Characterization and Monitoring at Hontomin

Transcription

Characterization and Monitoring at Hontomin
Hontomín Site (Spain)
Andrés Pérez-Estaún
Preparation of CO2 injection in a deep
saline aquifer
Hontomín TDP, Spain
Ayoluengo
Ponferrada
Hontomín
Burgos
The sole responsibility of this publication lies with the author. The European Union is
not responsible for any use that may be made of the information contained therein
Hontomín TDP LEVA
HUERMECES
Hontomín stra.graphy The target reservoir is a saline aquifer set in Early Jurassic (Lias)
carbonates, around 150 m thick and 1500m deep. The structure
is dome-like structure folds during Cretaceous. The sequence is
dolomitized and is highly porous in the basal “Carniolas Unit”,
therefore envisaged as injection level.
The main seal is formed by more than 200 m of interlayered
Early to Middle Jurassic marlstones and marly limestones.
Target reservoir:
Saline aquifer set in a small
dome-shape marine limestone
from the Early Jurassic (Lias).
Seal:
Interlayered marlstones and
marly limestones from the Early
to Middle Jurassic (Lias and
Dogger).
Secondary seal:
Weald (Early Cretaceous):
Small detritic channels and
siltites from flood plains .
Saline Aquifer
(≈1450m depth)
The small dome-like structure is easy for
monitoring.
TDP Characteriza.on 2009-­‐2011 Geological and structural mapping Petrophysical studies 3D seismics
Structural studies Electromagne.c survey 3D High resolu.on gravimetry 3D geological model Pre-existing
boreholes
Upper Cretaceous Limestones, dolomi?c limestones and marls Strongly dolomi?zed
Sandy and marly limestones Cenozoic Alluvial deposits Carcedo Facies Bureba Facies Bureba,marginal Facies Geomodels-U.Barcelona
-­‐  CartograCa 1:5.000 de Hontomín -­‐  CartograCa 1:25.000 de Mataporquera -­‐  CartograCa 1:25.000 de Poza de la Sal Regional studies of reservoirs and seals of te Basque-Cantabrian basin
Secuencia de cartografiado de componentes petrográficos a u?lizar en las rocas almacén y sello (Berrezueta, 2004) (IGME) A la izquierda; personal de GEA asesoría geológica
durante la perforación de una formación detrítica (Fm.
Escucha) presente en los alrededores de Aguilar de
Campoó. A la derecha, general y detalle de las
carniolas retienses (Fm. Puerto de la Palombera)
muestreadas en Bercedo. Representan uno de los
potenciales almacenes de la PDT (GEA-CIEMAT).
Litoestra?graCa del Lias del W de la Cuenca Vasco-­‐
Cantábrica (U. País Vasco)
Programa de Almacenamiento Geológico de CO2
3D 2D 3-­‐components • Detailed characteriza?on of the tectonic structure of the poten?al injec?on zone. • Determine the geometry of the reservoir. • Es?mate physical and mechanical proper?es of the reservoir and seal layers. 3D se
ismic
surv
ey Seismic baseline 3D se
ismic
surv
ey N
W
E
S
2 or
thog
onal profi
le
s wit
h 3-­‐c
omp
onen
et se
nsors
. 3D seismic Acquisi?on area
~35 km2
Receivers
6 (10 Hz)
Receivers distance
25 m
No. Inlines
463
Inline distance
250 m
No. Crosslines
431
Crosslines distance
275 m
Fold/bin (CDP)
36 Vibroseis M221
4 * 15 Tn
Sweep
16 seg.
Pop-­‐shot 3 * 1.5 kg
Vibración/shot distance
25 m
Top of the reservoir (TWT) 3-D Seismics
Geological model 3D Top Lower Cret.
Top Weald
Top Jurassic reservoir
Top Anhidrític Unit
Top Keuper
Geomodels-UB, 2011 Gravimetry and High resolu.on gravimetry IGME 2011
IGME
Geoelectrical studies conducted in Hontomin AREA
4 x 3 km2
MT sites
2D profile
Geomodels, U. Barcelona
Data from
pre-existing boreholes
Three levels in the reservoir with porosity ranking from 10 to 17%
There are three permeable levels: permeability of the top level is around
3. 10-13 m2 ; the two lower ones are one order of magnitude
less permeable (permeability estimates from brine production)
Marquez & Jurado, 2011. ICTJA-CSIC
Marquez & Jurado, 2011. ICTJA-CSIC
Salmuera en calízas jurásicas de Hontomin
Fidel Granda, 2011
Monitoring main objectives:
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
CO2 plume tracking
CO2-reservoir reactivity
Seal integrity
Storage efficiency
Trapping quantification
Verification & Calibration of predictive models
Induced seismicity.
Well integrity
Leakages?
Public confidence
Monitoring issues that the TDP challenges:
• 
• 
• 
• 
• 
• 
• 
Cost
Detection limits
Relevance
Resolution
Autonomy
Durability
Versatility
Hydrogeological and Hydrogeochemical characteriza.on PIEZOMETRIC EVOLUTION AITEMIN+ CIEMAT AITEMIN, 2010; CIEMAT, 2010 Monitoring of shallow water aquifers. GW1, GW2, GW3 instrumented boreholes SONDEO
GW-1
GW-2
GW-3
Cota emboquille:
s.n.m.
s.n.m.
s.n.m.
400
400
150
Fm. Utrillas
Fm. Utrillas
Falla Sur
Profundidad aprox. (m):
Objetivo:
AITEMIN, CIEMAT 2012 PRE-INJECTION Phase Gas Monitoring
- Estimation of the CO2 soil-flux baseline (and other trace
gases)
- Identification of potential leakage paths
- Isotope studies of dissolved and free CO2
De Elio et al., 2011
De Lio et al., 2010. UPM-­‐ Amphos 21 et al. Gas Monitoring Pre-­‐injec.on Phase •  Estimation of the CO2
soil-flux baseline (and
other trace gases)
•  Isotope studies of
dissolved and free CO2
De Lio et al., 2010. UPM-­‐ Amphos 21 et al. Displacement Measures DInSAR -­‐ exis.ng reflectors -­‐ Hontomin Ground-­‐based SAR (GBSAR) + DInSAR I Geomá?ca Ground-Based SAR: HontomÍn
Experiment Site:
“potential moving area”
Stable Area
Ground-Based SAR: Hontomin
GBSAR
Hontomin expected scheme
Sm
S
Deformation
Stable area
400 m
L= 900m
Legenda
Stable Corner Reflector
Moving Corner Reflector
PISCO2 project Goal: Assesement of Ecosystem Impact related to CO2 injec.on. •  Impact on different Biotopes; looking for Bioindicators •  Iden.fica.on of best Bioindicators to introduce in Hontomín TDP Rhizosphere 0.5 m Watering system 1.7 m CO2 injec.on Top soil Sampling tubes (CO2, CH4, O2) 2.5 m Gas sampling Embedded sensors (T, pH) Quartz sand Injec.on grids 0.3 m Draining pump Gravel Piezometer Concrete liner 4 m U. León, Amphos, AITEMIN, CIUDEN •  Long-term performance assessment and safety evaluation
Development of low cost & natural tools
-biomonitoringto detect diffuse vents in Hontomín
U. León, Amphos, AITEMIN, CIUDEN Modeling Predic?on vs Monitoring Data Monitoring Approaches Seismic Data acquisi.on Experiments Ac?ve Source Seismics Passive Source & Advance Processing •  3D seismic •  Microseismicity •  2D 3 Component Seismic Reflec?on •  Noise Interferometry Transects •  Virtual Sources •  Seismic Tomography Model Grid of P & •  Adjoint Fullwaveform Tomography S waves veloci?es. •  Seismovie •  VSP (walk away, 3D, etc) Seismic studies conducted in Hontomin 2D 3-­‐components Geophones SERCEL DSU-­‐3C 0-­‐800 Hz Receivers distance 25 m Nº receivers / line 211 Total line length 5275 m Sample rate 1 ms Final ?me 4 ms Seismic source (during 3D survey) Vibroseis trucks 4 * 15 Tn Explosives (Pop-­‐shot) 3 * 0.15 kg Registrate waves popaga.ng in 3 direc.ons => P and S waves •  S-­‐wave has higher frequency than P-­‐wave: => S-­‐wave has higher resolu?on than P-­‐wave => S-­‐images has higher resolu?on •  Fluids do not support shear stresses => Vs is sensible to the presence of fluids •  Tomography Joint inversion for P and S travel-­‐?me reduce ambiguity of the velocity model Vs Vp 950 ms TWT
IJA-­‐CSIC IJA-­‐CSIC Seismic for monitoring Seismovie VSP Seismic Network Permanent Seismic Network •  Detect changes in physical and mechanical proper?es. •  Track the evolu?on of the injected gas/fluid. •  Distribu?on/diffusion of CO2, migra?on pathways. •  Induced seismic ac?vity •  microfractures characteriza?on Forgues et al., 2006. IFP, CGG-Veritas, Gaz de France
vie o
m
s
Sei
VSP Forgues et al., 2006. IFP, CGG-Veritas, Gaz de France
New Strategies and/or Developments in Seismic Monitoring of CO2
Geological Storage Reservoirs
•  Microseismic time reversal imaging using microseismic events. Seismic records are
propagated backwards in time (time reversal modelling) visualizing the development of the
induced seismicity (Tromp et al., 2005; Larmat et al., 2006; 2008; Lokmer et al, 2009; Tape
et al., 2009).
•  High resolution noise interferometry. Extraction of body wave signals from noise
records by using advanced analytical signal processing techniques (phase cross-correlation
and time-frequency phase-weighted stacks (Vasconcelos et al. 2011; Schimmel et al.,
2011)).
•  Full-waveform inversion for obtaining a 3D Velocity Model using seismic tomography.
•  Virtual Sources Methodology for seismic imaging monitoring (Bakulin, et al. 2007; Yu et
al., 2009; Byun et al., 2010).
Autocorrela?on func?ons Using noise recordings One day noise recordings 5 days January 2011 IJA-­‐CSIC, Ugalde et al. 2011 Geoelectrical studies conducted in Hontomin AREA
4 x 3 km2
Instrumentation: two ADU06, three ADU07 & one Phoenix-V8.
MT sites
2D profile
Geomodels, U. Barcelona
2D geoelectrical model (MTD line) Well logging
Geomodels, U. Barcelona
Fault
Ogaya et al. 2010
Preliminar 3D geoelectrical model RMS = 1.41
RMS = 1.41
Geomodels, U. Barcelona
Geomodels, U. Barcelona
Cross hole ERT and LEMAN experiments
A, B, C, D: exis?ng boreholes ANR-­‐SEED project: BRGM, CCGVeritas, UB, CIUDEN CSEM experiment
Scheme of the two receiver configurations considered. Red symbols
correspond to the cross-shaped design and green symbols, to the
circle-shaped one.
The cross-shaped configuration is 2 * 2 parallel lines (3km long
aprox.), 124 electrodes, buried 2m and 100m distance.
ANR-­‐SEED project: BRGM, CCGVeritas UB CIUDEN Gravimetry and High resolu.on gravimetry IGME, 2010 IGME •  Cemented Gravimetric pads Geophysical Baseline Data Geophysical Data sets acquired for the Baseline Characteriza?on •  3D Seismic Reflec?on •  2D 3 Component Seismic Reflec?on transects •  Seismic Tomography Model Grid of P & S seismic veloci?es •  Seismovie CGGVeritas •  VSP (programmed aser drilling phase) •  3D Geoelectrical model •  Borehole Electromagne?c and Resis?vity baseline (programmed aser drilling phase) •  Borehole logging (programmed aser drilling phase) •  High resolu?on Geodesy •  High resolu?on Gravity Hontomin monitoring plan: Key challenges Major general challenges •  Sensi?vity analysis of base line datasets, what are the error bars in the baseline parameters •  Sensi?vity analysis of the datasets and parameters during and aser injec?on. Benchmarking of different methodologies •  Cost evalua?on Specific challenges/topics in current development •  Joint inversion of geophysical data •  Mul?seismic 4D imaging High resolu?on noise interferometry Time reversal imaging Full wave-­‐form inversion •  Electrical/CSEM methods for monitoring the CO2 •  INSAR-­‐GBSAR Methodologies •  Bio-­‐indicators Social Characteriza.on -­‐ Social Acceptance Ac.vi.es with the Local Community of Hontomín Engagement in local
festivals CIUDEN invited to
participate
September 10th, 2011
Presentation of the Geological
Storage project in Hontomín
“Learning Workshop for
children”
“Bye, bye CO2”
Hontomín - Local Community
Engagement in local festivals - CIUDEN invited to
participate
Didactic and funny
games for children on
easy CO2 properties and
uses
Public presentation about
CIUDEN’s activities in Hontomín
on CO2 storage
Thank you