Doomsday
Transcription
Doomsday
Dr KlausPeter Schröder UGTO, Departamento de Astronomia / IFUG, Mexico Doomsday will we once be at the mercy of neutrinos?! Workshop „From neutrinos to dark matter“, IFUG, Leon, 25.8. 2006 Dr. KlausPeter Schröder, UGTO The astrophysical „doomsday“ scenario : Will a supergiant Sun, in the distant future of about 7.5 billion years, finally swallow Earth?! Dr. KlausPeter Schröder, UGTO The conventional solar evolution model, w/o mass loss: log R / R(sun,today) !! Orbit of Earth 1. 2. CoreHe burning Hshellburning, degenerate Hecore => Heflash 1.: first giant stadium, (RGB giant) 2.: second giant stadium, (AGB giant) Dr. KlausPeter Schröder, UGTO „There is always hope“ 1) : Solar evolution with mass loss ! Earth orbit expands!! (2) e.g., Schröder et al. 2001, Astron.&Geophys. 42, 26 RGB AGB (1) Aragon, in: „Lord of the Rings“ Dr. KlausPeter Schröder, UGTO But no reason to rejoice: It´ll be HOT !! LSun ~ 2000 to 6000x of Ltoday!! Dr. KlausPeter Schröder, UGTO Another „myth“: Will the Sun really form a Planetary Nebula at the end ?! dM/dt final ~30,000 yrs: a dustdriven „Superwind“ (3) Schröder et al.., A&A 349 (1999): needs critical L > 6000Lsun tipAGB evolution in the HRD Lc M initial = 2.65 M Sun , Z=0.02 Planetary Nebula Dr. KlausPeter Schröder, UGTO Close escape for „us“, but not for Venus and Mercury ! Radius / AU >0.25 AU ! Orbit of Earth Orbit of Venus Radius of RGBSun, evolution model with mass loss Final 10 Million years of the Sun as RGB giant Dr. KlausPeter Schröder, UGTO But how do we know the exact mass loss by cool winds ? 4) for 30 years (!): Reimers´ relation : dM /dt = h L R / M ....used a lot, but was not derived from physics (4) Reimers 1977, A&A 61, 217 Dr. KlausPeter Schröder, UGTO 5) So, if we use characteristic chromospheric properties (instead of photospheric L, R) then: dM/dt = [ h L R / M ] x 3.5 (Teff /4000K) x ( 1 + (gsun /4300 gstar)) .......and the calibration ?? (5) Schröder & Cuntz 2005, ApJL 630,L73 Dr. KlausPeter Schröder, Astronomy Centre Idea: Use HB stars in Globular Clusters! Dr. KlausPeter Schröder, Astronomy Centre Idea: Use HB stars in Globular Clusters! gives a welldefined total RGB massloss avoids variability by probing long time span Dr. KlausPeter Schröder, UGTO Test, e.g., w/ NGC 5904: Z = 0.0009, Mi = 0.86 Mo ColourMagnitude Diagramme from HSTdata (indicative of temperature) Dr. KlausPeter Schröder, UGTO 6) BUT: it all depends on neutrinos, too ! Raffelt´s idea : The coolingrate of degenerate Hecores (& WDs) depends on the neutrino magnetic dipole moment, µ Neutrino cooling delays Heflash and increases maximum RGB Hecore mass, Mc, and, consequently, L(tipRGB) Raffelt & Weiss 1992: µ < 3 E12 µB, if dMc<0.025Msun w/ todays stellar models: L(tipRGB) should tell Mc even better .....so, what is L(tipRGB), and what to expect for the RGB Sun? (6) Raffelt 1996, in: „Stars as Laboratories for Fundamental Physics“, University of Chicago Press Dr. KlausPeter Schröder, UGTO L(tipRGB) ?? Again, Globular Clusters can tell us ! i.e., NGC 5927, with near (~1/2) solar metal abundances: L(tipRGB) ......hence, future work will soon give a revised upper limit on the neutrino magnetic dipole moment Dr. KlausPeter Schröder, UGTO Conclusions : The mass loss of the solar giant will, most likely, save planet Earth from the doomsday scenario ! A large neutrino dipole moment µ would lead to a largerthancritical solar RGB giant, but astrophyiscal evidence speaks against it. Improved observations of RGB giants in Globular Clusters and better stellar models (i.e., with massloss) allow us to give a better upper limit on µ, soon. <watch this space> Dr. KlausPeter Schröder, UGTO NGC 5927: Z = 0.01, Mi(HB/KGC) = 0.99 Mo Dr. KlausPeter Schröder, UGTO RGBML yields in comparison: using the well constrained masses of blueend HBstars s(M) ~ 0.02...0.04 Msun => s(h) ~ 10%....20% Z Mi(HB) M(HB) DMRGB h hR *) NGC 5904 0.0009 0.86 0.60 0.26 0.8E13 2.4E13 NGC 5927 0.01 0.99 0.71 0.28 0.8E13 2.0E13 *) The old Reimers relation cannot do both mass loss yields with the same h ! Dr KlausPeter Schröder UGTO, Departamento de Astronomia, Mexico The „Doomsday“ scenario: At the mercy of a supergiant Sun and its massloss ( ......in about 7.5 billion years from now)