riemann – Liouville):
3
CÁLCULO FRACCIONARIO
• Definición de Gründwald – Letnikov:
• Otras definiciones: Weyl (Potencial), Caputo
(Condiciones iniciales interpretables).
4
CONTROL FRACCIONARIO
5
CONTROL FRACCIONARIO
Acciones básicas de control
Acción integral
Acción derivativa
6
CONTROLADORES PID FRACCIONARIOS
• Dos estructuas:
• Sintonía: Encontrar los valores de los parámetros para satisfacer
5 especificaciones de diseño.
ki
C ( s) = k p + λ + kd s µ
s
• Autosintonía: Compensación atraso-adelanto.
7
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Especificaciones
ƒ Phase Margin (φm) and Gain Crossover Frequency (ωcg)
Arg ( F ( jωcg )) = Arg (C ( jωcg )G ( jωcg )) = −π + φm
F ( jωcg )
ƒ
dB
= C ( jωcg )G ( jωcg )
dB
= 0dB
Robustness to Variations in the Gain of the Plant
d ( Arg ( F ( jω )) )
=0
dω
ω =ωcg
ƒ
Output Disturbance Rejection (Sensitivity Function)
S ( jω ) dB =
ƒ
1
1 + C ( jω )G ( jω ) dB
≤ BdB, ∀ω ≤ ω s rad / sec
High Frequency Noise Rejection
T ( jω ) dB
C ( jω )G ( jω )
=
≤ AdB, ∀ω ≥ ωt rad / sec
1 + C ( jω )G ( jω ) dB
1 − S ( s) = T ( s)
Complementary
Functions
8
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Diseño
Set of Five Nonlinear Equations with Five Unknown Parameters
(kp,kd,ki,λ,µ)
Nonlinear Minimization Problem
F ( jωcg )
dB
=0
Main Function to Minimize
Arg ( F ( jωcg )) + π − φm = 0
d ( Arg ( F ( jω )) )
=0
dω
ω =ωcg
Constraints
FMINCON
(Matlab)
S ( jω s ) − B dB = 0
T ( jωt ) − A dB = 0
9
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Ejemplo: Simulación
First-Order Plant Plus Integrator:
k
0.25
=
G (s) =
s (τs + 1) s ( s + 1)
Design Specifications:
1) ωcg = 1rad / sec
2) φm = 48.5º deg
3) Flat Phase
4) T ( jω ) dB ≤ −20dB, ∀ω ≥ ωt = 10rad / sec
5) S ( jω ) dB ≤ −20dB, ∀ω ≤ ω s = 0.01rad / sec
Fractional PIλDµ Controller:
ki
2.1199
µ
C ( s ) = k p + λ + k d s = 3.8159 + 0.6264 + 2.2195s 0.8090
s
s
10
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Ejemplo: Simulación
Control of a First-Order Plant Plus an Integrator
1) ωcg = 1rad / sec
2) φm = 48.5º deg
3) Flat Phase
11
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Ejemplo: Simulación
4) T ( jω ) dB ≤ −20dB, ∀ω ≥ ωt = 10rad / sec
5) S ( jω ) dB ≤ −20dB, ∀ω ≤ ω s = 0.01rad / sec
12
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Ejemplo: Experimento
Design Specifications:
G (s) =
k
e − Ls
τs + 1
C ( s ) = 0.0469 +
0.0469
s 0.7333
+ 1.4747 s 0.3146
13
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Otros métodos
14
SINTONÍA DE CONTROLADORES PID
FRACCIONARIOS
Otros métodos
Controladores PID – Optimización (Barbosa,
Machado, 2003)
15
AUTOSINTONÍA
ƒ The idea: automatic tuning of a controller, generally a PID, so that an
unknown plant can be controlled, fulfilling several design especifications.
ki
+ kd s
C (s) = k p +
s
ƒ Two parts: a) information of the plant (relay test).
b) tuning of the controller with that information.
ƒ There are different auto-tuning methods for conventional PID controllers,
currently working on industrial environments.
ƒ The more complex the controller design method, the more difficult the
implementation problem (computer/PLC).
16
AUTOSINTONÍA
ƒ Auto-Tuning Method for a Fractional PIλDµ Controller.
C (s) = k p +
ki
µ
+
k
s
d
sλ
ƒ The introduction of the orders λ and µ allows the fulfillment of a robustness
constraint without increasing the complexity of the design method (simple
equations).
ƒ The method uses the relay test to obtain the information of the plant to
control, due to its reliability and simplicity.
17
AUTOSINTONÍA
ƒ Relay Auto-Tuning Scheme:
Process: G(s)
Condition for Oscillation:
πa
1
=
arg(G ( jωc ) ) = −π + ωcθ a , G ( jωc ) =
4d N ( a )
ωc: Frequency of interest
How to select the right value of θa
which corresponds to ωc?
Iterative Process
θn =
ωc − ωn −1
(θ n −1 − θ n − 2 ) + θ n −1
ωn −1 − ωn − 2
n: Curent iteration number
(θ-1, θ0 ); (ω-1,ω0): Two Initial Values of the Delay and Their Corresponding
Frequencies
18
AUTOSINTONÍA
Método
ƒ
ƒ
ƒ
Lag Compensator with
pole at the origin=PI
SPECIFICATIONS OF DESIGN:
Crossover Frequency ωc
Phase Margin ϕm
Robustness Property (flat phase)
Lead Compensator:
Noise Filter
19
AUTOSINTONÍA
Método
1) Robustness Constraint: flat phase of the open-loop system
Constant overshoot for gain variations
λ
λ
Slope of the phase of the plant,
estimated by the relay test
20
AUTOSINTONÍA
Método
2) * Crossover frequency especification, ωc
* Phase margin especification, ϕm
Lead Compensator
+ ROBUSTNESS CONSTRAINT (AGAIN)
21
AUTOSINTONÍA
Método
LEAD COMPENSATOR (α>0)
α
α
 s +1/ λ 
α  λs + 1 
C ( s) = kc 
 = kc x 
 , 0 < x < 1, α ∈ ℜ
+
s
x
x
s
+
1
/
λ
λ
1




C(s)
= C' (s)
α
ω=ωm
kc x ω=ω
m
α
 (λω )2 +1   1 α
m
 = 
=
2
 ( xλωm ) +1   x 


1− x 
Arg (C ' ( s )) ω =ω m = φ m = α sin −1 

1+ x 
ω zero = 1 /λ
ω pole = 1 / xλ
ωm =
1
λ x
•α: Flexibility in the Design
Modulation of the Phase Curve
•φm: Does Not Impose the Value of x
22
AUTOSINTONÍA
Método
LEAD COMPENSATOR (α>0)
α≥αmin
(α,a1,b1)
αmin
x=
Doing Some Calculations:
Lead Region
(α,x,λ); kc=kss/kxα
xmin: Maximum Distance
Between Zero-Pole
(Phase Flatness)
a −1
a (a − 1) + b 2
a(a − 1) + b 2
λ=
bωc
23
AUTOSINTONÍA
Método
24
AUTOSINTONÍA
Método
• The relay test: *magnitude and phase of the plant at ω1, ωc, ω2
*estimation of the slope of the phase of the plant
• PIλ(s): cancell the slope of the phase of the plant, giving the
minimum lag phase possible=robustness constraint
• PDµ(s): fulfills the frequency especifications of ωc and ϕm,
following a robustness constraint
• The parameters of the fractional PIλDµ(s) controller are obtained by
simple equations that can be solved by a PLC (industrial application)
• The implementation of the fractional controller: we are currently
working on it
25
AUTOSINTONÍA
Ejemplo: Simulación
UNKNOWN PLANT:
G (s) =
0.55
e −0.05 s
s (0.6 s + 1)
SPECIFICATIONS OF DESIGN:
ƒ
ƒ
ƒ
Robustness Constraint
Crossover Frequency ωc =2.3rad /sec
Phase Margin ϕm =72o
RELAY TEST:
ƒ
Slope of the phase of the plant=0.2566
26
AUTOSINTONÍA
Ejemplo: Simulación
UNKNOWN PLANT:
G (s) =
0.55
e −0.05 s
s (0.6 s + 1)
SPECIFICATIONS OF DESIGN:
ƒ
ƒ
ƒ
Robustness Constraint
Crossover Frequency ωc =2.3rad /sec
Phase Margin ϕm =72o
RELAY TEST:
ƒ
Slope of the phase of the plant=0.2566
27
AUTOSINTONÍA
Ejemplo: Simulación
UNKNOWN PLANT:
G (s) =
0.55
e −0.05 s
s (0.6 s + 1)
SPECIFICATIONS OF DESIGN:
ƒ
ƒ
ƒ
Robustness Constraint
Crossover Frequency ωc =2.3rad /sec
Phase Margin ϕm =72o
RELAY TEST:
ƒ
Slope of the phase of the plant=0.2566
28
AUTOSINTONÍA
Ejemplo: Simulación
UNKNOWN PLANT:
G (s) =
0.55
e −0.05 s
s (0.6 s + 1)
SPECIFICATIONS OF DESIGN:
ƒ
ƒ
ƒ
Robustness Constraint
Crossover Frequency ωc =2.3rad /sec
Phase Margin ϕm =72o
29
AUTOSINTONÍA
Ejemplo: Simulación
UNKNOWN PLANT:
G (s) =
0.55
e −0.05 s
s (0.6 s + 1)
SPECIFICATIONS OF DESIGN:
ƒ
ƒ
ƒ
Robustness Constraint
Crossover Frequency ωc =2.3rad /sec
Phase Margin ϕm =72o
30
AUTOSINTONÍA
Ejemplo: Simulación
31
AUTOSINTONÍA
Ejemplo: Experimento
G (s) =
k
s (τs + 1)
 0.4348s + 1 
PI ( s ) = 

s


λ
0.8486
 4.0350 s + 1 
PD µ ( s ) = 

s
+
0
.
0039
1


0.8160
32
CONCLUSIONES Y TRABAJO FUTURO
ƒ Conclusiones
ƒ Método de sintonía: optimización: determinar el valor de los 5
parámetros para satisfacer 5 especificaciones de diseño.
ƒ Método de autosintonía: especificaciones en frecuencia: Test del relé
+ compensación en atraso (conseguir fase plana) + compensación
en adelanto (conseguir especificaciones respetando robustez).
ƒ Implantaciones en PC y PLC.
ƒ Trabajo futuro
ƒ Otras especificaciones
ƒ Aproximaciones adecuadas para autosintonía: pulsar un botón.
33