Guaianes and Xanthanes
Transcription
Guaianes and Xanthanes
Guaianes and Xanthanes Baran Group Meeting The Nature of the Beast: • Sesquiterpenes represent the largest class of terpenes, and guaianolides comprise of the the largest and most widely distributed groups of sesquiterpenoid lactones (JACS (1984) 8217) • Over 500 guaianes isolated by 1990 (100's more since then), dozens of dimeric guaianes (even trimers observed) • 112 xanthanes/xanthanolides, only 11 non-lactonized xanthanes and 3 known dimeric xanthanes • Synthetic challenges include: medium ring synthesis, dense stereochemical complexity on a relatively flexible skeleton, difficult levels of oxidation, NPs possess epimerizable centers and reactive moieties Emily Cherney Examples: Mundane to Exotic Me Me H O H2C H 8 12 Me Me Me OH O Wise words from Clayton Heathcock (circa 1973): "the sesquiterpene field is an excellent area for the testing and refining of new synthetic methods and concepts" "one may confidently design stereoselective syntheses in the decalin area, in which the relative stereochemistry is established by either kinetic or thermodynamic methods. Stereoselective design in the hydroazulene area is much more difficult" 15-chloro-2-epixanthanol O O O 12 Me H Me H O CH2 12 O tamaparthinα-peroxide O 5 O O 6 fun fact: the 1st sesquiterpene total synthesis was Ruzicka's farnesol in 1923 O O H2C H O Me geigerin clementein O acetate Me O OH H Me guaiazulene O O AcO OR Cl HO O Me AcO HO O O hanalpinol hypocretenolide xanthipungolide Around the world with Guaianes and Xanthanes: Source: The Total Synthesis of Natural Products, Volume 2, pages 199 and 395 Prevalence and Biosynthesis: 15 5 6 4 7 2 8 3 9 3 2 1 14 14 10 OPP 11 13 12 15 4 14 9 1 10 5 15 6 11 12 farnesyl pyrophosphate 8 7 guaiane skeleton 2 4 13 3 8 7 6 12 11 generally trans generally cis 8 6 O O 12 O12 guaianolides The Bioactivity... 13 xanthane skeleton via: germacrene Naphthea charbolii 9 1 10 5 Inula verbascifolia Xanthium catharticum Xanthium strumarium Xanthium spinosum O Pluchea dioscoridis Bedfordia salicina Related but Not Discussed: xanthanolides - Both groups possess activity that could treat: cancer, ulcers, inflammation, fungal infections, malaria, and leishmaniasis - Possess endoperoxides with similar antimalarial activity to artemesinin - Thapsigargin, a xantholide, currently undergoing phase I clinical trials for breast, kidney, and prostate cancer. Englerin A is a highly selective inhibitor of renal cancer cell growth. Gergeria africana pseudoguaianes aromadendrane cubebane/ ivaxillarane patchoulane alerenane Guaianes and Xanthanes Baran Group Meeting Synthesis of Podoandin: Blay et al. JOC (2000) 6703. Photochemistry and Santonin: Many earlier syntheses begin with a photochemical rearrangement of Santonin based on work by Barton and co-workers (J. Chem. Soc. (1957) 929) For the true seminal work on photochemistry of santonin see: Villavecchia, Atti R. Accad. Lincei (1885) 722, Cannizzaro, et. al. ibid, (1886) 450 OAc via: O santonin O O O O "isophotosantonic lactone" Barton's proposal Note: mechansim proven to be radical O 12 O (68%) (89%) H O O O OAc MsO H O 1) LiAlH4 2) MsCl, pyr. O O H (91 %) H O O 1 O O O H O OAc H 10 days, neat, rt (47%) (72%) O O O "isophotosantonic lactone" O O 1) KOH 2) SOCl2, EtN3 3) OsO4, NMO 4) NaIO4 5) MeLi HO OH HO HH H H 6 O O 12 O 1) NaBH4, MeOH 2) ArSeCN, PBu3 3) NaIO4 OAc H (75%) O OAc H (73%) H (72%) O H OAc O O 1) Red-Al 2) TPAP, NMO O (37%) O 12 (85%) O O O OAc O2, h!, methylene blue O 5 8 H 1) POCl3 HO 2) LiBr-Li2CO3 Isolated in 1953, structure elucidated in 1985, first and only total synthesis O O OAc H O H (97%) TsOH or Al2O3 O H2C OAc TsOH, SiO2 PhMe, H2O Synthesis of Absinthin: Zhang et al. JACS (2005) 18. O3, Ph3P O O DBU (88%) 1) MsCl 2) NaPhSe 3) H2O2 OAc H O (60%) 1) NaTeH 2) NaBH4 O H "isophotoO santonic lactone" O O 3 2) NaBH4 O MeO O H OAc (85%) podoardin Synthesis of 3-Oxa-guaianolides: Blay et al. Tetrahedron (2000) 633. HO OAc OAc OAc H H H 1) O 1) TsNHNH 2 H AcOH, aq. O h! 6 O 2) catecholborane OH 4 steps santonin O O H (30-38%) O OAc H AcOH, aq. h! Emily Cherney O For Other Furanoguaianolide Studies See: Tetrahed. (2003) 1877, TL (1988) 4521, J. Chem. Soc. Perk. Trans. 1 (1990) 1601 O absinthin H (55%) O OAc OAc HH H O O O O See Also: Gutekunst 2009 GM "Traditional Chinese Medicine" O Guaianes and Xanthanes Baran Group Meeting Synthesis of (+)-Ainsliadimer: Lei et al. OL (2010) 4284. OAc 1) Pd/C, H 2 H O OAc H 2) NaBH4 3) MsCl, Pyr. H isophotosantonic lactone O H H H O estafiatin H H O (73%) O O O H O O H O (89%) H H O H OH HO O H H H ainsliatrimer A: OL (2008) 5517 O O O O H H (32%) O H O O OH O (50%) O O O 1,10-epi-arborescin + (51%) O 3,4-epiludartin O (36%) 1) LDA, PhSeCl 2) H2O2 H H O 8-deoxy-11,13- O dihydrorupicolin B 1 starting material, 15 natural products O Al(OiPr)3, PhMe, " O H O dihydrokauniolide HO H 8-deoxyrupicolin B O isodehydrocostuslactone O 1) LDA, (PhSe)2 2) H2O2 (27%) O O H 1 eq. mCPBA H HO O O O 2-osodesoxyligustrin O H H H (27%) H + 1) LDA, (PhSe)2 2) H2O2 (80%) O O DBU OH O O CrO2(tBuO)2 O O isocostuslactone H O H O (24%) (58%) (+)-ainsliadimer O HCl aq., THF O mCPBA O estafiatin O O O H O O O O 1) LDA, PhSeCl 2) H2O2 H H O (32%) O H O H m-CPBA CHCl3, 0-10°C O H santonin H (63%) AcOH, reflux O O O 1) LDA, (PhSe)2 2) H2O2, AcOH (85%) H O dehydrozaluzanin C O (!)-BINOL, neat, 50 °C, Hetero-DA 70% 60 h steps (19%) O O 1) Al(OiPr)3, PhMe, µW 2) DMP O (32%) O Diversity oriented synthesis: Ando et al. J. Nat. Prod. (1994) 433. OMs 12 0.5 M KOAc H H (93%) O H Santonin without Photochemistry: 1) KOH 2) SOCl2, DABCO (52%) Emily Cherney O O H (22%) O O Guaianes and Xanthanes Baran Group Meeting Photochemistry without Santonin: Assymetric Synthesis of Pleocarpenene: Snapper et al. JACS (2007) 486. 1) DIBAL-H O PhH, h!; Fe(CO)3 Fe(CO)3 2) MnO2 MeO2C 3) MgBr O Fe2(CO)9 Synthesis of Dehydrokessane: Liu et al. TL (1977) 3699. O O MeO2C PhH, h!; TsOH (450 w Hg Lamp, pyrex filter) AcO AcO H CO2Me MeMgBr, CuI, Et2O, 0 °C (56%) O H CO2Me (64%) H OAc H H TsCl, Pyr., rt (83%) OH H O O HO NaH, MeLi (57%) (61%) H O H OTIPS Cu(acac)2 (5 mol%) EDA; NaOEt H H H HO H PhH, 200 °C DBU (15 mol%) (76%) HO H O H (79%) (COCl)2, DMSO; Et3N; MeMgCl OTIPS LiAlH4 (quant.) dehydrokessane EtO2C OTIPS HO O POCl3, Pyr. CO2Me HO H AcO HO Fe(CO)3 CAN, acetone (80%) (1: 2.7 ":#) (93%) O H O # CO2Me Grubbs II 2.5 mol% (94%) 1) LiAlH4 2) TIPSCl, DMAP (87%) Et3N; Ac2O H Hg(OAc)2, NaBH4 OMe H " H OAc H CO2Me H NaH, O Me Me O O H H CO2Me HO H OH O H H CO2Me LiAlH4 (95%) HO make assym. with MnO2; CBS reduction 1) BF3•OEt2, SH (62%) HS 2) Raney Ni H (76%) CO2Me H OAc (60%) Emily Cherney HO 1) Raney Ni, H2 2) TBAF 3) TsCl, Et3N, DMAP (51%) 4) NaI, DBU H H HO OH OTIPS O O3; DMS; NaOMe H (51%) HO pleocarpene HO H OH H pleocarpenone OH Guaianes and Xanthanes Baran Group Meeting Syntheses from Carvone: Emily Cherney Synthesis of (+)-Chinensiolide B: Hall et al. JACS (2010) 1488. Synthesis of Thapsivillosin F (highlights): Ley et al. ACIEE (2003) 5996. H 1) H2O2, NaOH THPO 2) LiCl, TFA 3) DHP, PPTS (73%) NaOMe THPO (95%) Cl O (S)-carvone H O 1) H2O2, NaOH 2) LiCl, TFA TBSO 3) TBSOTf, Pyr. H H H CO2Me Grubbs II (2.5 mol%) OMOM H 3 steps TBDPSO TBDPSO H OEt OMOM H O OH H OEt O H (70%) O O OH (+)-dihydrocarvone OAc H HO 6 1) OsO4, NMO, MeSO2NH2 2) TEMPO, NaClO, NaClO2 O O 6 (60%) 7 O 12 OAc OH 7 H O h", AcOH (93%) OH O 12 OH OH O H 1) DIBAL-H; LiEt3BH 2) MnO2 (50%) O OH H O (71%) deprotection/ oxidation O O OH H PDC, TMSCl (+)-chinensiolide B OH CHO H O (~4:1 dr) H H TBSO H O OH 1) Burgess (74%) 2) AD-mix ! tBuOH:H O 2 H allylboration/ lactonization 1) Grubbs II (5 mol%) 2) mCPBA TBSO (84%) TBSO DDQ (70%) O CO2Me Bpin *yield based on Z only, E unreactive Studies toward Thapsigargin : Massanet et al. OL (2006) 2879. KOH, O2 1) LiAlH4 2) (COCl)2, (76%) DMSO, Et2N (87%*) O 1) TBAF, AcOH 2) p-NO2-PhSeCN, (42%) PBu3 3) H2O2 O HO O thapsivillosin F (see also Ley's work on thapsigargins: PNAS (2004) 12073) O OTBDPS O CO2Me H O BF3•OEt2 (2.5 mol%) OH 17 steps H TESO TBDPSO H O H TBSO (3.5:1 Z:E) OMOM (>19:1 dr) OAc O TBDPSO H NaOMe (85%) Cl O (R)-carvone TBSO H TESO H (95%) 5 steps H O H TBSO H O O Guaianes and Xanthanes Baran Group Meeting Making the fused 5-7 ring system Part 1: When 5 Leads Organoiron approach: Donaldson et al. TL (2009) 1023. OTBDPS Synthesis of (±)-7-epi-!-bulnesene: Ovaska et al. TL (2002) 1939. OTMS O O CsF, Me2CuLi, TMSCl, Et3N TBDPSO Mg, THF; H2O2, HO- PF6 Br (57%) Emily Cherney Br MeO2C (60%) TBDPSO (43%) Fe+ Me (CO)3 MeO2C H Fe H (CO)3 MeO2C (rel. stereochem.) CeCl2 (57%) PPh3 DMSO MeLi (5 mol%) PhOEt, 155 °C (50%) H 1) LiAlH4 (57%) 2) C6Me3H3, 200 °C H OH (84%) H 7 steps O H O O OH O (±)-7-epi-!-bulnesene Approach to Geigerin: Jacobi et al. JOC (1992) 6305. O MeO2C 1) PhSeCl 2) H2O2 O 3) ethylene glycol, TsOH O (32%) CO2Me MeO2C 1) NaOH, aq. 2) (COCl)2, K2CO3, DMF 3) Me-alaninate, Pyr. (60%) CO2Me Making the fused 5-7 ring system Part 2: When 7 Leads (continued) O Synthesis of Sundiversifolide: Shindo et al. OL (2008) 1247. (continued) O HN OH 1) DIBAL-H 2) nBuLi, O S O 1) PhH, " 2) TBAF 3) Hydroquinone, S NaHCO3, " O N OTBS OMe OMe OMe OMe I N OTBDPS O O O N Bn LDA (92%) O Bn OTBDPS 1) P2O5 (58%) 2) BF3•OEt2 SH HS (97%) O 3) (COCl)2, DMSO S Li 4) 5) TBSOTf, Et3N S S (82%) O O 1) TBDPSCl, imid. DMAP 2) nBuLi, (CH2O)n 3) Red-Al 4) MsCl, Et3N; NaI O MeO2C MeO2C S TBDPSO O MeO2C O 1) tBuLi 2) TBDPSCl, I imid. DMAP (88%) O O AD mix-! MeSO2NH2 tBuOH/H O 2 1) TBSCl, imid. DMAP 2) TBAF. AcOH 3) MsCl, Et3N; NaI, Acetone OTBDPS (82%) O O N OMe TBSO OTBDPS OTBS OH Guaianes and Xanthanes Baran Group Meeting Making the fused 5-7 ring system Part 2: When 7 Leads (continued) Syntheses of (±)-Geigerin: Depres et al. ACIEE (2007) 6870. O Me Synthesis of Sundiversifolide: Shindo et al. OL (2008) 1247. (continued) O MgBr 2) 6M HCl 1) TPAP, NMO 2) TBAF (>99%) ( 87%) OTBDPS TBSO OTBDPS HO Cl Cl H BF4 O (rel. stereochem.) (52%) CH2N2; 2 steps DMSO OH HO 1) MeO O (92%) HO 4 steps O O O 2 eq. BrMg then NaBH4 (49%) 3 steps Cl OH OMe O (85%) O O NaH, MeI (96%) O OMe H MEMO H O OMe 1) Li, CH3NH2 2) MEMCl (54%) (82%) MEMO H HO H OH 1) Swern [O] 2) S Ph P CH2Li N(Me)2 O then MeI, Pyr. (41%) O HO H O H OMe Me LiOH, H2O/THF, CO2; I2, KI, NaHCO3 H Eschenmoser's salt; "quaternization/ elimination" (71%) O O H Me O 12 Me H Ac2O, pry., DMAP O (±)"geigerin acetate O O HO (53%) 2 steps Me AcO dehydrocostus O lactone O 12 O O I 8 O O O H Cl 6 (rel. stereochem.) H O CO2Me Me H 1) LiCH2COLi2 (62%) 2) TMSCl, NaI H Cl Me H Me H (77%) 50% aq TFA mCPBA O 7 Me H O MeB(OH)2, Pd(OAc)2, (58%) dpdb, K3PO4 O H O OTBS LiClO4 (cat.) 2) DMDO, -90 °C (dr at C7: 85:15) Synthesis of Dehydrocostus Lactone: Rigby et al. JACS (1984) 8217. O TsOH O (+)-sundiversifolide H Me H Me H O PPh3 CF3 O xylene O HO Me H O Cl3C Cl Zn, ultrasound MeLi, 0! 20 °C (83%) OH 1) Emily Cherney nBu 3SnH, BEt3 Me H O O Me HO (±)"geigerin O Guaianes and Xanthanes Baran Group Meeting Synthesis of (+)-Achalensolide (highlights): Mukai et al. JOC (2008) 1061. OPiv MOMO OPiv O 1)nBuLi, BF3•OEt2, O O TMS 9 Making the fused 5-7 ring system Part 3: Simultaneous Formations: Studies Highlights 1: Lee et al. TL (2001) 1695. 1) THPO Li 2) LiAlH 4 THPO 1) NaH, BnBr, TBAI (cat.) 2) TsOH 3) Swern [O] (73%) CHO • HO (68%) Emily Cherney steps 2) PivCl, Pyr. O O (65%) • TMS OTHP 1) TBSO O Pauson" 10 mol% [RhCl(cod)]2 mol % dppp, (96%) Khand-Type 50 1 atm CO, PhMe, ! Li O OBn 2) VO(acac)2, tBuOOH; DBU, DCM, rt O AcO • H • Ac2O, DIPEA, DMAP (52%) BnO O O OTBS OTBS 10 steps O O Clever Metathesis Strategies: Sesquiterpene Aklaloid Synthesis: Craig et al. Eur. JOC (2006) 3558. 1) NaHMDS; TBDPSO 6 steps O Studies Highlights 2: Wender et al. OL (1999) 137. H 2.5 mol% [Rh(CO)2Cl]2, DCE, 80 °C • (76%) [5+2] HO H 1) DMP 2) MeMgBr ZnI2, Et2NH EtO (78%) Michael/ Conia-ene O (79%) O O HO E (+)-dictamnol Ts O KOAc, BSA, PhMe, µW, 160 C° Ts H O (±)-clavukerin A 1) NaOMe 2) DMAP, DIC HO CO2H Ts O (71%) O H E=CO2Et O (>99%) Grubbs II 5 mol% H 4 steps N O (20%) HO H iPr HO N O (R)-citronellene O Studies Highlights 3: Lee et al. OL (2010) 548. O Br 2) HCl, MeOH iPr (See Wender's resiniferatoxin in Classics II) O OPiv (+)-achalensolide O HO OMOM O iPr (77%) CO2Me (46%) CO2Me N O 1) O3, PPh3 2) NH3 in EtOH 3) MeMgBr O N (+)-cananodine HO O Guaianes and Xanthanes Baran Group Meeting Emily Cherney Synthesis of Teucladiol: Vanderwal et al. JACS (2009) 15090. Clever Metathesis Strategies: Synthesis of (!)- Dihydroxanthatin: Morken et al. OL (2005) 3371. Me HO 8 Br steps Me 10% Pd(OAc)2, 2.5 eq Cu(OAc)2 OH BuO OshimaUtimoto TBSO MO Me Pd (II) H i. tBuLi; ii. CuCN; iii. cyclopentenone Br R O BuO iv. O (60%) >10:1 dr TMS TMS O transselective H TMS (68%) 1) Ph3PCH2Br, Me tBuOK 2) TBAF TBSO O (85%) 1) 9-BBN, H2O2 2) Dess-Martin TBSO (92%) OBu 1) TESCl (77%) 2) Grubbs II (5 mol%) Me TBS O OBu (±)-teucladiol 1) Dess-Martin 2) tBuOK N2 PO(OMe)2 3) H2CrO4 OBu (76%) O HO O O TBS Synthesis of Clavukerin: Metz et al. Eur. JOC (2010) 6145. Me O N H (20%) O O (59%) O (!)-dihydroxanthatin O H TESO 70%) 1) LDA, MeI 2) Grubbs II (5 mol%) methyl vinyl ketone O (60%) 87:13 dr HO H HO Grubbs II (5 mol%) could not alkylate successfully Me O Me TESO O H 1) MeLi, CeCl3 2) TsOH O Me H anti-aldol FelkinOH Anh OHC HO Ph Ph HO OMe CO2Et O (20%) OHC (90%) Synthesis of (+)-8-epi-Xanthatin: Martin et al. OL (2005) 4621. MeO OH O OMe TBAF (78%) TIPS O O Me O (94%) CBr4, PPh3, DCM O O H Grubbs II (5 mol%) methyl vinyl ketone (10 eq) DCM (0.005 M) (83%) O (+)-8-epi-Xanthatin (S)-citronellal Me OTBS 12 steps Grubbs II (4 mol%) H2C CH2 (55%) O PPh3+CH3BrnBuLi (78%) Br Br (!)-clavukerin A Guaianes and Xanthanes Baran Group Meeting Emily Cherney Synthesis of (±)-7-epi-!-Bulnesene: Negishi et al. JOC (1997) 1922. Free Radical Strategies: 1) nBuNC 2) I2 3) HCl Synthesis of (+)- Cladantholide: Lee et al. JACS (1997) 8391. THPO Br Et N, 3 OEt DMAP (98%) THPO H AIBN (99%) 5-exo; 7-endo O H (79%) O OEt H MeO2C h" (53%) 1) TMSCl, DMPU, MgBr then Et3N 2) Et2Zn, CH2I2 HO O O I H H HO (50%) O OH H H OTMS (54%) H (50%) H OH (±)-alismol H H I O AIBN (92%) O O H H O OH H OCS2Me with the #$epimer: NIS H (±)-kessane Pd/C, H2 (67% 2 steps) O H I O 1) Ph3P OH H nBu SnH, 3 OH H MeLi; CS2; (90%) MeI 1) Acetone, H+ 2) MeMgBr, CeCl3 O Fe(NO3)3 O OH H O H OTMS (76%) 3) I2, PPh3 O TMS Synthesis of (±)-Kessane: Booker-Milburn et al. OL (2003) 3309. O Synthesis of (±)-Alismol: Lange et al. JOC (1999) 6738. 1) iPrMgBr I 3SnH, AIBN For an interesting synthesis of bulnesene from patchoulol see: TL (1975) 4495 H H CO2Me 2) LiAlH4 nBu (±)-7-epi-!-bulnesene (+)- Cladantholide O OEt 1) KH, H2O 2) iPr=PPh3 (46% 3 steps) Br O H (18%) O MgBr 2) PCC 1) TsNHNH2 2) MeLi 3) Jones [O] 4) LDA, MeI 1) LDA, TMSCl O 2) DMDO O TMS THPO OEt HO H H O 1) OEt O H H nBu SnH, 3 THPO (80%) H H (68%) (78%) H O ZrCp2 I HO (4 steps from carvone) 1) TsOH 2) PCC (nBu)2ZrCp2 Br 1) DIBAL-H 2) MgBr (77%) CO2Me 2) BH3•THF; PCC 3) Cp2TiCl2, AlMe3 H OH H (#:! 1:2.5) Guaianes and Xanthanes Baran Group Meeting O The Battle of Englerin A : Ph Echavarren Synthesis Highlights: ACIEE (2010) 3517. OTES OH O Me H O (")-englerin A Christmann Synthesis Highlights: ACIEE (2009) 9105. 1) BrZn Me H O Me H OH 4 steps OH 2) LiAlH4 O H Me H CHO 2 steps from cis-nepetalactone H Me geraniol H OH (+)-englerin A 2 steps Me H 3 steps ! O H Me O Me O O Nicolaou/Chen Synthesis Highlights: JACS (2010) 8220. OBn OBn O O MsCl, DIPEA; 14 steps CO2Et O O 15 steps 10.9% overall O H HO O O H O O Rh2(Ooct)4 (2 mol%) O OTBS (R)-citronellal O O H Me 10 steps OH O TBSO O O O O Me 14 steps Ma's intermed. 7 steps (")-englerin A if completed as depicted: Me AuCl, DCM, rt (48%) O O N2 O (90%) O Ma Synthesis Highlights: ACIEE (2010) 3513. OH 22 steps 2.6% overall Theodorakis Formal Synthesis Highlights: OL (3708) 3708. TBSO OHC (")-englerin A Me OTBS 5 steps CO2Et Me (7 steps) H Me O 18 steps 7% overall Me Me HO H OH O (99%) Grubbs II (20 mol%) Me 9 steps O OH H (85%) H [iPrAuNCPh]SbF6 O O OH Me Me OTES 8 steps (")-englerin A Quick stats: Isolated in 2009 [OL (2009)p.57] and promptly patented; selectively inhibits renal cancer cell lines selectively with GI50 values of 1-87 nM; 4 total synthesis to date 1 in 2009 and 3 in 2010, 1 formal synthesis in 2010. Emily Cherney (")-englerin A 16 steps 8.1% overall 22 steps overall yield ???
Similar documents
Erythronolide and Erythromycin - The Scripps Research Institute
C38-9H69-71NO13." "We claim: 1. A method of producing an antibiotic agent which comprises cultivating under aerobic conditions an erythromycin-producing strain of Streptomyces erythreus in a cultur...
More information