Characterization and Monitoring at Hontomin
Transcription
Characterization and Monitoring at Hontomin
Hontomín Site (Spain) Andrés Pérez-Estaún Preparation of CO2 injection in a deep saline aquifer Hontomín TDP, Spain Ayoluengo Ponferrada Hontomín Burgos The sole responsibility of this publication lies with the author. The European Union is not responsible for any use that may be made of the information contained therein Hontomín TDP LEVA HUERMECES Hontomín stra.graphy The target reservoir is a saline aquifer set in Early Jurassic (Lias) carbonates, around 150 m thick and 1500m deep. The structure is dome-like structure folds during Cretaceous. The sequence is dolomitized and is highly porous in the basal “Carniolas Unit”, therefore envisaged as injection level. The main seal is formed by more than 200 m of interlayered Early to Middle Jurassic marlstones and marly limestones. Target reservoir: Saline aquifer set in a small dome-shape marine limestone from the Early Jurassic (Lias). Seal: Interlayered marlstones and marly limestones from the Early to Middle Jurassic (Lias and Dogger). Secondary seal: Weald (Early Cretaceous): Small detritic channels and siltites from flood plains . Saline Aquifer (≈1450m depth) The small dome-like structure is easy for monitoring. TDP Characteriza.on 2009-‐2011 Geological and structural mapping Petrophysical studies 3D seismics Structural studies Electromagne.c survey 3D High resolu.on gravimetry 3D geological model Pre-existing boreholes Upper Cretaceous Limestones, dolomi?c limestones and marls Strongly dolomi?zed Sandy and marly limestones Cenozoic Alluvial deposits Carcedo Facies Bureba Facies Bureba,marginal Facies Geomodels-U.Barcelona -‐ CartograCa 1:5.000 de Hontomín -‐ CartograCa 1:25.000 de Mataporquera -‐ CartograCa 1:25.000 de Poza de la Sal Regional studies of reservoirs and seals of te Basque-Cantabrian basin Secuencia de cartografiado de componentes petrográficos a u?lizar en las rocas almacén y sello (Berrezueta, 2004) (IGME) A la izquierda; personal de GEA asesoría geológica durante la perforación de una formación detrítica (Fm. Escucha) presente en los alrededores de Aguilar de Campoó. A la derecha, general y detalle de las carniolas retienses (Fm. Puerto de la Palombera) muestreadas en Bercedo. Representan uno de los potenciales almacenes de la PDT (GEA-CIEMAT). Litoestra?graCa del Lias del W de la Cuenca Vasco-‐ Cantábrica (U. País Vasco) Programa de Almacenamiento Geológico de CO2 3D 2D 3-‐components • Detailed characteriza?on of the tectonic structure of the poten?al injec?on zone. • Determine the geometry of the reservoir. • Es?mate physical and mechanical proper?es of the reservoir and seal layers. 3D se ismic surv ey Seismic baseline 3D se ismic surv ey N W E S 2 or thog onal profi le s wit h 3-‐c omp onen et se nsors . 3D seismic Acquisi?on area ~35 km2 Receivers 6 (10 Hz) Receivers distance 25 m No. Inlines 463 Inline distance 250 m No. Crosslines 431 Crosslines distance 275 m Fold/bin (CDP) 36 Vibroseis M221 4 * 15 Tn Sweep 16 seg. Pop-‐shot 3 * 1.5 kg Vibración/shot distance 25 m Top of the reservoir (TWT) 3-D Seismics Geological model 3D Top Lower Cret. Top Weald Top Jurassic reservoir Top Anhidrític Unit Top Keuper Geomodels-UB, 2011 Gravimetry and High resolu.on gravimetry IGME 2011 IGME Geoelectrical studies conducted in Hontomin AREA 4 x 3 km2 MT sites 2D profile Geomodels, U. Barcelona Data from pre-existing boreholes Three levels in the reservoir with porosity ranking from 10 to 17% There are three permeable levels: permeability of the top level is around 3. 10-13 m2 ; the two lower ones are one order of magnitude less permeable (permeability estimates from brine production) Marquez & Jurado, 2011. ICTJA-CSIC Marquez & Jurado, 2011. ICTJA-CSIC Salmuera en calízas jurásicas de Hontomin Fidel Granda, 2011 Monitoring main objectives: • • • • • • • • • • CO2 plume tracking CO2-reservoir reactivity Seal integrity Storage efficiency Trapping quantification Verification & Calibration of predictive models Induced seismicity. Well integrity Leakages? Public confidence Monitoring issues that the TDP challenges: • • • • • • • Cost Detection limits Relevance Resolution Autonomy Durability Versatility Hydrogeological and Hydrogeochemical characteriza.on PIEZOMETRIC EVOLUTION AITEMIN+ CIEMAT AITEMIN, 2010; CIEMAT, 2010 Monitoring of shallow water aquifers. GW1, GW2, GW3 instrumented boreholes SONDEO GW-1 GW-2 GW-3 Cota emboquille: s.n.m. s.n.m. s.n.m. 400 400 150 Fm. Utrillas Fm. Utrillas Falla Sur Profundidad aprox. (m): Objetivo: AITEMIN, CIEMAT 2012 PRE-INJECTION Phase Gas Monitoring - Estimation of the CO2 soil-flux baseline (and other trace gases) - Identification of potential leakage paths - Isotope studies of dissolved and free CO2 De Elio et al., 2011 De Lio et al., 2010. UPM-‐ Amphos 21 et al. Gas Monitoring Pre-‐injec.on Phase • Estimation of the CO2 soil-flux baseline (and other trace gases) • Isotope studies of dissolved and free CO2 De Lio et al., 2010. UPM-‐ Amphos 21 et al. Displacement Measures DInSAR -‐ exis.ng reflectors -‐ Hontomin Ground-‐based SAR (GBSAR) + DInSAR I Geomá?ca Ground-Based SAR: HontomÍn Experiment Site: “potential moving area” Stable Area Ground-Based SAR: Hontomin GBSAR Hontomin expected scheme Sm S Deformation Stable area 400 m L= 900m Legenda Stable Corner Reflector Moving Corner Reflector PISCO2 project Goal: Assesement of Ecosystem Impact related to CO2 injec.on. • Impact on different Biotopes; looking for Bioindicators • Iden.fica.on of best Bioindicators to introduce in Hontomín TDP Rhizosphere 0.5 m Watering system 1.7 m CO2 injec.on Top soil Sampling tubes (CO2, CH4, O2) 2.5 m Gas sampling Embedded sensors (T, pH) Quartz sand Injec.on grids 0.3 m Draining pump Gravel Piezometer Concrete liner 4 m U. León, Amphos, AITEMIN, CIUDEN • Long-term performance assessment and safety evaluation Development of low cost & natural tools -biomonitoringto detect diffuse vents in Hontomín U. León, Amphos, AITEMIN, CIUDEN Modeling Predic?on vs Monitoring Data Monitoring Approaches Seismic Data acquisi.on Experiments Ac?ve Source Seismics Passive Source & Advance Processing • 3D seismic • Microseismicity • 2D 3 Component Seismic Reflec?on • Noise Interferometry Transects • Virtual Sources • Seismic Tomography Model Grid of P & • Adjoint Fullwaveform Tomography S waves veloci?es. • Seismovie • VSP (walk away, 3D, etc) Seismic studies conducted in Hontomin 2D 3-‐components Geophones SERCEL DSU-‐3C 0-‐800 Hz Receivers distance 25 m Nº receivers / line 211 Total line length 5275 m Sample rate 1 ms Final ?me 4 ms Seismic source (during 3D survey) Vibroseis trucks 4 * 15 Tn Explosives (Pop-‐shot) 3 * 0.15 kg Registrate waves popaga.ng in 3 direc.ons => P and S waves • S-‐wave has higher frequency than P-‐wave: => S-‐wave has higher resolu?on than P-‐wave => S-‐images has higher resolu?on • Fluids do not support shear stresses => Vs is sensible to the presence of fluids • Tomography Joint inversion for P and S travel-‐?me reduce ambiguity of the velocity model Vs Vp 950 ms TWT IJA-‐CSIC IJA-‐CSIC Seismic for monitoring Seismovie VSP Seismic Network Permanent Seismic Network • Detect changes in physical and mechanical proper?es. • Track the evolu?on of the injected gas/fluid. • Distribu?on/diffusion of CO2, migra?on pathways. • Induced seismic ac?vity • microfractures characteriza?on Forgues et al., 2006. IFP, CGG-Veritas, Gaz de France vie o m s Sei VSP Forgues et al., 2006. IFP, CGG-Veritas, Gaz de France New Strategies and/or Developments in Seismic Monitoring of CO2 Geological Storage Reservoirs • Microseismic time reversal imaging using microseismic events. Seismic records are propagated backwards in time (time reversal modelling) visualizing the development of the induced seismicity (Tromp et al., 2005; Larmat et al., 2006; 2008; Lokmer et al, 2009; Tape et al., 2009). • High resolution noise interferometry. Extraction of body wave signals from noise records by using advanced analytical signal processing techniques (phase cross-correlation and time-frequency phase-weighted stacks (Vasconcelos et al. 2011; Schimmel et al., 2011)). • Full-waveform inversion for obtaining a 3D Velocity Model using seismic tomography. • Virtual Sources Methodology for seismic imaging monitoring (Bakulin, et al. 2007; Yu et al., 2009; Byun et al., 2010). Autocorrela?on func?ons Using noise recordings One day noise recordings 5 days January 2011 IJA-‐CSIC, Ugalde et al. 2011 Geoelectrical studies conducted in Hontomin AREA 4 x 3 km2 Instrumentation: two ADU06, three ADU07 & one Phoenix-V8. MT sites 2D profile Geomodels, U. Barcelona 2D geoelectrical model (MTD line) Well logging Geomodels, U. Barcelona Fault Ogaya et al. 2010 Preliminar 3D geoelectrical model RMS = 1.41 RMS = 1.41 Geomodels, U. Barcelona Geomodels, U. Barcelona Cross hole ERT and LEMAN experiments A, B, C, D: exis?ng boreholes ANR-‐SEED project: BRGM, CCGVeritas, UB, CIUDEN CSEM experiment Scheme of the two receiver configurations considered. Red symbols correspond to the cross-shaped design and green symbols, to the circle-shaped one. The cross-shaped configuration is 2 * 2 parallel lines (3km long aprox.), 124 electrodes, buried 2m and 100m distance. ANR-‐SEED project: BRGM, CCGVeritas UB CIUDEN Gravimetry and High resolu.on gravimetry IGME, 2010 IGME • Cemented Gravimetric pads Geophysical Baseline Data Geophysical Data sets acquired for the Baseline Characteriza?on • 3D Seismic Reflec?on • 2D 3 Component Seismic Reflec?on transects • Seismic Tomography Model Grid of P & S seismic veloci?es • Seismovie CGGVeritas • VSP (programmed aser drilling phase) • 3D Geoelectrical model • Borehole Electromagne?c and Resis?vity baseline (programmed aser drilling phase) • Borehole logging (programmed aser drilling phase) • High resolu?on Geodesy • High resolu?on Gravity Hontomin monitoring plan: Key challenges Major general challenges • Sensi?vity analysis of base line datasets, what are the error bars in the baseline parameters • Sensi?vity analysis of the datasets and parameters during and aser injec?on. Benchmarking of different methodologies • Cost evalua?on Specific challenges/topics in current development • Joint inversion of geophysical data • Mul?seismic 4D imaging High resolu?on noise interferometry Time reversal imaging Full wave-‐form inversion • Electrical/CSEM methods for monitoring the CO2 • INSAR-‐GBSAR Methodologies • Bio-‐indicators Social Characteriza.on -‐ Social Acceptance Ac.vi.es with the Local Community of Hontomín Engagement in local festivals CIUDEN invited to participate September 10th, 2011 Presentation of the Geological Storage project in Hontomín “Learning Workshop for children” “Bye, bye CO2” Hontomín - Local Community Engagement in local festivals - CIUDEN invited to participate Didactic and funny games for children on easy CO2 properties and uses Public presentation about CIUDEN’s activities in Hontomín on CO2 storage Thank you