True and brittle micas - Commission on New Minerals
Transcription
True and brittle micas - Commission on New Minerals
Mineralogical Magazine, June 2007, Vol. 71(3), pp. 285–320 True and brittle micas: composition and solid-solution series G. TISCHENDORF1, H.-J. FÖRSTER2,*, B. GOTTESMANN3 1 2 3 4 AND M. RIEDER4 Bautzner Strasse 16, D-02763 Zittau, Germany Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany Institute of Materials Chemistry, TU Ostrava, 17. listopadu 15/2172, CZ-708 33 Ostrava-Poruba, Czech Republic [Received 8 May 2007; Accepted 11 September 2007] ABSTR ACT Micas incorporate a wide variety of elements in their crystal structures. Elements occurring in significant concentrations in micas include: Si, IVAl, IVFe3+, B and Be in the tetrahedral sheet; Ti, VIAl, VI Fe3+, Mn3+, Cr, V, Fe2+, Mn2+, Mg and Li in the octahedral sheet; K, Na, Rb, Cs, NH4, Ca and Ba in the interlayer; and O, OH, F, Cl and S as anions. Extensive substitutions within these groups of elements form compositionally varied micas as members of different solid-solution series. The most common true K micas (94% of almost 6750 mica analyses) belong to three dominant solid-solution series (phlogopite–annite, siderophyllite polylithionite and muscovite celadonite). Their classification parameters include: Mg/(Mg+Fetot) [=Mg#] for micas with VIR >2.5 a.p.f.u. and VIAl <0.5 a.p.f.u.; Fetot/(Fetot+Li) [=Fe#] for micas with VIR >2.5 a.p.f.u. and VIAl >0.5 a.p.f.u.; and VIAl/(VIAl+Fetot+Mg) [=Al#] for micas with VIR <2.5 a.p.f.u. The common true K micas plot predominantly within and between these series and have Mg6Li <0.3 a.p.f.u.. Tainiolite is a mica with Mg6Li >0.7 a.p.f.u., or, for transitional stages, 0.3 0.7 a.p.f.u.. Some true K mica end-members, especially phlogopite, annite and muscovite, form binary solid solutions with non-K true micas and with brittle micas (6% of the micas studied). Graphical presentation of true K micas using the coordinates Mg minus Li (= mgli) and VI Fetot+Mn+Ti minus VIAl (= feal) depends on their classification according to VIR and VIAl, complemented with the 50/50 rule. K EY WORDS : true micas, brittle micas, classification, solid-solution series, composition. Introduction Following an idea and proposal of Charles Guidotti{, our colleague, friend and co-author of a recent paper on micas (Tischendorf et al., 2004), we present in this paper a survey and analysis of composition and solid solution in the mica group, comprising trioctahedral and dioctahedral, common and uncommon true K micas, other alkali-element-bearing micas, and brittle micas. The principles behind the subdivision, and the graphical presentation adopted, follow the recommendations of the Mica Sub-committee of the International Mineralogical Association’s Commission on New Minerals, Nomenclature MICAS are widespread in igneous, metamorphic and sedimentary rocks. Their crystal structure accommodates a plethora of elements, leading to a large and diverse mineral group. The compositional diversity of micas has led to numerous attempts at classification and graphical presentation (Foster, 1960a,b; Tröger, 1962; Rieder et al., 1970, 1998; Koval et al., 1972; Gottesmann and Tischendorf, 1978; Černý and Burt, 1984; Monier and Robert, 1986; Jolliff et al., 1987; Burt, 1991; Tischendorf et al., 1997, 2004; Sun Shihua and Yu Jie, 1999, 2000). * E-mail: forhj@gfz-potsdam.de DOI: 10.1180/minmag.2007.071.3.285 # 2007 The Mineralogical Society { Died 19 May 2005 TISCHENDORF ET AL. and Classification (IMA-CNMNC) (Rieder et al., 1998) and the IMA principles of mineral classification. This paper treats the micas only in terms of their compositions, an approach that permits a quick and easy classification of any mica. (2) uncommon brittle micas (0.4%): contain V, Be, Fe3+, Ti or S and O as major elements, in addition to Ca or Ba [in anandite, bityite, chernykhite, oxykinoshitalite]. Common true K micas Principles of classif|cation Methods Our classification scheme uses four major, octahedrally-coordinated cations (Mg, Fetot, VI Al, Li) together with the existence of solid solutions. It considers only IMA-approved endmember names and strictly applies the 50/50 rule (e.g. Nickel, 1992). The main parameters in this classification are VI R, VIAl and the product Mg6Li (all in a.p.f.u.). The value of VIR = 2.5 differentiates trioctahedral from dioctahedral micas. The limiting value between micas of the phlogopite–annite and siderophyllite–polylithionite series (VIAl = 0.5) results from the application of the 50/50 rule. The same is valid for the parameter Mg6Li, which separates tainiolite micas (Mg6Li >0.3) from all other trioctahedral micas (Mg6Li <0.3). This study is based on mica analyses obtained by different analytical methods (wet chemical, X-ray fluorescence, electron- and ion-microprobe analysis). Data sources not listed in the References are given in previous publications (e.g. Tischendorf et al., 1997, 1999, 2001a,b, 2004) or are noted in Deer et al. (2003). The crystallo-chemical formulae were calculated on the basis of 22 cation charges, except for oxy-micas with 24 cation charges. The concentration of Li2O, if essential but not known, was estimated using the empirical equations published by Tischendorf et al. (2004, their Appendix). Results Compositionally, micas are subdivided into true micas, with monovalent cations in the interlayer, and brittle micas containing divalent cations in the interlayer. Our evaluation of mica analyses yielded the following quantitative subdivisions (in percentages of the total population of ~6750 analyses). True micas (96.8% of all analyses) comprise: (1) common true K micas (93.1%): [annite, celadonite, muscovite, phlogopite, polylithionite, siderophyllite, tainiolite]; (2) uncommon true K micas (1.6%): contain a minor element (Mn2+, Fe3+ or F) in an aboveaverage concentration [fluorannite, masutomilite, montdorite, shirozulite, tetra-ferriannite, tetraferriphlogopite], an uncommon element (Zn, V, Cr, Mn3+ or B) as major element [in boromuscovite, chromphyllite, hendricksite, roscoelite, norrishite] or a common element in an uncommon coordination (e.g. Na+ in shirokshinite); (3) uncommon true non-K micas (2.1%): contain the monovalent cations Na, Rb, Cs or NH4 as major element substituting for K [in aspidolite, ephesite, nanpingite, paragonite, preiswerkite, sokolovaite, tobelite]. Brittle micas (3.2% of all analyses) comprise: (1) common brittle micas (2.8%): contain Ca or Ba as major cations proxying for K [in clintonite, ferrokinoshitalite, ganterite, kinoshitalite, margarite]; (1) Phlogopite–annite series trioctahedral (VIR >2.5); VIAl <0.5; Mg6Li <0.3 end-members: phlogopite KMg3[AlSi3O10](OH)2, annite KFe2+ 3 [AlSi3O10](OH)2 classification according to the ratio Mg/ (Mg+Fetot) [= Mg#] phlogopite: Mg# >0.5 annite: Mg# <0.5 (2) Siderophyllite polylithionite series trioctahedral (VIR >2.5); VIAl >0.5; Mg6Li <0.3 e n d - m e m b e r s : s i d e r o p h y l l i t e K F e 22 + A l [Al2Si2O10](OH)2, polylithionite KLi2Al[Si4O10]F2; classification according to the ratio Fe tot / (Fetot+Li) [= Fe#] siderophyllite: Fe# >0.5 polylithionite: Fe# <0.5 (3) Tainiolite group trioctahedral (VIR >2.5); Mg6Li for tainiolite sensu stricto >0.7, for tainiolitic micas 0.3 0.7 end-member: tainiolite KLiMg2[Si4O10]F2 (4) Muscovite celadonite series dioctahedral (VIR <2.5); Mg6Li <0.3 end-members: muscovite KAl 2 &[AlSi 3 O 10 ] (OH)2, celadonite: KMgFe3+&[Si4O10](OH)2; classification according to VIAl/(VIAl+Fetot+Mg) [= Al#] muscovite: Al# >0.5 celadonite: Al# <0.5 286 CLASSIFICATION OF MICAS Celadonites are further subdivided according to Li et al. (1997) as confirmed by Rieder et al. (1998). Distribution of natural compositions in the mgli feal plot Mica compositions may be described in twodimensional triangular or three-dimensional plots (cf. Tischendorf et al., 2004, for a compilation). We have proposed a simple two-dimensional presentation according to the occupancy of the octahedral sheet, using the parameters Mg minus Li (= mgli) and VIFetot+Mn+Ti minus VIAl (= feal) a.p.f.u. (Tischendorf et al., 1997, 2004). Figure 1 shows common true K micas, excluding only tainiolite and celadonite. The maximum in the frequency distribution of natural muscovite compositions is close to the endmember composition. Two frequency peaks occur in the phlogopite–annite series, and one occurs in the siderophyllite–polylithionite join. Very few compositions plot in the relatively large areas in the Mg-Al sector (lower right) and in smaller areas in the Fe-Li sector (upper left) of the plot. Figure 2 shows the numbers of cations per formula unit for compositions in the phlogopite– annite, siderophyllite–polylithionite and muscovite–celadonite series. Figure 3 shows species resulting from the application of the 50/50 rule. Joins combining related end-members are displayed and so are the half-way divides. FIG. 1. mgli/feal plot of ~6100 common true K-mica compositions (excluding tainiolite and celadonites). Mica endmembers, ideal members, and one theoretical component are indicated. Isolines show relative densities of composition points (1, 5, 10, 20, 30%) normalized to the density maximum at mgli = 0.05 and feal = 1.70 (the most frequent muscovite composition), which is taken as 100%. Abbreviations: ann annite, eas eastonite, hyp-mus hyper-muscovite, mus muscovite, phl phlogopite, pol polylithionite, sid siderophyllite, trans-mus transitional muscovite, tri trilithionite. 287 TISCHENDORF ET AL. FIG. 2. Phlogopite annite and siderophyllite polylithionite series, and the muscovite portion of the muscovite celadonite series plotted in the mgli/feal diagram. Mica end-members, ideal members, and one theoretical component are indicated. The boundary between the first two series (VIAl = 0.5) and their boundary with muscovite (VIR = 2.5) is marked by dashed lines. Note that two boundaries are shown in the transitional area between annite and siderophyllite (both for VIAl = 0.5), one at VIR = 3.0, and another at VIR = 2.75. See Fig. 1 for abbreviations. Compositional characteristics In the following, we point out important compositional features of common true K micas in Fig. 4, some of which shed new light on the relationships between common true K micas, uncommon true micas and brittle micas. Because of the wide compositional variation of common true K mica species, we characterize varieties according to their compositions (Appendices 1 5). Phlogopite (1814 analyses): Many compositions (43%) have insufficient IVAl, suggesting that Fe3+ and/or Ti4+ may be present in the tetrahedral sheet. Of these compositions, 28% are so close to the end-member formula that they may be referred to as phlogopite sensu stricto; 50% are Fe-rich 288 phlogopites, 12% Ti-Fe-rich phlogopites, 5% AlFe-rich phlogopites, 4% Ti-rich phlogopites (up to 0.75 a.p.f.u. Ti), and 1% Al-rich phlogopites (up to 0.5 a.p.f.u. VIAl; for example Ferry, 1981) (Appendices 1a and b). Few phlogopites have larger Mn contents, but some (4%) contain considerable fluorine (>1 a.p.f.u.; Stoppa et al., 1997, Motoyoshi and Hensen, 2001); the latter should be termed F-rich phlogopite. Phlogopite enriched in Zn or V (up to 0.6 a.p.f.u.) is uncommon. The maximum contents (in a.p.f.u.) are 0.20 for Cr, 0.12 for Cs, 0.04 for Ni and 0.07 for Rb. Barium behaves differently, because a solid-solution series exists from phlogopite– kinoshitalite (cf. Figs 11a and 12). CLASSIFICATION OF MICAS FIG. 3. Mica species in three dominant solid-solution series among common true K micas plotted in the mgli/feal diagram. Mica end-members, ideal members, and one theoretical component are indicated. Boundaries between the series are dashed, and between species are shown by dash-and-dot lines. Between annite and siderophyllite, for VI Al = 0.5, only the boundary at VIR = 2.75 is shown. Also inserted are lines joining mica end-members (dotted), with 50/50 divides indicated. The arrow marks the direction towards celadonite (cel). Areas devoid of mica compositions are not labelled. See Fig. 1 for abbreviations. Annite (1376 analyses): in this group, 15% of the samples analysed appear to have no VIAl. Only 7% refer to annite sensu stricto. Most annites (50%) are classified as Mg-rich annite, 33% as Al-Mg-rich annite, 5% as Ti-Mg-rich annite (up to 0.65 a.p.f.u. Ti), and 3% as Al-rich annite. About 2% of the annite micas contain >0.3 a.p.f.u. Li and, therefore, represent Li- or LiAl-rich annite (Appendices 2a and 2b). Li-rich annite is usually also enriched in F (up to 1.4 a.p.f.u.; e.g. Kile and Foord, 1998). A few annites are Cl-rich (in the range 0.3 0.9 a.p.f.u.; Oen and Lustenhouwer, 1992). Also uncommon are annites containing large concentrations of Zn (0.3 0.6 a. p . f.u.; Tr a c y , 1 9 91 ) o r M n 289 (0.3 0.6 a.p.f.u.). Large concentrations of Ba (0.3 0.5 a.p.f.u.) may be an indication of a solid-solution series between annite and ferrokinoshitalite (cf. Figs 11a and 12). Siderophyllite (748 analyses): most micas (58%) classified in this group are Li-rich siderophyllites (with F up to 1.8 a.p.f.u.), followed by Mg-rich siderophyllite (25%), and siderophyllite sensu stricto (17%) (Appendices 3a and 3b). However, compositions corresponding to ideal KFe2+ 2 Al[Al2Si2O10](OH)2 do not occur in nature (Fig. 24). Because Si4+ does not occur below 2.5 a.p.f.u. (except for micas with Ba2+ and/or Ca 2+ and/or Fe 3+ >0.5 a.p.f.u. and/or Ti4+ >0.25 a.p.f.u.), the octahedral sheet must accom- TISCHENDORF ET AL. FIG. 4. Average values and 1s standard deviations (open squares and error bars) of common true K mica varieties in the mgli/feal diagram (Appendices 1 4). The boundary between annite and siderophyllite is given for VIAl = 0.5 at VI R = 2.75. Boundaries between the series are dashed; boundaries between species are marked by dash-and-dot lines. Mica end-members, ideal members, and one theoretical component are indicated. tai tainiolite. See Fig. 1 for further abbreviations. Mica varieties are characterized by element prefixes, e.g. Ti-Fe means Ti-Fe-rich phlogopite. modate more divalent (Mg2+) and univalent (Li+) cations to balance charges. Therefore, a more realistic composition would be KFe2+ 1.75Al0.75 Li0.25Mg0.25[Si2.5Al1.5O10](OH)2 (for VIR = 3.0) or KFe 2+ 1.75 Al 0.75 & 0.25 Li 0.125 Mg 0.125 [Si 2.875 Al1.125O10](OH)2 (for VIR = 2.75), respectively (Appendix 3b, and Tischendorf et al., 2004). Compositionally, siderophyllite is an atypical endmember mica, because it plots in the centre of all K-mica compositions. It contains all the principal elements of the octahedral sheet, Fe, VIAl, Mg and Li. A few siderophyllites contain Mn (0.30 0.35 a.p.f.u., Abdalla et al., 1994; Mohamed et al., 1999), with Cs and Rb contents of up to 0.20 and 0.15 a.p.f.u., respectively. 290 Polylithionite (648 analyses): half of all polylithionites are polylithionite sensu stricto, the rest being Fe-rich polylithionite. About 80% of the compositions contain 1.0 2.0 a.p.f.u. F (Appendices 3a and 3b). The Rb concentration seldom exceeds 0.3 a.p.f.u., but one Rb-rich polylithionite (unnamed) contains 0.82 a.p.f.u. Rb (Černý et al., 2003). Concentrations of Cs in polylithionite are usually large, and Cs-rich varieties (up to 0.88 a.p.f.u., Wang et al., 2004) do exist. Sokolovaite, a Cs analogue of polylithionite, was proposed by Pautov et al. (IMA 2004-012; Burke and Ferraris, 2005). Tainiolite (28 analyses) and tainiolitic micas (31 analyses): in contrast to common true K micas, CLASSIFICATION OF MICAS characterized either by high Mg or high Li, tainiolite has high Mg (0.5 2.3 a.p.f.u.) and high Li (0.4 1.0 a.p.f.u.) (Appendix 4). Such compositions have a unique position within the mica group. By containing some Al and Fe, tainolite deviates slightly from ideal KLiMg2[Si4O10]F2. Also, it has moderate concentrations of Rb and Cs. Tainiolite can, of course, be plotted in terms of mgli/feal, but because of possible coincidence with unrelated mica compositions, it should be treated as a separate subsystem (Fig. 5). Tainiolites are theoretically characterized by Mg6Li >0.5 a.p.f.u. In addition to tainiolite sensu stricto, other micas with large Mg and large Li contents occur that are intermediate between tainiolite and other common true K micas. Such micas may be termed tainiolitic micas. These micas are typically enriched in Cs. Accordingly, we may distinguish three groups of tainiolites (Appendix 4): (1) Tainiolite sensu stricto; characterized by Mg6Li >0.7 a.p.f.u.; Mg >1.9 a.p.f.u.; Si = 3.1 4.0 a.p.f.u.; in carbonatites (Le Bas et al., 1992; Cooper et al., 1995); transitional to phlogopite, but unusually enriched in Li; (2) Fe-rich tainiolitic micas; characterized by Mg6Li = 0.3 0.7; Fetot >0.9; Si = 2.6 3.1; in Red Cross/Tanco pegmatites (Morgan and London, 1987; Hawthorne et al., 1999); transitional to Mgrich annite, but unusually enriched in Li; (3) Al-rich tainiolitic micas; characterized by Mg6Li = 0.3 0.7; VIAl >0.6; Si = 2.6 3.1; in spodumene pegmatites (Kuznetsova and Zagorskiy, 1984; Semenov and Shmakin, 1988: ‘magnesian zinnwaldite’, Pesquera et al., 1999); transitional to Li-rich siderophyllite, but unusually enriched in Mg. The positive correlation of Mg and Li applies only to tainiolite sensu stricto. In Fe-rich and Alrich tainiolitic micas, MgO and Li2O correlate negatively, as in all other micas. We stress that, in the mgli/feal plot, the area of tainiolite sensu stricto shows no overlap with the area of siderophyllite (Fig. 4). Muscovite (1574 analyses): most muscovites (55%) have compositions close to the ideal formula and exhibit very limited chemical variation. The next most common compositions are Fe-rich muscovite and Mg-rich muscovite FIG. 5. mgli/feal plot for the end-member tainiolite sensu stricto and other pertinent end-members connected by tie lines. Also shown are the 50/50 divides, which outline the field of micas belonging to tainiolite sensu stricto. See Figs 1 and 4 for abbreviations. 291 TISCHENDORF ET AL. Mg, Fe2+, Li and VIAl, or micas with tetrahedral cations that are different from Si and IVAl. (16% each). Li-Fe-rich muscovite (6%), Li-rich muscovite (5%), and Mg-Fe-rich muscovite (2%) are comparatively rare (Appendices 5a and b). Generally, the concentration of other elements in muscovite is small. Related dioctahedral mica end-members (e.g. roscoelite, chromphyllite, ganterite), which form solid-solution series with muscovite, explain large concentrations of V, Cr and Ba in the latter (Morand, 1990; Breit, 1995; Treolar, 1987; Hetherington et al., 2003). Concentrations of F, up to ~2 a.p.f.u., may occur in Li-rich muscovite. Concentrations of Rb do not exceed 0.2 a.p.f.u. (Zagorskiy and Makrygin, 1976; Lagache and Quéméneur, 1997). Celadonite micas (61 analyses): only limited information is available about the presence of trace or minor elements (Appendix 4). End-member compositions of celadonites are given by Li et al. (1997) and are confirmed by Rieder et al. (1998). The general formula is: K(Mg,Fe2+)(Fe3+,Al) &[Si4O10](OH)2. The mode of graphical presentation proposed by Li et al. (1997) is equivalent to mgli/feal. However, because of their Fe3+ concentrations, celadonites must be presented either jointly with muscovite (Tischendorf et al., 2004) or in a separate plot (Fig. 6). Interlayer Instead of K, the following elements may be the dominant cation in the mica interlayer: Na, Cs, Rb, NH4, Ca and Ba. K–Na substitution. The substitution of Na in the interlayer of common trioctahedral K micas (Fig. 7a) generally ranges up to 0.4 a.p.f.u., and only rarely beyond 0.45. Full replacement of K by Na in phlogopite and eastonite leads to aspidolite Uncommon true K micas, other alkali and brittle micas, and their relation to common true K micas Uncommon true and brittle micas are similar to common true K micas because they exhibit the same kinds of cation substitutions in octahedral and tetrahedral coordination. These substitutions follow from (1) the requirement of charge balance and (2) ion-size constraints of cation coordinations. In practice, the same ‘unusual’ elements, known to enter uncommon true and brittle micas (Ba, Ca, Na, Rb, Cs, Mn, Zn, Cr, V), also enter common true K micas and are normally analysed for. Exceptions are the highly unusual NH4, B and Be. Occupancy of the octahedral sheet is the basis for the classification of common true K micas, and it can equally well serve the same purpose for the uncommon true and brittle micas. These latter mica also can be plotted in terms of mgli and feal coordinates; however, most of them tend to cluster along the periphery of the diagram. Common true K micas, in particular phlogopite, annite and muscovite, act as end-members of solid-solution series with uncommon true or brittle micas. Examples of such series may be micas with the interlayer occupied by atoms other than K, micas with octahedral cations other than FIG. 6. Classification of the celadonite family in the mgli/ feal diagram.according to the principles of Li et al. (1997). 292 CLASSIFICATION OF MICAS (19 analyses) and preiswerkite (26 analyses), respectively. The Na mica ephesite (9 analyses) has no K counterpart. Likewise, the substitution of Na in common dioctahedral K micas is <0.4 a.p.f.u. (Fig. 7b). The mica with a complete substitution of K by Na is paragonite (72 analyses). There also exists a Sr-enriched variety of paragonite containing up to 0.23 a.p.f.u. Sr (Bryanchaninova et al., 2004). The large difference in ionic radius between Na+ and K+ makes likely the existence of a miscibility gap in all such binaries, manifest by a significantly increased number of compositions in which K or Na dominate relative to intermediate compositions. Guidotti et al. (1994) examined the extent of K Na substitution and associated other chemical changes. K Rb substitution. Although Voncken et al. (1987) synthesized the Rb analogue of muscovite, and Beswick (1973) experimentally demonstrated complete miscibility between K and Rb in phlogopite, no end-member with Rb as the dominant interlayer cation has yet been observed in nature. The substitution of Rb in the interlayer of common true K micas rarely exceeds 0.20 a.p.f.u. (Fig. 8). Exceptions are Rb-rich annite (0.45 a.p.f.u. Rb) and a still unnamed Rb analogue of ‘zinnwaldite’ (0.82 a.p.f.u. Rb; Černý et al., 2003). K Cs substitution. Common trioctahedral micas may substitute up to ~0.20 a.p.f.u. Cs (Fig. 9). Černý et al. (2003) reported enrichment of Cs in some phlogopite, annite and siderophyllite micas. Also, there is a Cs-rich mica described as Cs polylithionite by Černý et al. (2003, one analysis) and Wang et al. (2004, 13 analyses). Sokolovaite is the Cs analogue of polylithionite (Pautov, IMA 2004-012; Burke and Ferraris, 2005). Complete substitution of K by Cs in dioctahedral micas leads to nanpingite (3 analyses, Yang et al., 1988; Ni and Hughes, 1996; Peretyazhko et al., 2004). Data indicate a miscibility gap in the interval 0.20 0.60 a.p.f.u. Cs, rather than complete substitution between K FIG. 7. (a) Proportion of Na in XIIR for the series phlogopite (phl)–aspidolite (asp). Data for preiswerkite (prei) and ephesite (eph) are given for comparison. Sodium (>0.1 a.p.f.u.) in phlogopite is shown as averages (n = number of analyses) at 0.1 a.p.f.u. intervals. Numbers of analyses are given in parantheses; standard deviations are shown in pale grey. Data sources: Schaller et al. (1967), Keusen and Peters (1980), Schreyer et al. (1980), Oberti et al. (1993), Godard and Smith (1999), Visser et al. (1999), Costa et al. (2001), Ruiz Cruz (2004), Banno et al. (2005), Bucher et al. (2005), Konzett et al. (2005). (b) Proportion of Na in XIIR for the series muscovite (mus)–paragonite (par). Sodium (>0.1 a.p.f.u.) in muscovite is given as averages (n = number of analyses) at 0.1 a.p.f.u. intervals. Numbers of analyses are given in parentheses; standard deviations are shown in pale grey. Data sources: Ackermand and Morteani (1973), Höck (1974), Baltatzis and Wood (1977), Hoffer (1978), Katagas and Baltatzis (1980), Grambling (1984), Harlow (1994, 1995), Bucher et al. (2005), Escuder-Viruete and Pérez-Estaún (2006). Sr-bearing paragonites are from Bryanchaninova et al. (2004). 293 TISCHENDORF ET AL. and Cs in both trioctahedral and dioctahedral micas, which is attributed to the large difference in ionic radius (Shannon and Prewitt, 1969; Shannon, 1976). K NH4 substitution. Among trioctahedral micas, apparently only phlogopite rich in Fe contains significant concentrations of NH 4 (~0.30 0.40 a.p.f.u.; D.E. Harlov, pers. comm., 2005), in accordance with the hydrothermal synthesis of end-member ammonium phlogopite (Eugster and Munoz, 1966). Complete solid solution between muscovite and tobelite has been confirmed experimentally at T >400ºC (Pöter et al., 2007). However, the analysed natural dioctahedral micas show a gap in composition around 0.50 (e.g. Nieto, 2002). In the NH4 XIIR–NH4 diagram (Fig. 10), natural compositions display a large scatter, possibly resulting from uncertainties in the analysis of N and the inability to analyse H by electron microprobe. K Ca substitution. The Ca concentration of trioctahedral common true K micas does not exceed ~0.30 a.p.f.u. Larger Ca concentrations, corresponding to 0.9 1.0 a.p.f.u., are characteristic for clintonite (48 analyses), a brittle mica violating the Löwenstein rule. Clintonite does not appear to be the end-member of any solid-solution series. High Ca, coupled with high Li and Be, leads to the formation of the unusual brittle mica bityite (13 analyses, Fig. 11a). Margarite (68 FIG. 8. Proportion of Rb in XIIR for annite (ann), siderophyllite (sid), polylithionite (pol), tainiolite (tai) and muscovite (mus). Rubidium (>0.1 a.p.f.u.) in muscovite and polylithionite is given as averages (n = number of analyses) at 0.1 a.p.f.u. intervals. Numbers of analyses are given in parentheses. Most data for Rb-rich micas come from Skosyreva and Vlasova (1983) and Černý et al. (2003). FIG. 9. Proportion of Cs (>0.1 a.p.f.u.) in XIIR for phlogopite (phl), annite (ann), siderophyllite (sid), polylithionite (pol), muscovite (mus), sokolovaite (sok) and nanpingite (nan). Data for Cs rich micas were taken from Yang et al. (1988), Hawthorne et al. (1999), Černý et al. (2003), Peretyazhko et al. (2004) and Wang et al. (2004). FIG. 10. Proportion of NH4 in XIIR for phlogopite (phl), muscovite (mus) and tobelite (tob). Data are taken from Higashi (1978, 1982, 2000) [Japan], Wilson et al. (1992) [Utah, USA] and D.E.Harlov (2005, pers. comm.) [Maine, USA; Erzgebirge, Germany]. 294 CLASSIFICATION OF MICAS analyses) is a dioctahedral brittle mica with Ca concentrations in the range 0.5 1.0 a.p.f.u.. However, the Ca concentration in muscovite reported to date is small, indicating the absence of a solid-solution series between muscovite and margarite (Fig. 11b). K Ba substitution. Unlike the substitutions above, the K Ba replacement in trioctahedral micas of the phlogopite–annite series is almost complete (cf. Greenwood, 1998). If the Ba-for-K substitution exceeds 0.5 a.p.f.u., the mica is kinoshitalite (57 analyses) or oxykinoshitalite (2 analyses), an exotic, Ti-enriched mica known only from an olivine nephelinite (Kogarko et al., 2005). Ferrokinoshitalite (4 analyses) is a brittle mica with an octahedral sheet resembling that of annite (Guggenheim and Frimmel, 1999), whereas anandite (5 analyses, Pattiaratchi et al., 1967) has an additional condition, namely that IVAl be replaced by IVFe3+ and that S be incorporated instead of one (OH). In dioctahedral micas, a partial replacement of K by Ba results in the formation of ganterite (13 analyses, Graeser et al., 2003; Hetherington et al., 2003; Ma and Rossman, 2006) or chernykhite (2 analyses), if VI V simultaneously substitutes for VIAl. Phlogopite, kinoshitalite, annite and ferrokinoshitalite form complete solid solutions (Figs 12a, 13). All four of these end-members participate in the series (see also Frimmel et al., 1995, their Fig. 2). The K Ba substitution in the interlayer is coupled with the tetrahedral substitution XIIBa + IVAl > XII(K,Na) + IVSi (Brigatti and Poppi, 1993). The concentration of Ba in muscovite is usually <0.4 a.p.f.u., and ganterite is characterized by Ba ~0.5 a.p.f.u. (Fig. 12b). A composition corresponding to the ideal endmember BaAl2&[Al2Si2O10](OH)2 has not yet been reported from nature. The Ba-V-rich mica chernykhite described by Ankinovich et al. (1973) contains only ~0.3 a.p.f.u. Ba and thus does not reach beyond the required 50%. Octahedral sheet Octahedral substitutions are responsible for the formation of uncommon true micas by: (1) the FIG. 11. (a) Sum XIICa+IVAl as a function of XII(K,Na)+IV(Si,Be) for phlogopite (phl), annite (ann), siderophyllite (sid), polylithionite (pol), clintonite (cli) and bityite (bit) (including Be-rich margarite). Calcium (>0.1 a.p.f.u.) in common true K micas is shown as averages in 0.1 a.p.f.u. intervals. Numbers of analyses are given in parentheses, and Ca contents (in a.p.f.u.) are indicated. Data for uncommon micas come mostly from Bucher-Nurminen (1976), Guggenheim et al. (1983), Lahti and Saikkonen (1985), Ackermand et al. (1986), MacKinney et al. (1988), Alietti et al. (1997) and Grew et al. (1999). (b) The sum XIICa+IVAl as a function of XII(K,Na)+IVSi for muscovite (mus) (Ca>0.05 a.p.f.u.) and margarite (mar). Numbers of analyses are given in parentheses, and Ca contents (in a.p.f.u.) are indicated. Data for margarite come mainly from Ackermand and Morteani (1973), Höck (1974), Gibson (1979), Guidotti et al. (1979), Frey et al. (1982), Guggenheim et al. (1983), Lahti (1988), Morand (1990) and Godard and Smith (1999). 295 TISCHENDORF ET AL. FIG. 12. (a) Plot of XIIBa+IVAl vs. XII(K,Na)+IVSi for phlogopite (phl) and annite (ann) (Ba >0.1 a.p.f.u.) as well as for kinoshitalite (kino), ferrokinoshitalite (Fekino) and anandite (ana). Numbers of analyses are given in parantheses, and the Ba content (in a.p.f.u.) is indicated. Data sources for uncommon micas: Pattiaratchi et al. (1967); Lovering and Widdowson (1968); Mansker et al. (1979); Filut et al. (1985); Solie and Su (1987); Bol et al. (1989); Dasgupta et al. (1989); Tracy (1991); Edgar (1992); Bigi et al. (1993); Brigatti and Poppi (1993); Frimmel et al. (1995); Henderson and Foland (1996); Jiang et al. (1996); Shaw and Penczak (1996); Guggenheim and Frimmel (1999); Gnos and Armbruster (2000); Tracy and Beard (2003); Doležalová et al. (2005, 2006). (b). The plot of XIIBa+IVAl vs. XII(K,Na)+IVSi for muscovite (mus) (Ba >0.05 a.p.f.u.) as well as for ganterite (gan) and chernykhite (cher). Numbers of analyses are given in parantheses, and the Ba content (in a.p.f.u.) is indicated. Data for uncommon micas were taken from Ankinovich et al. (1973), Graeser et al. (2003), Hetherington et al. (2003) and Ma and Rossman (2006). occurrence of common elements in unusually large concentrations (Mn2+, Fe3+, Ti); (2) the incorporation of unusual elements in significant concentrations (Zn, V, Cr); and (3) the incorporation of an element in a valence state uncommon in micas (Mn3+). Incorporation of high Mn. Even though the Mn concentrations of dioctahedral micas are <0.2 a.p.f.u., several trioctahedral Mn-bearing micas exist, including shirozulite, the Mn analogue of annite, produced by the substitution of Mn2+ for Fe2+. No compositions close to the end-member have been found. The composition reported in the original description (Ishida et al., 2004) has only 1.53 a.p.f.u. Mn2+. Masutomilite, the Mn-analogue of what used to be termed ‘zinnwaldite’, owes its existence to the same Fe2+ > Mn2+ substitution. However, the ideal Mn = 1.0 a.p.f.u. of the masutomilite lies beyond the range of natural compositions (Harada et al., 1976). The most Mn-rich polylithionite (0.59 a.p.f.u.) was reported by Boggs (1992). The most Mn-rich phlogopite has 1.1 a.p.f.u 296 (Yoshii et al., 1973) and for annite up to 0.57 Mn a.p.f.u. (Chen and Wu, 1987). Norrishite (8 analyses) is a rare Li-bearing mica with trivalent Mn. All these micas have high Mn, but they never reach the ideal Mn mica end-member (Eggleton and Ashley, 1989; Gnos et al., 2003). Montdorite is an uncommon Mn-bearing, tetrasilicic transitional mica that has yet been found at only one locality and for which only one single analysis is available (Robert and Maury, 1979). Hendricksite (3 analyses) may contain up to 1.1 a.p.f.u. Mn 2+ (Frondel and Ito, 1966; Guggenheim et al., 1983) (Fig. 14). Incorporation of high Zn. Hendricksite is the only uncommon trioctahedral mica in which the Zn concentration may reach 1.45 a.p.f.u. No doubt exists about the coordination of Zn because there is insufficient Mg (1 2.5 a.p.f.u.) and Fe2+ is low (<1 a.p.f.u.) (Frondel and Ito, 1966; Frondel and Einaudi, 1968; Guggenheim et al., 1983). Other phlogopites and annites may have Zn concentrations up to 0.6 a.p.f.u. (Craig et al., 1985; Tracy, 1991). Zinc concentrations in CLASSIFICATION OF MICAS siderophyllite, polylithionite and the dioctahedral micas are comparatively small, mostly <0.03 a.p.f.u. (Fig. 15). Incorporation of high V. Enhancement in V3+ is rare in trioctahedral micas (Pan and Fleet, 1991; Deer et al., 2003, their Table 42, analysis 44). Larger concentrations occur in dioctahedral micas, for which the V content varies continuously from V-rich muscovite to either roscoelite (20 analyses) or the brittle mica chernykhite (2 analyses). In roscoelite and chernykhite, V replaces VIAl up to 1.7 a.p.f.u. (Ankinovich et al., 1973; Hofmann, 1990; Meunier, 1994). Reznitskiy et al. (1997) reported significant V in chromphyllite (Fig. 16). Incorporation of high Cr. Chromium behaves much as V does. The Cr3+ contents of trioctahedral micas are <0.2 a.p.f.u. (Fig. 17). However, Cr is concentrated in dioctahedral micas, for which there is a continuous series from muscovite through Cr-rich muscovite (Treloar, 1987) to chromphyllite (21 analyses). Chromphyllite may also display enrichment in Ba (up to 0.2 a.p.f.u.; Reznitskiy et al., 1997). Incorporation of high Fe3+. The nature of entry of Fe3+ in the octahedral sheet has not been sufficiently studied, but the deficiency of IVAl is F IG . 13. XII Ba (>0.3 a.p.f.u.) as a function of Mg/(Mg+Fetot) [=Mg#] for phlogopite(phl)/kinoshitalite (kino-phl) [Mg#>0.5] and annite(ann)/kinoshitalite (kino-ann) as well as ferrokinoshitalite(Fekino) [Mg#<0.5]. The distribution of points for phlogopitetype and annite-type kinoshitalites may indicate the existence of a solid-solution series across the whole system. FIG. 14. Mn vs. the remaining octahedral cations in phlogopite (phl), annite (ann), siderophyllite (sid), polylithionite (pol) (Mn >0.3 a.p.f.u.) and muscovite (mus) (Mn >0.15 a.p.f.u.) as well as for montdorite (mon), norrishite (nor), shirozulite (shi) and hendricksite (hen). Numbers of analyses appear in parentheses. Data sources for uncommon micas: Frondel and Ito (1966), Robert and Maury (1979), Guggenheim et al. (1983), Eggleton and Ashley (1989), Gnos et al. (2003) and Ishida et al. (2004). FIG. 15. Zn vs. the remaining octahedral cations for phlogopite (phl), annite (ann) (Zn >0.3 a.p.f.u.), siderophyllite (sid), and muscovite (mus) (Zn >0.05 a.p.f.u.) as well as for hendricksite (hen). Numbers of analyses appear in parentheses. Most data were taken from Frondel and Ito (1966), Guggenheim et al. (1983), Craig et al. (1985) and Tracy (1991). 297 TISCHENDORF ET AL. probably made up by IVFe3+ (Brigatti et al., 1996; Tombolini et al., 2002). Indeed, a theoretically possible tetrahedral composition [Si 2.5Al1.5] might give rise to a trioctahedral occupancy of 3+ 3+ 2+ VI [R2+ R = 2.5). In rare 2.5Fe0.5] (or [Fe1.5R ] for cases up to 1.5 a.p.f.u. Fe3+ may enter the octahedral coordination. At greater Fe3+ concentrations (>0.4 a.p.f.u.), a good correlation corresponds to the substitution: VIFe3+ + IVAl > VIR2+ + IVSi (see also Dymek, 1983) (Fig. 18). Incorporation of high Ti. As in the case of Fe3+, large concentrations of Ti 4+ in octahedral coordination are subject to structural limitations. For example, given a tetrahedral composition [Al1.5Si2.5], the trioctahedral sheet with VIR = 3 can accommodate a maximum of 0.25 a.p.f.u. Ti4+. For VIR = 2.5, the corresponding maximum rises to 0.75 a.p.f.u. Ti4+. For micas with Ti4+ concentrations >0.4 0.8 a.p.f.u. (Mansker et al., 1979; Henderson and Foland, 1996; Zhang et al., 1993), the assumption is that some of the Ti fills the tetrahedral site to a sum of 4.0. Good elemental correlations support the substitution scheme VI Ti 4+ + 2 IV Al > VI R 2+ + 2 IV Si (Tschermak-type substitution, see also Mesto et al., 2006) that functions at high Ti4+ concentrations (0.40 0.75 a.p.f.u.) (Fig. 19). A comparison of the Ti 4+ contents among micas of the phlogopite–annite series shows that the greatest concentrations (up to 0.75 a.p.f.u.) are limited to phlogopite with a Mg# = 0.8 0.9, whereas FIG. 16. Contents of V vs. the remaining octahedral cations for phlogopite (phl) (V >0.3 a.p.f.u.), and muscovite (mus) (V >0.2 a.p.f.u.) as well as for roscoelite (ros), chromphyllite (crph) and chernykhite (cher). Numbers of analyses are given in parentheses. Data sources for uncommon micas: Ankinovich et al. (1973), Treolar (1987), Hofmann (1990), Meunier (1994), Breit (1995) and Reznitskiy et al. (1997). FIG. 17. Contents of Cr (>0.1 a.p.f.u.) vs. the remaining octahedral cations for phlogopite (phl) and muscovite (mus) as well as for chromphyllite (crph). Numbers of analyses are given in parentheses. Data for chromphyllite were taken predominantly from Treolar (1987) and Reznitskiy et al. (1997). FIG. 18. Plot of VIFe3++IVAl vs. VIR2++2IVSi for phlogopite (phl) and annite (ann) micas whose Fe3+ content was determined analytically. Shown are a.p.f.u. intervals of Fe3+ of the respective species. 298 CLASSIFICATION OF MICAS (Weiss et al., 1985; Pekov et al., 2003). Armbruster et al. (2007) demonstrated extended solid solution between tainiolite and shirokshinite. smaller concentrations accompany progressively more ferruginous compositions. In annite with Mg# <0.4, the Ti concentration does not exceed 0.4 a.p.f.u. (Fig. 20). Incorporation of Na. The existence of the trioctahedral mica shirokshinite (4 analyses), a Na analogue of tainiolite, indicates that other micas, particularly those from Na-rich assemblages, may have Na in octahedral coordination Tetrahedral sheet In the tetrahedral sheet, Si ranges from 4 to 2 a.p.f.u., and IVAl from 0 to 2 a.p.f.u., accordingly. The ratio Si/IVAl = 1/3, known in clintonite, is in violation of the Löwenstein rule and seems to be an exception. Lack of IVAl requires incorporation of some IVFe3+ or IVTi4+ to avoid a cation excess in the octahedral sheet. A clarification of the role of Ti in the tetrahedral sheet is desirable. In addition to Fe3+ and Ti, B and Be also play a rare role, although under-reported in analytical routines. Incorporation of Fe3+. Tetra-ferri-annite (2 analyses; Wones, 1963) and tetra-ferriphlogopite (19 analyses; Brigatti et al., 1996) are analogues of annite and phlogopite, with IVFe3+ replacing IVAl. Tetra-ferriphlogopite seems to have a pronounced miscibility with phlogopite (Fig. 21, also Brod et al., 2001; Tombolini et al., 2002). Anandite (5 analyses) is an enigmatic S-bearing brittle mica, also related to annite. Incorporation of B. Trioctahedral micas invariably contain <0.15 a.p.f.u. B, most commonly <0.05 a.p.f.u. (Černý et al., 1995; Badanina et al., 2004). The bulk of the dioctahedral micas also contain <0.15 a.p.f.u. B. Generally, no correlation exists between B and IVAl (Fig. 22). However, FIG. 20. Contents of Ti (>0.25 a.p.f.u.) as a function of Mg/(Mg+Fetot) [=Mg#] in Ti-rich phlogopite (Ti phl) and Ti-Fe-rich phlogopite (Ti-Fe phl) [Mg# >0.5] as well as in Ti-Mg-rich annite (Ti-Mg ann) [Mg# <0.5]. FIG. 21. Relation of IVFe3+ to IVAl in phlogopite (phl) and tetra-ferriphlogopite (tetra-ferriphl). Data are taken from Brod et al. (2001; Table 4 and 7) and Tombolini et al. (2002; Table 1). FIG. 19. Plot of VITi+2IVAl against VIR2++2IVSi for phlogopite containing between 0.40 and 0.75 a.p.f.u. Ti. 299 TISCHENDORF ET AL. Stoppa et al., 1997) in mafic to ultramafic rocks. Fluorannite is an F-rich annite present in only some evolved A-type granites (Shen et al., 2000, but also Charoy and Raimbault, 1994). Large Cl concentrations appear restricted to some of the annites, hendricksitic phlogopites to annites, and ferrokinoshitalites. Highest Cl concentration is reported in ferrokinoshitalite from skarns (Tracy, 1991), with an OH/F/Cl ratio of 0.47/0.27/1.26 (a.p.f.u.). In rare cases, O or S is incorporated in trioctahedral micas such as the Ti-rich brittle mica oxykinoshitalite (2 analyses), in which Fe is completely replaced by Ti (Kogarko et al., 2005), norrishite (2 analyses; Eggleton and Ashley, 1989), and anandite (5 analyses; Pattiaratchi et al., 1967). such a replacement relationship appears if boron is >0.5 a.p.f.u., leading in some cases to boromuscovite (10 analyses; Foord et al., 1991; Novák et al., 1999; Thomas et al., 2003). Incorporation of Be. The brittle mica bityite (13 analyses) is a geochemical paradox, allowing (as in tainiolite) a simultaneous presence of substantial concentrations of incompatible elements (Be, Li) and a compatible element (Ca) (Lin and Guggenheim, 1983; Lahti and Saikkonen, 1985). In compositions with IVAl ranging from 2 to 1 a.p.f.u. (and Be from 0 to 1 a.p.f.u.), a continuous replacement of IVAl by Be, according to the coupled substitution Ca2+ + Be2+ > (K,Na)+ + IVAl3+, appears to operate (Fig. 23). Anions The anion positions are occupied mainly by (OH) and F and, more rarely, by Cl, S or O. Most Mg-Fe micas (phlogopite, annite, Mg-rich siderophyllite), and Al micas (muscovite, celadonite), are OH-rich; Li micas (polylithionite, tainiolite) are typically F-rich. Li-rich annite, Li-rich siderophyllite and Li-rich muscovite are transitional. Fluorine supplied by mantle degassing may give rise to F-rich phlogopite (up to 1.65 a.p.f.u.; e.g. FIG. 22. Quantity of IVB in relation to IVAl for siderophyllite (sid), polylithionite (pol), muscovite (mus) and boromuscovite (bmus). Numbers of analyses are given in parentheses. Data for the common true K micas were taken predominantly from Černý et al. (1995) and Badanina et al. (2004); data for boromuscovite are from Foord et al. (1991), Novák et al. (1999) and Thomas et al. (2003). Discussion and conclusions Charge balance By definition, trioctahedral micas should contain three cations, and dioctahedral micas two cations, in octahedral coordination. If the sum of cation charges is constant (= 22, including K), the occupancy of the tetrahedral sheet is fixed. For K micas and other micas with a univalent cation in the interlayer it follows that: five octahedral charges (e.g. polylithionite: 2Li+ + Al3+, tainiolite: 2Mg2+ + Li+, celadonite: Fe3+ + Mg2+) require [Si4]; FIG. 23. Plot of XIICa + IVBe as a function of XII(K,Na) + IV Al for bityite and Be(Li)-rich margarite (mar). Be contents (in a.p.f.u.) are indicated. Numbers of analyses are given in parentheses. Data were taken from Lahti and Saikkonen (1985). 300 CLASSIFICATION OF MICAS six charges as in phlogopite (3Mg2+) or muscovite (2Al3+) require [Si3Al]; six-and-a-half charges as in Fe-rich phlogopite (1.5Mg2+ + Fe2+ + 0.5Al3+) or annite (2.5Fe2+ + 0.5Fe3+) require [Si2.5Al1.5]; seven charges (siderophyllite: 2Fe2+ + Al3+, eastonite: 2Mg 2+ + Al3+ ) would require a tetrahedral sheet of [Al2Si2]. Surprisingly, natural common true K micas with tetrahedral composition [Al2Si2] are not known. Their minimum concentration of IVSi is 2.5. In contrast, brittle micas (with a divalent cation such as Ca and Ba in the interlayer) with six octahedral cation charges (e.g. kinoshitalite [3Mg2+] or margarite [2Al3+]) would require [Al2Si2] in the tetrahedra; seven octahedral cation charges (e.g. clintonite [2Mg2+ + Al3+]) would require an absolute minimum of tetrahedral Si [Al3Si]. In practice, clintonite has Si1.1 1.3 (48 analyses). Therefore, an increasing proportion of divalent cations (Ca2+, Ba2+) in the interlayer of true micas, as well as an increase of trivalent (Fe3+, also VIAl3+) and quadrivalent cations (Ti4+) in the octahedral sheet (normally occupied in the phlogopite–annite series by divalent cations such as Mg2+, Fe2+), brings about a minimization of Si in tetrahedral coordination. On the contrary, incorporation of monovalent Li in the octahedral sheet (except the uncommon ephesite and bityite) may increase tetrahedral Si up to 4.0. Figure 24 gives an overview of charge-balance as a function of Si. The plot shows mean values for analyses of all mica species. True micas obey the following relation for cation charge sums: VIR = 9 IVSi. The equation for brittle micas is VIR = 8 IVSi. Micas deviating from these relationships (kinoshitalite, margarite, anandite) have a smaller proportion of divalent cations in the interlayer (0.69 a.p.f.u. Ba, 0.74 a.p.f.u. Ca, 0.88 a.p.f.u. Ba, respectively). According to its formula, ganterite (Ba ~0.50 a.p.f.u.) is intermediate between true and brittle micas. Bityite plots in a special position because of its concentration of IV Be2+. Oxykinoshitalite and norrishite are distinguished by a different fundamental condition of 24 cation charges; besides, the latter has the unique concentration of trivalent manganese. Ephesite (like eastonite) is a mica that plots at the outer border of the mgli/feal diagram (Figs 2 and 3), indicating a trioctahedral, but abnormal status. Note that the theoretical end-member compositions of siderophyllite and eastonite in Fig. 24 lie well outside the bulk of the mica analyses. The Mg-Fe mica group [Si = 2.5 2.9], the Al mica group [Si = 2.9 3.3] as well as the Li-Al mica group, including tainiolite, montdorite and celadonite (= tetra-silicic micas) [Si = 3.3 4.0], form separate clusters along the line VI R = 9 IVSi. Substitution of elements, solid-solution series, and miscibility gaps 301 A significant property of the micas is that, almost without exception, they form solid solutions. In this study, we have not examined whether a particular mica is a member of a complete solidsolution series with well defined end-members, or whether it is a result of only a partial elementexchange. We have dealt with real analytical determinations of elements and tried to establish their mutual relationships. In such a case, all statements about substitutions of elements in minerals should be normalized to the scale of examination. Accordingly, microprobe analyses can avoid problems (multiple generations of a mica, the presence of heterogeneous phases, etc.) and will yield results different from wet-chemical analyses. The future application of new and more sophisticated analytical techniques will certainly offer a more detailed view of the phase chemistry. Because of the multicomponent nature of the mica chemical system, and the wide possibilities of mutual replacement of elements in micas, complex relationships govern the occupancy of individual coordinations and the conditions for a necessary charge-balance. Guidotti and Sassi (1998) used their detailed study of metamorphic Na/K white micas as an example of the miscellaneous isomorphic substitutions. Element substitutions in common true K micas are not restricted to schemes operating within a particular solid-solution series, but deviate into compositional space between such series. We may distinguish five magmatic evolutionary pathways (Fig. 25): (I) Phlogopite sensu stricto–Ti-rich phlogopite– Ti-Fe-rich phlogopite–Fe-rich phlogopite–Mg-Tirich annite–annite sensu stricto–Li-rich annite (corresponding with a branch of the complete trioctahedral system phlogopite/biotite/siderophyllite-lepidomelane according to Foster, 1960a, representing the Al-deficient path developed during the evolution of mantle-derived magmatic rocks); (II) Al-rich phlogopite–Al-Fe-rich phlogopite– Al-Mg-rich annite–Al-rich annite–Al-Li-rich TISCHENDORF ET AL. FIG. 24. Sum of charges of VIR related to IVSi for averages of selected natural mica species. Shown are brittle micas: anandite, bityite, clintonite, kinoshitalite, margarite; trioctahedral true micas: annite, eastonite, ephesite, hendricksite, montdorite, phlogopite, polylithionite, preiswerkite, shirokshinite, siderophyllite, tainiolite sensu stricto; dioctahedral true micas: boromuscovite, celadonite(cel), chromphyllite, ganterite, margarite, muscovite, nanpingite, paragonite, roscoelite, tobelite; and some theoretical mica end-members: annite, celadonite, clintonite, eastonite, kinoshitalite, margarite, muscovite, phlogopite, polylithionite, siderophyllite, tainiolite, norrishite, and oxykinoshitalite (oxy-kino); (a) cluster of Mg-Fe mica group [Si = 2.6 to 2.9], (b) cluster of Al mica group [Si = 2.9 to 3.3], (c) cluster of Li-Al mica group including tainiolite, montdorite, and celadonite (= tetra-silicic micas) [Si = 3.3 to 4.0]; white grey = range of transitional micas between true and brittle micas. For common true K micas holds: IV Si (in a.p.f.u.). Sum of charges of VIR = 9 IVSi (in a.p.f.u.); for brittle micas: Sum of charges of VIR = 8 Abbreviations as in preceding figures. annite (branch of the complete trioctahedral system phlogopite/biotite/siderophyllite–lepidomelane according to Foster, 1960a; Al-enriched path developed during the evolution of mantlederived magmatic rocks); (III) Al-Mg-rich annite–Mg-rich siderophyllitesiderophyllite sensu stricto–Li-rich siderophyllite–Fe-rich polylithionite–polylithionite sensu stricto (ferrous lithium-mica series according to Foster, 1960b, lithium–iron micas according to Rieder et al., 1970; path developed during the formation of crust-derived magmatic rocks, including their pegmatitic and aplitic derivates); (IV) Fe-rich polylithionite–Li-Fe-rich muscovite–Fe-rich muscovite (ferrous aluminium– 302 lithium mica series according to Monier and Robert, 1986, zinnwaldite–muscovite subsolidus ‘autometasomatic’ trend of Henderson et al., 1989; path developed during late-magmatic evolution of granites); and (V) Polylithionite–Li-rich muscovite–muscovite sensu stricto (aluminium–lithium micas according to Foster, 1960b; path developed during evolution of pegmatites). In addition, muscovite, Mg-rich muscovite, Ferich muscovite and Mg-Fe-rich muscovite are components of metamorphic rocks wherein the mica composition varies as a function of the conditions of formation. Tainiolite sensu stricto, Fe-rich and Al-rich tainiolitic micas, however, are CLASSIFICATION OF MICAS mostly hybrid products, if evolved solutions react with mafic rocks. The best-documented solid-solution series between true and brittle micas is that between phlogopite and kinoshitalite (Fig. 12a). Larger Ba concentrations apparently occur in the whole phlogopite–annite series; however, whether a complete miscibility occurs between annite and ferrokinoshitalite remains an open question (Fig. 13). Complete element substitution is also present in the series muscovite–roscoelite (Fig. 16), muscovite–chromphyllite (Fig. 17) and phlogopite–tetra-ferriphlogopite (Fig. 21). A substitution relation probably exists for muscovite–tobelite (Fig. 10), and may also exist between common true K micas and Na micas, namely phlogopite–aspidolite (Fig. 7a) and muscovite– paragonite (Fig. 7b), although the latter appears more limited. In contrast, miscibility gaps probably exist between common true K micas and Ca-bearing brittle micas (Fig. 11a,b), and between muscovite and boromuscovite (Fig. 22). Experiments have shown a complete miscibility between K and Rb in phlogopite, but a possible miscibility with natural common true K micas remains to be studied (Fig. 8). On the contrary, the Cs-rich part in the K Cs system is occupied (Fig. 9), indicating a complete element exchange. Although only a few analyses are available in the system muscovite–bityite, the data indicate a nearly complete replacement of IVAl by IVBe (Fig. 23). Manganese and Zn are enriched in some micas (masutomilite, montdorite, norrishite, shirozulite, hendricksite) that will form only under special physicochemical conditions and must be considered separately (Figs 14, 15). The concentrations of Ti as well as Fe3+ are limited because of their large valence (Figs 18 20). To date, no known mica (apart from oxykinoshitalite) has predominant Ti in the octahedral position. Finally, OH and F are apparently miscible in almost any mica. Principles of classif|cation Micas constitute a group of minerals characterized by a predominant substitution of elements. Their classification rests on the existence of endmembers and their interconnection by solidsolution series. Common true K micas can be classified using VI R, VIAl, Mg6Li, accompanied by fractions Mg/(Mg+Fetot) [=Mg#], Fetot/(Fetot+Li) [=Fe#], and Al/(Al+Fetot+Mg) [=Al#], all in a.p.f.u.. The 303 series phlogopite–Ti-Fe-rich phlogopite–Ti-Mgrich annite–annite–Li-rich annite (I), Al-rich phlogopite–Al-Fe-rich phlogopite–Al-Mg-rich annite–Li-Al-rich annite (II), Al-Mg-rich annite– siderophyllite–Li-rich siderophyllite–Fe-rich polylithionite–polylithionite (III), Fe-rich polylithionite–Li-Fe-rich muscovite–Fe-rich muscovite–Mg-Fe-rich muscovite (IV), and polylithionite–Li-rich muscovite–muscovite– Mg-rich muscovite (V) form the framework of the common true K micas (Fig. 25). These series constitute the main substitution patterns present in natural micas. Most of the main composition maxima coincide with the mica species (such as muscovite, phlogopite and polylithionite). An exception is the relative frequency maximum close to mgli = 1.25 and feal = 1.25, which encompasses micas formerly termed ‘biotite’ (Fig. 1). Most of this maximum occurs within the Mg-rich part of the annite field, but it also straddles the fields of phlogopite and siderophyllite. Most of the former ‘biotites’ are intermediate annite–phlogopite solid solutions. Another, less problematic exception is the relative maximum close to mgli = 1 and feal = 0, which is cut by the siderophyllite/polylithionite discrimination divide and lies precisely where the micas formerly termed ‘zinnwaldite’ would have plotted. Consequently, most ‘zinnwaldites’ correspond to intermediate polylithionite–siderophyllite solid solutions. Incompletely investigated micas can be designated with series names such as biotite, phengite, or zinnwaldite (Rieder et al., 1998) but, after detailed investigation, such series names ought to be abandoned in favour of more precise terms such as Fe-rich phlogopite, Li-Fe-rich muscovite or Li-rich siderophyllite. These names apply from an end-member out to the 50/50 divide, which is a universally accepted border that may run, counterintuitively, through frequency maxima in composition plots. The Fetot/(Fetot+Li) ratio [=Fe#] can be used, together with VIAl, to describe compositions at or near the siderophyllite–polylithionite series. Alternatively, it can be used alone to sort all trioctahedral micas, because Fe# = 1.0 holds for Fe-bearing phlogopite and end-member annite. Several end-members of the common true K micas are starting points for solid-solution series with end-members of uncommon true K micas, other alkali element true micas, and brittle micas. Figure 25 presents the whole mica system. Tainiolites form a special sub-system (Fig. 5). TISCHENDORF ET AL. Concerning the classification of celadonites (Fig. 6), we follow Li et al. (1997). Natural compositions of common true K micas represent complex multi-element substitutions involving Fe2+, Mg, VIAl, Li, Ti, Fe3+ and Mn2+. However, solid-solution series between common true K micas and uncommon true K micas, other alkali-element true micas, and brittle micas are characterized by simpler, element-for-element, binary substitutions (e.g. K > Na or K > Ba or VIAl > Cr). Relationships of classif|ed micas to the mgli/feal system The application of the mgli/feal variables offers an overall view of the whole mica family and allows the user to inspect all main compositions. Mica end-members plot in the mgli/feal diagram at vertices with angles between 90º and 125º (KMg 3 [AlSi 3 O 10 ](OH) 2 , phlogopite; KFe 2+ 3 [AlSi3O10](OH)2, annite; KLi2Al[Si4O10]F2, polylithionite; KAl2&[AlSi3O10](OH)2, muscovite; Figs 2 and 3). Vertices with angles between 155º FIG. 25. The system of trioctahedral and dioctahedral true and brittle micas (without celadonites) plotted in terms of mgli and feal variables. Common true K mica species are assigned their areas within the diagram. Evolutionary pathways of igneous micas are indicated (I to V), documented by compositional averages of mica varieties. Uncommon true K micas, other alkali element micas, brittle micas, and some further ideal mica members are listed in the boxes outside of the diagram. The position of the Zn-rich mica hendricksite corresponds to its average composition in nature. In the mica formulae, the order of elements in the individual sheets conforms to the recommendations of the Mica sub committee of the CNMNC (Rieder et al., 1998). 304 CLASSIFICATION OF MICAS and 165º represent micas with the ideal compositions KMg2.5Al0.5[Al1.5Si2.5O10](OH)2 (Al-rich phlogopite), KLiFe 2+ 2 [Si 4 O 10 ](OH) 2 (Li-rich annite) and KLi1.25Al1.75[Al1.5Si2.5O10]F2 (Al-rich trilithionite). Other essential ideal components, such as KLi1.5Al1.5[AlSi3O10]F2 (trilithionite), KMg2Fe2+[AlSi3O10](OH)2 (Fe-rich phlogopite), KFe2+ 2 Mg[AlSi3O10](OH)2 (Mg-rich annite) plot along the outer boundary of the polygon. Endmember siderophyllite K F e 22 + A l [Al2Si2O10](OH)2 or KLi0.25Fe2+ Mg 0.25Al0.75 1.75 [Al1.5Si2.5O10](OH)2 plots at a pivotal point of the mica system. The position of tainiolite (KLiMg2[Si4O 10]F2) is unique and isolated (Fig. 5). Likewise, the celadonites, which definitively contain Fe3+, must be treated separately from the mainstream micas (Fig. 6). The course of VIR and VIAl in the diagram, as well as points for micas lying half-way along the joins of end-members, delineate the fields of mica species. The boundaries of mica species in the mgli/feal diagram are theoretical and may not coincide completely with those based on the relevant elemental ratios used for classification. Such discrepancies may be caused by two important factors: (1) Ideal mica members are related to VIR = 3.0 or 2.0, which is the basis underlying the construction of the diagram; however, occupancies of natural micas may differ from these values; (2) For plotting, the theoretical compositions are reduced to main constituents of the octahedral sheet (Fetot, VIAl, Ti, Mn, Mg, Li), but in reality, they may contain additional elements such as Zn, Cr and V. Overlaps may affect the boundary between annite and siderophyllite in particular. Therefore, Fig. 2 shows two sets of isolines for VIAl = 0.5, one for VIR = 3.0 and the other for VIR = 2.75. We recommend use of the VIAl = 0.5 isoline for VIR = 2.75 for discrimination between these two species (Figs 3 and 4). The advantages of the application of mgli/feal variables for classification are: (1) A graphical presentation of all common true K micas, trioctahedral and dioctahedral, Libearing and non-Li-bearing, is possible in a single diagram in two dimensions. Separate plots should be used only for tainiolites and celadonites. (2) The a.p.f.u. values from the crystallochemical formulae are easy to convert into the mgli/feal variables. (3) The mgli/feal variables are based on the main, octahedrally coordinated cations in the mica structure. (4) The plotting of all theoretical formulae is straightforward. (5) The grids for accompanying variables such as VIR, IVSi, as well as VIAl, Mg, Fetot (including Ti + Mn), and Li can be shown in the diagram (Tischendorf et al., 2004, their Figs 2 and 3). (6) The mgli and feal variables correspond well with the substitution vectors according to Tschermak (Burt, 1991): mgli represents a condensed form of 3MgIVAl[2LiVIAlSi] 1 and feal is approximately 3(Fe 2 + Mn 2+ Ti 0.5 ) 2+ [2VIAl] 1, neglecting Fe3+. (7) The plot offers the possibility to display fractionation tendencies in magmatic rocks as evolution series including all mica species and varieties. (8) The graphical mica presentation applying mgli/feal is highly compatible with the chemical mica classification according to VIAl, VIR, Mg#, Fe# and Al#. Acknowledgements K. Breiter (Prague), R. Thomas, and D.E. Harlov (both Potsdam) contributed unpublished mica analyses. F. Pietschmann (Zittau) helped with the mathematical procedures. The authors wish to acknowledge the thorough work of A. Hendrich and M. Dziggel (Potsdam) who carefully constructed the figures. The paper benefited from constructive reviews by three anonymous referees and editorial comments by C. Geiger (Kiel) and M. Welch (London). B. Clarke (Halifax) read the final version to check for language correctness. We also acknowledge valuable discussions with E.A.J. Burke (Amsterdam) and E.H. Nickel (Wembley, Australia). References Abdalla, H., Matsueda, H., Ishihara, S. and Miura, H. (1994) Mineral chemistry of albite-enriched granitoids at Um Ara, Southeastern Desert, Egypt. International Geological Review, 36, 1067 1077. Ackermand, D. and Morteani, G. (1973) Occurrence and breakdown of paragonite and margarite in the Greiner Schiefer series (Zillerthal Alps, Tyrol). Contributions to Mineralogy and Petrology, 40, 293 304. Ackermand, D., Herd, R. K. and Windley, B.F. (1986) Clintonite of regional metamorphic origin, along the 305 TISCHENDORF ET AL. margin of the Fiskenaesset complex, West Greenland. Neues Jahrbuch für Mineralogie, Abhandlungen, 155, 39 51. Alietti, E., Brigatti, M.F. and Poppi, L. (1997) Clintonite-1M: Crystal chemistry and its relationships to closely associated Al-rich phlogopite. American Mineralogist, 82, 936 945. Ankinovich, S.G., Ankinovich, Ye.A., Rozhdestvenskaya, I.V. and Frank-Kamenetskiy, V.A. (1973) Chernykhite, a new barium-vanadium mica from northwestern Karatau. International Geological Review, 15, 641 647. Armbruster, T., Richards, R.T., Gnos, E., Pettke, T. and Herwegh, M. (2007) Unusual fibrous sodian tainiolite epitactic on phlogopite from marble xenoliths of Mont Saint-Hilaire, Quebec, Canada. The Canadian Mineralogist, 45, 541 549. Badanina, E.V., Veksler, I.V., Thomas, R., Syritso, L.F. and Trumbull, R.B. (2004) Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chemical Geology, 210, 113 133. Baltatzis, E. and Wood, B.J. (1977) The occurrence of paragonite in chloritoid schists from Stonehaven, Scotland. Mineralogical Magazine, 41, 211 216. Banno, Y., Miyawaki, R., Kogure, T., Matsubara, S., Kamiya, T. and Yamada, S. (2005) Aspidolite, the Na analogue of phlogopite, from Kasuga-mura, Gifu Prefecture, central Japan: description and structural data. Mineralogical Magazine, 69, 1047 1057. Beswick, A.E. (1973) An experimental study of alkali metal distribution in feldspars and micas. Geochimica et Cosmochimica Acta, 37, 183 208. Bigi, S., Brigatti, M.F., Mazzucchelli, M. and Rivalenti, G. (1993) Crystal chemical variations in Ba-rich biotites. Contributions to Mineralogy and Petrology, 113, 87 99. Boggs, R.C. (1992) A manganese-rich miarolitic granite pegmatite assemblage from the Sawtooth batholith, South central Idaho, U.S.A. Abstracts: International Symposium ‘‘Lepidolite 200’’, Novè Město na Moravě/Czechoslovakia, 29.8. 3.9.1992, 15 16. Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen, J.B.H. (1989) Barium-titanium-rich phlogopites in marbles from Rogaland, southwest Norway. American Mineralogist, 74, 439 447. Breit, G.N. (1995) Origin of clay minerals associated with V-U deposits in the Entrada Sandstone Placerville Mining District, southwestern Colorado. Economic Geology, 90, 407 419. Brigatti, M.F. and Poppi, L. (1993) Crystal chemistry of Ba-rich trioctahedral micas-1M. European Journal of Mineralogy, 5, 857 871. Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C. (1996) Crystal chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil. American Mineralogist, 81, 913 927. Brod, J.A., Gaspar, J.C., de Araújo, D.P., Gibson, S.A., Thompson, R.N. and Junqueira-Brod, T.C. (2001) Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. Journal of Asian Earth Sciences, 19, 265 296. Bryanchaninova, N.I., Makejev, A.B., Zubkova, N.B. and Filippov, V.N. (2004) Sodium-strontium mica. Na0.50 Sr0.25Al 2(Na 0.25& 0.75)Al1.25 Si2.75O 10(OH)2 from the Rubin field. Doklady Akademii Nauk, 395, 101 107 (in Russian). Bucher, H., Fazis, Y., de Capitani, Chr. and Grapes, R. (2005) Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: Highpressure metamorphism of subducted Thetys lithosphere. American Mineralogist, 90, 821 835. Bucher-Nurminen, K. (1976) Occurrence and chemistry of xanthophyllite in roof pendants of the Bergell granite, Sondrio, northern Italy. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 413 426. Burke, E.A.J. and Ferraris, G. (2005) New minerals and nomenclature modifications approved in 2004 by the Commission on New Minerals and Mineral Names, International Mineralogical Association: IMA No. 2004-012. The Canadian Mineralogist, 43, 830. Burt, D.M. (1991) Vector representation of lithium and other mica compositions. Pp. 113 129 in: Progress in Metamorphic and Magmatic Petrology (L.L. Perchuk, editor), Cambridge University Press, Cambridge, UK. Černý, P. and Burt, D. M. (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites. Pp. 257 297 in: Micas (S.W. Bailey, editor) Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C. Černý, P., Staněk, J., Novák, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kavalová, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rozná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177 201. Černý, P., Chapman, R., Teertstra, D. K. and Novák, M. (2003) Rubidium- and cesium-dominant micas in granite pegmatites. American Mineralogist, 88, 1832 1835. Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REErich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, 35, 919 962. Chen-Shurong and Wu-Gongbao (1987) Mineralogical study of Mn-biotite in miarolitic granite fom Kuiqi, 306 CLASSIFICATION OF MICAS Fujian. Dizhi Lun ping (Geol. Rev.), 33, 222 228 (in Chinese). Cooper, A.F., Paterson, L.A. and Reid, D.L. (1995) Lithium in carbonatites consequence of an enriched mantle source. Mineralogical Magazine, 59, 401 408. Costa, F., Dungan, M.A. and Singer, B.S. (2001) Magmatic Na-rich phlogopite in a suite of gabbroic crustal xenoliths from Volcán San Pedro, Chilean Andes: Evidence for a solvus relation between phlogopite and aspidolite. American Mineralogist, 86, 29 35. Craig, J.R., Sandhaus, D.J. and Guy, R.E. (1985) Pyrophanite MnTiO3 from Sterling Hill, New Jersey. The Canadian Mineralogist, 23, 491 494. Dasgupta, S., Chakraborti, S., Sengupta, P., Bhattacharya, P.K. and Banerjee, H. (1989) Compositional characteristics of kinoshitalite from the Sausar Group, India. American Mineralogist, 74, 200 202. Deer, W.A., Howie, R.A. and Zussman, J. (2003) Rockforming Minerals. Sheet Silicates. Micas vol. 3A, 2nd edition (M.E. Fleet, editor). The Geological Society, London, 758 pp. Doležalová, H., Houzar, S. and Škoda, R. (2005) Barium phlogopites and kinoshitalite-bearing mineral assemblage of forsterite marbles from Rožná uranium deposit, Moldanubicum, western Moravia. Scientiae Geologicae. Casopis moravskeho Muzea, 90, 75 88. Doležalová, H., Houzar, S., Losos, Z. and Škoda, R. (2006) Kinoshitalite with a high magnesium content in sulphide-rich marbles from the Rožná uranium deposit, Western Moravia, Czech Republic. Neues Jahrbuch für Mineralogie, Abhandlungen, 182, 165 171. Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. American Mineralogist, 68, 880 899. Edgar, A.D. (1992) Barium-rich phlogopite and biotite from some Quaternary alkali mafic lavas, West Eifel, Germany. European Journal of Mineralogy, 4, 321 330. Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a new manganese mica, K(Mn3+ 2 Li)Si4O12, from the Hoskins mine, New South Wales, Australia. American Mineralogist, 74, 1360 1367. Escuder-Viruete, J. and Pérez-Estaún, A. (2006) Subduction-related P-T path for eclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. International Journal of Earth Sciences, 95, 995 1017. Eugster, H.P. and Munoz J. (1966) Ammonium micas: possible sources of atmospheric ammonia and nitrogen. Science, 151, 683 686. Ferry, J.M. (1981): Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidisation during prograde regional metamorphism. American Mineralogist, 66, 908 930. Filut, M.A., Rule, A.C. and Bailey, S.W. (1985) Crystal structure refinement of anandite-2Or, a barium- and sulfur-bearing trioctahedral mica. American Mineralogist, 70, 1298 1308. Foord, E.E., Martin, R.F., Fitzpatrick, J.J., Taggert, Jr., J E. and Crock, J.G. (1991) Boromuscovite, a new member of the mica group, from the Little Three mine pegmatite, Ramona district, San Diego County, California. American Mineralogist, 76, 1998 2001. Foster, M.D. (1960a) Interpretation of the composition of trioctahedral micas. U.S. Geological Survey, Professional Paper, 354-B, 11 49. Foster, M.D. (1960b) Interpretation of the composition of lithium micas. U.S. Geological Survey, Professional Paper, 354-E, 115 147. Frey, M., Bucher, K., Frank, E. and Schwander, H. (1982) Margarite in the Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 62, 21 45. Frimmel, H.E., Hoffmann, D., Watkins, R.T. and Moore, J.M. (1995) An Fe analogue of kinoshitalite from the Broken Hill massive sulfide deposit in the Namaqualand Metamorphic Complex, South Africa. American Mineralogist, 80, 833 840. Frondel, C. and Einaudi, M. (1968) Zinc-rich micas from Sterling Hill, New Jersey. American Mineralogist, 53, 1752 1754. Frondel, C. and Ito, J. (1966) Hendricksite, a new species of mica. American Mineralogist, 51, 1107 1123. Gibson, G.M. (1979) Margarite in kyanite- and corundum-bearing anorthosite, amphibolite, and hornblendite from Central Fiordland, New Zealand. Contributions to Mineralogy and Petrology, 68, 171 179. Gnos, E. and Armbruster, Th. (2000) Kinoshitalite, Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry. American Mineralogist, 85, 242 250. Gnos, E., Armbruster, Th. and Villa, I.M. (2003) Norrishite, K(Mn3+ 2 Li)Si4O10(O)2, an oxymica with sugilite from the Wessels Mine, South Africa: Crystal chemistry and 40Ar-39Ar dating. American Mineralogist, 88, 189 194. Godard, G. and Smith, D. (1999) Preiswerkite and Na(Mg,Fe)-margarite in eclogites. Contributions to Mineralogy and Petrology, 136, 20 32. Gottesmann, B. and Tischendorf, G. (1978) Klassifikation, Chemismus und Optik trioktaedrischer Glimmer. Zeitschrift für Geologische Wissenschaften, 6, 681 708. Graeser, S., Hetherington, C.L. and Gieré, R. (2003) Ganterite, a new barium-dominant analogue of 307 TISCHENDORF ET AL. muscovite from the Berisal Complex, Simplon Region, Switzerland. The Canadian Mineralogist, 41, 1271 1280. Grambling, J.A. (1984) Coexisting paragonite and quartz in sillimanitic rocks from New Mexico. American Mineralogist, 69, 79 87. Greenwood, J.C. (1998) Barian-titanian micas from the Ilha da Trinidade, South Atlantic. Mineralogical Magazine, 62, 687 695. Grew, E.S., Yates, M.G., Adams, P.M., Kirkby, R. and Wiedenbeck, M. (1999) Harkerite and associated minerals in marble and skarn from Cresmore quarry, Riverside County, California and Cascade Slide, Adirondack Mountains, New York. The Canadian Mineralogist, 37, 277 296. Guggenheim, S. and Frimmel, H.E. (1999) Ferrokinoshitalite, a new species of brittle mica from the Broken Hill mine, South Africa: Structural and mineralogical characterization. The Canadian Mineralogist, 37, 1445 1452. Guggenheim, S., Schulze, W.A., Harris, G.A. and Lin, J.-C. (1983) Concentric layer silicates: An optical second harmonic generation, chemical and X-ray study. Clays and Clay Minerals, 31, 251 260. Guidotti, C.V. and Sassi, F.P. (1998) Miscellaneous isomorphous substitutions in Na-K white micas: a review, with special emphasis to metamorphic micas. Rendiconti Lincei Scienze Fisiche e Naturali, 9, 57 78. Guidotti, C.V., Post, J.L. and Cheney, J.T. (1979) Margarite pseudomorphs after chiastolite in the Georgetown area, California. American Mineralogist, 64, 728 732. Guidotti C.V., Sassi F.P., Sassi R. and Blencoe J.G. (1994) The effects of ferromagnesian components on the paragonite–muscovite solvus: a semiquantitative analysis based on chemical data for natural paragonite–muscovite pairs. Journal of Metamorphic Geology, 12, 779 788. Harada, K., Honda, M., Nagashima, K. and Kanisawa, S. (1976) Masutomilite, manganese analogue of zinnwaldite, with special reference to masutomilitelepidolite-zinnwaldite series. Mineralogical Journal, 8, 95 109. Harlow, G.E. (1994) Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. Journal of Metamorphic Geology, 12, 49 68. Harlow, G.E. (1995) Crystal chemistry of barian enrichment in micas from metasomatized inclusions in serpentinite, Motagua Fault Zone, Guatemala. European Journal of Mineralogy, 7, 775 789. Hawthorne, F.C., Teertstra, D.K. and Černý, P. (1999) Crystal-structure refinement of a rubidian cesian phlogopite. American Mineralogist, 84, 778 781. Henderson, C.M.B. and Foland, K.A. (1996) Ba- and Tirich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: mechanisms of substitution. The Canadian Mineralogist, 34, 1241 1252. Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-micas from S.W. England and France: an ion- and electronmicroprobe study. Mineralogical Magazine, 53, 427 449. Hetherington, C.J., Gieré, R. and Graeser, S. (2003) Composition of barium-rich white micas from the Berisal complex, Simplon region, Switzerland. The Canadian Mineralogist, 41, 1281 1291. Higashi, S. (1978) Dioctahedral mica minerals with ammonium ions. Mineralogical Journal, 9, 16 27. Higashi, S. (1982) Tobelite, a new ammonium dioctahedral mica. Mineralogical Journal, 11, 138 146. Higashi, S. (2000) Ammonium-bearing mica and mica/ smectite of several pottery stone and pyrophyllite deposits in Japan: their mineralogical properties and utilization. Applied Clay Science, 16, 171 184. Höck, V. (1974) Coexisting phengite, paragonite and margarite in metasediments of the Mittlere Hohe Tauern, Austria. Contributions to Mineralogy and Petrology, 43, 261 273. Hoffer, E. (1978) On the ‘late’ formation of paragonite and its breakdown in pelitic rocks of the southern Damara Orogen (Namibia). Contributions to Mineralogy and Petrology, 67, 209 219. Hofmann, B.A. (1990) Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and genetic models. Chemical Geology, 81, 55 81. Ishida, K., Hawthorne, F.C. and Hirowatari, F. (2004) Shirozulite, KMn2+ 3 (Si3Al)O10(OH)2, a new manganese-dominant trioctahedral mica: Description and crystal structure. American Mineralogist, 89, 232 238. Jiang, S.-Y., Palmer, M.R., Li, Y.-H. and Xue, C.-J. (1996) Ba-rich micas from the Yindongzi-Daxigou Pb-Zn-Ag and Fe deposits, Qinling, northwestern China. Mineralogical Magazine, 60, 433 445. Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987) Fractionation trends in mica and tourmaline as indicator of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51, 519 534. Katagas, C. and Baltatzis, E. (1980) Coexisting celadonitic muscovite and paragonite in chlorite zone metapelites. Neues Jahrbuch für Mineralogie, Monatshefte, No. 5, 206 214. Keusen, H.R. and Peters, Tj. (1980) Preiswerkite, an Alrich trioctahedral sodium mica from the Geisspfad ultramafic complex (Pennic Alps). American Mineralogist, 65, 1134 1137. Kile, D.E. and Foord, E.E. (1998) Micas from the Pikes Peak batholith and its cogenetic granitic pegmatites, 308 CLASSIFICATION OF MICAS Colorado: Optical properties, composition, and correlation with pegmatite evolution. The Canadian Mineralogist, 36, 463 482. Kogarko, L.N., Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Ottolini, L. and Grice, J.D. (2005) Oxykinoshitalite, a new mica from Fernando-de-Noronha island, Pernambuco, Brazil: Occurrence and crystal structure. The Canadian Mineralogist, 43, 1501 1510. Konzett, J., Miller, Chr., Armstrong, R. and Thöni, M. (2005) Metamorphic evolution of iron-rich mafic cumulates from the Ötztal-Stubai crystalline complex, Eastern Alps, Austria. Journal of Petrology, 46, 717 747. Koval, P.V., Kovalenko, V.I., Kuz’min, M.I., Pisarskaya, V.A. and Yurchenko, S.A. (1972) Mineral parageneses, composition and nomenclature of micas from rare-metal albite-bearing granitoids. Doklady Akademii Nauk SSSR, 202, 1174 1177 (in Russian). Kuznetsova, L.G. and Zagorskiy, V.E. (1984) The micas of the metasomatic rocks in the rare-metal province of a spodumen pegmatite. Doklady Akademii Nauk SSSR, 275, 151 155 (in Russian). Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. The Canadian Mineralogist, 35, 153 165. Lahti, S.I. (1988) Occurrence and mineralogy of the margarite- and muscovite-bearing pseudomorphs after topaz in Juurako pegmatite, Orivesi, southern Finland. Bulletin of the Geological Society of Finland, 60, 27 43. Lahti, S.I. and Saikkonen, R. (1985) Bityite 2M1 from Eräjärvi compared with related Li-Be brittle micas. Bulletin of the Geological Society of Finland, 57, 207 215. Le Bas, M.J., Keller, J., Tao, K.J., Wall, F., Williams, C.T. and Zhang, P.S. (1992) Carbonatite dykes at Bayan Obo, Inner Mongolia, China. Mineralogy and Petrology, 46, 195 228. Li, G., Peacor, D.R., Coombs, D.S. and Kawach, Y. (1997) Solid solution in the celadonite family: The new minerals ferroceladonite, K 2 Fe 22 + Fe 32 + Si 8 O 2 0 (OH) 4 , and ferroaluminoceladonite, K2Fe2+ 2 Al2Si8O20(OH)4. American Mineralogist, 82, 503 511. Lin, J.-Ch. and Guggenheim, S. (1983) The crystal structure of a Li, Be-rich brittle mica: a dioctahedraltrioctahedral intermediate. American Mineralogist, 68, 130 142. Lovering, F.J. and Widdowson, J.R. (1968) Electronmicroprobe analysis of anandite. Mineralogical Magazine, 36, 871 874. Ma Cha and Rossman, G.R. (2006) Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada. American Mineralogist, 91, 702 705. MacKinney, J.A., Mora, C.I. and Bailey, S.W. (1988) Structure and crystal chemistry of clintonite. American Mineralogist, 73, 365 375. Mansker, W.L., Ewing, R.C. and Keil, K. (1979) Bariantitanian biotites in nephelinites from Oahu, Hawaii. American Mineralogist, 64, 156 159. Meunier, J.D. (1994) The composition and origin of vanadium-rich clay minerals in Colorado plateau Jurassic sandstones. Clays and Clay Minerals, 42, 391 401. Mesto, E., Schingaro, E., Cordari, F. and Ottolini, L. (2006) An electron microprobe analysis, secondary ion mass spectrometry, and single-crystal X-ray diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: Consideration of cation partitioning. American Mineralogist, 91, 182 190. Mohamed, F.H., Abdalla, H.M. and Helba, H. (1999) Chemistry of micas in rare-metal granitoids and associated rocks, Eastern Desert, Egypt. International Geological Review, 41, 932 948. Monier, G. and Robert, J.-L. (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimenta l study in the syste m K 2 O– Li2O MgO FeO–Al2O3–SiO2–H2O–HF at 600ºC, 2 kbar PH2O: comparison with natural lithium micas. Mineralogical Magazine, 50, 641 651. Morand, V.J. (1990) High chromium and vanadium in andalusite, phengite and retrogressive margarite in contact metamorphosed Ba-rich black slate from the Abercrombie Beds, New South Wales, Australia. Mineralogical Magazine, 54, 381 391. Morgan VI, G.B. and London, D. (1987) Alteration of amphibolitic wallrocks around the Tanco rareelement pegmatite, Bernic Lake, Manitoba. American Mineralogist, 72, 1097 1121. Motoyoshi, Y. and Hensen, B.J. (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. American Mineralogist, 86, 1404 1413. Ni, Y. and Hughes, J.M. (1996) The crystal structure of nanpingite-2M2, the Cs end-member of muscovite. American Mineralogist, 81, 105 110. Nickel, E.H. (1992) Solid solutions in mineral nomenclature. The Canadian Mineralogist, 30, 231 234. Nieto, F. (2002) Characterization of coexisting NH4and K-micas in very low-grade metapelites. American Mineralogist, 87, 205 216. Novák, M., Černý, P., Cooper, M., Hawthorne, F.C., Ottolini, L., Xu Zhi and Liang, J.J. (1999) Boronbearing 2M1 polylithionite and 2M1 + 1M boromuscovite from an elbaite pegmatite at Řečice, western 309 TISCHENDORF ET AL. Moravia, Czech Republic. European Journal of Mineralogy, 11, 669 678. Oberti, R., Ungaretti, L., Tlili, A., Smith, D.C. and Robert, J.-L. (1993) The crystal structure of preiswerkite. American Mineralogist, 78, 1290 1298. Oen, I.S. and Lustenhouwer, W.J. (1992) Cl-rich biotite, Cl-K hornblende, and Cl-rich scapolite in metaexhalites: Nora, Bergslagen, Sweden. Economic Geology, 87, 1638 1648. Pan, Y. and Fleet, M.E. (1991) Barian feldspar and barian-chromian muscovite from the Hemlo area, Ontario. The Canadian Mineralogist, 29, 481 498. Pattiaratchi, D.B., Saari, E. and Sahama, Th.G. (1967) Anandite, a new barium iron silicate from Wilagedera, North Western Province, Ceylon. Mineralogical Magazine, 36, 1 4. Pekov, I.V., Chukanov, N.V., Ferraris, G., Ivaldi, G., Pushcharovsky, D.Yu. and Zadov, A.E. (2003) Shirokshinite, K(NaMg2)Si4O10F2, a new mica with octahedral Na from Khibiny massif, Kola peninsula: descriptive data and structural disorder. European Journal of Mineralogy, 15, 447 454. Peretyazhko, I.S., Zagorskiy, V.Ye., Smirnov, S.Z. and Mikhailov, M.Y. (2004) Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia). Chemical Geology, 210, 91 111. Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and Velilla, N. (1999) Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84, 55 69. Pöter, B., Gottschalk, M. and Heinrich, W. (2007): Crystal chemistry of synthetic K-feldspar–buddingtonite and muscovite–tobelite solid solutions. American Mineralogist, 92, 151 165. Reznitskiy, L.Z., Sklyarov, Ye.V., Ushchapovskaya, Z. F., Nartova, N.V., Yevsyunin, V.G, Kashayev, A.A. and Suvorova, L.F. (1997) Chromphyllite KCr2[AlSi3O10](OH,F)2 a new dioctahedral mica. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 126, 110 119 (in Russian). Rieder, M., Huka, M., Kučerova, D., Minařı́k, L., Obermajer, J. and Povondra, P. (1970) Chemical composition and physical properties of lithium-iron micas from the Krušné hory Mts. (Erzgebirge). Part A: Chemical Composition. Contributions to Mineralogy and Petrology, 27, 131 158. Rieder, M. and Cavazzini, G., D’yakonov, Yu.S., FrankKamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905 912. Robert, J.-L. and Maury, R.C. (1979) Natural occurrence of a (Fe, Mn, Mg) tetrasilicic potassium mica. Contributions to Mineralogy and Petrology, 68, 117 123. Ruiz Cruz, M.D. (2004) Na biotite and intermediate NaK biotite in schists from the Betic Cordilleras (Spain). Clay and Clay Minerals, 52, 603 612. Schaller, W.T., Carron, M.K. and Fleischer, M. (1967) Ephesite, Na(LiAl2)(Al2Si2)O10(OH)2, a trioctahedral member of the margarite group, and related brittle micas. American Mineralogist, 52, 1689 1696. Schreyer, W., Abraham, K. and Kulke, H. (1980) Natural sodium phlogopite coexisting with potasssium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contributions to Mineralogy and Petrology, 74, 223 233. Semenov, E.I. and Shmakin, B.M. (1988) On the composition of mica rocks in exocontacts of raremetal pegmatites from the Bastar area (India). Doklady Akademii Nauk SSSR, 303, 199 202 (in Russian). Shannon R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751 767. Shannon R.D. and Prewitt C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925 946. Shaw, C.S.J. and Penczak, R.S. (1996) Barium- and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell alkaline complex, northwestern Ontario. The Canadian Mineralogist, 34, 967 975. Shen, G., Lu, Q. and Xu, J. (2000) Fluorannite: A new mineral of mica group from Western suburb of Suzhou City. Acta Petrologica et Mineralogica, 19, 355 362. Skosyreva, M.V. and Vlasova, E.V. (1983) First occurrence of polylithionite from rare-metal granite pegmatites. Doklady Akademii Nauk SSSR, 272, 694 697 (in Russian). Solie, D.N. and Su, S.-Ch. (1987) An occurrence of Barich micas from the Alaska Range. American Mineralogist, 72, 995 999. Stoppa, F., Sharygin, V.V. and Cundari, A. (1997) New mineral data from the kamafugite–carbonatite association: the melilitolite from Pian di Celle, Italy. Mineralogy and Petrology, 61, 27 45. Sun Shihua and Yu Jie (1999) Fe-Li micas: a new approach to the substitution series. Mineralogical Magazine, 63, 933 945. Sun Shihua and Yu Jie (2000) Actual Fe-Li mica series as a series with &VI constant but not with AlIV or AlVI. Mineralogical Magazine, 64, 755 775. 310 CLASSIFICATION OF MICAS Thomas, R., Förster, H.-J. and Heinrich, W. (2003) The behaviour of boron in a peraluminous granitepegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contributions to Mineralogy and Petrology, 144, 457 472. Tischendorf, G., Gottesmann, B., Förster, H.-J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analysis and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809 834. Tischendorf, G., Förster, H.-J. and Gottesmann, B. (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63, 57 74. Tischendorf, G., Förster, H.-J. and Gottesmann, B. (2001a) Minor- and trace-element composition of trioctahedral micas: a review. Mineralogical Magazine, 65, 249 276. Tischendorf, G., Förster, H.-J. and Gottesmann, B. (2001b) Tri- und dioktaedrische Glimmer: ein komplexes chemisches System. Zeitschrift für Geologische Wissenschaften, 29, 275 298. Tischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B. and Guidotti, C.V. (2004) A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68, 649 667. Tombolini, F., Brigatti, M.F., Marcelli, A., Cibin, G., Mottana, A. and Giuli, G. (2002) Local and average Fe distribution in trioctahedral micas: Analysis of Fe K-edge XANES spectra in the phlogopite–annite and phlogopite–tetraferriphlogopite joins on the basis of single-crystal XRD refinements. European Journal of Mineralogy, 14, 1075 1085. Tracy, R.J. (1991) Ba-rich micas from the Franklin Marble, Lime Crest and Sterling Hill, New Jersey. American Mineralogist, 76, 1683 1693. Tracy, R.J. and Beard, J.S. (2003) Manganoan kinoshitalite in Mn-rich marble and skarn from Virginia. American Mineralogist, 88, 740 747. Treolar, P.J. (1987) Chromian muscovites and epidotes from Outokumpu, Finland. Mineralogical Magazine, 51, 593 599. Tröger, W.E. (1962) Über Protholithionit und Zinnwaldit Ein Beitrag zur Kenntnis von Chemismus und Optik der Lithiumglimmer. Beiträge zur Mineralogie und Petrographie, 8, 418 431. Visser, D., Nijland, T.G., Lieftink, D.J. and Maijer, C. (1999) The occurrence of preiswerkite in a tourmaline–biotite–scapolite rock from Blengsvatn, Norway. American Mineralogist, 84, 977 982. Voncken, J.H.L., van der Eerden, A.M.J. and Jansen, J.B.H. (1987) Synthesis of a Rb analogue of 2M1 muscovite. American Mineralogist, 72, 551 554. Wang, R.C., Hu, H., Zhang, A.C., Huang, X.L. and Ni, P. (2004) Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz–lepidolite granite, southern China. The Canadian Mineralogist, 42, 883 896. Weiss, Z., Rieder, M., Chmelová, M. and Krajı́ček, J. (1985) Geometry of the octahedral coordination in micas: a review of refined structures. American Mineralogist, 70, 747 757. Wilson, P.N., Parry, W.T. and Nash, W.P. (1992) Characterization of hydrothermal tobelitic veins from black shale, Oquirrh Mountains, Utah. Clays and Clay Minerals, 40, 405 420. Wones, D.R. (1963) Phase equilibria of ‘ferriannite’, +3 KFe +2 3 Fe Si 3 O 10 (OH) 2 . American Journal of Science, 261, 581 596. Yang, Y., Ni, Y., Wang, L. and Wang, W. (1988) Nanpingite: a new cesium mineral. Acta Petrologica et Mineralogica (China), 7, 49 58. Yoshii, M., Togashi, Y. and Maeda, K. (1973) On the intensity changes of basal reflections with relation to barium content in manganoan phlogopites and kinoshitalite. Bulletin of the Geological Survey of Japan, 24, 543 550. Zagorskiy, V.E. and Makrygin, A.I. (1976) The evolution of the mica composition at the exocontacts of Ta-bearing pegmatites (Russ.). Geokhimiya, 9, 1362 1369. Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993) Barian titanian phlogopite from potassic lavas in northeast China: Chemistry, substitutions, and paragenesis. American Mineralogist, 78, 1056 1065. Appendices The crystallo-chemical formulae were calculated on the basis of 22 cation charges. The content of water was calculated assuming the (OH+F+Cl) site is completely filled; av = average, s = 1-Sigma standard deviation, n = number of determinations, Mg# = Mg/(Mg+Fetot) (a.p.f.u.), Fe# = Fetot/(Fetot+Li) (a.p.f.u.), Al# = VI Al/(VIAl+Fetot+Mg) (a.p.f.u.), mgli = Mg minus Li (a.p.f.u.), feal = VIFetot+Mn+Ti minus VIAl (a.p.f.u.). 311 SiO2 TiO2 SnO2 Al2O3 Ga2O3 Sc2O3 V2O3 Fe2O3 Cr2O3 FeO MnO CoO NiO ZnO MgO Li2O CaO SrO BaO PbO Na2O K2O Rb2O Cs2O H2O F Cl Sum O = F+Cl Total 312 100.0 39.0 0.45 0.001 19.3 0.008 0.002 0.037 0.18 0.400 2.09 0.45 0.000 0.008 0.050 22.0 0.011 0.10 0.001 2.50 0.002 0.16 8.93 0.020 0.007 4.07 0.34 0.02 100.1 0.15 0.33 0.67 1.52 1.6 0.008 0.3 0.001 4.62 0.91 0.800 1.07 2.82 1.7 3.3 0.41 6 1 18 18 1 18 1 1 1 4 4 18 13 1 1 1 18 3 10 2 8 1 17 18 1 1 Al-rich phlogopite av s n 99.9 40.1 1.20 0.004 13.3 0.003 0.002 0.020 0.68 0.720 3.50 0.15 0.001 0.105 0.055 24.3 0.006 0.09 0.013 0.95 0.001 0.45 9.85 0.02 0.002 3.45 1.55 0.04 100.6 0.66 2.02 0.68 2.7 1.61 0.007 3.8 0.002 0.001 2.900 3.94 0.590 2.56 1.99 0.000 0.107 0.014 2.3 0.079 0.19 0.011 2.97 0.001 0.47 1.15 0.092 0.035 275 38 512 485 8 509 10 9 11 120 267 470 353 8 125 12 512 125 294 19 339 9 477 512 96 15 Phlogopite sensu stricto av s n 100.0 3.32 1.72 0.03 100.7 0.73 19.7 0.019 0.08 0 1.10 0 0.27 9.47 0.025 1.51 0.03 2.4 0.016 0.21 0.03 3.28 0 0.35 1.46 0.015 19 4 74 49 49 3 61 2 72 74 4 32 0.120 0.060 74 74 74 3 42 74 47 2.5 2.8 2.06 1.33 0.560 2.30 0.04 2.18 0.350 4.40 0.06 11.4 38.4 8.09 Ti-rich phlogopite av s n 99.7 37.6 2.90 0.002 14.6 0.005 0.004 0.060 1.10 0.120 11.9 0.19 0.008 0.004 0.060 16.4 0.035 0.25 0.005 0.62 0.001 0.32 9.22 0.070 0.010 3.57 0.93 0.11 100.1 0.42 1.25 0.25 2.0 1.36 0.004 2.7 0.004 0.003 0.607 3.28 0.318 4.8 0.50 0.005 0.073 1.896 4.1 0.074 0.49 0.062 2.03 0.001 0.42 0.89 0.149 0.590 576 226 903 896 38 903 76 58 118 423 386 896 797 61 167 133 903 683 628 96 533 40 829 903 228 79 Fe-rich phlogopite av s n 100.0 36.9 6.68 0.001 14.5 0.005 0.010 0.050 0.30 0.130 11.5 0.13 0.010 0.045 0.027 14.5 0.050 0.13 0.010 1.25 0.002 0.53 8.97 0.050 0.008 3.55 0.95 0.14 100.4 0.43 1.21 0.22 0.040 3.19 0.260 3.8 0.13 0.005 0.074 0.040 2.4 0.026 0.25 0.015 2.78 0.004 0.29 1.04 0.026 0.010 1.9 1.79 0.001 2.7 0.002 123 31 221 221 2 221 9 1 9 49 67 220 173 2 25 15 221 190 142 9 138 8 212 221 35 8 Ti-Fe-rich phlogopite av s n APPENDIX 1a. Composition (wt.%) of phlogopite and its varieties. 99.8 0.28 8.72 0.080 0.010 3.71 0.50 0.37 100.1 0.29 36.6 1.64 0.001 19.1 0.002 0.010 0.045 0.45 0.075 14.5 0.19 0.007 0.017 0.064 13.0 0.070 0.12 0.001 0.55 1.04 0.48 0.36 0.95 1.47 1.97 1.4 0.001 0.005 0.042 2.14 0.120 3.3 0.28 0.004 0.032 0.043 2.3 0.199 0.23 0.064 1.32 1.9 0.87 36 22 77 86 11 9 86 85 1 86 2 8 18 23 27 86 71 9 15 25 86 50 57 14 35 Al-Fe-rich phlogopite av s n TISCHENDORF ET AL. Si IV Al IV Fe3+ IV Ti SIVR VI Ti Sn VI Al Ga Sc V VI Fe3+ Cr Fe2+ Mn Co Ni Zn Mg Li SVIR Ca Ba Na K Rb Cs SXIIR OH F Cl S Mg# mgli feal 2.868 1.121 0.011 4.000 0.065 0.0001 0.000 0.0001 0.0001 0.0011 0.027 0.041 0.209 0.009 0.0001 0.0060 0.0029 2.590 0.002 2.953 0.007 0.0266 0.062 0.899 0.0009 0.0001 0.996 1.644 0.351 0.005 2.000 0.916 2.59 0.31 4.000 0.024 0.0000 0.369 0.0004 0.0001 0.0021 0.010 0.022 0.124 0.027 0.0000 0.0005 0.0026 2.320 0.003 2.905 0.008 0.0693 0.022 0.806 0.0009 0.0002 0.906 1.922 0.076 0.002 2.000 0.945 2.32 0.18 Phlogopite sensu stricto 2.760 1.240 Al-rich phlogopite 0.3 0.5 VIAl 313 0.950 1.602 0.394 0.004 2.000 0.889 2.12 0.62 2.124 0.006 2.867 0.006 0.0312 0.038 0.874 0.0012 0.0070 0.000 0.020 0.266 0.004 0.000 2.778 0.990 0.119 0.113 4.000 0.440 Ti-rich phlogopite 0.3 0.75 Ti 4.000 0.162 0.0001 0.066 0.0002 0.0003 0.0036 0.061 0.007 0.738 0.012 0.0005 0.0002 0.0033 1.813 0.010 2.877 0.020 0.0180 0.046 0.872 0.0033 0.0003 0.960 1.768 0.218 0.014 2.000 0.694 1.80 0.91 2.789 1.211 Fe-rich phlogopite 0.3 1.4 Fetot 4.000 0.372 0.0000 0.000 0.0002 0.0006 0.0030 0.014 0.008 0.713 0.008 0.0006 0.0027 0.0015 1.601 0.015 2.740 0.010 0.0363 0.076 0.848 0.0024 0.0003 0.973 1.759 0.223 0.018 2.000 0.688 1.59 1.11 2.735 1.262 0.003 Ti-Fe-rich phlogopite 0.3 0.7 Ti 0.3 1.2 Fetot APPENDIX 1b. Average formulae of phlogopite and its varieties. 4.000 0.091 0.0000 0.389 0.0001 0.0006 0.0027 0.025 0.004 0.900 0.012 0.0004 0.0010 0.0035 1.438 0.021 2.888 0.009 0.0160 0.040 0.826 0.0038 0.0003 0.895 1.837 0.117 0.046 2.000 0.609 1.42 0.64 2.717 1.283 Al-Fe-rich phlogopite 0.3 0.5 VIAl 0.3 1.2 Fetot CLASSIFICATION OF MICAS 314 100.0 99.9 60 24 35.4 3.27 0.009 15.3 0.01 0.008 0.034 3.00 0.018 20.7 0.41 0.006 0.008 0.065 7.78 0.17 0.37 0.002 0.15 0.002 0.19 8.79 0.095 0.02 3.44 0.77 0.25 Total 0.51 0.493 75 75 5 75 1 1 0.040 10 2.74 20 0.046 20 4.4 75 0.15 74 0.002 6 0.116 10 0.036 13 1.84 75 0.0605 60 0.50 49 0.001 8 2.51 46 0.001 7 0.25 70 1.05 75 0.035 11 0.004 7 1.6 1.40 0.002 2.5 100.3 0.38 35.4 5.50 0.008 14.4 0.008 0.004 0.021 0.90 0.027 21.5 0.18 0.005 0.008 0.066 7.86 0.17 0.21 0.001 0.35 0.002 0.19 9.05 0.105 0.011 3.47 0.81 0.07 0.70 0.94 1.7 0.85 0.011 2.2 0.01 0.01 0.020 3.54 0.033 4.2 0.49 0.002 0.017 0.814 2.18 0.15 0.44 0.043 2.36 0.01 0.22 1.11 0.100 0.26 469 137 690 689 137 690 142 102 254 497 338 685 680 169 227 260 690 639 538 206 392 122 673 690 394 208 Mg-rich annite av s n Total 100.3 O = F+Cl 0.35 SiO2 TiO2 SnO2 Al2O3 Ga2O3 Sc2O3 V2 O3 Fe2O3 Cr2O3 FeO MnO CoO NiO ZnO MgO Li2O CaO SrO BaO PbO Na2O K2 O Rb2O Cs2O H2 O F Cl Ti-Mg-rich annite av s n 99.9 100.3 0.34 35.2 2.65 0.008 19.1 0.007 0.005 0.030 1.88 0.018 20.0 0.32 0.004 0.006 0.065 6.91 0.20 0.17 0.001 0.01 0.002 0.22 8.89 0.160 0.035 3.55 0.74 0.11 0.63 0.14 1.3 0.80 0.009 1.1 0.004 0.004 0.037 2.42 0.021 2.8 0.30 0.002 0.007 0.049 1.90 0.19 0.31 0.006 0.06 0.001 0.18 0.78 0.600 0.627 230 64 453 450 110 453 68 108 162 302 216 452 448 118 171 227 453 358 320 115 250 89 415 453 223 171 Al-Mg-rich annite av s n 99.7 100.4 0.79 34.9 1.97 0.039 17.7 0.021 0.005 0.006 4.30 0.006 25.2 0.61 0.001 0.001 0.135 0.91 0.48 0.26 0.001 0.02 0.004 0.22 8.52 0.250 0.021 2.91 1.77 0.19 1.00 0.09 1.8 0.84 0.022 1.8 0.014 0.003 0.012 3.14 0.003 4.3 0.27 0.001 0.000 0.098 0.76 0.19 0.32 0.001 0.02 0.002 0.18 0.80 0.082 0.021 44 8 46 45 19 46 3 3 6 33 7 46 46 6 6 9 46 45 30 5 10 3 46 46 28 18 Al-rich annite av s n 100.0 100.6 0.58 34.7 3.06 0.021 12.8 0.015 0.007 0.005 4.50 0.004 29.1 0.61 0.003 0.001 0.120 1.25 0.40 0.32 0.002 0.09 0.002 0.22 8.56 0.200 0.015 3.03 1.14 0.45 1.19 0.76 2.1 1.13 0.012 2.8 0.003 0.004 0.002 3.52 0.001 6.0 0.68 0.001 0.000 0.149 0.69 0.20 0.62 0.000 4.49 0.00 0.31 1.01 0.089 0.013 72 16 89 87 13 89 4 2 6 66 6 89 89 4 5 11 89 84 70 2 12 3 84 89 41 30 Annite sensu stricto av s n APPRENDIX 2a. Composition (wt.%) of annite and its varieties. 99.9 101.4 1.52 0.28 0.49 1.358 0.29 8.85 0.850 0.1 2.00 3.50 0.20 1.49 1.77 0.84 0.30 8.2 2.25 27.7 1.33 0.35 1.01 0.27 5 5.43 3.85 9 1 10 10 3 1 10 10 7 10 10 10 10 1 10 36.5 2.1 1.85 0.92 0.051 12.7 2.5 Li-rich annite av s n 100.1 101.9 1.75 0.35 8.90 0.360 0.068 1.84 4.03 0.24 0.22 1.35 0.94 26.5 1.02 1.30 37.5 1.08 0.057 16.1 1.13 1.22 1.25 0.170 0.052 0.88 0.57 0.64 5.7 0.48 4.12 1.2 0.89 0.006 2.2 8 1 8 9 2 2 9 9 5 9 7 3 9 9 2 9 Li-Al-rich annite av s n TISCHENDORF ET AL. Si Al SIVR Ti Sn VI Al Ga Sc V Fe3+ Cr Fe2+ Mn Co Ni Zn Mg Li SVIR Ca Ba Na K Rb Cs SXIIR OH F Cl S Mg# mgli feal IV 2.737 1.263 4.000 0.323 0.0003 0.049 0.0004 0.0003 0.0013 0.052 0.0020 1.390 0.012 0.0003 0.0005 0.0038 0.905 0.053 2.793 0.017 0.0106 0.028 0.892 0.0052 0.0004 0.953 1.791 0.200 0.009 2.000 0.386 0.85 1.73 Ti-Mg-rich annite 0.3 0.65 Ti 0.3 1.2 Mg 2.739 1.261 4.000 0.190 0.0003 0.134 0.0004 0.0006 0.0021 0.175 0.0010 1.339 0.027 0.0003 0.0005 0.0037 0.897 0.053 2.824 0.031 0.0046 0.029 0.868 0.0047 0.0005 0.938 1.778 0.189 0.033 2.000 0.372 0.84 1.60 Mg-rich annite 0.3 1.3 Mg 2.685 1.315 4.000 0.152 0.0002 0.400 0.0003 0.0003 0.0018 0.108 0.0010 1.275 0.021 0.0002 0.0004 0.0037 0.785 0.061 2.810 0.014 0.0002 0.033 0.865 0.0078 0.0011 0.921 1.808 0.178 0.014 2.000 0.362 0.72 1.16 Al-Mg-rich annite 0.3 0.5 VIAl 0.3 1.2 Mg 2.761 1.239 4.000 0.117 0.0012 0.411 0.0011 0.0003 0.0004 0.256 0.0003 1.667 0.041 0.0001 0.0000 0.0079 0.107 0.153 2.763 0.022 0.0006 0.034 0.868 0.0127 0.0007 0.938 1.533 0.442 0.025 2.000 0.053 0.05 1.67 Al-rich annite 0.3 0.5 VIAl 2.817 1.183 4.000 0.187 0.0007 0.042 0.0008 0.0005 0.0003 0.275 0.0003 1.975 0.042 0.0002 0.0000 0.0072 0.151 0.131 2.813 0.028 0.0029 0.035 0.887 0.0104 0.0005 0.964 1.645 0.293 0.062 2.000 0.063 0.02 2.44 Annite sensu stricto APPENDIX 2b. Average formulae of annite and its varieties. 315 0.053 0.893 0.0182 0.0023 1.046 0.965 1.003 0.032 2.000 0.014 0.40 1.51 0.045 0.913 0.0442 0.0033 1.028 1.078 0.895 0.027 2.000 0.020 0.29 2.15 1.743 0.068 1.874 0.091 0.026 0.427 2.850 0.079 0.077 0.234 0.042 0.329 2.849 0.023 2.950 1.050 4.000 0.064 0.0018 0.443 Li-Al-rich annite 0.3 0.8 Li 0.3 0.5 VIAl 2.953 1.047 4.000 0.113 0.0016 0.164 Li-rich annite 0.3 1.0 Li CLASSIFICATION OF MICAS SiO2 TiO2 SnO2 Al2O3 Ga2O3 Sc2O3 V2O3 Fe2O3 Cr2O3 FeO MnO CoO NiO ZnO MgO Li2O CaO SrO BaO PbO Na2O K2O Rb2O Cs2O H2O F Cl Total O = F+Cl Total 35.0 2.18 0.013 21.4 0.009 0.004 0.023 1.50 0.002 19.5 0.41 0.003 0.005 0.007 6.00 0.23 0.12 0.001 0.059 0.002 0.24 8.90 0.240 0.015 3.18 1.63 0.008 100.7 0.69 100.0 184 182 43 184 29 47 57 77 83 184 179 25 55 79 184 172 147 53 108 28 168 184 84 79 106 37 1.9 0.89 0.011 1.5 0.003 0.002 0.015 1.58 0.014 4.6 0.51 0.001 0.004 0.055 3.34 0.38 0.30 0.001 0.143 0.001 0.21 0.93 0.340 0.787 1.09 0.060 Mg-rich siderophyllite av s n 35.9 1.21 0.049 20.2 0.014 0.006 0.005 2.25 0.004 23.7 0.64 0.002 0.001 0.085 1.10 0.8 0.22 0.001 0.014 0.002 0.25 8.95 0.350 0.040 2.64 2.51 0.14 101.1 1.09 100.0 316 1.40 0.10 2.2 0.81 0.039 2.1 0.007 0.006 0.008 2.65 0.013 4.1 0.47 0.001 0.002 0.068 0.70 0.21 0.36 0.001 0.022 0.002 0.18 0.74 0.170 0.035 121 49 131 126 56 131 20 20 26 66 27 131 130 21 23 36 131 128 93 18 40 18 124 131 88 48 Siderophyllite sensu stricto av s n 40.0 0.67 0.047 21.6 0.016 0.006 0.002 1.95 0.005 17.4 0.61 0.001 0.001 0.090 0.41 1.79 0.25 0.003 0.015 0.001 0.31 9.31 0.630 0.090 1.79 4.66 0.09 101.7 1.98 99.8 1.62 0.45 2.6 0.56 0.034 1.9 0.010 0.004 0.004 2.00 0.025 4.4 0.65 0.001 0.001 0.110 1.05 0.60 0.39 0.012 0.027 0.004 0.28 0.69 0.288 0.347 412 152 429 415 117 429 80 68 81 209 98 429 419 77 82 107 427 429 263 82 139 81 423 429 307 193 Li-rich siderophyllite av s n 46.2 0.21 0.035 21.2 0.0125 0.006 0.001 1.12 0.001 9.78 0.90 0.001 0.002 0.090 0.17 3.60 0.18 0.002 0.009 0.002 0.32 9.82 1.030 0.120 1.17 6.45 0.018 102.4 2.72 99.7 1.75 0.025 2.5 0.29 0.040 2.3 0.005 0.004 0.002 1.76 0.016 2.61 1.46 0.001 0.004 0.071 0.86 0.85 0.33 0.004 0.021 0.004 0.39 0.84 0.590 0.367 304 31 325 286 55 325 45 29 31 162 44 322 312 27 39 58 315 325 214 49 57 28 312 325 218 197 Fe-rich polylithionite av s n APPENDIX 3a. Composition (wt.%) of siderophyllite and polylithionite and their varieties. 51.0 0.09 0.025 23.8 0.014 0.027 0.001 0.35 0.0003 0.88 0.72 0.0001 0.003 0.037 0.12 4.91 0.23 0.005 0.016 0.001 0.44 10.2 1.310 0.250 1.35 6.60 0.017 102.4 2.78 99.6 1.69 0.014 3.4 0.42 0.027 4.4 0.008 0.004 0.002 0.61 0.004 1.29 1.16 0.000 0.006 0.049 0.56 1.00 0.69 0.007 0.026 0.001 0.46 0.7 0.811 0.589 313 22 318 189 27 318 22 11 8 159 9 273 301 8 16 27 264 318 177 30 48 9 308 316 262 212 Polylithionite sensu stricto av s n TISCHENDORF ET AL. Si Al SIVR Ti Sn VI Al Ga Sc V Fe3+ Cr Fe2+ Mn Co Ni Zn Mg Li SVIR Ca Ba Na K Rb Cs SXIIR OH F Cl S Fe# mgli feal IV 2.654 1.346 4.000 0.124 0.0004 0.566 0.0004 0.0002 0.0014 0.086 0.0012 1.236 0.026 0.0002 0.0003 0.0004 0.678 0.070 2.791 0.010 0.0017 0.035 0.861 0.0117 0.0005 0.920 1.608 0.391 0.001 2.000 0.950 0.61 0.91 Mg-rich siderophyllite 0.3 2.2 Mg 2.782 1.218 4.000 0.071 0.0015 0.628 0.0007 0.0004 0.0003 0.131 0.0002 1.536 0.042 0.0001 0.0001 0.0049 0.127 0.249 2.792 0.018 0.0004 0.038 0.885 0.0174 0.0013 0.960 1.367 0.615 0.018 2.000 0.870 0.12 1.15 Siderophyllite sensu stricto 2.982 1.018 4.000 0.038 0.0014 0.880 0.0008 0.0004 0.0001 0.109 0.0003 1.084 0.039 0.0000 0.0001 0.0050 0.046 0.537 2.741 0.020 0.0004 0.046 0.886 0.0302 0.0029 0.986 0.869 1.120 0.011 2.000 0.690 0.49 0.39 Li-rich siderophyllite 0.3 1.3 Li 3.276 0.724 4.000 0.011 0.0010 1.048 0.0006 0.0004 0.0001 0.060 0.0001 0.580 0.054 0.0000 0.0001 0.0047 0.018 1.026 2.804 0.014 0.0002 0.044 0.888 0.0470 0.0036 0.997 0.552 1.446 0.002 2.000 0.384 1.01 0.34 Fe-rich polylithionite 0.3 1.1 Fetot APPENDIX 3b. Average formulae of siderophyllite and polylithionite and their varieties. 3.426 0.574 4.000 0.004 0.0007 1.310 0.0006 0.0016 0.0001 0.018 0.0000 0.049 0.041 0.0000 0.0002 0.0018 0.012 1.323 2.761 0.017 0.0004 0.057 0.874 0.0566 0.0072 1.012 0.603 1.395 0.002 2.000 0.048 1.31 1.20 Polylithionite sensu stricto CLASSIFICATION OF MICAS 317 318 26 1 1.87 101.0 1.02 100.0 0.95 2.7 3.0 1.20 4.3 3.90 5.9 0.15 3.72 0.55 0.12 0.21 1.80 2.36 2.20 14 2 17 17 17 7 17 17 17 17 15 14 17 14 12 37.7 1.49 16.0 1.50 17.5 0.33 9.66 1.14 0.09 0.17 8.54 0.75 0.65 2.81 2.15 0.5 28 22 26 3 28 22 28 28 9 23 28 1 1 3.5 0.50 2.70 1.24 0.16 0.48 1.90 0.69 0.73 0.58 0.7 56.2 0.20 1.90 0.25 0.97 0.29 19.6 2.85 0.26 0.41 10.6 0.90 0.13 0.71 7.70 0.02 Total 103.0 O = F+Cl 3.25 Total 99.7 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO Li2O CaO Na2O K2O Rb2O Cs2O H2O F Cl Fe-rich tainiolitic micas av s n Tainiolite sensu stricto av s n 101.9 2.05 99.8 41.6 1.23 20.7 1.00 10.4 0.26 6.46 2.51 0.22 0.19 8.49 1.12 0.99 1.86 4.86 1.63 1.3 0.71 1.6 1.20 2.3 0.18 1.88 1.00 0.44 0.18 1.16 1.19 1.21 14 14 13 14 9 14 14 14 14 11 14 14 9 14 Al-rich tainiolitic micas av s n 8 7 3.96 0.55 0.95 0.03 0.02 100.2 0.24 100.0 54 39 61 0.43 0.77 0.24 0.63 8.93 1.52 n 61 30 59 58 48 17 61 s 2.3 0.14 3.17 4.9 3.43 0.09 1.49 54.2 0.17 5.05 16.4 4.12 0.13 5.98 av Celadonite Si Al SIVR Ti VI Al Fe3+ Fe2+ Mn Mg Li SVIR Ca Na K Rb Cs SXIIR OH F Cl S mgli feal IV 3.863 0.137 4.000 0.010 0.014 0.013 0.056 0.017 2.007 0.788 2.905 0.019 0.055 0.929 0.040 0.004 1.047 0.324 1.674 0.002 2.000 1.22 0.08 2.854 1.146 4.000 0.085 0.282 0.085 1.108 0.021 1.090 0.347 3.018 0.007 0.025 0.825 0.037 0.021 0.915 1.424 0.512 0.064 2.000 0.74 1.02 2.000 0.03 0.01 2.995 1.005 4.000 0.067 0.752 0.054 0.626 0.016 0.693 0.727 2.935 0.017 0.027 0.780 0.052 0.030 0.906 0.893 1.107 0.875 1.873 0.123 0.004 2.000 0.63 0.87 2.041 0.033 0.033 0.809 3.848 0.152 4.000 0.009 0.270 0.876 0.245 0.008 0.633 Tainiolite Fe-rich Al-rich Celadonite sensu stricto tainiolitic micas tainiolitic micas Mg6Li = Mg6Li = 0.38 Mg6Li = 0.50 Al# = 0.134 1.58 APPENDIX 4. Composition (wt.%) and formulae of tainiolite sensu stricto, tainiolitic micas and celadonite. TISCHENDORF ET AL. 47.2 SiO2 TiO2 0.09 SnO2 0.038 Al2O3 31.8 Ga2O3 0.031 Sc2O3 0.002 V2O3 0.002 Fe2O3 0.40 Cr2O3 0.000 FeO 1.30 MnO 0.33 CoO NiO 0.001 ZnO 0.064 MgO 0.26 Li2O 1.72 CaO 0.15 SrO 0.004 BaO 0.006 PbO Na2O 0.49 K2O 10.0 Rb2O 1.040 Cs2O 0.120 H2O 3.32 F 2.35 Cl 0.12 Total 100.8 O = F+Cl 1.02 Total 99.8 av 3 7 71 71 53 13 21 71 71 47 47 61 10 0.003 0.055 0.74 0.86 0.40 0.011 0.011 0.30 0.8 0.930 0.238 1.68 0.59 1.06 0.50 0.001 0.91 71 53 10 71 5 1 2 40 3 63 67 n 2.9 0.38 0.031 3.6 0.016 s Li-rich muscovite 46.0 0.36 0.019 34.6 0.018 0.005 0.030 0.15 0.030 1.33 0.05 0.002 0.002 0.010 1.20 0.18 0.05 0.005 0.200 0.003 0.74 9.98 0.190 0.025 4.28 0.45 0.05 100.0 0.20 99.8 319 0.57 0.41 2.0 0.44 0.032 2.4 0.014 0.0047 2.408 0.87 2.417 0.84 0.15 0.001 0.002 0.125 0.46 0.18 0.17 0.040 2.530 0.003 0.47 1.20 0.334 0.418 409 111 862 791 113 862 57 125 144 207 210 812 668 66 94 220 844 440 593 145 412 34 846 862 282 187 Muscovite sensu stricto av s n 45.7 0.33 0.022 30.8 0.024 0.002 0.009 1.50 0.020 4.00 0.16 0.001 0.001 0.020 1.07 0.22 0.07 0.050 0.090 0.001 0.40 10.5 0.220 0.020 3.96 0.90 0.03 100.1 0.39 99.7 av 1.08 0.54 2.1 0.34 0.033 2.8 0.011 0.001 2.796 1.48 0.283 2.27 0.37 0.001 0.001 0.056 0.76 0.20 0.20 0.108 2.657 0.001 0.33 1.2 0.303 0.199 s 174 50 251 231 37 251 24 12 23 134 33 244 219 6 25 27 249 192 189 39 77 17 247 251 127 64 n Fe-rich muscovite 45.9 0.22 0.032 27.7 0.046 0.002 0.005 1.35 0.004 6.24 0.37 0.001 0.002 0.090 0.37 1.38 0.08 0.002 0.017 0.003 0.44 10.1 0.570 0.040 2.93 2.94 0.10 100.9 1.26 99.7 av 1.43 0.77 1.8 0.29 0.022 3.8 0.021 0.001 0.002 2.48 0.003 3.01 0.60 0.001 0.001 0.155 0.71 0.50 0.35 0.002 0.016 0.008 0.57 0.9 0.377 0.279 s 87 31 97 88 12 97 9 4 9 48 4 95 89 3 6 6 96 97 55 7 26 11 93 97 54 39 n Li-Fe-rich muscovite av 0.001 0.040 3.85 0.03 0.06 0.002 0.400 0.001 0.38 10.0 0.020 0.003 4.37 0.25 0.03 100.2 0.11 100.0 0.41 0.07 0.741 0.203 1.60 0.08 0.13 0.002 3.156 0.001 0.29 1.2 0.033 0.003 3.7 0.80 0.080 4.2 0.002 0.001 5.971 1.17 3.817 0.93 0.14 s 45 15 6 20 252 24 152 3 63 3 212 252 3 3 252 214 3 252 3 3 13 41 86 208 139 n Mg-rich muscovite 51.0 0.27 0.026 26.8 0.013 0.001 0.080 0.70 0.090 1.70 0.04 APPENDIX 5a. Composition (wt.%) of muscovite and its varieties. 1.24 0.19 1.0 0.210 0.008 8 1 29 31 3 3 8 0.130 0.210 0.18 10.4 0.030 0.005 4.25 0.31 0.04 99.8 0.14 99.7 31 4 22 1 12 7 27 22 31 31 27 n 0.94 0.35 0.34 3.40 0.04 0.15 0.020 1.78 3.053 1.86 0.30 4.0 23.7 2.05 0.090 4.20 0.13 3.9 0.31 s 50.5 0.19 av Mg-Fe-rich muscovite CLASSIFICATION OF MICAS Si IV Al SIVR Ti Sn VI Al Ga Sc V Fe3+ Cr Fe2+ Mn Co Ni Zn Mg Li SVIR Ca Ba Na K Rb Cs SXIIR OH F Cl S Al# mgli feal 320 0.0001 0.0032 0.026 0.464 2.295 0.011 0.0002 0.064 0.856 0.0449 0.0034 0.979 1.487 0.499 0.014 2.000 0.934 0.44 1.57 0.073 0.019 3.168 0.832 4.000 0.004 0.0010 1.683 0.0013 0.0001 0.0001 0.020 Li-rich muscovite 0.2 1.0 Li 3.074 0.926 4.000 0.018 0.0005 1.800 0.0008 0.0003 0.0016 0.008 0.0016 0.074 0.003 0.0001 0.0001 0.0005 0.120 0.048 2.077 0.004 0.0052 0.096 0.851 0.0081 0.0007 0.965 1.899 0.095 0.006 2.000 0.899 0.07 1.70 Muscovite sensu stricto 3.123 0.877 4.000 0.017 0.0006 1.604 0.0011 0.0001 0.0005 0.077 0.0011 0.229 0.009 0.0000 0.0001 0.0010 0.109 0.060 2.110 0.005 0.0024 0.053 0.915 0.0097 0.0006 0.986 1.803 0.194 0.003 2.000 0.794 0.05 1.27 Fe-rich muscovite 0.2 1.0 Fetot 3.180 0.820 4.000 0.011 0.0009 1.441 0.0002 0.0001 0.0003 0.070 0.0002 0.361 0.022 0.0000 0.0001 0.0046 0.038 0.384 2.333 0.006 0.0005 0.059 0.892 0.0253 0.0012 0.984 1.347 0.642 0.011 2.000 0.754 0.35 0.98 Li-Fe-rich muscovite 0.2 0.9 Li 0.2 0.9 Fetot 0.0001 0.0020 0.382 0.008 2.051 0.004 0.0105 0.049 0.850 0.0009 0.0001 0.914 1.944 0.053 0.003 2.000 0.746 0.37 1.36 3.398 0.602 4.000 0.014 0.0007 1.503 0.0006 0.0000 0.0043 0.035 0.0047 0.095 0.002 Mg-rich muscovite 0.2 1.0 Mg APPENDIX 5b. Average formulae of muscovite and its varieties. 0.345 0.011 2.069 0.011 0.0035 0.024 0.904 0.0013 0.0001 0.944 1.928 0.067 0.005 2.000 0.661 0.33 0.98 0.0011 0.105 0.0048 0.239 0.008 1.345 3.441 0.559 4.000 0.010 Mg-Fe-rich muscovite 0.2 0.7 Mg 0.2 0.5 Fetot TISCHENDORF ET AL.