Durability Growth through HALT HASS Testing
Transcription
Durability Growth through HALT HASS Testing
HALT and Reliability Workshop Elite Electronic Engineering Steve Laya 630-495-9770 x 119, sglaya@elitetest.com HALT and Reliability Workshop Topics Covered Reliability and Planning Overview of Reliability Concepts‐ Distributions and life estimation Reliability metrics: MTBF, failure rate, R (Reliability) and C (Confidence) Accelerated Testing‐ Uses and cautions; Models for temperature and humidity Accelerated vibration models; Other accelerated tests Vibration Techniques‐ Electro‐dynamic, Repetitive Shock, Servo‐hydraulic Characteristics of vibration produced, relative damage potential, recommended use. How, When, and Why to use HALT and Accelerated Testing How Do You Define Reliability? “…the ability of a system or component to perform its required functions under stated conditions for a specified period of time” The probability of success The capability to perform as designed Reliability, Availability, Maintainability (RAM) , Safety, Testability Number of failures over a period of time MTBF, MTTF, Failure Rate, Hazard Rate Mathematical definition Where h(t) is the hazard function or hazard rate How Do You Evaluate Reliability? Statistics Probability Theory Reliability Theory Hazard Analysis FEMA FTA Reliability Handbook Prediction Weibull Analysis Accelerated Life Testing Maximum Likelihood Estimates Markov Analysis Physics of Failure Design Review Sneak Circuit Analysis Reliability Demonstration /Growth HALT/HASS Which tool to use? Managing Reliability‐ The Core Elements of a Reliability Program. 1 Understand Customer Requirements Environment Duty Cycle Reliability Goals 2 Feedback from Similar Components FRACA- Test Failures, Production Failures, Field Failures Third Party Assessments- J.D. Powers & Associates Warranty Returns- Return Rates, Feedback from Customers and Technicians Development Testing 3 Begin the FMEA Update throughout the process 4 Intelligent Design Lets’ do some testing! 7 Change Control Qualify all any changes in engineering, production, or supply base. 6 Manufacturing Production parts validation Qualify production process with Cpk = 1.67 Ensure compliance with SPC program 100% sampling 1st week of production reduce as necessary Develop control plans for each drawing Evaluate measurement error for in process measurements Qualify storage, transportation, and installation systems Use Design Guides Incorporate lessons learned from previous work Parameter Design- Choose design variable levels to minimize effects of uncontrolled variables Tolerance Design- Scientifically determine correct drawing specifications Schedule Periodic Design Reviews Design with Information from Development Activities Sneak Circuit Analysis, HALT, Step-Stress to Failure, Worst-Case Tolerance Analysis 5 Concept Validation & Design Validation Early Design Phase Engineering Development Tests Independent Verification Test (outside of engineering) Specify From List of Validated Subsystems & Components System Simulation Ref: Accelerated Testing, Dodson & Schwab Testing for Reliability 1. Customer Specified Requirements 2. Identify and Design-out Latent Defects 3. Competitive or new products (Qualitative) Estimation of Reliability Parameters 5. HALT and other early short duration tests (Qualitative) Comparison of Products 4. Auto/Truck OEM, RTCA DO-160, MIL-810 (Qualitative) (underlying distribution, point estimate, confidence MTBF, MTTF (Quantitative) Reliability & Confidence (Quantitative) (graphically or statistically) Contractual Compliance to a Specific Metric Reliability Demonstration (Quantitative) Reliability Growth (Quantitative) Estimation of Reliability Parameters Specify the test Define Test Objective Lab Test or Field Test Temperature and Current Assign Test Durations. Apply Acceleration Factors High impedance fault due to Electromigration Specify Environments, DUT Configuration, Failure Criteria Lab Test Evaluate failure modes, failure mechanisms Determine the MTTF and failure rate for… Arrhenius Model, Power Law Mode Run Test and Collect Data Record times to failure- Plot a Histogram Fit the histogram shape to a failure distribution Estimate distribution characteristics of interest by “parametric approach” Parametric means related to a distribution Estimation of Reliability Parameters Collect the data and plot a Histogram • • • • Divide x-axis into intervals Count the number of failures occurring in each interval Scale the y-axis for the maximum number of counts Fit a curve to the plot • Ex. Start with 100 samples on a powered elevated temperature life test. Count remaining units at each interval. Interval Remaining (Hour) Units 1 90 2 81 3 73 4 66 5 59 6 53 7 48 8 43 9 39 10 35 11 31 12 28 13 25 14 23 15 21 16 19 17 17 18 15 19 14 20 12 21 11 22 10 23 9 24 8 25 7 26 6 27 6 28 5 29 5 30 4 31 4 Failures 10 9 8 7 7 6 5 5 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 Cumul Failure 10 19 27 34 41 47 52 57 61 65 69 72 75 77 79 81 83 85 86 88 89 90 91 92 93 94 94 95 95 96 96 Estimation of Reliability Parameters Plot the Data • Create a Relative Frequency Plot • Relative Frequency = Class Count Total Interval 1 2 10 17 Class Count Percentage per Total 10/100 0.10 9/100 0.09 4/100 0.04 2/100 0.02 Estimation of Reliability Parameters Probability Density Function (PDF) • • Relative likelihood for the variable to take on a given value. The probability density function is nonnegative everywhere, and its integral over the entire space is equal to one • • • • • Ex1: N=100 = 0.1 Evaluate at 10 hours f(10)= 0.036 • • • • • Ex2: N=100 = 0.1 Evaluate at 20 hours f(20)= 0.0135 Probability Density Functions (PDFs) to Cumulative Distribution Functions (CDFs) • Sum the area beneath the PDF • CDF provides a probability of failure relative to xaxis (time, cycles, life) • The compliment of the CDF is the Reliability Function. • Reliability (x) = 1-CDF(x) Where = failure rate 1/ = MTTF Reliability Expression for Exponential Distribution Evaluate the Reliability Function Examples • • • • • Ex1: N=100 = 0.1 Evaluate at 10 hours R(10)= 0.36 • • • • • Ex2: N=100 = 0.1 Evaluate at 20 hours R(20)= 0. 135 Customer Provided Reliability Metrics • = 1/MTTF • Failure rate = 0.1 • MTTF = 10 Reliability Point Estimates and Confidence • Calculate Confidence Intervals for Different Distributions • Range of values bounded above and below within which the true value is expected to fall. • Measures the statistical precision of the estimate • 90% confidence interval should contain the estimate 90% of the time • Determine the interval within which the true parametric values lies with a given probability for a given sample size • Determine the sample size required to assure with a specified probability that the true parametric value lies within a specific interval. Exponential: Chi-Squared distribution Normal: t-distribution Weibull: See referenced resources… Reliability Point Estimates and Confidence Calculate Confidence Intervals Exponential requires Chi-Squared Distribution (Normal requires t-Distribution) MTTF= 216hrs 115hrs t* = time at which the life test is terminated r = number of failures accumulated at time t* T = total test time Note: Ref: 2 a = acceptable risk of error 1 - a = confidence level T = total test time 459hrs Point Estimate for MTTF with Confidence Intervals Example: Calculate MTTF with Confidence Intervals for Fixed Truncation Time on 100 units, C=90% MTTF = Fixed Truncated Test Lower One Sided Confidence Bound Two Sided Confidence Bound n = number of items placed on test at time t = 0 t* = time at which the life test is terminated r = number of failures accumulated at time t* r* = preassigned number of failures a = acceptable risk of error 1 - a = confidence level T = total test time 866 =9.02 hrs 96 Total Test Time Number of Failures = 1-CL = 1-0.9 = 0.1 /2 = 0.05 r = 96 2r+2 = 194 Lower One Sided Confidence Bound 2T 1732 c2(0.1, 194) 219.633 2T 2T c2(0.05, 194) (7.89, ) Two Sided c2(0.95, 192) Confidence Bound 1732 1732 227.496 160.944 (7.61, 10.76) Interval Remain Cumul Cumul (Hour) Units Failures Failure Time 1 90 10 10 90 2 81 9 19 171 3 73 8 27 244 4 66 7 34 310 5 59 7 41 369 6 53 6 47 422 7 48 5 52 470 8 43 5 57 513 9 39 4 61 551 10 35 4 65 586 11 31 3 69 618 12 28 3 72 646 13 25 3 75 671 14 23 3 77 694 15 21 2 79 715 16 19 2 81 733 17 17 2 83 750 18 15 2 85 765 19 14 2 86 778 20 12 1 88 791 21 11 1 89 802 22 10 1 90 811 23 9 1 91 820 24 8 1 92 828 25 7 1 93 835 26 6 1 94 842 27 6 1 94 848 28 5 1 95 853 29 5 1 95 858 30 4 0 96 862 31 4 0 96 866 2T 1732 Chi Square Distribution Table 160.944 =CHIINV(0.95,20) P DF 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 0.995 143.545 144.413 145.282 146.15 147.02 147.889 148.759 149.629 150.499 151.37 152.241 153.112 153.984 154.856 155.728 156.601 0.975 153.721 154.621 155.521 156.421 157.321 158.221 159.122 160.023 160.925 161.826 162.728 163.63 164.532 165.435 166.338 167.241 0.2 206.182 207.225 208.268 209.311 210.354 211.397 212.439 213.482 214.524 215.567 216.609 217.651 218.693 219.735 220.777 221.818 0.1 215.371 216.437 217.502 218.568 219.633 220.698 221.763 222.828 223.892 224.957 226.021 227.085 228.149 229.213 230.276 231.34 0.05 223.16 224.245 225.329 226.413 227.496 228.58 229.663 230.746 231.829 232.912 233.994 235.077 236.159 237.24 238.322 239.403 0.025 230.064 231.165 232.265 233.365 234.465 235.564 236.664 237.763 238.861 239.96 241.058 242.156 243.254 244.351 245.448 246.545 0.02 232.146 233.251 234.356 235.461 236.566 237.67 238.774 239.877 240.981 242.084 243.187 244.29 245.392 246.494 247.596 248.698 0.01 238.266 239.386 240.505 241.623 242.742 243.86 244.977 246.095 247.212 248.329 249.445 250.561 251.677 252.793 253.908 255.023 0.005 243.959 245.091 246.223 247.354 248.485 249.616 250.746 251.876 253.006 254.135 255.264 256.393 257.521 258.649 259.777 260.904 0.002 250.977 252.124 253.271 254.418 255.564 256.71 257.855 259.001 260.145 261.29 262.434 263.578 264.721 265.864 267.007 268.149 0.001 255.976 257.135 258.292 259.45 260.607 261.763 262.92 264.075 265.231 266.386 267.541 268.695 269.849 271.002 272.155 273.308 Point Estimates for Reliability at Specified Time with Confidence Intervals Example • • • • N=100 = 0.1 Evaluate at 10 hours R(10)= 0.36 Reliability Expression for Exponential Distribution Evaluate at 10 hours R(10)= 0.36 Fixed Truncated Test 2-sided 90% Confidence Intervals Lower One Sided Confidence Bound 2(866) c (0.05,194) 2 2(866) 227.496 Two Sided Confidence Bound 2(866) c (0.95,192) 2 2(866) 160.994 7.61 10.758 0.268 0.395 R(10) = R(10) = Point Estimate for MTTF with Confidence Intervals Example: Calculate MTTF with Confidence Intervals for Fixed Number of Failures on 10 units, C=90% Fixed Number of Failures Lower One Sided Confidence Interval Two Sided Confidence Interval n = number of items placed on test at time t = 0 t* = time at which the life test is terminated r = number of failures accumulated at time t* r* = preassigned number of failures a = acceptable risk of error 1 - a = confidence level T = total test time MTTF = 961 =96.1 hrs 10 Total Test Time Number of Failures = 1-CL = 1-0.9 = 0.1 /2 = 0.05 r = 10 2r = 20 Lower One Sided Confidence Bound 2T 1922 c2(0.1, 20) 28.412 2T 2T c2(0.05, 20) c2(0.95, 20) 1922 1922 31.41 10.851 (61.19, 177.12) (67.6, ) Two Sided Confidence Bound Failure Number 1 2 3 4 5 6 7 8 9 10 Total Operating Time (Hrs) 8 20 34 46 63 86 111 141 186 266 961 2T 1922 Chi Square Distribution Table 10.85081 =CHIINV(0.95,20) P DF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0.995 0.975 3.93E-05 0.000982 0.01 0.0506 0.0717 0.216 0.207 0.484 0.412 0.831 0.676 1.237 0.989 1.69 1.344 2.18 1.735 2.7 2.156 3.247 2.603 3.816 3.074 4.404 3.565 5.009 4.075 5.629 4.601 6.262 5.142 6.908 5.697 7.564 6.265 8.231 6.844 8.907 7.434 9.591 8.034 10.283 8.643 10.982 9.26 11.689 9.886 12.401 10.52 13.12 0.2 1.642 3.219 4.642 5.989 7.289 8.558 9.803 11.03 12.242 13.442 14.631 15.812 16.985 18.151 19.311 20.465 21.615 22.76 23.9 25.038 26.171 27.301 28.429 29.553 30.675 0.1 2.706 4.605 6.251 7.779 9.236 10.645 12.017 13.362 14.684 15.987 17.275 18.549 19.812 21.064 22.307 23.542 24.769 25.989 27.204 28.412 29.615 30.813 32.007 33.196 34.382 0.05 3.841 5.991 7.815 9.488 11.07 12.592 14.067 15.507 16.919 18.307 19.675 21.026 22.362 23.685 24.996 26.296 27.587 28.869 30.144 31.41 32.671 33.924 35.172 36.415 37.652 0.025 5.024 7.378 9.348 11.143 12.833 14.449 16.013 17.535 19.023 20.483 21.92 23.337 24.736 26.119 27.488 28.845 30.191 31.526 32.852 34.17 35.479 36.781 38.076 39.364 40.646 0.02 5.412 7.824 9.837 11.668 13.388 15.033 16.622 18.168 19.679 21.161 22.618 24.054 25.472 26.873 28.259 29.633 30.995 32.346 33.687 35.02 36.343 37.659 38.968 40.27 41.566 0.01 6.635 9.21 11.345 13.277 15.086 16.812 18.475 20.09 21.666 23.209 24.725 26.217 27.688 29.141 30.578 32 33.409 34.805 36.191 37.566 38.932 40.289 41.638 42.98 44.314 0.005 7.879 10.597 12.838 14.86 16.75 18.548 20.278 21.955 23.589 25.188 26.757 28.3 29.819 31.319 32.801 34.267 35.718 37.156 38.582 39.997 41.401 42.796 44.181 45.559 46.928 0.002 9.55 12.429 14.796 16.924 18.907 20.791 22.601 24.352 26.056 27.722 29.354 30.957 32.535 34.091 35.628 37.146 38.648 40.136 41.61 43.072 44.522 45.962 47.391 48.812 50.223 0.001 10.828 13.816 16.266 18.467 20.515 22.458 24.322 26.124 27.877 29.588 31.264 32.909 34.528 36.123 37.697 39.252 40.79 42.312 43.82 45.315 46.797 48.268 49.728 51.179 52.62 Procedure for Calculating Point Estimates and Confidence Intervals IEC 60505-4 Statistical Procedures for Exponential DistributionPoint Estimates, Confidence Intervals, Prediction Intervals and Tolerance Intervals IEC Tools For Reliability Assessment IEC 60300-3-5 Reliability Test Conditions and Statistical Test Principles IEC 11453 IEC 60605-4 IEC 11453 Point Estimate and Confidence Intervals for the Binominal Distribution IEC 60605-6 IEC 60605-4 Point Estimate and Confidence Intervals for the Exponential Distribution IEC 61649 Point Estimate and Confidence Intervals for the Weibull Distribution IEC 61649 IEC 61164 Important Distributions Exponential • • • • Constant Failure Rate Mixed Failure Modes Most Electronics Mean Life R(t)= 0.368 Normal • • • Wear-out Greater than 20 samples Mean Life R(t)= 0.5 Weibull • • • Can model a variety of different data types Infant mortality, constant failure rate, or wear-out. Good for limited samples Weibull Analysis Method for representing and interpreting data Provides a Reliability metric directly from plot Works well with small samples – life data (failures) provide more information (shape or slope), (characteristic life or scale), (location or offset) < 1 indicates infant mortality = 1 indicates random failures > 1 indicates wear out failures Weibull Analysis 1. 2. 3. 4. Failure Number 1 2 3 4 5 6 7 8 9 10 Acquire accurate time to failure data Rank the data first failure to last Plot the data on Weibull paper Interpret the plot 1. 2. 3. 4. Look for mixed modes Measure slope to determine Determine characteristic life Read R(t) Operating Time (Hours) 8 20 34 46 63 86 111 141 186 266 Median Rank Table Rank Order 1 2 3 4 5 6 7 8 9 10 1 50.00 2 29.29 70.71 3 20.63 50.00 79.37 4 15.91 38.57 61.43 84.09 Sample Size 5 6 12.94 10.91 31.38 26.44 50.00 42.14 68.62 57.86 87.06 73.56 89.09 7 9.43 22.85 36.41 50.00 63.59 77.15 90.57 8 8.30 20.11 32.05 44.02 55.98 67.95 79.89 91.70 9 7.41 17.96 28.62 39.31 50.00 60.69 71.38 82.04 92.59 10 6.70 16.23 25.86 35.51 45.17 54.83 64.49 74.14 83.77 93.30 Median Rank Estimate MR = (i-0.3) *100 (N+0.4) i= rank order # N=sample size Median Rank 10 Samples 6.70 16.23 25.86 35.51 45.17 54.83 64.49 74.14 83.77 93.30 MTTF vs. MTBF Start Failure MTTF- Mean Time To Failure 16hrs Expected time to fail for a non-repairable system Non-repairable systems can fail only once. MTTF is equivalent to the mean of its failure time distribution. Ex 16+12+14+6+8 = 56/5= 11.2 12hrs 14hrs 6hrs 8hrs MTBF- Mean Time Between Failure 16hrs Time Between Failures 12hrs 14hrs 6hrs Repair/Restore Repair/Restore Repair Time Repair/Restore Repair/Restore Expected time to fail for repairable systems Expected time between two consecutive failures for a repairable system MTBF= MTTF +MTTR Repair/Restore Repair/Restore 8hrs Operational Non-Operational 90 Rel Freq (Exp) 0.20 0.16 0.13 0.10 0.08 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 Exponential PDF Exponential 80 0.18 70 0.16 60 0.14 Probability Density 400 100 0 90 0.1 199.80 100 227.09 235.08 167.36 Failure Rate (Exp) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 50 40 30 0.12 0.1 y = 0.2e-0.2x 0.08 0.06 20 0.04 10 0.02 0 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Hours 0 10 20 30 Hours 0.25 Exponential CDF & Reliability Function Exponential (Relative Frequency) 1.2 0.20 1 0.15 y = 0.25e-0.223x 0.10 0.05 0.8 0.6 0.4 0.2 0 0.00 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Hours Lower Single-Sided Confidence Limit at 90% 3.5 Lower 2-Sided Confidence Limit at 90 % 3.4 Cumulative Density Function Reliability Function Total Accumulated Test Time (T) Number of Failures Number of Suspensions Confidence Limit Alpha 2r r Lower Single-Sided Lower 2-Sided Upper 2-Sided Cumul Time (Exp) 80 144 195 236 269 295 316 333 346 357 366 373 378 382 386 389 391 393 394 395 396 397 398 398 398 399 399 399 399 400 400 Counts 100 20 Cumul Failure (Exp) 20 36 49 59 67 74 79 83 87 89 91 93 95 96 96 97 98 98 99 99 99 99 99 100 100 100 100 100 100 100 100 Relative Frequency Total Qty At Start of Test % Failure Rate (Exponential) Remaining Interval Units Failures (Hour) (Exp) (Exp) 1 80 20 2 64 16 3 51 13 4 41 10 5 33 8 6 26 7 7 21 5 8 17 4 9 13 3 10 11 3 11 9 2 12 7 2 13 5 1 14 4 1 15 4 1 16 3 1 17 2 1 18 2 0 19 1 0 20 1 0 21 1 0 22 1 0 23 1 0 24 0 0 25 0 0 26 0 0 27 0 0 28 0 0 29 0 0 30 0 0 31 0 0 Total MTTF 4.0 Upper 2-Sided Confidence Limit at 90% 4.8 0 -0.2 5 10 15 20 25 30 Reliability Bathtub Curve Exponential Distribution = failure rate = constant Weibull Distribution < 1 indicates infant mortality = 1 indicates random failures > 1 indicates wear out failures System Reliability Rsystem = Rsubsystem1 *Rsubsystem2 *Rsubsystem3… *Ri Block Diagrams Series .97 .93 .98 .95 .93 .98 .95 R System = 0.84 Parallel-Series .97 .93 R System = 0.90 Success Run Test to Establish R & C Success Run Test, Test to a Bogey Based on a Binomial Distribution Test Results are Either Success or Failure Prove a Target Reliability with an assigned Confidence Level Don’t care about continuous measurement or calculating a parametric value, ie MTTF or failure rate Define the test conditions to represent 1 or more lives Operate without failure for a specified time Reliability, Confidence, and Sample Size related by Success Run Formula N= Sample Size, R= Reliability, C= Confidence Level Success Run Test to Establish R & C Calculate required number of samples based on R and C Example R= 97%, C= 50% Example R= 97.7%, C= 90% Binomial Distribution Nomograph for R/C/N HALT/HASS and Accelerated Testing Success Run Test to Establish R & C Define “One Life” R = 97.7%, C = 90%, N=100 8 hours/day x 365 days/year x 5 years = 14600hrs Test 24 hours/day 14600/24 = 608 hrs on test Apply Arrhenius model for Temperature Acceleration TAF= 11.5 Time on Test = 53 hours Ea= 0.8eV = 1.28 x 10-19 J k = 1.38 x 10-23J/K Tmax = +50C Ttest= +85C Time Dependent Failure Mechanisms OverstressESD, Mechanical Shock, Thermal Breakdown Time Dependent- Fatigue, Wear, Corrosion Failure Mode Failure Mechanism Accelerating Factors Loss of signal Silicon Diffusion Temperature Power Failure Dielectric Breakdown Electric Field Loss of signal Electromigration Temperature & Power Cycling Intermittent Output Corrosion & Oxidation of Fractures Humidity, Voltage, Temperature Loss of signal Dendrite Growth Humidity, Temperature Water Intrusion Seal Leaks Pressure Cracked Solder Joint Fatigue Thermal cycling & vibration Accelerated Stress Testing Acceleration Factors o Temperature o o Humidity o o o Arrhenius Model Lawson Model Coffin-Manson Vibration o Power Law and Miner Criteria m= S-N slope o Voltage o o Inverse Power Law Product Life Cycling o o CALT Testing Test to Failure & Apply Weibull Analysis MIL-HDBK-338 Table 8-7.1 Product Life Cycling Calibrated Accelerated Life Testing (CALT) Suggest primary fatigue mechanism Simulate loads at three stress levels 90% of foolish load (first test) 80% of first test load Third stress level Depends on first two and ultimate life Test all units to failure Plot S-N curve, Determine AF’s Generate Weibull Plot Product Life Cycling Accelerated Life Testing •“Accelerated Testing: Statistical Models, Test Plans, and Data Analysis” •By Wayne Nelson •CALT GMW 8758 •Example Automatic Lubricating System CALT Test Example •Simulate loads at three stress levels •Monitor test counting cycles to failure CALT Test Example Stress 36 36 36 36 31 31 31 31 25 25 25 25 •Collect Failure Data •AF = (Saccel/Snormal)b 100000 Cycles to Failure •Plot and determine Inverse Power Relationship Cycles To Failure 3121 1075 629 9452 11386 1104 6624 1577 11044 15405 19257 28723 Pump S-N Curve 10000 1000 -5.93 y = 3050953219559.39x 100 10 Determine AF's Condition High Stress Mid Stress Confirm Stress Normal Stress 100 Applied Stress (PSI) Stress Value (PSI) 36 31 25 15 Accel Factor 180 74 21 N/A CALT Test Example Stress Level Sort and apply median ranks Generate Weibull Plot High (IG) High (IG) High (IG) High (PP) Medium (PP) Medium (IG) Medium (PP) Medium (IG) Confirm (PP) Confirm (PP) Confirm (PP) Confirm (PP) Test Stress 3121 1075 629 9452 11386 1104 6624 1577 11044 15405 19257 28723 Accel Factor 180 180 180 180 74 74 74 74 21 21 21 21 Sorted Least to Most (Resort these numbers for each change to spreadsheet) 81757 113059 116785 193224 228397 318585 398246 490540 560979 594009 843189 1698933 Median Rank 5.61 13.60 21.67 29.76 37.85 45.95 54.05 62.12 70.24 78.33 86.40 94.39 Cycles at Normal Stress 560979 193224 113059 1698933 843189 81757 490540 116785 228397 318585 398246 594009 Rank 9 4 2 12 11 1 8 3 5 6 7 10 CALT Test Example Weibull Plot •Obtain distribution parameters •Reliability metrics •B1, B10 •Reliability vs life HALT/HASS and Accelerated Testing Vibration Testing Techniques Servo-Hydraulic Electro-Dynamic • Frequency Range 0.5Hz-300Hz • Programmable vibration characteristics; Sine, Random, Sine- • Frequency Range 3Hz-2,500Hz • Programmable vibration characteristics; Sine, Random, Sine-on- on-Random, Random-on-Random, Field Data Replay, Mechanical Shock • Displacement generally up to 12” p-p • Multi-axis motion from multiple cylinders Random, Random-on-Random, Field Data Replay, Mechanical Shock • Displacement generally limited to 2-3” p-p • Single axis motion Repetitive Shock • Frequency Range 20Hz-10,00Hz • Vibration output quasi-random with limited PSD shaping • Six-axis simultaneous vibration • High G peak levels • Displacement generally limited to 0.5” Electro-Dynamic Vibration Machine Thermotron armature and cut-away illustration here??? Armature Body Thrust Armature Field Current Field coil Center Pole Base Vibration Time & Frequency Domain 0.1 G2/Hz Power Spectral Density (PSD) Hz 2 1 G pk 50 Hz 2 G pk 1 100 Hz Random Vibration Probability Density Function = Grms 1 accelerations occur 68% of the time 2 accelerations occur 27% of the time 3 accelerations occur 4% of the time >3 accelerations occur less than 1% of the time -5 -4 -3 -2 - o 2 3 4 5 Random Vibration Power Spectral Density Plots Which is the more severe test? 0.1 G2/Hz 0.2 0.2 Hz 0.2 0.1 0.1 G2/Hz G2/Hz 0.2 0.2 Hz 0.2 0.2 0.2 Hz 0.2 Power Spectral Density Plots Vibration Testing Vibration fatigue failures are caused by stress reversals Vibration at resonance amplifies damage High accelerations generate proportional Displacements, Velocities, and Forces, and damage A higher concentration of High G peak accelerations has the potential for greater damage Most ED vibration testing limits peak accelerations to 3-sigma RS vibration generates a greater proportion of High G peak accelerations HALT/HASS and Accelerated Testing Which Tests To Run Input from all departments Determine failure modes (FMEA) Consider complete life cycle of product Suggest stresses that will precipitate failures Maximum Stress vs Time Dependent Develop test plan Execute test Failure of Electronic Equipment 20 year U.S. Air Force Study 55% of failures due to high temperature and thermal cycling 20% of failures due to vibration and shock 20% due to humidity New Product Development Testing Screens New Product HALT, HAST, ESD, Power Cycle, EMI RTCA DO-160 MIL-810, SAE J1455 Temp, Vibration, Shock, Waterproofness, Altitude, Humidity HASS Analysis Phase Development Phase Qualitative Testing Qualification Testing Qual Retest Quantitative Testing Manufacturing Screen Essential Reliability Reference Documents Vibration Analysis For Electronic Equipment, David S. Steinberg, Third Edition MIL-HDBK-338B Oct 1998 Military Handbook- Electronic Reliability Design Handbook The New Weibull Handbook, R.B. Abernathy Practical Reliability Engineering, Patrick O'Connor IEC 60300-3-5 Reliability Test Conditions and Statistical Test Principles GMW 3172:2010 HALT/HASS and Accelerated Testing HALT and Relaibility Workshop Any Questions? Thank You!