Field singularities and coil fields

Transcription

Field singularities and coil fields
 Field Computation and Magnetic Measurements for Accelerator Magnets
Superconducting Accelerator Magnets
(Field singularities and coil fields)
Stephan Russenschuck, 2015
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Where we are
➔ We have studied the mathematical foundations of magnetic fields –
–
–
–
Vectorfields Lumped circuit techniques for normal conducting magnets The Laplace equation Harmonic fields ➔ So far we assumed that the fields on the domain boundary where known (from measurements or calculations) ➔ Now we need to address how to calculate these fields – The field of line currents and the Biot Savart law – Development of these field solutions into the Eigenfunctions
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
2
Rutherford (Roebel) Kabel, Strand, Nb-­‐Ti Filament
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
3
Cabling Machine for Rutherford Cables
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Turk’s Head
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Field of Line Currents
Why bother?
Reciprocity; except for
sign it does not matter if
we exchange the source
and field points
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Greens Functions of Free Space
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Greens Functions of Free Space
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Greens Functions of Free Space
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Green’s Functions of Free Space
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Green’s Functions of Free Space
But what if boundaries are present?
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot-­‐Savart’s Law
This works only in Cartesian Coordinates
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot-­‐Savart’s Law
This works only in Cartesian Coordinates
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot-­‐Savart’s Law
This works only in Cartesian Coordinates
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot-­‐Savart’s Law
This works only in Cartesian Coordinates
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot Savart’s Law
But wait a minute: Are we finished? Are we sure that the
divergence of the vector potential is zero as it was required for
the Laplace equation?
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot Savart’s Law
But wait a minute: Are we finished? Are we sure that the
divergence of the vector potential is zero as it was required for
the Laplace equation?
Current loops must always be closed and must not leave the problem domain
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Biot-­‐Savart’s Law for Line Currents
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
11
Vector Potential of a Line Current
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Field of a Line Current Segment
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Field of a Line Current (Infinitely Long)
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Field of a Line Current (Infinitely Long)
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Field of a Line Current (Infinitely Long)
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Field of a Line Current
Appearance of elliptic integrals:
To be solved numerically.
On axis:
In the center:
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Magnetic Dipole Moment
Far field approximation
Definition
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Solid Angle and Magnetic Scalar Potential
Solid angle (easy to compute) gives the magnetic scalar potential of a current
loop
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Imaging Current Method
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Imaging Current Method
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Notes on the Imaging Method
➔ Domain 1: Domain with current sources ➔ Domain 2: Highly permeable material – All imaging currents must be in domain 2 – The sources and the images must create a field that satisfies the continuity conditions at the interface between domains 1 and 2 – The image of the image must be the original source – The field generated in domain 1 is identical to the source field plus the field from the (iron) magnetization. – The field generated in domain 2 has no physical significance
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Imaging Current Method
n
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Imaging Current Method
n
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Imaging Current Method
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Imaging Current Method
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The Field of a Line Current (2D)
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Imaging Method
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Ideal Current Distributions
Exercise: Do this for the quadrupole and compare the results in terms of bore radius
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Ideal Current Distributions
Exercise: Do this for the quadrupole and compare the results in terms of bore radius
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Nested Helices
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Nested Helices
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Coil-­‐Block Approximations
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Generation of Multipole Field Errors
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The LHC Magnet Zoo
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Finite-­‐Element / Boundary-­‐Element Coupling
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
29
29
Corrector Magnets
Octupole
Sextupole-spool pieces
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
Magnet Extremities
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
The CERN Field Computation Program ROXIE Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015
32
Numerical Field Computation
➔ Principles of numerical field computation – Formulation of the Problem – Weighted residual – Weak form – Discretization – Higher order elements – Numerical example ➔ Weak forms in 3-­‐D ➔ Element shape functions – Global shape functions – Barycentric coordinates ➔ Mesh generation
Stephan Russenschuck, CERN TE-MSC-MM, 1211 Geneva 23
FII-2015

Similar documents