Fundamental Mechanics of Materials Equations

Transcription

Fundamental Mechanics of Materials Equations
Fundamental Mechanics of Materials Equations
Basic definitions
𝜎 π‘ π‘–π‘”π‘šπ‘Ž
Average normal stress in an axial member
πœ€ π‘’π‘π‘ π‘–π‘™π‘œπ‘›
F
𝜏 π‘‘π‘Žπ‘’
avg β«½
A
𝛾 π‘”π‘Žπ‘šπ‘šπ‘Ž
Average direct shear stress
𝜈 𝑛𝑒
𝛿 π›₯ π‘‘π‘’π‘™π‘‘π‘Ž
V
avg β«½
𝛼 π‘Žπ‘™π‘β„Žπ‘Ž
AV
πœ‘ π‘β„Žπ‘–
Average bearing stress
πœ” π‘œπ‘šπ‘’π‘”π‘Ž
F
b β«½
πœƒ π‘‘β„Žπ‘’π‘‘π‘Ž
Ab
Average normal strain in an axial member
π›₯𝑑
π›₯𝑀
π›₯𝑑
␧avg ⫽
πœ€π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘£π‘’π‘Ÿπ‘ π‘’ =
π‘œπ‘Ÿ
π‘œπ‘Ÿ
L
𝑑
𝑀
𝑑
𝛾 = π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘Žπ‘›π‘”π‘™π‘’ π‘“π‘Ÿπ‘œπ‘š 90°
Six rules for constructing shear-force
and bending-moment diagrams
Rule 1:
⌬V ⫽ P0
Rule 2:
⌬V ⫽ V2 ⫺ V1 ⫽
x2
∫x
w( x ) dx
1
Rule 3:
Rule 4:
dV
β«½ w( x )
dx
⌬ M ⫽ M 2 ⫺ M1 ⫽
x2
∫x
V dx
1
Rule 5:
Rule 6:
dM
β«½V
dx
⌬M ⫽ ⫺M 0
Flexure
Average normal strain caused by temperature change
␧T ⫽ ⌬ T
Hooke’s Law (one-dimensional)
β«½ E ␧ and β«½ G Poisson’s ratio
␧lat
␯ ⫽ ⫺␧
long
Flexure formula
My
Mc
M
x β«½ β«Ί
or max β«½
where
β«½
I
I
S
Unsymmetric bending of arbitrary cross sections
Relationship between E, G, and Ξ½
E
Gβ«½
2(1 β«Ή )
Definition of allowable stress
allow β«½ failure or allow β«½ failure
FS
FS
Factor of safety
Unsymmetric bending of symmetric cross sections
M y z Mz y
My I z
tan β«½
x β«½
β«Ί
Iy
Iz
Mz I y
FS β«½ failure
actual
or
FS β«½ failure
actual
Axial deformation
Deformation in axial members
FL
FL
β«½
or β«½ βˆ‘ i i
AE
i Ai Ei
Force-temperature-deformation relationship
β«½
FL
⫹ ⌬TL
AE
Torsion
Maximum torsion shear stress in a circular shaft
Tc
max β«½
J
where the polar moment of inertia J is defined as
J β«½ [ R4 β«Ί r 4 ] β«½ [ D 4 β«Ί d 4 ]
2
32
π‘”π‘’π‘Žπ‘Ÿπ‘ 
Angle of twist in a circular shaft
π‘Ÿ2 𝑇1 = π‘Ÿ1 𝑇2
TL
TL
π‘Ÿ1 πœ”1 = π‘Ÿ2 πœ”2
β«½
or β«½ βˆ‘ i i
JG
i Ji Gi
Power transmission in a shaft
π‘€π‘Žπ‘‘π‘‘π‘  = π‘π‘š/𝑠
P β«½ T
β„Žπ‘ = 6600 𝑖𝑛 βˆ™ 𝑙𝑏/𝑠
⎑ I z z ⫺ I yz y ⎀
⎑⫺ I y ⫹ I yz z ⎀
βŽ₯ My β«Ή ⎒ y
βŽ₯M
x ⫽ ⎒
2
⎒⎣ I y I z β«Ί I yz βŽ₯⎦
⎒⎣ I y I z β«Ί I y2z βŽ₯⎦ z
Horizontal shear stress associated with bending
Sβ«½
I
c
π‘π‘œπ‘šπ‘π‘œπ‘ π‘–π‘‘π‘’ π‘π‘’π‘Žπ‘šπ‘ 
𝐸𝐡
𝑛=
𝐸𝐴
βˆ’π‘€π‘¦
𝜎𝐴 = 𝑇
𝐼
βˆ’π‘›π‘€π‘¦
𝜎𝐡 =
𝐼𝑇
VQ
π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑄 = βˆ‘π‘¦οΏ½π‘– 𝐴𝑖
It
Shear flow formula
VQ
qβ«½
I
Shear flow, fastener spacing, and fastener shear relationship
π‘‰π‘π‘’π‘Žπ‘š 𝑄 π‘›π‘‰π‘“π‘Žπ‘ π‘‘π‘’π‘›π‘’π‘Ÿ
qs ⱕ n f Vf β«½ n f f A f
π‘ž=
=
or
𝑠
𝐼
For circular cross sections,
1 3
Qβ«½
d (solid sections)
12
2
1
Q β«½ [ R3 β«Ί r 3 ] β«½ [ D 3 β«Ί d 3 ] (hollow sections)
3
12
H β«½
Beam deflections
Elastic curve relations between w, V, M, ΞΈ, and v for
constant EI
Deflection β«½ v
dv
Slope β«½
β«½
dx
d 2v
Moment M β«½ EI 2
dx
dM
d 3v
Shear V β«½
β«½ EI 3
dx
dx
dV
d4v
Load w β«½
β«½ EI 4
dx
dx
Fundamental Mechanics of Materials Equations
Plane stress transformations
Generalized Hooke’s Law
Normal and shear stresses on an arbitrary plane
Normal stress/normal strain relationships
1
␧x ⫽ [ ␴x ⫺ ␯ (␴y ⫹ ␴z )]
E
1
␧y ⫽ [ ␴y ⫺ ␯ (␴x ⫹ ␴z )]
E
1
␧z ⫽ [ ␴z ⫺ ␯ (␴x ⫹ ␴y )]
E
Shear stress/shear strain relationships
1
1
1
β₯xy β«½ ␢ xy
β₯ yz β«½ ␢ yz
β₯zx β«½ ␢ zx
G
G
G
where
␴n ⫽ ␴x
cos 2 βͺ
⫹ ␴y
sin 2 βͺ
β«Ή 2 ␢ xy sin βͺ cos βͺ
␢ nt β«½ β«Ί(␴ x β«Ί ␴y )sin βͺ cos βͺ β«Ή ␢ xy ( cos 2 βͺ β«Ί sin 2 βͺ)
or
𝜎π‘₯ + πœŽπ‘¦ 𝜎π‘₯ βˆ’ πœŽπ‘¦
+
cos 2πœƒ + 𝜏π‘₯𝑦 sin 2πœƒ
2
2
𝜎π‘₯ + πœŽπ‘¦ 𝜎π‘₯ βˆ’ πœŽπ‘¦
πœŽπ‘‘ =
βˆ’
cos 2πœƒ βˆ’ 𝜏π‘₯𝑦 sin 2πœƒ
2
2
𝜎π‘₯ βˆ’ πœŽπ‘¦
sin 2πœƒ + 𝜏π‘₯𝑦 cos 2πœƒ
πœπ‘›π‘‘ = βˆ’
2
Principal stress magnitudes
πœŽπ‘› =
2
␴x ⫹ ␴y
βŽ› ␴x β«Ί ␴y ⎞⎟
2
⎟⎟ ⫹ ␢ xy
⫾ ⎜⎜⎜
⎝
2
2 ⎠
Orientation of principal planes
␢ xy
tan 2βͺp β«½
(␴x ⫺ ␴y ) 2
Maximum in-plane shear stress magnitude
␴ p1, p 2 ⫽
2
βŽ› ␴x β«Ί ␴y ⎞⎟
2
␢ max ⫽ ⫾ ⎜⎜
⫹ ␢ xy
⎟
⎜⎝
2 ⎟⎠
␴avg ⫽
or
Gβ«½
␢ max ⫽
␴p1 ⫺ ␴p 2
2
␴x ⫹ ␴y
Pressure vessels
Axial stress in spherical pressure vessel
pr
pd
␴a ⫽
β«½
2t
4t
Longitudinal and hoop stresses in cylindrical
pressure vessels
pr
pd
pr
pd
␴long ⫽
␴hoop ⫽
β«½
β«½
2t
4t
t
2t
Plane strain transformations
Normal and shear strain in arbitrary directions
␧n β«½ ␧x cos 2 βͺ β«Ή ␧y sin 2 βͺ β«Ή β₯xy sin βͺ cos βͺ
β₯nt β«½ β«Ί2( ␧x β«Ί ␧y )sin βͺ cos βͺ β«Ή β₯xy (cos 2 βͺ β«Ί sin 2 βͺ)
␧x ⫹ ␧y
βŽ› ␧x β«Ί ␧y ⎞⎟2 βŽ› β₯xy ⎞⎟2
⎟ ⫹ ⎜⎜⎜ ⎟⎟
β«½
⫾ ⎜⎜⎜
⎝ 2 ⎠
⎝ 2 ⎟⎠
2
πœ€π‘§ =
𝛾π‘₯𝑦
πœ€π‘₯ + πœ€π‘¦ πœ€π‘₯ βˆ’ πœ€π‘¦
sin 2πœƒ
+
cos 2πœƒ +
2
2
2
𝛾π‘₯𝑦
πœ€π‘₯ + πœ€π‘¦ πœ€π‘₯ βˆ’ πœ€π‘¦
sin 2πœƒ
πœ€π‘‘ =
βˆ’
cos 2πœƒ βˆ’
2
2
2
πœ€π‘₯ βˆ’ πœ€π‘¦
𝛾π‘₯𝑦
𝛾𝑛𝑑
=βˆ’
sin 2πœƒ +
cos 2πœƒ
2
2
2
Principal strain magnitudes
πœ€π‘› =
βˆ’πœˆ
(πœ€ + πœ€π‘¦ )
1βˆ’πœˆ π‘₯
or
Orientation of principal strains
β₯xy
tan 2βͺp β«½
␧x ⫺ ␧y
βŽ› ␧x β«Ί ␧y ⎞⎟2 βŽ› β₯xy ⎞⎟2
⎜
⎜⎜
⎜⎝ 2 ⎟⎟⎠ ⫹ ⎜⎜⎝ 2 ⎟⎟⎠
⫹ ␧y
2
Normal strain invariance
␧x ⫹ ␧y ⫽ ␧n ⫹ ␧t ⫽ ␧p1 ⫹ ␧p 2
Mises equivalent stress for plane stress
1/ 2
␴M ⫽ [ ␴2p1 ⫺ ␴ p1 ␴p 2 ⫹ ␴ 2p 2 ]
Column buckling
Euler buckling load
Pcr β«½
␴cr ⫽
or
β₯max β«½ ␧p1 β«Ί ␧p 2
πœŽπ‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™βˆ’π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ = 0
πœŽπ‘Ÿπ‘Žπ‘‘π‘–π‘Žπ‘™βˆ’π‘–π‘›π‘ π‘–π‘‘π‘’ = βˆ’π‘
Failure theories
␲ 2 EI
( KL )2
Euler buckling stress
Maximum in-plane shear strain
β₯max
β«½β«Ύ
2
␧x
␧avg ⫽
Normal stress/normal strain relationships for plane stress
1
␧x ⫽ ( ␴x ⫺ ␯␴y )
E
E
␴x ⫽
(␧x ⫹ ␯␧y )
1 ⫺ ␯2
1
␧y ⫽ ( ␴y ⫺ ␯␴x )
or
E
E
␴y ⫽
(␧y ⫹ ␯␧x )
1
β«Ί
␯2
␯
␧z ⫽ ⫺ (␴x ⫹ ␴y )
E
Shear stress/shear strain relationships for plane stress
1
or
β₯xy β«½
␢ xy
␢ xy β«½ Gβ₯ xy
G
2
Absolute maximum shear stress magnitude
␴ ⫺ ␴min
␢abs max ⫽ max
2
Normal, stress invariance
␴x ⫹ ␴y ⫽ ␴n ⫹ ␴t ⫽ ␴ p1 ⫹ ␴p 2
␧p1, p 2
E
2(1 ⫹ ␯ )
␲2 E
( KL r )2
Radius of gyration
r2 β«½
I
A
2 ]
⫽ [ ␴x2 ⫺ ␴x ␴y ⫹ ␴y2 ⫹ 3 ␢ xy
1/2
2
x =
Ξ£xi Ai
Ξ£Ai
Ξ£yi Ai
Ξ£Ai
y =
I = Ξ£ ( I c + d 2 A)
Table A.1 Properties of Plane Figures
1. Rectangle
yβ€²
6. Circle
y
y
βˆ’
x
A = bh
bh3
12
hb3
Iy =
12
hb3
I yβ€² =
3
h
2
b
x =
2
bh3
Ixβ€² =
3
y =
x
h
C
βˆ’
y
xβ€²
b
Ix =
Ο€d 2
4
Ο€r 4
Ο€d 4
Ix = Iy =
=
4
64
r
A = Ο€r 2 =
x
C
d
2. Right Triangle
7. Hollow Circle
y
yβ€²
y
bh
2
h
y =
3
b
x =
3
bh3
Ixβ€² =
12
A=
βˆ’
x
h
βˆ’
y
C
x
xβ€²
b
bh3
36
hb3
Iy =
36
hb3
I yβ€² =
12
Ix =
Ο€ 2
(D βˆ’ d 2 )
4
Ο€
I x = I y = ( R4 βˆ’ r 4 )
4
Ο€
(D4 βˆ’ d 4 )
=
64
A = Ο€ ( R2 βˆ’ r 2 ) =
R
r
x
C
d
D
3. Triangle
8. Parabola
yβ€²
bh
2
h
y =
3
(a + b)
x =
3
bh3
Ixβ€² =
12
yβ€²
A=
a
y
βˆ’
x
h
βˆ’
y
C
x
xβ€²
y
βˆ’
x
bh3
36
bh 2
(a βˆ’ ab + b 2 )
Iy =
36
h 2
xβ€²
b2
2bh
A=
3
3b
x =
8
yβ€² =
Ix =
x
h
C
βˆ’
y
xβ€²
b
y =
3h
5
y =
3h
10
Zero slope
b
4. Trapezoid
9. Parabolic Spandrel
a
h
x
βˆ’
y
C
(a + b)h
A=
2
1 2a + b
y =
h
3 a+b
h3
(a 2 + 4 ab + b 2 )
Ix =
36 (a + b)
(
yβ€²
)
y
βˆ’
x
h 2
xβ€²
b2
bh
A=
3
3b
x =
4
yβ€² =
Zero
slope
h
βˆ’
y
C
b
x
xβ€²
b
5. Semicircle
10. General Spandrel
A=
y, yβ€²
r
C
βˆ’
y
x
xβ€²
696
yβ€²
Ο€r 2
2
4r
y =
3Ο€
I x β€² = I yβ€² =
Ix =
Ο€r 4
8
( Ο€8 βˆ’ 98Ο€ )r
4
y
βˆ’
x
h n
xβ€²
bn
bh
h
A=
x
n
+1
βˆ’
y
xβ€²
n +1
x =
b
n+2
yβ€² =
Zero
slope
C
b
y =
n +1
h
4n + 2
SIMPLY SUPPORTED BEAMS
Beam
Slope
Deflection
3
2
1
ΞΈ1 = βˆ’ΞΈ 2 = βˆ’
2
PL
16 EI
Pb( L2 βˆ’ b 2 )
ΞΈ1 = βˆ’
6 LEI
4
vmax = βˆ’
5
ML
ΞΈ1 = βˆ’
3EI
ML
ΞΈ2 = +
6 EI
3
PL
48 EI
Pa 2b 2
v=βˆ’
3LEI
Pa ( L2 βˆ’ a 2 )
ΞΈ2 = +
6 LEI
7
vmax = βˆ’
ML2
9 3 EI
βŽ›
3⎞
at x = L ⎜⎜1 βˆ’
⎟
3 ⎟⎠
⎝
11
wL3
ΞΈ1 = βˆ’ΞΈ 2 = βˆ’
24 EI
13
wa 2
ΞΈ1 = βˆ’
(2 L βˆ’ a ) 2
24 LEI
ΞΈ2 = +
16
wa 2
24 LEI
Px
(3L2 βˆ’ 4 x 2 )
48 EI
for 0 ≀ x ≀ L
6
v=βˆ’
2
Pbx 2 2
(L βˆ’ b βˆ’ x2 )
6 LEI
for 0 ≀ x ≀ a
9
v=βˆ’
Mx
(2 L2 βˆ’ 3Lx + x 2 )
6 LEI
12
vmax
5wL4
=βˆ’
384 EI
14
v=βˆ’
v=βˆ’
wx
( L3 βˆ’ 2 Lx 2 + x3 )
24 EI
wx
( Lx3 βˆ’ 4aLx 2 + 2a 2 x 2 + 4a 2 L2
24 LEI
wa 3
v=βˆ’
(4 L2 βˆ’ 7 aL + 3a 2 )
βˆ’4a 3 L + a 4 ) for 0 ≀ x ≀ a
24 LEI
wa 2
2
2
(2 x3 βˆ’ 6 Lx 2 + a 2 x + 4 L2 x βˆ’ a 2 L)
v
=
βˆ’
at
x
=
a
(2 L βˆ’ a )
24 LEI
3
7 w0 L
360 EI
w0 L3
ΞΈ2 = +
45 EI
ΞΈ1 = βˆ’
v=βˆ’
at x = a
8
10
Elastic Curve
17
w0 L4
vmax = βˆ’0.00652
EI
at x = 0.5193L
15
18
v=βˆ’
for a ≀ x ≀ L
w0 x
(7 L4 βˆ’ 10 L2 x 2 + 3 x 4 )
360 LEI
CANTILEVER BEAMS
Beam
Slope
Deflection
Elastic Curve
20
19
ΞΈ max
PL2
=βˆ’
2 EI
22
21
vmax
PL3
=βˆ’
3EI
23
ΞΈ max = βˆ’
2
PL
8 EI
24
vmax = βˆ’
3
5 PL
48 EI
26
25
ΞΈ max = βˆ’
ML
EI
28
ML2
=βˆ’
2 EI
29
ΞΈ max
31
ΞΈ max
for 0 ≀ x ≀ L
2
for L ≀ x ≀ L
2
Mx 2
v=βˆ’
2 EI
30
vmax
wL4
=βˆ’
8 EI
32
w0 L3
=βˆ’
24 EI
Px 2
v=βˆ’
(3L βˆ’ 2 x )
12 EI
PL2
(6 x βˆ’ L )
v=βˆ’
48 EI
27
vmax
wL3
=βˆ’
6 EI
Px 2
v=βˆ’
(3L βˆ’ x )
6 EI
vmax
wx 2
(6 L2 βˆ’ 4 Lx + x 2 )
v=βˆ’
24 EI
33
w0 L4
=βˆ’
30 EI
w0 x 2
v=βˆ’
(10 L3 βˆ’ 10 L2 x + 5 Lx 2 βˆ’ x 3 )
120 LEI

Similar documents