KN DODH Biorefin - Frontiers in Biorefining 2016
Transcription
KN DODH Biorefin - Frontiers in Biorefining 2016
Rhenium-‐Catalyzed, Sulfite-‐ Driven Deoxydehydra9on of Polyols Kenneth Nicholas Department of Chemistry and Biochemistry Deoxydehydra9on of Polyols (DODH) carbohydrates, polyols + Red CnH2n+2On LMO2-4 olefins, unsaturated alcohols + Red-O + H2O CnH2nOn-2 features: - replace 2 OH with C=C - produces higher energy product - requires selective –OH activation/removal 2 Prior Re-‐Catalyzed Deoxydehydra9on of Diols/Epoxides Cataly6c Diol Deoxydehydra6on (DODH) with PPh3 reductant HO OH + PPh3 R Cp*ReO3 100 oC + R OPPh3 + H2O Cp* = Me5C5 Cook and Andrews, J. Am. Chem. Soc. 1996, 118, 9448 K. Gable and B. Ross, ACS Symposium Series, 2006, 921, 143-‐155 3 Proposed PR3-‐Driven, Re-‐Catalyzed DODH Pathway Gable and Andrews 4 Cataly6c Diol DODH with H2 reductant HO OH + H2 R MeReO3 (4-20 atm) 150 oC + R OPPh3 + H2O (18-60%) Abu-‐Omar et al. Inorg. Chem. 2009, 48, 9998 Cataly6c DODH with alcohol reductant E. Acero, J. Ellman and R. Bergman, J. Am. Chem. Soc. 2010, 132, 11408. 5 More Prac9cal Reductants for Polyol DODH 6 Results and Discussion reac=on screening: methods: -‐ reac6ons conducted @150 oC in benzene or chlorobenzene (sealed tube) -‐ stoichiometry: 1.0 glycol/1.2 sulfite/0.05-‐.10 catalyst -‐ reac6on mixtures analyzed by GC, GC-‐MS and H-‐NMR 7 Substrate, solvent, addi9ve effects on MeReO3 catalysis S. Vkuturi, G. Chapman, I. Ahmad, K.M. Nicholas, Inorg. Chem. 2010, 49, 4744. 8 Competing Side Reactions R HO OH + Na2SO3 MeReO3 150 oC Ph minor : major OH O Ph R R + H H O + O Ph OH (+ isomers) acid-catalyzed 9 Na+ ReO4- also catalyzes DODH; additives enhance conversion rate C6H11 HO OH + Na2SO3 Na+ ReO4- C6H11 + Na2SO4 + 150 oC H2O Conversion % 100 80 60 NaReO4 NaReO4+ 15-C-5 NaReO4+ 15-C-5 + 2Na SO4 40 20 0 10 20 30 40 50 60 70 80 90 100 time (h) 10 Substrate, catalyst effects on Z+ReO4- DODH R HO Substrate Ph HO OH HO OH OH + Na2SO3 ZReOx R 150 oC + Na2SO4 + Catalyst t (h) Conv.b % Yield % NaReO4 NH4ReO4 Bu4NReO4 Re2O7 40 12 59 63 100 100 100 80 53 34 71 23 NaReO4 NH4ReO4 Bu4NReO4 42 26 100 98 100 100 38 37 68 H2O Major product Ph 11 Substrate, catalyst effects on Z+ReO4- DODH R HO Substrate C8H17 HO Bu4N+ReO4- R 150 oC + Na2SO4 + H2O Catalyst t (h) % Conv. % Yield Major product MeReO3 Bu4NReO4 45 110 100 100 80 70 C8H17 MeReO3 Bu4NReO4 67 110 99 100 60 89 C12H25 OH C12H25 HO OH + Na2SO3 OH 12 Solvent-free DODH OH OH + C6H11 Na2SO3 (xs) OH OH + Ph Na2SO3 (xs) OH HO OH + (xs) Na2SO3 MeReO3 150 oC sealed tube C6H11 + H2O 60% NaReO4 150 oC distil NaReO4 150 Ph 58 % HO oC distil + H2O + H2O 10-20 % 13 Sulfite and Ligands Effects on MeReO3-Catalyzed DODH R HO OH + Na2SO3 MeReO3 L 150 oC (R= C6H11) R + Na2SO4 + Entry Ligand Red. 1 -‐ Na2SO3 2 -‐ (NH4)2SO3 3 pyridine 4 H2O % conv. % yield 100 50 Na2SO3 20 10 pyridine (NH4)2SO3 98 62 5 4-‐methylpyridine " 90 34 6 4-‐Me2N-‐pyridine " 53 25 7 4-‐cyanopyridine " 99 50 8 pyrazine " 99 57 9 (i-‐Pr)2NEt " 85 58 14 Ligand Effects on Bu4NReO4-catalyzed DODH R HO + Na2SO3 OH Bu4N+ReO4- R L 150 oC (R= Ph) + Na2SO4 + H2O Entry Ligand Substrate Time (h) % Conv. % Yield 1 - octanediol 100 100 68 2 pyridine octanediol 293 100 69 3 bipyridine octanediol 267 100 56 4 2,6-dimethylpyridine octanediol 125 100 66 5 - styrenediol 59 100 71 6 2,6-dimethylpyridine styrenediol 65 100 60 7 pyridine N-oxide styrenediol 40 ~90 31 8 triphenylphosphine oxide styrenediol 40 ~85 38 15 Probable Catalytic Pathways path A path B SO32- Z HO Re O O O 1 SO42- ethers, RCH2CHO R Re O 4 Z OH O R H2O Re V O O 3 R O Re O O O 2 R comments: -‐ the viability of both paths A and B have been demonstrated, e.g.: H2O O VII V HO - H2O Z Z O OH VII O + R SO32SO42Z = Me, Ar, Cp*, O- H H H -‐ MeReO3 (1) forms glycolate complex 2 at rt (Keq=0.2 with R=Ph); hea6ng 2 with sulfite produces styrene (via path A). -‐ Hea6ng 1 with sulfite first produces a precipitate (possibly MeReO2 4); hea6ng "4" with glycol (R=Ph) produces styrene (via path B) R 16 Take Home Lessons and Plans * The first cataly6c deoxydehydra6on processes employing sulfite as the reductant have been discovered. * Commercial MeReO3 and Z+ReO4-‐ are effec6ve catalysts for the glycol to olefin conversion. * Efforts are underway: - to extend DODH to biomass polyols such as glycerol and carbohydrates - to identify the catalytic mechanisms - to improve the catalytic activity and efficiency via new catalysts and reductants 17 Garry Chapman Dr. Irshad Ahmad 18 Acknowledgements Dr. Saidi Vkuturi Garry Chapman Dr. Irshad Ahmad $ Oklahoma Bioenergy Center (OBC) and the NSF-‐EPSCOR Cellulosic Bioenergy Program 19
Similar documents
DODH 4-12a - Oklahoma EPSCoR
Concurrent with our group's work: MeReO3 (cat) + H2 (RA) M. Abu-Omar et al. (Purdue), Inorg. Chem. 2009, 48, 9998.!
More information