Tadeusz Gerstenkorn*
Transcription
Tadeusz Gerstenkorn*
ACTA UNIVERSITATIS LODZIENSIS FO LIA O ECONOM ICA 225, 2009 Tadeusz Gerstenkorn* LIMIT PROPERTY OF A COMPOUND OF THE GENERALIZED NEGATIVE BINOMIAL AND BETA DISTRIBUTIONS A bstract In Central European Journal o f Mathematics (CEJM) 2(4) 2004, 527-537 T. Gerstenkorn published a probability distribution as a result o f compounding o f the generalized negative binominal distribution with the generalized beta distribution. Assuming that a param eter o f that distribution (w) tends to infinity one obtains a new limit distribution, interesting also in some special cases. Key w ords: generalized negative binomial distribution, generalized beta distribution, compound distribution, limit theorems o f the compound distribution. 1. G eneralized probability distributions In “Central European Journal o f Mathematics” (CEJM) 2(4) 2004, 527-537 T. G e r s t e n k o r n published the paper A compound o f the generalized negative binomial distribution with the generalized beta distribution. In 1971 G. C. J a i n and P. C. C o n s u l published a generalized negative binomial distribution. After a correction o f W. D y c z k a in 1978 it can be written in the form GNBD(x; n , p , ß ) = Pp{x\ n, p ) = n +ßx v n + ßx p x{ \ - p r ßx-x, x = 0,1,2,... x where: 0<р<1, n > 0, ß p <1 and ß > \ (1) * Professor o f the Faculty o f Mathematics o f the University o f Łódź: Professor o f the Academy o f Social and Media Culture in Toruń. [Ill] or О < p < 1, и e N, / 7 = 0 (2) If ß = 1 one obtains the negative binomial distribution. In the case (2) one obtains the binomial distribution and for n e N , ß = 1 the Pascal distribution. The generalized beta distribution (GBD) is defined as follows: f ay GBD(y; a,b,w ,r) = (bw)r aB( r / a, w) «v - 1 1 -^ if 0 < y < ( b w ) ' ln, 0 if у < 0 or у > (ftw)'/0 where a, b , r , w > 0 and B(r/a, w) is a beta function. This distribution is a special case o f a Bessel distribution investigated by T. Ś r ó d k a (1973). It was also analysed by J. S e w e r y n (1986) and W. O g i ń s k i (1979) and applicated in reliability theory. 2. T he com pound distribution By compounding these two distributions in respect o f Y, that is GNBD л GBD Y one obtains the distribution PflGB(x) = D Y J( - c ) k 4 'n +ß x - x X , - n( x +r +k (bw)“В --------,w where: n + fix D =n + fix cx(bw)a B( r / a, w) while a , b , w , r > 0, ficy < 1, 0<cy<l,.n>0, f i > 1. If ß = 0 (binomial distribution) one obtains a distribution given in 1982 by T. G e r s t e n k o r n , i.e. cx(bw) x/a P0GB(x) = V*/ B ( r / a 9w) к ' x +r +k N ,w , x = 0, 1 ,2 ... (.bw)a В < a < k , 'n -x' k=0 When /7 = 1 and n = 1, 2, ..., one obtains from PpGB(x) a compound distribution Pascal л generalized beta in the form n + x -1 P,GB{x) = 4 * * ' x +r +k N ,w Ä £ ( - c) * r (bw)“ В U J. К a / U J B (r /a ,w )fťo from which one also can obtain interesting special cases, as it was with the binomial distribution. In the paper treated b y T . G e r s t e n k o r n (2004) there were also given other special cases. In that paper there is also to find (Theorem 4.2, formula (15)) a formula for the factorial moment o f order I o f the compound distribution of the negative binomial distribution with the generalized beta one, i.e. sb -gb к ' I +r + к N (~c)k (bw)" В ,w B ( r / a , w„л) L t ,0 <k ; \ a n ^ c 'jb w y ^ where = n(n + 1)(л + 2)...(« + / -1 ). 3. L im it distributions For the presented compound distribution PpGB(x) we obtain an interesting limit distribution. Namely, we have T heorem 1. If w -> oo, then oo k_ lim PßGB(x) = LP„GB(x) = Z>, У b" (-c)* to ' n +ß x - x ' ч k , г1 ' x + r + k^\ I a J or, if n, ß x e N , then n+ßx-x k LPpGB(x) = Z), X b '{ -c )k ' n +ß x-x" V к* О * ^ x + r +к Л 1г a J > I where x_ŕ.. n +, ßox..\ n c 'b “ Ч * У D\ =r (л + Дх)Г Proof. Taking in account the following limit properties i r— »lim v— »XfJ f/ W) . -уф7К = 1, lim w — >00м / •B(y, w) = Г(>>) (see, e.g. J. A n t o n i e w i c z (1969, p. 433); fonnula 8.35.4), we have ncxbu n + ßx k f я: к lim PaGB(x) = / \ Х > ч -с) ľ (n + ß x ) ■Г \ и/ íу \ —+ w lim- х+ г+ к ■w 0 T(w )-\va В ( х +г +к ----------, w = LPpGB(x). \ a Regarding the limit process ( w -» oo) we also obtain the following T heorem 2. The factorial moment o f order / of the limit distribution is expressed by L(NB-CB) ч'> / к „ i'. - Vc °a « S*P ' - 0 Г/ + г + АЛ _ n (-с)* ba ■ Г (Г „ \ 2-j к-0 < kJ V« I « J R cferenccs A n t o n i e w i c z J. (1980), Tablice fu nkcji dla inżynierów (Tables o f fu nctions fo r engineers), 2nd edition, W arszawa-W arsaw ( IS1 ed. 1969). D y c z k a W. (1978), A generalized negative binomial distribution as a distribution o f PSD class, „Zeszyty Naukowe Politechniki Łódzkiej” - Scicnt. Bull. Łódź Techn. Univ., 272, Matematyka 10, 5-14. G e r s t e n k o r n T. (1982), The compounding o f the binom ial and generalized beta distributions, [in:] Proc. 2"d Pannonian C o n f on Matliem. Statistics. Tatzmannsdorf, Austria. 1981, eds W. Grossmann, G. Ch. Pflug and W. Wertz, D. Reidcl Publ., Dordrecht, Holland, 87-99. G e r s t e n k o r n T. (2004), A compound o f the generalized negative binom ial distribution with the generalized beta distribution, “Central European Journal o f M athematics (CEJM )” 2(4), 527-537. J a i n G. С., C o n s u 1 P. C. (1971), A generalized negative binomial distribution, SIAM J. Appl. Math, 21, 4, 507-513. O g i ń s k i L. (1979), Zastosowanie pewnego rozkladu typu Bessela w teorii niezawodności (Application o f a distribution o f the Bessel type in the reliability theory, in Polish), „Zeszyty Naukowe Politechniki Łódzkiej” - Scient. Bull. Łódź Techn. Univ., 324, Matematyka 12, 31-42. S e w e r y n J. G. (1986), Some probabilistic properties o f Bessel distributions, „Zeszyty Naukowe Politechniki Łódzkiej" - Scient. Bull. Łódź Techn. Univ., 466, Matematyka 19, 69-87. Ś r o d k a 'Г. (1973), On some generalized Bessel-type probability distribution, „Zeszyty Naukowe Politechniki Łódzkiej” - Scicnt. Bull. Łódź. Techn. Univ., 179, Matematyka 4, 5-31. Tadeusz Gerstenkorn W łasność graniczna złożonego rozkładu uogólnionego ujem nego dw um ianow ego z uogólnionym beta W czasopiśmie „Central European Journal o f Mathematics (CEJM )”, 2(4) 2004, 527-537 T. Gerstenkorn podal rozkład prawdopodobieństwa, który jest wynikiem złożenia uogólnionego ujemnego rozkladu dwumianowego z uogólnionym beta. Zakładając, że jeden z parametrów rozkładu (w) dąży do nieskończoności, otrzymuje się nowy rozkład graniczny, ciekawy także w przypadkach szczególnych.