Marcin Renke
Transcription
Marcin Renke
GDAŃSKI UNIWERSYTET MEDYCZNY Marcin Renke AKTUALNE MOŻLIWOŚCI LECZENIA NEFROPROTEKCYJNEGO – BLOKADA UKŁADU RENINA-ANGIOTENSYNA-ALDOSTERON I CO DALEJ? Rozprawa habilitacyjna Katedra i Klinika Nefrologii, Transplantologii i Chorób Wewnętrznych Gdańskiego Uniwersytetu Medycznego Kierownik: Prof. dr hab. med. Bolesław Rutkowski Gdańsk 2010 Wydano za zgodą Senackiej Komisji Wydawnictw Gdańskiego Uniwersytetu Medycznego Wydawca: Gdański Uniwersytet Medyczny Druk: Dział Wydawnictw GUMed Gdańsk, ul. Marii Skłodowskiej-Curie 3a Zlecenie KW/10/11 SPIS TREŚCI WYKAZ PUBLIKACJI BĘDĄCYCH PRZEDMIOTEM ROZPRAWY HABILITACYJNEJ ................................................................................................................... 5 SPIS UŻYWANYCH SKRÓTÓW ............................................................................................ 7 1. WSTĘP .................................................................................................................................. 9 1.1. Przewlekła Choroba Nerek, epidemiologia i patogeneza ........................................... 9 1.2. Nefroprotekcja i aktualne możliwości jej optymalizacji........................................... 10 2. CEL BADAŃ ...................................................................................................................... 12 3. MATERIAŁ I METODY .................................................................................................... 13 4. OMÓWIENIE WYNIKÓW ................................................................................................ 14 4.1. Dawkowanie Inhibitorów Konwertazy Angiotensyny w nefroprotekcji ................. 14 4.2. Terapia potrójna hamująca układ Renina-Angiotensyna-Aldosteron ....................... 15 4.3. Zastosowanie N-acetylocysteiny w nefroprotekcji ................................................... 16 4.4. Zastosowanie atorwastatyny u chorych z PChN....................................................... 17 4.5. Zastosowanie pentoksyfiliny w nefroprotekcji ......................................................... 18 4.6. Bezpieczeństwo stosowania badanych schematów podawania leków potencjalnie nefroprotekcyjnych ................................................................................................... 19 4.7. Perspektywy i dalsze badania.................................................................................... 19 4.8. Krytyczna ocena materiału i metod........................................................................... 20 5. PODSUMOWANIE ............................................................................................................ 21 6. WNIOSKI............................................................................................................................ 23 7. PIŚMIENNICTWO ............................................................................................................. 24 8. PRACE BĘDĄCE PRZEDMIOTEM ROZPRAWY .......................................................... 31 WYKAZ PUBLIKACJI BĘDĄCYCH PRZEDMIOTEM ROZPRAWY HABILITACYJNEJ Praca A: Tylicki L., Renke M., Rutkowski P., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B. Dual blockade of the renin-angiotensin-aldosterone system with high-dose angiotensin-converting enzyme inhibitor for nephroprotection: an open, controlled, randomized study. Scand. J. Urol. Nephrol.2008; vol. 42, nr 4, s. 381-388. (IF 0,909; KBN/MNiSW 10) Praca B: Renke M., Tylicki L., Knap N., Rutkowski P. Neuwelt A., Petranyuk A. Larczyński W., Woźniak M., Rutkowski B.: High-dose angiotensin-converting enzyme inhibitor attenuates oxidative stress in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2009; vol. 24, nr 2, s. 689-690. (IF 3,303; KBN/MNiSW 32) Praca C: Tylicki L., Rutkowski P., Renke M., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B. Triple pharmacological blockade of the renin-angiotensinaldosterone system in nondiabetic CKD : an open-label crossover randomized controlled trial. Am. J. Kidney Dis. 2008; vol. 52, nr 3, s. 486-493. (IF 4,822; KBN/MNiSW 24) Praca D: Renke M., Tylicki L., Knap N., Rutkowski P., Neuwelt A., Larczyński W., Woźniak M., Rutkowski B.: Spironolactone attenuates oxidative stress in patients with chronic kidney disease. Hypertension 2008; vol. 52, s. e132-e133. (IF 7,368; KBN/MNiSW 24) Praca E: Renke M., Tylicki L., Rutkowski P., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B. The effect of N-acetylcysteine on proteinuria and markers of tubular injury in non-diabetic patients with chronic kidney disease : a placebo-controlled, randomized, open, cross-over study. Kidney Blood Press. Res. 2008; vol. 31, nr 6, s. 404-410. (IF 1,268; KBN/MNiSW 20) –5– Praca F: Renke M., Tylicki L., Rutkowski P., Larczyński W., Neuwelt A., Aleksandrowicz E., Łysiak-Szydłowska W., Rutkowski B. The effect of N-acetylcysteine on blood pressure and markers of cardiovascular risk in non-diabetic patients with chronic kidney disease: a placebo-cotrolled, randomized, cross-over study. Med. Sci. Monit. 2010; 16, 7, s 13-18. (IF 1,543; KBN/MNiSW 20) Praca G: Tylicki L., Renke M., Rutkowski P., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B. Effects of N-acetylcysteine on angiotensin converting enzyme plasma activity in patients with chronic kidney diseases. Blood Purif. 2008; 26, 4, s. 354. (IF 1,748; KBN/MNiSW 15) Praca H: Renke M., Tylicki L., Rutkowski P., Neuwelt A., Larczyński W., Ziętkiewicz M., Aleksandrowicz E., Łysiak-Szydłowska W., Rutkowski B. Atorvastatin improves tubular status in non-diabetic patients witch chronic kidney disease – placebo controlled, randomized, cross-over study. Acta Biochim. Pol. 2010; vol. 57, nr 4, s 547-552. (IF 1,262; KBN/MNiSW 20) Praca I: Renke M., Knap N., Tylicki L., Rutkowski P. Neuwelt A., Larczyński W., Woźniak M., Rutkowski B.: Atorvastatin attenuates oxidative stress in patients witch chronic kidney disease. Med. Sci. Monit. 2010; vol. 16, nr 3, s. LE3. (IF 1,543; KBN/MNiSW 20) Praca J: Renke M., Rutkowski P., Tylicki L., Ziętkiewicz M., Larczyński W., Rutkowski B. Pentoksyfilina stary lek czy nowa nadzieja nefrologii? Przegl. Lek. 2008; 65, 7/8, s. 358-361. (KBN/MNiSW 4) Praca K: Renke M., Tylicki L., Rutkowski P., Knap N., Ziętkiewicz M., Neuwelt A., Aleksandrowicz E., Łysiak-Szydłowska W., Woźniak M., Rutkowski B. Effect of pentoxifylline on proteinuria, markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease : placebo controlled, randomized, cross-over study. Acta Biochim. Pol. 2010; vol. 57, nr 1, s. 119-123. (IF 1,262; KBN/MNiSW 20) –6– SPIS UŻYWANYCH SKRÓTÓW α1m - α1-mikroglobulina AlAT - aminotransferaza alaninowa AspAT - aminotransferaza asparaginianowa ARA - antagonista receptora AT-1 dla Angiotensyny II ATO - atorwastatyna CK - kinaza kreatynowa CRP - białko C-reaktywne GFR - wskaźnik filtracji kłębuszkowej eGFR - wyliczony wskaźnik filtracji kłębuszkowej GSH - glutation IKA - Inhibitor Konwertazy Angiotensyny KDIGO - The Kidney Disease: Improving Global Outcomes K/DOQI - Kidney Disease Outcomes Quality Initiative NAC - N-acetylocysteina NAG - N-Acetylo-β-D-Glukozamina NHANES III - Third National Health and Nutrition Examination Survey NKF - National Kidney Foundation PIIINP - aminokońcowy propeptyd prokolagenu typu III PChN - Przewlekła Choroba Nerek PNN - przewlekła niewydolność nerek PTF - pentoksyfilina RAA - układ renina-angiotensyna-aldosteron UCK GUMed - Uniwersyteckie Centrum Kliniczne Gdańskiego Uniwersytetu Medycznego –7– 1. WSTĘP 1.1. Przewlekła Choroba Nerek, epidemiologia i patogeneza Przewlekłą Chorobę Nerek (PChN) rozpoznajemy, zgodnie z zaleceniami amerykańskiej organizacji National Kidney Foundation (NKF), gdy spełniony jest jeden z poniższych warunków: co najmniej przez 3 miesiące obserwuje się uszkodzenie nerek czynnościowe lub strukturalne z prawidłowym lub zmniejszonym wskaźnikiem filtracji kłębuszkowej (GFR) lub GFR wynosi w tym okresie stale poniżej 60 ml/min/1,73 m2. Klasyfikacja PChN wg NKF została zawarta w tabeli 1. Wyniki badań epidemiologicznych przeprowadzonych w wielu krajach na różnych kontynentach wskazują, że PChN może występować u 6 a nawet 15% badanej populacji, co stanowi 380, a nawet 870 milionów (średnio około 600 mln) ludzi na świecie. Dane na ten temat uzyskano między innymi z badań: NHANES III, przeprowadzonego w Stanach Zjednoczonych Ameryki Północnej, AusDiab w Australii, OGHMA w Japonii i PREVEND oraz HUNT zakończonych w Holandii i Norwegii. W Polsce wyniki badania PolNef wskazują, że problem ten może dotyczyć nawet 4 milionów osób [14]. Nawet te szacunkowe dane wskazują, że PChN jest istotnym problemem epidemiologicznym, który stanowi również poważny problem ekonomiczny dla większości krajów świata. Skłania to nefrologów na całym świecie do poszukiwania skutecznych metod nefroprotekcji, które byłyby w stanie zmniejszyć liczbę chorych u których dochodzi do progresji choroby w kierunku schyłkowej niewydolności nerek. W efekcie można by doprowadzić do zwolnienia narastania zapotrzebowania na kosztowne leczenie nerkozastępcze. W 2006 roku w Polsce liczba osób dializowanych wzrosła o 5,24%, a w 2007 o 6,27% (865 osób), łącznie dializowano w 2007 roku 18 214 chorych. Oznacza to, że liczba leczonych dializami stale wzrasta i roczny przyrost jest podobny jak w większości krajów europejskich (4-6%). Wszystko wskazuje na to, że zgodnie z przewidywaniami zawartymi w „Raporcie o Stanie Leczenia Nerkozastępczego – 2002” liczba chorych leczonych nerkozastępczo w naszym kraju w 2010 roku wyniesie 27 000 pacjentów [38]. Warto dodać, że we wszystkich badaniach epidemiologicznych znajduje potwierdzenie to, że czynnikami mającymi wpływ na częstsze występowanie PChN są nadciśnienie tętnicze, cukrzyca, płeć męska, otyłość, wiek i palenie tytoniu. Skuteczne działania nefroprotekcyjne, a więc postępowanie mające na celu ochronę funkcji nerek u chorych ze stadiami PChN od I do IV, są nie–9– zmiernie ważne i powinny być wspierane nie tylko przez nefrologów, ale również organizatorów ochrony zdrowia w naszym kraju. Poszukiwanie skutecznych metod nefroprotekcji, również farmakologicznych, jest tylko częścią trudnego zadania zahamowania epidemii chorób cywilizacyjnych, które niewątpliwie mają wpływ na jakość i długość życia współczesnego człowieka. Tabela 1. Klasyfikacja przewlekłej choroby nerek według NKF K/DOQI w modyfikacji KDIGO Stadium Opis 1 2 3 GFR (ml/min/1,73 m2) Uszkodzenie nerek z prawidłowym GFR Uszkodzenie nerek z niewielkim ↓ GFR Umiarkowane ↓ GFR > 90 Inne określenia Albuminuria, białkomocz, hematuria T, jeżeli po przeszczepie nerki Utajona PNN 60-89 30-59 4 Znaczne ↓ GFR 15-29 5 Schyłkowa niewydolność nerek < 15 (lub dializa) Wyrównana PNN Zaawansowana PNN Niewyrównana PNN, mocznica D, jeżeli dializowany NKF K/DOQI – The National Kidney Foundation Kidney Disease Outcomes Quality Initiative, KDIGO – The Kidney Disease: Improving Global Outcomes, PNN – przewlekła niewydolność nerek. Według: Levey A.S. i wsp.: Kidney Int. 2005, 67,2089-2100. [15] 1.2. Nefroprotekcja i aktualne możliwości jej optymalizacji Ochrona funkcji nerek powinna być brana pod uwagę, u każdego człowieka, także zdrowego. Wielu chorobom nerek można zapobiegać, a u pacjenta z rozpoznaną PChN spowolnić jej postęp. Należy dodać, że spowalniając postęp PChN opóźnia się nie tylko moment rozpoczęcia leczenia nerkozastępczego, ale również zmniejsza się ryzyko śmierci wskutek powikłań sercowo-naczyniowych. Wprowadzenie do praktyki klinicznej postępowania nefroprotekcyjnego stało się możliwe po poznaniu i analizie mechanizmów leżących u podstaw postępującego uszkodzenia ne- – 10 – rek. Ważna okazała się hipoteza postawiona przez Brennera, który wskazał na istotną rolę zmian hemodynamicznych wewnątrz kłębuszków nerkowych w odpowiedzi na uszkodzenie nefronów [7]. Stało się to podstawą do badań, które potwierdziły rolę nadmiernej aktywacji układu renina-angiotensyna-aldosteron (RAA) w postępie niewydolności nerek. Przeprowadzono również szereg badań, które udowodniły nefroprotekcyjny potencjał leków hamujących układ RAA. Były to między innymi duże badania kliniczne potwierdzające właściwości inhibitorów konwertazy angiotensyny I (IKA) wśród chorych z nefropatią cukrzycową (Collaborative Study Group, BENEDICT) i niecukrzycową (REIN, AASK) oraz antagonistów receptora AT-1 dla angiotensyny II (ARA): IDNT, RENAAL, DETAIL i wiele innych [45]. Również w Klinice Nefrologii, Transplantologii i Chorób Wewnętrznych od końca lat 90. poprzedniego stulecia przeprowadzono szereg programów poświęconych optymalizacji leczenia nefroprotekcyjnego przy pomocy farmakologicznej blokady układu RAA [33,34,39,49], które były podstawą rozprawy habilitacyjnej Kolegi Leszka Tylickiego. Niewątpliwie farmakologiczna blokada układu RAA jest podstawową strategią nefroprotekcyjną stosowaną w leczeniu pacjentów z PChN. Jednak w ten sposób nie udaje się całkowicie zahamować postępu choroby. Prowadzi to do poszukiwania uzupełniających strategii terapeutycznych i/lub modyfikacji dotychczas stosowanych. Cykl badań przeprowadzonych w ostatnich latach pod kierownictwem Pana Profesora Bolesława Rutkowskiego, który miał na celu poprawę istniejących standardów postępowania nefroprotekcyjnego u chorych z niecukrzycową przyczyną PChN stał się podstawą niniejszej rozprawy habilitacyjnej. – 11 – 2. CEL BADAŃ • Ocena wpływu terapii skojarzonej ARA i IKA w dawkach ponad maksymalnych na białkomocz, biomarkery uszkodzenia cewek nerkowych, włóknienia i stresu oksydacyjnego u chorych z PChN nie będącą następstwem cukrzycy. • Ocena wpływu terapii skojarzonej potrójnej blokującej układ RAA (IKA, ARA i antagonista aldosteronu) na białkomocz i wydalanie z moczem biomarkerów uszkodzenia cewek nerkowych, stresu oksydacyjnego oraz włóknienia u chorych z PChN nie będącą następstwem cukrzycy. • Ocena wpływu dodania N-acetylocysteiny (NAC) do terapii blokującej układ RAA na wartości ciśnienia tętniczego, aktywność osoczową enzymu konwertującego angiotensynę, białkomocz, homocysteinę i biomarkery uszkodzenia cewek nerkowych u chorych z PChN nie będącą następstwem cukrzycy. • Ocena wpływu dołączenia atorwastatyny (ATO) do terapii blokującej układ RAA na białkomocz i wydalanie z moczem biomarkerów uszkodzenia cewek nerkowych oraz stresu oksydacyjnego u chorych z PChN nie będącą następstwem cukrzycy. • Ocena wpływu dodania pentoksyfiliny (PTF) do terapii blokującej układ RAA na białkomocz i wydalanie z moczem biomarkerów uszkodzenia cewek nerkowych oraz stresu oksydacyjnego u chorych z PChN nie będącą następstwem cukrzycy. – 12 – 3. MATERIAŁ I METODY Przeprowadzono badania, wśród chorych w wieku od 18 do 65 lat z białkomoczem pochodzenia niecukrzycowego, z prawidłową lub nieznacznie upośledzoną funkcją nerek będących pod stałą opieką Poradni Chorób Nerek przy UCK GUMed w latach 2004 – 2008. Badania rozpoczynano od okresu wstępnego w którym chorzy otrzymywali leczenie nefroprotekcyjne z użyciem leków blokujących układ RAA (IKA i/lub ARB). Pacjenci byli kwalifikowani do dalszej części projektu jeżeli ich wartości ciśnienia tętniczego były niższe od 130/80 mm Hg. Następnie chorzy byli randomizowani do badania i w zależności od schematu badawczego, szczegółowo opisanego w poszczególnych artykułach, otrzymywali dalsze leczenie. Oznaczenia wykonywano w trakcie randomizacji i po każdym okresie badania. Podczas prowadzonych badań oznaczono: ciśnienie tętnicze krwi, kreatyninę, poziom potasu w surowicy krwi, białkomocz dobowy, albuminurię, biomarkery uszkodzenia cewek nerkowych oznaczane w moczu: α1-mikroglobulinę (α1m) [12] i N-Acetylo-β-D-Glukozaminę (NAG) [3] i pośredni marker włóknienia – aminokońcowy propeptyd prokolagenu typu III (PIIINP) [41] oraz wydalanie z moczem 15-F2α-izoprostanów (biomarker stresu oksydacyjnego). Ponadto w wybranych badaniach oznaczano aktywność reninową osocza, poziom homocysteiny, wysoko czułe białko C-reaktywne (hsCRP), aminotransferazy alaninowej (ALAT), aminotransferazy asparaginianowej (AspAT), kinazy kreatynowej (CK) oraz poziomy cholesterolu i triglicerydów. Łącznie przeprowadzono badania u 92 chorych. Szczegółowy opis grup badanych pacjentów i stosowanych metod badawczych został zawarty w poszczególnych artykułach będących przedmiotem rozprawy habilitacyjnej, zamieszczonych w rozdziale 8. – 13 – 4. OMÓWIENIE WYNIKÓW 4.1. Dawkowanie Inhibitorów Konwertazy Angiotensyny w nefroprotekcji Jak do tej pory nie ustalono optymalnego nefroprotekcyjnego dawkowania IKA oraz ARA. Udowodniono, że zarówno małe, jak i standardowo stosowane dawki IKA i ARA w leczeniu nadciśnienia tętniczego zmniejszają białkomocz oraz mają korzystny wpływ na biomarkery uszkodzenia cewek nerkowych. Jednocześnie efekt ten jest zależny od dawki. Małe dawki IKA, ramiprilu w badaniu DIABHYCAR, nie wpływały na zwolnienie progresji uszkodzenia nerek, pomimo zmniejszenia albuminurii [18]. Wydawać się więc by mogło, że w celu zapewnienia skutecznej nefroprotekcji stosować powinno się wysokie dawki leków hamujących układ RAA, oczywiście o ile nie występują działania uboczne stosowanych preparatów. Biorąc pod uwagę badania doświadczalne, które wskazywały na potencjalnie korzystne stosowanie dawek supramaksymalnych leków blokujących układ RAA przeprowadzono badanie, które miało na celu odpowiedź na pytanie czy stosowanie ponad maksymalnych dawek IKA ma sens z punktu widzenia dalszej redukcji białkomoczu i ograniczenia uszkodzenia cewek nerkowych. W pracy A [46] wykazano, że podwojenie dawki cilazaprilu pomimo zwiększonej blokady układu RAA, którą określono badając aktywność reninową osocza, nie miało wpływu na białkomocz, biomarkery uszkodzenia cewek nerkowych oznaczane w moczu: α1m i NAG i pośredni marker włóknienia - PIIINP. Wnioski wypływające z tej pracy były zbieżne z doniesieniem Hasa i wsp., którzy stwierdzili, że stosowanie spiramilu w dawce dwukrotnie większa niż maksymalnie stosowana do leczenia nadciśnienia tętniczego nie miało wpływu na redukcję białkomoczu [11]. Warto dodać, że stosowanie ponad maksymalnych dawek ARA (telmisartan, losartan, irbesartan) miało korzystny wpływ na białkomocz i spowolnienie postępu przewlekłych nefropatii przebiegających z białkomoczem [1,36,50]. Przyczyny różnego wpływu ponad maksymalnych dawek IKA i ARA na progresję PChN są nie do końca jasne. Warto dodać, że podwojona dawka cilazaprilu miała korzystny wpływ na redukcję parametrów stresu oksydacyjnego (praca B) [28]. Oznaczano wydalanie z moczem 15-F2α-izoprostanów, które pod wpływem stosowanego leku zmniejszyło się istotnie statystycznie. Być może w ten sposób stosowane dawki ponad maksymalne IKA mogą korzystnie wpływać na hamowanie progresji PChN, ponieważ uważa się, że izoprostany mają – 14 – również pewną aktywność biologiczną, jako substancje o właściwościach obkurczających naczynia nerkowe [42]. 4.2. Terapia potrójna hamująca układ Renina-AngiotensynaAldosteron Terapia skojarzona dwulekowa blokująca układ RAA, polegająca na jednoczesnym stosowaniu leków z grupy ARA i IKA prowadzi do lepszej ochrony nerek niż monoterapia ARA lub IKA wśród chorych z PChN i współistniejącym białkomoczem. Na zasadność takiego rozumowania wskazują wyniki badań eksperymentalnych, jak również analiza mechanizmów działania obu grup leków. Udało się nam potwierdzić te przypuszczenia wykazując, że leczenie skojarzone zmniejsza białkomocz oraz ogranicza uszkodzenie cewek nerkowych w stopniu większym, niż monoterapia lekami obu grup wśród chorych z PChN i białkomoczem [33,49]. Wnioski wypływające z naszych badań zostały potwierdzone przez innych badaczy [35,37]. Entuzjazm stosowania terapii skojarzonej został zmącony przez wyniki badania ONTARGET [16], które nie wykazało korzyści terapii skojarzonej ARA i IKA nad monoterapią. Obserwowano również w tym badaniu większą ilość działań niepożądanych wśród chorych leczonych terapią skojarzoną. Należy jednak dodać, że populację badaną stanowili w większości pacjenci bez cech PChN, co nie pozwala na proste przeniesienie wniosków na interesującą nas grupę pacjentów. Obecnie wielu badaczy uważa, że leczenie skojarzone ARA i IKA może być stosowane w profilaktyce rozwoju istniejącej PChN [4,8,17,25]. Ocena terapii skojarzonej potrójnej, czyli korzyści wynikających z łącznego stosowania IKA, ARA oraz antagonistów receptora dla aldosteronu, stanowiła kontynuację dotychczas zakończonych prac. Wydaje się, że tego typu terapia mogłaby być skuteczniejsza od terapii podwójnej z powodu dodatkowego ograniczenia efektów działania aldosteronu, który może być syntetyzowany drogą niezależną od osi RAA i w ten sposób nie podlegać w pełni hamującemu wpływowi IKA oraz ARA. W naszym badaniu ocenialiśmy wpływ stosowanej terapii na białkomocz, biomarkery uszkodzenia cewek nerkowych, włóknienia i nasilenie stresu oksydacyjnego u pacjentów z PChN w stadium od I do III. Wyniki badania przedstawiono w pracach C [48] i D [27]. Stwierdziliśmy, że terapia potrójna w porównaniu do podwójnej blokującej układ RAA w większym stopniu zmniejsza białkomocz, wydalanie NAG i PIIINP. Do podobnych wniosków doszli również inni badacze [6]. Warto dodać, że terapia potrójna miała – 15 – również korzystny wpływ na redukcję parametrów stresu oksydacyjnego (praca D). Oznaczano wydalanie z moczem 15-F2α-izoprostanów, które pod wpływem stosowanego leczenia zmniejszyło się istotnie statystycznie. Prowadzona terapia była bezpieczna, nikt z badanych chorych nie przerwał programu z powodu działań niepożądanych stosowanych leków. 4.3. Zastosowanie N-acetylocysteiny w nefroprotekcji Nie ulega wątpliwości, że farmakologiczna blokada układu RAA stanowi obecnie podstawową strategię leczenia przewlekłych nefropatii. Wprowadzenie leków hamujących układ RAA do terapii pacjentów z uszkodzeniem nerek doprowadziło do zwolnienia tempa progresji PChN. Do tej pory nie udało się jednak całkowicie zahamować jej postępu. Skłania to do poszukiwania uzupełniających strategii terapeutycznych. Podczas prowadzonych badań naszą uwagę zwróciło kilka preparatów o potencjalnych możliwościach nefroprotekcyjnych. Jednym z nich była N-acetylocysteina (NAC), syntetyczny prekursor zredukowanego glutationu (GSH), który stymuluje wewnątrzkomórkową syntezę GSH m.in. w ten sposób wpływając na ograniczenie stresu oksydacyjnego [2]. NAC w szeregu badań doświadczalnych wykazywała m.in. właściwości hamowania aktywności tkankowej i osoczowej enzymu konwertującego angiotensynę. Ponadto stwierdzano obniżenie poziomu aldosteronu w surowicy krwi, homocysteiny, poprawę GFR, czy systemowego ciśnienia krwi u badanych zwierząt [23,51]. W celu zweryfikowania hipotezy o potencjalnych właściwościach nefroprotekcyjnych NAC u chorych z PChN przeprowadzono podwójnie ślepe, krzyżowe, randomizowane badanie kliniczne, kontrolowane placebo w Klinice Nefrologii AM w Gdańsku. Oceniano wpływ 1200 mg NAC stosowanego przez okres 8 tygodni u 20 chorych z PChN i stabilnym białkomoczem. Wykazano, że NAC nie miało wpływu na badane parametry: białkomocz dobowy, albuminurię, biomarkery uszkodzenia cewek nerkowych (NAG i α1m) i włóknienia (PIIINP), poziom homocysteiny oraz ciśnienie tętnicze krwi. Wyniki przedstawiono w pracach E [30] i F [31]. Potwierdzono natomiast wpływ NAC na aktywność enzymu konwertującego w badanej populacji (praca G) [47]. Podsumowując należy stwierdzić, że w przeprowadzonych krótkoterminowych badaniach nie udało się jednoznacznie potwierdzić korzystnego wpływu NAC na ochronę funkcji nerek u chorych z PChN. Być może jednym z powodów braku korzystnych efektów NAC było stosowanie leku u chorych z stabilnym, znikomym lub miernym białkomoczem oraz prawidłowymi poziomami homocysteiny i wartościami ciśnienia tętni– 16 – czego krwi. Mogło to mieć wpływ na negatywne wyniki przeprowadzonych badań. Wydaje się, że dla poznania odpowiedzi na pytanie, czy potencjalne właściwości kardio- i nefroprotekcyjne NAC mają znaczenie kliniczne, konieczne jest przeprowadzenie długoterminowych, randomizowanych badań na znacznie większej populacji chorych z PChN. 4.4. Zastosowanie atorwastatyny u chorych z PChN Kolejnym ocenianym preparatem była atorwastatyna (ATO). Przedstawiciel grupy leków zwanej statynami, którego niewątpliwą zaletą jest siła działania, dobra tolerancja leku i brak konieczności modyfikacji dawki w zależności od stopnia niewydolności nerek [13]. ATO należy do inhibitorów reduktazy HMGCoA, których znaczenie w leczeniu hiperlipidemii jest obecnie powszechnie znane i akceptowane. Wiadomo również, że PChN towarzyszą zaburzenia lipidowe, które mają niekorzystny wpływ na rokowanie w tej grupie chorych [10,40]. Ponadto, od chwili odkrycia pierwszych statyn, trwają także badania nad innymi mechanizmami działania tych leków. W badaniach eksperymentalnych zwracano m.in. uwagę na korzystny wpływ statyn na białkomocz i hamowanie progresji niewydolności nerek. Wyniki badań klinicznych są niejednoznaczne, część badaczy opisywała zmniejszanie się białkomoczu pod wpływem stosowanych statyn [5,43], inni stosując wysokie dawki leków opisywali odwrotne zjawisko bez wpływu na oceniany GFR [9,19]. W celu wyjaśnienia potencjalnych właściwości nefroprotekcyjnych ATO i rozszerzenia wskazań do stosowania tej grupy leków u pacjentów z PChN bez hipercholesterolemii przeprowadzono randomizowane, podwójnie ślepe, krzyżowe, kontrolowane placebo badanie kliniczne wśród 14 chorych z PChN i białkomoczem znikomym lub miernym. Po 8 tygodniowym okresie wstępnym, kiedy optymalizowano terapię lekami blokującymi układ RAA, dodawano przez okres 12 tygodni 40 mg ATO lub placebo, a następnie po 12 tygodniowej przerwie ponownie stosowano lek badany i placebo przez kolejne 12 tygodni. Wyniki przedstawiono w pracy H [32]. Stwierdzono korzystny, istotny statystycznie, wpływ stosowanego ATO na biomarkery uszkodzenia cewek nerkowych (NAG i α1m) i brak takiego działania na oznaczany białkomocz dobowy i eGFR. Przedstawione wyniki są zbieżne z badaniami doświadczalnymi przedstawionymi przez Tsujihata i współpracowników [44]. Warto dodać, że ATO miała korzystny wpływ na redukcję parametrów stresu oksydacyjnego. Oznaczano wydalanie z moczem 15-F2α-izoprostanów, które pod wpływem stosowanego leku zmniejszyło się istotnie statystycznie (praca I) [24]. – 17 – Zarówno ograniczenie stresu oksydacyjnego, jak i zmniejszenie uszkodzenia śródmiąższu nerki mogą mieć korzystny wpływ na rokowanie wśród chorych z PChN. Dowody na kardioi nefroprotekcyjne działanie statyn wśród chorych z PChN najprawdopodobniej dostarczy duże badanie kliniczne SHARP (ponad 9000 chorych), którego wyniki mają być przedstawione pod koniec 2010 roku. 4.5. Zastosowanie pentoksyfiliny w nefroprotekcji Istnieje szereg teoretycznych przesłanek wskazujących na słuszność hipotezy, że terapia nefroprotekcyjna powinna być uzupełniona przez zastosowanie pentoksyfiliny (PTF). Omówiono to szczegółowo w jednej z poglądowych publikacji autora (praca J) [26]. Poza znanym od wielu lat działaniem na układ naczyniowy PTF ma również mieć właściwości antycytokinowe, zmniejszać nasilenie stanu zapalnego, hamować syntezę kolagenu, prowadzić do ograniczenia produkcji reaktywnych form tlenu i w efekcie zmniejszenia nasilenia stresu oksydacyjnego. Pierwsze badania kliniczne przeprowadzone wśród chorych na cukrzycę i PChN [20,21,22] wskazują na szereg korzyści płynących z tego typu leczenia. W celu weryfikacji hipotezy czy uzupełnienie optymalnej terapii lekami blokującymi układ RAA u chorych z PChN bez cukrzycy o PTF może przynieść dodatkowe korzyści przeprowadzono w Klinice Nefrologii AM w Gdańsku następujące badanie. 22 chorych z PChN i białkomoczem znikomym lub miernym po 8 tygodniach terapii optymalnej blokującej układ RAA otrzymało dodatkowo zgodnie z randomizacją 1200 mg PTF lub placebo. Następnie preparaty badane odstawiono na 8 tygodni i ponownie włączono na kolejne 8 tygodni. Wyniki tego krzyżowego, podwójnie ślepego badania kontrolowanego placebo przedstawiono w pracy K [29]. PTF dodana do terapii blokującej układ RAA zmniejszała białkomocz (o 26%) , ale wynik ten nie osiągnął znamienności statystycznej prawdopodobnie z powodu zbyt małej liczebności grupy badanej. Było to spowodowane stosunkowo złą tolerancją stosowanej dawki leku. Działania niepożądane, głównie pod postacią zaburzeń żołądkowo-jelitowych wystąpiły u blisko 23% badanych pacjentów. PTF nie miała wpływu na oceniane wskaźniki stresu oksydacyjnego (wydalanie z moczem 15-F2α-izoprostanów) i uszkodzenia cewek nerkowych (NAG i α1m). Pomimo częściowo negatywnych wyników tego badania wydaje się, że dopiero duże wieloośrodkowe badanie kliniczne da nam odpowiedź na pytanie czy PTF znajdzie swoje trwałe miejsce we współczesnej nefrologii. Dotychczas przeprowadzone badania budzą nadzieję, ale nie dają ostatecznej odpowiedzi czy warto stosować ten lek wśród chorych z PChN. – 18 – 4.6. Bezpieczeństwo stosowania badanych schematów podawania leków potencjalnie nefroprotekcyjnych Podczas prowadzonych badań nie stwierdzono niekorzystnego wpływu stosowanych leków blokujących układ RAA, NAC, ATO i PTF na poziom filtracji kłębuszkowej wyrażonej jako eGFR. Nie wystąpiło też w żadnym badaniu istotne klinicznie podwyższenie poziomu potasu wśród leczonych pacjentów. Podczas stosowania terapii potrójnej blokującej układ RAA notowano podwyższenie poziomu potasu u 10 spośród 18 chorych, wartości te wynosiły maksymalnie u 2 chorych 5,7 i 5,9 mmol/L. Natomiast przy stosowaniu ponadmaksymalnych dawek IKA u jednego z chorych stwierdzono poziom potasu 6,2 mmol/L bez objawów klinicznych, nie znaleziono też różnic istotnych statystycznie pomiędzy poziomami potasu w badanych grupach. Działania niepożądane, głównie pod postacią zaburzeń żołądkowo-jelitowych wystąpiły podczas stosowania PTF. Uniemożliwiło to ukończenie badania przez 5 pacjentów, co mogło mieć istotny wpływ na uzyskane wyniki. Dolegliwości ustąpiły u wszystkich chorych po przerwaniu terapii z wykorzystaniem PTF. Stosowanie ATO w dawce dobowej 40 mg i NAC 1200 mg nie wiązało się z wystąpieniem istotnych działań niepożądanych w badanych grupach pacjentów. Leczenie tego typu można uznać za bezpieczne przy uwzględnieniu przeciwwskazań do stosowania poszczególnych preparatów. 4.7. Perspektywy i dalsze badania Wydaje się konieczne kontynuowanie prac nad optymalnym blokowaniem układu RAA, który pełni kluczową rolę w utrzymaniu homeostazy ustroju. W badaniach, które są w pewien sposób kontynuacją podjętych tematów będziemy oceniać wpływ aliskirenu (inhibitora reniny) na funkcję i strukturę nerek, oraz wykładniki stresu oksydacyjnego. Planujemy również ocenę terapii łączonej zawierającej aliskiren i ARA oraz porównanie z innymi rodzajami terapii hamującymi układ RAA. Niewątpliwie uzyskane wstępne wyniki stosowania PTF u chorych z PChN są zachęcające, ale wymagają przeprowadzenia dużego wieloośrodkowego badania klinicznego, które pozwoliłoby na odpowiedź na pytanie o faktyczne miejsce tego leku we współczesnej nefro- – 19 – logii. Wydaje się konieczne porównanie efektów działania niskich i maksymalnych dawek PTF, które jak wykazują doświadczenia własne są gorzej tolerowane przez część chorych, co znacznie ogranicza stosowanie PTF w tej grupie pacjentów. 4.8. Krytyczna ocena materiału i metod Badane grupy chorych były niejednorodne, obejmowały chorych z niecukrzycową przewlekłą chorobą nerek przebiegającą z białkomoczem, z prawidłową lub miernie upośledzoną funkcją nerek (PChN od I do III). Liczebność badanych grup była ograniczona z powodu szczupłości środków finansowych przeznaczonych na prowadzone badania, ale najczęściej wystarczająca dla potwierdzenia lub zaprzeczenia stawianych hipotez badawczych. Ponadto wykorzystywane metody badawcze mogły być obarczone błędami, m.in. zbierana przez pacjentów dobowa zbiórka moczu może być niedokładna, co może mieć wpływ na uzyskiwane wyniki. Ponadto korzystne działanie badanych leków na biomarkery uszkodzenia cewek nerkowych, czy też włóknienia powinno być zweryfikowane przez badania histopatologiczne, których nie wykonywano rutynowo podczas prowadzonych badań. – 20 – 5. PODSUMOWANIE Tabela 2. Zestawienie badań będących podstawą rozprawy habilitacyjnej z wyszczególnieniem najważniejszych wniosków z nich wypływających. Praca Publikacja Główne wnioski Praca A [46] Scand J Urol Nephrol Terapia skojarzona IKA i ARA, z wykorzystaniem po2008 nad maksymalnych dawek IKA nie ma wpływu na białkomocz, badane biomarkery uszkodzenia cewek nerkowych i włóknienia u chorych z PChN i białkomoczem. Praca B [28] Nephrol Dial Transplant. 2009 Terapia skojarzona IKA i ARA, z wykorzystaniem ponad maksymalnych dawek IKA ma wpływ na zmniejszenie wydalania z moczem 15-F2α-izoprostanów (wskaźnika stresu oksydacyjnego) u chorych z PChN i białkomoczem. Praca C [48] Am J Kidney Dis. 2008 Terapia potrójna blokującej układ RAA (IKA, ARA i antagonista aldosteronu) zmniejsza białkomocz i wydalanie badanych biomarkerów uszkodzenia cewek nerkowych i włóknienia u chorych z PChN i białkomoczem. Praca D [27] Hypertension 2008 Terapia potrójna blokująca układ RAA (IKA, ARA i antagonista aldosteronu) ma wpływ na zmniejszenie wydalania z moczem 15-F2α-izoprostanów u chorych z PChN i białkomoczem. Praca E [30] Kidney Blood Press Res. 2008 NAC dodane do terapii blokującej układ RAA nie ma wpływu na białkomocz i badane biomarkery uszkodzenia cewek nerkowych u chorych z PChN i białkomoczem. Praca F [31] Med. Sci. Monit. 2010 Dodanie NAC do terapii blokującej układ RAA nie ma wpływu ciśnienie tętnicze i badane markery zagrożenia sercowo-naczyniowego u chorych z PChN i białkomoczem. Praca G [47] Blood Purif. 2008 NAC dodane do terapii blokującej układ RAA zmniejsza aktywność osoczową enzymu konwertującego angiotensynę u chorych z PChN i białkomoczem. Praca H [32] Acta Biochim. Pol. 2010 ATO dodane do terapii blokującej układ RAA nie ma wpływu na białkomocz, zmniejsza natomiast wydalanie z moczem biomarkerów uszkodzenia cewek nerkowych u chorych z PChN i białkomoczem. – 21 – Praca Publikacja Główne wnioski Praca I [24] Med. Sci. Monit. 2010 Dodanie ATO do terapii blokującej układ RAA zmniejsza wydalania z moczem 15-F2α-izoprostanów (wskaźnika stresu oksydacyjnego) u chorych z PChN i białkomoczem. Praca J [26] Przegl. Lek. 2008 Praca poglądowa omawiająca rolę pentoksyfiliny w nefrologii Praca K [29] Acta Biochim Pol. 2010 PTF dodane do terapii blokującej układ RAA zmniejsza białkomocz o 26% (wynik nie znamienny statystycznie), nie ma natomiast wpływu na wydalanie biomarkerów uszkodzenia cewek nerkowych i stresu oksydacyjnego u chorych z PChN i białkomoczem. W przebiegu przeprowadzonej serii badań przedstawionych w powyższych rozważaniach udowodniono, że zasady optymalnego leczenia nefroprotekcyjnego podlegają ciągłym modyfikacjom. Wynika to z poszerzającej się wiedzy dotyczącej patogenezy PChN oraz wprowadzania nowych leków lub poszukiwania nowych zastosowań dla preparatów znanych już od wielu lat, o których mechanizmach działania wiemy obecnie więcej niż przed laty. Pozwala to na poszukiwanie nowych form terapii łączonej, która mogłaby pełniej chronić upośledzoną funkcję nerek i skuteczniej hamować procesy prowadzące do rozwoju ich schyłkowej niewydolności. W tabeli 2 przedstawiono wnioski płynące z przeprowadzonych badań klinicznych. Na ich podstawie można sformułować pewne zalecenia, które mogłyby wpłynąć na modyfikacje istniejących standardów dotyczących postępowania nefroprotekcyjnego. Wydaje się, że w określonych grupach chorych z PChN powinna znaleźć zastosowanie terapia potrójna (IKA, ARA i antagonista aldosteronu), która stosowana świadomie może przynieść wymierne korzyści pacjentom i nie narażać ich na działania niepożądane stosowanych leków. Naszym zdaniem również ATO lub inna statyna powinny znaleźć stałe miejsce w postępowaniu nefroprotekcyjnym. – 22 – 6. WNIOSKI • Terapia skojarzona ARA i IKA w dawkach ponad maksymalnych nie ma wpływu na białkomocz, badane biomarkery uszkodzenia cewek nerkowych i włóknienia u chorych z PChN nie będącą następstwem cukrzycy. Leczenie to zmniejsza wydalanie z moczem izoprostanów. Świadczy to o ograniczeniu stresu oksydacyjnego, ale również może mieć bezpośredni korzystny efekt na naczynia nerkowe. • Terapia potrójna blokująca układ RAA (IKA, ARA i antagonista aldosteronu) zmniejsza białkomocz i wydalanie z moczem badanych biomarkerów uszkodzenia cewek nerkowych, stresu oksydacyjnego oraz włóknienia u chorych z PChN nie będącą następstwem cukrzycy. • NAC dodane do terapii blokującej układ RAA nie ma wpływu na białkomocz, wartości ciśnienia tętniczego, homocysteinę i biomarkery uszkodzenia cewek nerkowych u chorych z PChN nie będącą następstwem cukrzycy. Dołączenie NAC do terapii nefroprotekcyjnej zmniejsza aktywność osoczową enzymu konwertującego angiotensynę w w./w. grupie chorych. • Dodanie ATO do terapii blokującej układ RAA zmniejsza wydalanie z moczem badanych biomarkerów uszkodzenia cewek nerkowych i izoprostanów u chorych z PChN nie będącą następstwem cukrzycy. Tego typu leczenie nie ma dodatkowego wpływu na białkomocz w w./w. grupie chorych. • PTF dodana do terapii blokującej układ RAA zmniejsza białkomocz o 26% (wynik nieznamienny statystycznie), nie ma natomiast wpływu na wydalanie z moczem izoprostanów oraz biomarkerów uszkodzenia cewek nerkowych u chorych z PChN nie będącą następstwem cukrzycy. • Leczenie nefroprotekcyjne podlega i nadal będzie podlegać indywidualizacji i optymalizacji w celu pełniejszej ochrony funkcji nerek. – 23 – 7. PIŚMIENNICTWO 1. Aranda P., Segura J., Ruilope L.M., Aranda F.J., Frutos M.A. Lopez V.: Long-term renoprotective effects of standard versus high doses of telmisartan in hypertensive nondiabetic nephropathies. Am. J. Kidney Dis. 2005, 46, 1074-1079. 2. Aruoma O.I., Halliwell B., Hoey B.M., Butler J.: The antioxidant action of Nacetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 1989; 6: 593-597. 3. Bazzi C., Petrini C., Rizza V., Arrigo G., Napodano P., Paparella M., D’Amico G.: Urinary N-acetyl-beta-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transplant. 2002, 17, 1890-1896. 4. Berl T.: Renal protection by inhibition of the rennin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2009, 10, 1-8. 5. Bianchi S., Bigazzi R., Caiazza A., Campese V.M.: A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am. J. Kidney Dis. 2003, 41, 565-570. 6. Bianchi S., Bigazii R., Campese V.M.: Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006, 70, 2116-2123. 7. Brenner B.M., Meyer T.W., Hostetter T.H.: Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation and intrinsic renal disease. N. Engl. J. Med. 1982, 307, 652-659. 8. Chatzikyrkou Ch., Menne J., Hallet H.: How to achieve renal protection In the light of ONTARGET? J. Hypertens. 2009, 27, 15-17. 9. Deslypere J.P., Delanghe J., Vermeulen A.: Proteinuria as complication of simvastatin treatment. Lancet. 1990, 336:1453. 10. Guijarro C., Keane W.F.: Lipid abnormalities and changes in plasma proteins in glomerular diseases and chronic renal failure. Curr. Opin. Nephrol. Hypertens. 1993, 2, 372-379. 11. Haas M., Leko-Mohr Z., Erler C., Mayer G.: Antiproteinuric versus antihypertensive effects of high-dose ACE inhibitor therapy. Am. J. Kidney Dis. 2002, 40, 458-463. – 24 – 12. Holdt-Lehmann B., Lehmann A., Korten G., Nagel H., Nizze H., Schuff-Werner P.: Diagnostic value of urinary alanine aminopeptidase and N-acetyl-beta-D- glucosaminidase in comparison to alfa-1 microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin. Chim. Acta 2000, 297, 93-102. 13. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 2003, 41, 1-91. 14. Król E., Rutkowski B., Czekalski S., Sułowicz W., Więcek A., Lizakowski S., Czarniak P., Szubert R., Karczewska-Maksymienko L., Orlikowska M., Kraszewska E., Magdon R.: Early diagnosis of renal disease – preliminary results from the pilot study PolNef.: Przegl. Lek. 2005, 62, 690-693. 15. Levey A.S., Eckardt K.U., Tsukamoto Y., Levin A., Coresh J., Rossert J., De Zeeuw D., Hostetter T.H., Lameire N., Eknoyan G. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089-2100. 16. Mann J.F., Schmieder R.E., McQueen M., Dyal L., Schumacher H., Pogue J., Wang X., Maggioni A., Budaj A., Chaithiraphan S., Dickstein K., Keltai M., Metsarinne K., Oto A., Parkhomenko A., Piegas L.S., Svendsen T.L., Teo K.K., Yusuf S.: ONTARGET investigators. Renal outcomes with telmisartan, ramipril or both, in people with high vascular risk (the ONTARGET study): a multicenter, randomized, double blind, controlled trial. Lancet. 2008, 372, 547-553. 17. Mann J.F., Tobe S., Teo K.K., Yusuf S.: Is therapy of people with chronic kidney disease ONTARGET? Nephrol. Dial. Transplant. 2010, 25, 42-44. 18. Marre M., Lievre M., Chatellier G., Mann J.F., Passa P., Menard J.: Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ. 2004, 328, 495. 19. McKenney J.M., Davidson M.H., Jacobson T.A., Guyton J.R.: Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am. J. Cardiol. 2006, 97, 89-94. 20. Navarro J.F., Mora C., Muros M. Garcia J.: Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a shortterm, randomized, controlled trial J. Am. Soc. Nephrol. 2005, 16, 2119-2126. 21. Navarro J.F., Mora C., Muros M., Maca M., Garca J.: Effects of pentoxifylline on urinary N-acetyl-beta-glucosaminidase excretion in type 2 diabetic patients: a short-term, – 25 – prospective, randomized study. Am. J. Kidney Dis. 2003, 42, 264-270. 22. Navarro J.F., Mora C., Rivero A., Gallego E., Chahin J., Macia M., Mendez M.L., Garcia J.: Urinary protein excretion and serum tumor necrosis factor in diabetic patients with advanced renal failure: effects of pentoxyfilline administration. Am. J. Kidney Dis. 1999, 33, 453-463. 23. Rauchova H., Pechanova O., Kunes J., Vokurkova M., Dobesova Z., Zicha J.: Chronic N-acetylcysteine administration prevents development of hypertension in N(omega)nitro-L-arginine methyl ester-treated rats: the role of reactive oxygen species. Hypertens. Res. 2005, 28, 475-482. 24. Renke M., Knap N., Tylicki L., Rutkowski P. Neuwelt A., Larczyński W., Woźniak M., Rutkowski B.: Atorvastatin attenuates oxidative stress in patients witch chronic kidney disease. Med. Sci. Monit.2010, 16, 3. 25. Renke M., Rutkowski P., Tylicki L., Rutkowski B.: Combination treatment and renal function in patients with chronic kidney disease. J. Renin Angiotensin Aldosterone Syst. 2010, 11, 146-147. 26. Renke M., Rutkowski P., Tylicki L., Ziętkiewicz M., Larczyński W., Rutkowski B. Pentoksyfilina stary lek czy nowa nadzieja nefrologii? Przegl. Lek. 2008; 65, 358-361. 27. Renke M., Tylicki L., Knap N., Rutkowski P. Neuwelt A., Larczyński W., Woźniak M., Rutkowski B.: Spironolactone attenuates oxidative stress in patients with chronic kidney disease. Hypertension. 2008, 52, 132-133. 28. Renke M., Tylicki L., Knap N., Rutkowski P. Neuwelt A., Petranyuk A. Larczyński W., Woźniak M., Rutkowski B.: High-dose angiotensin-converting enzyme inhibitor attenuates oxidative stress in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2009, 24, 689-690. 29. Renke M., Tylicki L., Rutkowski P., Knap N., Ziętkiewicz M., Neuwelt A., Aleksandrowicz E., Łysiak-Szydłowska W., Woźniak M., Rutkowski B. Effect of pentoxifylline on proteinuria, markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease : placebo controlled, randomized, cross-over study. Acta Biochim. Pol. 2010, 57, 119-123. 30. Renke M., Tylicki L., Rutkowski P., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B. The effect of N-acetylcysteine on proteinuria and markers of tubular injury in non-diabetic patients with chronic kidney disease : a placebo-controlled, randomized, open, cross-over study. Kidney Blood Press. Res. 2008, 31, 404-410. – 26 – 31. Renke M., Tylicki L., Rutkowski P., Larczyński W., Neuwelt A., Aleksandrowicz E., Łysiak-Szydłowska W., Rutkowski B. The effect of N-acetylcysteine on blood pressure and markers of cardiovascular risk in non-diabetic patients with chronic kidney disease: a placebo-cotrolled, randomized, cross-over study. Med. Sci. Monit. 2010, 16, 13-18. 32. Renke M., Tylicki L., Rutkowski P., Neuwelt A., Larczyński W., Ziętkiewicz M., Aleksandrowicz E., Łysiak-Szydłowska W., Rutkowski B. Atorvastatin improves tubular status in non-diabetic patients witch chronic kidney disease – placebo controlled, randomized, cross-over study. Acta Biochim. Pol. 2010, 57, 547-552. 33. Renke M., Tylicki L., Rutkowski P., Rutkowski B.: Low-dose angiotensin II receptor antagonists and angiotensin II converting enzyme inhibitors alone or in combination for treatment of primary glomerulonephritis. Scan. J. Urol. Nephrol. 2004, 38, 427433. 34. Renke M., Tylicki L., Rutkowski P., Wojnarowski K., Łysiak-Szydłowska W., Rutkowski B.: Low-dose dual blockade of the renin-angiotensin system improves tubular status in non-diabetic proteinuric patients . Scan. J. Urol. Nephrol. 2005, 39, 511-517. 35. Rossing K., Christensen P., Jensen B., Parving H.: Dual blockade of the reninangiotensin system in diabetic nephropathy. Diabetes Care. 2002, 25,95-100. 36. Rossing K., Schjoedt K.J., Jensen B.R., Boomsma F., Parving H.H.: Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria. Kidney Int. 2005, 68, 1190-1198. 37. Russo D., Minutolo R., Pisani A., Esposito R., Signoriello G., Andreucci M., Balletta M.: Coadministration of losartan and enalapril exerts additive antiproteinuric effect in IgA nephropathy. Am. J. Kidney Dis. 2001, 38, 18-25. 38. Rutkowski B., Lichodziejewska-Niemierko M., Grenda R., Czekalski S., Durlik M., Bautembach S.: Raport o stanie leczenia nerko zastępczego w Polsce-2007. Gdańsk: Drukonsul. 2009. 39. Rutkowski P., Tylicki L., Renke M., Korejwo G., Zdrojewski Z., Rutkowski B.: Lowdose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am. J. Kidney Dis. 2004, 42, 260-268. 40. Samuelsson O., Mulec H., Knight-Gibson C., Attman P.O., Kron B., Larsson R., Weiss L., Wedel H., Alaupovic P.: Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol. Dial. Transplant. 1997, 12, 1908-1915. – 27 – 41. Soylemezoglu O., Wild G., Dalley A.J., MacNeil S., Milford-Ward A., Brown C.B.: Urinary and serum type III collagen: markers of renal fibrosis. Nephrol. Dial. Transplant. 1997, 12, 1883-1889. 42. Takahashi K., Nammour T.M., Fukunaga M., Ebert J., Morrow J.D., Roberts L.J., Hoover R.L., Badr K.F.: Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. 1992, 90, 136-141. 43. Tonelli M.: The effect of statins on preservation of kidney function in patients with coronary artery disease. Curr. Opin. Cardiol. 2006, 21, 608-612. 44. Tsujihata M., Momohara C., Yoshioka I., Tsujimura A., Nonomura N., Okuyama A.: Atorvastatin inhibits renal crystal retention in a rat stone forming model. J. Urol. 2008, 180, 2212-2217. 45. Tylicki L., Larczyński W., Rutkowski B.: Renal protective effects of the reninangiotensin-aldosterone system blockade: from evidence-based approach to perspectves. Kidney Blood Press. Res. 2005, 28, 230-242. 46. Tylicki L., Renke M., Rutkowski P., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B.: Dual blockade of the renin-angiotensin-aldosterone system with high-dose angiotensin-converting enzyme inhibitor for nephroprotection: an open, controlled, randomized study. Scand. J. Urol. Nephrol. 2008, 42, 381-388. 47. Tylicki L., Renke M., Rutkowski P., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B.: Effects of N-acetylcysteine on angiotensin converting enzyme plasma activity in patients with chronic kidney diseases. Blood Purif. 2008, 26, 354. 48. Tylicki L., Rutkowski P., Renke M., Larczyński W., Aleksandrowicz E., ŁysiakSzydłowska W., Rutkowski B.: Triple pharmacological blockade of the reninangiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. Am. J. Kidney Dis. 2008, 52, 486-493. 49. Tylicki L., Rutkowski P., Renke M., Rutkowski B.: Renoprotective effect of small doses of losartan and enalapril in patients with primary glomerulonephritis. Short-term observation. Am. J. Nephrol. 2002, 22, 356-362. 50. Weinberg A.J., Zappe D.H., Ashton M., Weinberg M.S.: Safety and tolerability of high-dose angiotensin receptor blocker therapy in patients with chronic kidney disease: a pilot study. Am. J. Nephrol. 2004, 24, 340-345. – 28 – 51. Zicha J., Dobesova Z., Kunes J.: Antihypertensive mechanisms of chronic captopril or N-acetylcysteine treatment in L-NAME hypertensive rats. Hypertens. Res. 2006, 29, 1021-1027. – 29 – 8. PRACE BĘDĄCE PRZEDMIOTEM ROZPRAWY Scandinavian Journal of Urology and Nephrology, 2008; 42: 381388 ORIGINAL ARTICLE Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. Dual blockade of the renin angiotensin aldosterone system with high-dose angiotensin-converting enzyme inhibitor for nephroprotection: An open, controlled, randomized study LESZEK TYLICKI1, MARCIN RENKE1, PRZEMYSLAW RUTKOWSKI1, WOJCIECH LARCZYŃSKI1, EWA ALEKSANDROWICZ2, WIESLAWA LYSIAK-SZYDLOWSKA2 & BOLESLAW RUTKOWSKI1 Department of 1Nephrology, Transplantology and Internal Medicine, and 2Clinical Nutrition and Laboratory Diagnostics, Medical University of Gdańsk, Gdańsk, Poland Abstract Objective. Despite the proven effectiveness of combination therapy with an angiotensin I-converting enzyme inhibitor (ACEI) and angiotensin II-receptor blockers (ARBs) for the prevention and treatment of kidney disease, it has not proved possible to inhibit the progress of chronic nephropathies completely. To improve renal outcome one may consider using increased dosages of ACEI above those usually recommended for hypertension. Material and methods. A randomized, open, controlled study was conducted to evaluate the influence of two combination therapies on proteinuria, markers of tubular injury and renal fibrosis. A total of 18 patients with a creatinine level of 109936 mmol/l and proteinuria of 0.9790.76 g/24 h were enrolled in the study. In the 8-week run-in period, an ACEI (cilazapril 5 mg once-daily) and an ARB (telmisartan 80 mg once-daily) were administered to achieve the target blood pressure of 5130/80 mmHg. Next, the patients were randomly assigned to either an increased dose of cilazapril (10 mg) or the previous dose (5 mg) in two active-treatment periods, each lasting 8 weeks. Results. A significant increase in renin activity was observed after administration of cilazapril 10 mg (6.4691.12 vs 4.6790.7 ng/ml/h; p0.028). Proteinuria, urine excretion of N-acetyl-b-D-glucosaminidase, and a1-microglobulin and amino-terminal propeptide of type III procollagen were unchanged. Conclusion. An increased dosage of cilazapril (twice the maximum recommended dose) in addition to combination therapy with telmisartan was associated with increased blockade of the reninangiotensinaldosterone system, with no additional effect on proteinuria, markers of tubular injury or renal fibrosis. Key Words: Angiotensin-converting enzyme inhibitor, angiotensin-receptor blocker, combination therapy, high dose, proteinuria, tubules, fibrosis Introduction Intervention in the reninangiotensinaldosterone system (RAAS) is currently the most effective strategy for combined blood pressure-lowering and renoprotection. Agents that inhibit the RAAS, such as angiotensin I-converting enzyme inhibitors (ACEIs) and angiotensin II-receptor blockers (ARBs), prevent and retard the progression of both diabetic and non-diabetic native kidney disease [1]. It has been suggested [2,3] that they also exert a renoprotective effect in patients after kidney transplantation. It was shown [1] that the protective renal effects of the RAAS-inhibiting drugs are partly independent of the changes in glomerular circulation and also involve limiting the non-haemodynamic effects of angiotensin II and aldosterone, such as mitogenesis, inflammation and fibrosis. Combination therapy involving concomitant use of an ACEI and an ARB has been studied extensively for some years with respect to renal protection [4,5]. Published in 2003 [6], (COOPERATE) trial findings gave, for the first time, evidence that combined therapy can provide additional renoprotection beyond blood-pressure control in non-diabetic renal diseases. Correspondence: Leszek Tylicki, MD, PhD, Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, De˛binki 7 St., Gdańsk 80-211, Poland. Tel: 48 58 349 25 05. Fax: 48 58 346 11 86. E-mail: leszek.tylicki@amg.gda.pl (Received 25 July 2007; accepted 19 December 2007) ISSN 0036-5599 print/ISSN 1651-2065 online # 2008 Informa UK Ltd. (Informa Healthcare, Taylor & Francis AS) DOI: 10.1080/00365590801905943 L. Tylicki et al. Despite great progress in conservative therapy for chronic nephropathies and a decrease in the rate of progression of chronic nephropathies by accurate RAAS blockade, it has not proved possible to inhibit their progress completely. The question arises as to whether we can really go beyond slowing the rate of progression of chronic nephropathies and stop the decline in kidney function or even achieve regression of existing renal scarring [7]. It has been suggested in some experimental studies [8] that resolution of established kidney sclerosis is possible by using an ACEI or an ARB at doses well above those usually recommended to lower blood pressure. To shed more light on this issue, we performed a randomized, open, controlled study to evaluate the influence of up-titration with the ACEI cilazapril to twice the maximum dose recommended for hypertension in combination with the ARB telmisartan on surrogate markers of kidney injury, i.e. proteinuria, and markers of tubular involvement and kidney fibrosis. General protocol The study was a randomized, open, 2 2 crossover trial in which the renal effects of two different dual pharmacological blockades of the RAAS were compared. It consisted of 8 weeks of dual treatment with telmisartan (Micardis; Boehringer Ingelheim Polska, Warsaw, Poland) 80 mg once-daily (o.d.) and cilazapril (Inhibace; Roche Polska, Warsaw, Poland) 5 mg o.d. (Period 1), and 8 weeks of an alternative combined therapy with telmisartan 80 mg o.d. and cilazapril 10 mg o.d. (Period 2) (Figure 1). At the beginning of the study, subjects who met the inclusion criteria entered an 8-week run-in period, during which any other previously used ACEIs or ARBs were stopped. Cilazapril and telmisartan were either continued or newly administered to those patients who had not received these agents previously. The maximal recommended doses of these agents for hypertension were determined. Patients were also administered hydrochlorothiazide at a dose of 12.5 mg o.d. In addition, adjuvant therapy with doxazosin was added and titrated up, if necessary, to achieve the target office trough blood pressure (BP) of 5130/80 mmHg. There was no wash-out period between administration of the antihypertensive agents used previously and the study treatment. When the target BP was achieved, the patients received this adjusted therapy until the end of the run-in period, but not for B6 weeks. Patients were recommended not to change their usual daily intakes of protein and sodium during the study period. At the end of the run-in period, patients were randomly allocated to one of the two treatment sequences: cilazapril 5 mgcilazapril 10 mg (Sequence 1); or cilazapril 10 mgcilazapril 5 mg (Sequence 2) (Figure 1). Afterwards, the same 8week therapy as used during the run-in period was administered during a control period to stabilize background proteinuria. The dosages of telmisartan Material and methods Patients Patients were selected from a cohort that consecutively attended our renal outpatient department. The inclusion criteria were established as follows: age 1865 years; chronic non-diabetic proteinuric nephropathy; normal or slightly impaired stable renal function expressed as serum creatinine level B155 mmol/l [estimated glomerular filtration rate (eGFR) 0.75 ml/s]; stable proteinuria 0.3 g/ 24 h at the randomization point; hypertension; and no steroids or other immunosuppressive treatment for a minimum of 6 months before the study. Patients with nephrotic syndrome were excluded. The study was approved by the local ethical committee, and the investigated patients all gave their written consent to participate in the study. C5 C10 Sequence 1 (C5-C10) Run-in Randomization Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. 382 End-period C10 C5 Sequence 2 (C10-C5) * * * * Figure 1. Study scheme. The asterisks denote time points at which urine and blood were taken for analyses. C5cilazapril 5 mg; C10 cilazapril 10 mg. Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. High-dose dual RAAS blockade and hydrochlorothiazide, once adjusted during the run-in period, were left unchanged throughout the study. Drug compliance was assessed by means of tablet counts. At the end of each of the two treatment periods, office trough BP, 24-h ambulatory BP, serum creatinine, potassium, haemoglobin, plasma renin activity (PRA) as well as urine excretion of protein (UPE), N-acetyl-b-Dglucosaminidase (NAG), a1-microglobulin (a1-m), amino-terminal propeptide of type III procollagen (PIIINP), creatinine, sodium (NaEX) and urea were determined. Procedures and laboratory methods Office trough BP was measured using a mercury sphygmomanometer in a sitting position after 10 min of rest and expressed as the mean value of two consecutive measurements taken 2-min apart. Ambulatory BP was measured continuously for 24 h using the Mobil-o-graph (version 12; I.E.M. GmbH, Stolberg, Germany) monitoring system. BP was measured every 15 min during the day (07.00 to 22.00) and every 30 min during the night (22.00 to 07.00). Regarding the office BP measurements, systolic (SBP) and diastolic (DBP) values were analysed; for the ambulatory BP measurements, 24-h SBP and 24-h DBP were analysed. UPE, NaEX and urea excretion were evaluated on the basis of 24-h urine collection. All of the patients were equipped with a scaled container and strictly informed how to collect urine. They collected two 24-h urine samples, from which the mean values of UPE were calculated for data evaluation. Patients were asked not to perform heavy physical activity on the urine collection days. The excretion of urea was used to calculate the protein intake according to Maroni equation: protein intake normalized to weight (g/kg/day) 6.25{[urea-N-excretion urine 24h (g/day)][0.0031body weight (kg)]}/body weight (kg) [9]. eGFR was calculated according to the CockcroftGault equation [10]. Blood samples for determination of PRA were taken after overnight fasting and 30 min of rest with the patient lying down and before administration of the study drugs. The samples were stored at 758C until assayed. PRA was measured by means of a radioimmunoassay (RIA; RENCTK; DiaSorin, Stillwater, MN), which estimates the amount of angiotensin I generated by the action of renin on angiotensinogen. Haemoglobin, urea, potassium, sodium, protein and creatinine levels were measured by means of standard laboratory techniques. Adverse effects were recorded at each visit using questionnaires or as observed by the investigators. 383 The first morning urine sample was collected for the determination of PIIINP. The samples were stored at 758C until assayed. Urinary PIIINP was measured using an RIA kit obtained from Orion Diagnostica (Espoo, Finland). The intra- and interassay coefficients of variation were 3.0% and 6.5% for concentrations of 2.8 and 2.7 mg/l, respectively. The measurement range of the assay is 1.050 mg/l, and the detection limit is 0.3 mg/l. NAG and a1-m were analysed in the second morning spot urine sample. NAG was determined by means of a spectrophotometric method according to Maruhn [11]. The incubation medium contained, in a final volume of 0.4 ml, 5 mmol/l p-nitrophenyl2-acetamido-b-D-glucopyranoside as a substrate in 50 mmol/l citrate buffer (pH 4.14). The reaction was started by the addition of 0.2 ml of undialysed urine, continued for 15 min at 378C, and then terminated with 1 ml of glycine buffer (pH 10.5). Absorbance was measured at 405 nm against a sample terminated at time zero. The calculation of the NAG level was based on the molar extinction coefficient of the product of the reaction, p-nitrophenol, which is equal to 18.5 cm2/mmol. From preliminary experiments it was clear that dialysis of urine did not affect the NAG level in urine. An immunoturbidimetric test (Tina-quant a1-microglobulin; Roche, Basle, Switzerland) was used for the quantitative determination of a1-m in urine. The detection limit of the method was 2 mg/l. Urinary NAG, a1-m and PIIINP were reported per milligramme or gramme of urine creatinine to correct for variation in the urine concentration. Statistics Data from our preliminary studies were used for the sample size calculation. The primary endpoint of the study was a difference in 24-h UPE from measurements available for each patient after treatment with standard and high doses of cilazapril. Secondary endpoints included urine NAG, and a1-m and PIIINP urine excretions. A sample size of 18 patients adequately allowed a power of 80% to detect a difference in means across the levels of repeated-measures factors equal to the withinpatient SD, i.e. a standardized effect size of 1.0 at a significance level of 0.05 (two-tailed). The normality and homogeneity of the variances were verified by means of the ShapiroWilk and Levene tests, respectively. Because of their skewed distributions, eGFR, UPE, excretion of NAG and PIIINP and NaEX were logarithmically transformed before statistical analysis and expressed as geometric means and 95% CIs. Other results are expressed as mean9 SEM. Differences in variables were assessed using Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. 384 L. Tylicki et al. Student’s t-test. p B0.05 (two-tailed) was considered statistically significant. Data were evaluated using the Statistica (version 6.0; StatSoft Inc, Tulsa, OK) software package. To prevent or limit the possibility of a period effect, we introduced a degree of balance into the study design, with a randomization scheme allowing every treatment to be represented in every period with the same frequency. Overall, we had two different therapy sequences during the two treatment periods (Figure 1). An equal number of patients (n 9) per sequence was randomly assigned. Because all 18 patients completed the protocol, this balance was fully respected at the end of the study. To check for the presence of a period effect, the differences between variables at the randomization point and at the end of the study were also examined. To prevent or limit the risk of a carryover effect, we planned each treatment period to last 8 weeks. Previous studies [12] have shown that the effects of ACEIs and ARBs on proteinuria and glomerular permselectivity are fully reversible within 4 weeks. Thus, prolonging each treatment period for 8 weeks allowed us to rule out a residual effect of previous treatment at the end of Week 8, when proteinuria was measured. Results Table I. Characteristics of patients. n Mean (9SD) age (years) No. of females/males 18 42.4491.89 7/11 Primary non-diabetic nephropathy (n) Chronic glomerulonephritis Chronic interstitial nephritis Amyloidosis Unknown 12 1 1 4 BMI (kg/m2) Serum creatinine (mmol/l) eGFR (ml/s) Urinary protein excretion (g/24 h) Office SBP (mmHg) before run-in period Office DBP (mmHg) before run-in period 29.9191.17 113910 1.35 (1.191.75) 0.75 (0.61.35) 128.492.3 79.391.6 Treatment with ACEI/ARB before the study (n) Cilazapril 5 mg 3 Cilazapril 2.5 mg/telmisartan 40 mg 4 Cilazapril 5 mg/telmisartan 80 mg 1 Benazepril 20 mg/losartan 50 mg 1 Benazepril 10 mg/losartan 50 mg 2 Benazepril 20 mg/telmisartan 80 mg 1 Benazepril 20 mg/telmisartan 40 mg 1 Benazepril 40 mg 1 Lisinopril 20 mg/losartan 50 mg 1 Enalapril 40 mg 3 to the standard dosage (6.4691.12 vs 4.6790.7 ng/ml/h; p 0.028) (Figure 2). Of the 18 patients who entered the study, all of them completed the protocol. Their characteristics are presented in Table I. To achieve the target BP, doxazosin had to be supplemented in 2/18 patients in all the treatment periods (average dose 3.09 0.53 mg o.d.). Before data analysis, the carryover effect was tested for and found not to be significant. To exclude the presence of the period effect, the differences between levels of UPE, urine excretion of NAG, a1-m and PIIINP after the run-in period (at the randomization point) and at the end of the study were compared and found not to be significant. There were no significant differences between urinary NAG (p 0.49) and a1-m (p 0.63) excretions at the end of the two different combination treatments (Table III). BP PIIINP Control of BP was adequate in all study periods, with all patients achieving the target office trough BP of 5130/80 mmHg. There were no differences in office trough SBP and DBP between the treatments. There were also no significant differences in ambulatory SBP (p0.29) and DBP (p 0.13) measurements between the treatments (Table II). There were no significant differences between urinary PIIINP excretion at the end of the two different combination treatments (p0.89; Table III). PRA A significant increase in PRA was observed after treatment with the higher dose of cilazapril compared UPE There were no significant differences in UPE level at the end of the two different combination treatments (p 0.56; Table III). Urinary NAG and a1-m excretion Renal function, sodium and protein intake Renal function assessed by means of serum creatinine and eGFR remained stable during the study periods (p0.37 and 0.42, respectively). There were no differences in sodium and protein intakes between treatment periods (p 0.35 and p0.72, respectively; Table II). High-dose dual RAAS blockade 385 Table II. Results of BP, protein intake, NaEX, potassium and haemoglobin level. Parameter Randomization point 24-h SBP (mmHg) 24-h DBP (mmHg) NaEX (mmol/24 h) Daily protein intake (g/24 h) Potassium (mmol/l) Haemoglobin (g/l) Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. a 118.491.67 74.1792.24 255 (227305) 85.8693.8 4.4990.12 141.993.1 Cilazapril 5 mg Cilazapril 10 mg Study end 117.4491.81 73.591.8 248 (94575) 78.4492.06 4.5590.11 141.393.9 116.0691.81a 71.4491.92a 228 (203274)a 78.2494.62a 4.5590.14a 138.393.7b 116.7891.93 73.7891.76 263 (235307) 79.1894.32 4.3690.14 141.593.4 Non-significant difference between treatment with cilazapril 5 mg and cilazapril 10 mg. Significant difference (p 0.01) between treatment with cilazapril 5 mg and cilazapril 10 mg. b Adverse effects There were no significant differences in potassium concentration between the treatments (p 0.9). In one patient, the potassium level increased to 6.2 mmol/l during combination treatment with the higher dose of cilazapril. The haemoglobin level decreased significantly after combination treatment with the higher dose of cilazapril (p 0.01; Table II). This, however, was not associated with symptoms of anaemia and none of the patients needed treatment for anaemia. The study treatments were well tolerated by all the patients and no adverse effects were reported in the questionnaires. Discussion Several clinical studies [6,13] have investigated dual RAAS blockade in non-diabetic or mixed renal diseases and documented a greater antiproteinuric effect of combined therapy with an ACEI and an ARB than with monotherapy. Given these results, it now seems reasonable to consider dual RAAS blockade as the new gold standard of treatment for chronic proteinuric kidney disease, at least in those patients with a non-diabetic origin of nephropathy [14]. Following this recommendation, all patients in the present study were administered a dual RAAS blockade. Furthermore, for ethical reasons there was no wash-out of the pharmacological blockade of the RAAS during the run-in period. The study agents were introduced into the therapeutic regimen instead of the previously used antihypertensive drugs. Despite the proven effectiveness of standard doses of ACEIs and ARBs in the prevention and treatment of renal complications, it has not proved possible to inhibit the progress of chronic nephropathies completely [1]. The reasons for this may reflect the fact Plasma renin activity ng/ml/h 8,0 7,5 7,0 6,5 6,0 5,5 5,0 4,5 p=0.028 4,0 Mean Mean ± SEM 3,5 cilazapril 5 cilazapril 10 Figure 2. PRA after treatment with standard and high doses of cilazapril. 386 L. Tylicki et al. Table III. Results of serum creatinine, proteinuria, urine excretion of NAG, a1-m and PIIINP. Parameter Serum creatinine (mmol/l) eGFR (ml/s) UPE (g/24 h) NAG excretion (IU/g creat.) a1-m excretion (mg/g creat.) PIIINP excretion (mg/g creat.) Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. a Randomization point 113910 1.35 (1.191.75) 0.75 (0.61.35) 3.08 (2.525.01) 8.8991.54 1.7 (1.382.56) Cilazapril 5 mg 10298 1.49 (1.31.87) 0.61 (0.471.27) 3.02 (2.315.22) 7.5691.83 1.57 (1.112.83) Cilazapril 10 mg Study end 10699a 1.45 (1.271.85)a 0.66 (0.451.51)a 2.92 (1.47.45)a 8.8992.18a 1.49 (0.93.12)a 10398 1.46 (1.31.82) 0.62 (0.441.49) 2.91 (2.494.36) 8.2791.66 1.84 (1.512.53) Non-significant difference between treatment with cilazapril 5 mg and cilazapril 10 mg. that even combined treatment does not provide complete, persistent blockade of the RAAS [15]. Therefore, it is necessary to optimize this modality and to search for alternative therapeutic strategies which can further improve renal outcome. The aim of this study was to find out whether or not an increased dose of ACEI well above the maximum recommended limit makes sense given the renoprotective aspect. The rationale comes from the experimental observations that up-titration of the dose of an ACEI or ARB to levels above those usually recommended for lowering BP may provide an additional nephroprotective effect, i.e. by reversing the destructive processes within the kidney [16]. In a doseresponse study in proteinuric Sprague Dawley rats with non-diabetic kidney disease, Peters et al. [17] demonstrated a BP-independent reduction in renal expression of transforming growth factor (TGF)-b1, the most potent profibrotic cytokine during high-dose therapy with losartan and enalapril. Moreover, other disease markers, including glomerular matrix accumulation, and glomerular production and mRNA expression of the matrix protein fibronectin and the protease inhibitor plasminogen activator inhibitor type 1, closely followed TGF-b1 expression. Similarly, in another study [18], a high dose of the ACEI enalapril, far in excess of that used for BP control, was reported to induce a partial regression of glomerulosclerosis as well as sclerotic changes in interstitial and vascular compartments. Other authors [19,20] have demonstrated regression of glomerulosclerosis during therapy with high doses of ARBs in animal models of hypertensive nephroangiosclerosis and age-related glomerulosclerosis. The mechanisms appear to involve both the inhibition of collagen synthesis and the enhancement of matrix degradation due to activation of metalloproteinases. In addition, segments of glomeruli regenerate both by capillary lengthening and branching, whereas the sclerosed segments are largely reabsorbed. Clinical data on this point are extremely limited. In the present study, the renal effects of doubling the dosage of cilazapril on top of combination therapy were assessed using measurement of surrogate markers of kidney injury, i.e. proteinuria (a marker of glomerular injury), NAG and a1-m (tubular involvement markers) and PIIINP (an indirect marker of kidney fibrosis). Doubling the dosage of cilazapril was shown to be associated with an increase in blockade of the RAAS. A significant increase in PRA was observed during treatment with the higher dose of cilazapril. Previously, additional, albeit non-significant, increases in PRA and angiotensin I levels were reported by Haas et al. [21] during therapy with the ACEI spiramil at twice the maximal antihypertensive dose. Both these findings are in agreement with another clinical observation [15] suggesting that increasing the dose of the ARB losartan above the recommended limit improves and prolongs RAAS blockade. We demonstrated that, although the higher dose of cilazapril significantly increased RAAS blockade, it had no significant additional effect on proteinuria reduction. In accordance with this observation, Haas et al. [21] reported that increasing the spiramil dose to twice its maximal antihypertensive dosage also does not alter proteinuria. Surprisingly, the administration of very high doses of the ARBs telmisartan, losartan and irbesartan seems to be more effective at reducing proteinuria, as well as slowing the progression of chronic proteinuric nephropathies, than standard doses of these agents [2225]. The reasons for these discrepancies are not clear. It is unlikely that confounding factors would have influenced the present study outcomes. The two treatment periods did not differ with respect to BP, the sodium and protein intakes of the patients or renal function. Considering the fact that the extent of tubulointerstitial damage is a fundamental predictor of kidney outcome, tubular cells have become a renal site of particular interest [26]. To evaluate the tubular effects of our interventions, two different markers of tubular injury were analysed in the present study. NAG is an enzyme of the hydrolase class which is abundant in the kidney, predominantly in the lysosomes of the proximal tubular cells. It is physiologically excreted in low amounts in urine as a 387 Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. High-dose dual RAAS blockade consequence of the normal exocytosis process. The increased excretion of NAG is thought to be a specific marker of tubular injury in many renal pathologies [27]. Increased urinary excretion of a1m, a low-molecular-weight protein physiologically filtered and reabsorbed by tubular cells, may indicate a reduced capacity of a1-m reabsorption by such cells and thus a1-m may represent a marker for established tubular damage, with greater urinary concentrations pointing to a greater severity of damage [28]. In the present study, up-titration of cilazapril on top of dual RAAS blockade resulted in no improvement in tubular status. Given the previous assumption that an incremental dosage of an ACEI may affect angiotensin IImediated, non-haemodynamic processes, such as inflammation and fibrosis, the authors analysed the influence of the study treatments on urine excretion of PIIINP, a non-invasive marker of interstitial fibrosis [29]. A close association between urinary PIIINP excretion and the degree of interstitial kidney fibrosis was previously evidenced [30]. During the synthesis and deposition of type III collagen, PIIINP is degraded from the collagen and secreted into the surroundings. In the present study, no significant differences in PIIINP excretion were observed during the two treatment options. Given the fact that urinary PIIINP was previously found to originate from the kidney [30], one may assume that an increased dose of cilazapril will not affect fibrotic processes in the kidney. However, it should be taken into consideration that the lack of effect on kidney fibrosis markers may be a result of the relatively short study period as well as adequate treatment with ACEIs and ARBs before entering the study. A potential limitation of the study is the relatively small sample size, which was sufficiently powered to detect a significant difference equal to the SD value between the treatment periods. We realize that the effect size of 1.0 in such a case is relatively large and only allows a conclusion of a preliminary nature. In addition, one should realize that the potential benefits for tubules and interstitium were extrapolated from presumptive early surrogates, tubular origin enzymes and collagen degradation product excretions. Evidence may be provided only by histological examinations. One should realize that the study results do not call into question the proven effectiveness of dual RAAS blockade in the field of nephroprotection. This was evidenced in many previous studies, including those performed by the authors [4,5]. For ethical reasons this aspect of nephroprotection was not evaluated in the present study. Considering the prognostic impact of proteinuria and the extent of tubular injury on renal outcome, however, the question arises as to whether increasing ACEI doses to very high in addition to dual pharmacological RAAS blockade is really useless. Long-term controlled studies involving histological assessment would seem to be necessary to give a conclusive answer to this question. Conclusions In an open, controlled, cross-over fashion the authors demonstrated that a twofold increase in the dosage of the ACEI cilazapril in addition to dual ACEI and ARB therapy was associated with an increase in RAAS blockade, with no additional effects on proteinuria or markers of tubular injury and kidney fibrosis. Such an intervention seems to be safe; nevertheless, a slight but clinically irrelevant decrease in haemoglobin level was observed. Acknowledgements The study was supported by a grant (No. ST-4) from the Polish Committee for Scientific Research (KBN) via the Medical University of Gdansk. The authors thank Roche Polska and Boehringer Ingelheim Polska for providing drugs. The authors are indebted to mgr Joanna Wierzchowska for expert technical assistance with the radioimmunological analyses. The study results were partially presented in abstract form during the XLIIIth European Renal Association European Dialysis and Transplant Association Congress in Glasgow, UK in 2006. References [1] Tylicki L, Larczynski W, Rutkowski B. Renal protective effects of the renin-angiotensin-aldosterone system blockade: from evidence-based approach to perspectives. Kidney Blood Press Res 2005;28:23042. [2] Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Rutkowski B. Randomized placebo-controlled study on the effects of losartan and carvedilol on albuminuria in renal transplant recipients. Transplantation 2006;81:526. [3] Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Aleksandrowicz E, et al. Renal allograft protection with angiotensin II type 1 receptor antagonists. Am J Transplant 2007;7:2438. [4] Rutkowski P, Tylicki L, Renke M, Korejwo G, Zdrojewski Z, Rutkowski B. Low-dose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am J Kidney Dis 2004;43:2608. [5] Renke M, Tylicki L, Rutkowski P, Wojnarowski K, LysiakSzydlowska W, Rutkowski B. Low-dose dual blockade of the renin-angiotensin system improves tubular status in nondiabetic proteinuric patients. Scand J Urol Nephrol 2005;39: 5117. [6] Nakao N, Yoshimura A, Morita H, Takada M, Kayano T, Ideura T. Combination treatment of angiotensin-II receptor blocker and angiotensin-converting-enzyme inhibitor in non/ / / / / / / / / / 388 L. Tylicki et al. diabetic renal disease (COOPERATE): a randomised controlled trial. Lancet 2003;361:11724. Brenner B. AMGEN International Prize: the history and future of renoprotection. Kidney Int 2003;23:11638. Fogo AB. The potential for regression of renal scarring. Curr Opin Nephrol Hypertens 2003;12:2235. Maroni BJ, Steinman TI, Mitch WE. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 1985;27:5865. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:3141. Maruhn D. Rapid calorimetric assay of b-galactosidase and N-acetyl-b-D-glucosaminidase in human urine. Clin Chim Acta 1976;73:45361. Gansevoort R, De Zeeuw D, De Jong P. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system? Kidney Int 1994;45:8617. Taal M, Brenner B. Combination ACEI and ARB therapy: additional benefit in renoprotection. Curr Opin Nephrol Hypertens 2002;11:37781. Ruggenenti P, Remuzzi A. Is therapy with combined ACE inhibitor and angiotensin receptor antagonist the new gold standard of treatment for nondiabetic, chronic proteinuric nephropathies? NephSAP 2003;2:2357. Forclaz A, Maillard M, Nussberger J, Brunner HR, Burnier M. Angiotensin II receptor blockade: is there truly a benefit of adding an ACE inhibitor? Hypertension 2003;41:316. Fogo AB. Regression lines in chronic kidney disease. J Am Soc Nephrol 2003;14:29901. Peters H, Border W, Noble N. Targeting TGF-beta overexpression in renal disease: maximizing the antifibrotic action of angiotensin II blockade. Kidney Int 1998;54: 157080. Adamczak M, Gross M, Krtil J, Koch A, Tyralla K, Amann K, et al. Reversal of glomerulosclerosis after high-dose enalapril treatment in subtotally nephrectomized rats. J Am Soc Nephrol 2003;14:283342. Boffa JJ, Lu Y, Placier S, Stefanski A, Dussaule JC, Chatziantoniou C. Regression of renal vascular and glomerular fibrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. J Am Soc Nephrol 2003;14: 113244. Ma LJ, Nakamura S, Whitsitt JS, Marcantoni C, Davidson JM, Fogo AB. Regression of sclerosis in aging by an / [7] / / [8] / [9] / [10] Scand J Urol Nephrol Downloaded from informahealthcare.com by (ACTIVE) Karolinska Institutet University Library on 11/30/10 For personal use only. / [12] / [13] / [14] / / [17] [18] / [19] / [20] / [28] / / / [30] / / / [29] / / / / [27] / / / / [26] / / / [25] / / [16] / [24] / / [15] / / [23] / / / / [22] / / [11] / [21] / / angiotensin inhibition-induced decrease in PAI-1. Kidney Int 2000;58:242536. Haas M, Leko-Mohr Z, Erler C, Mayer G. Antiproteinuric versus antihypertensive effects of high-dose ACE inhibitor therapy. Am J Kidney Dis 2002;40:45863. Aranda P, Segura J, Ruilope LM, Aranda FJ, Frutos MA, Lopez V, et al. Long-term renoprotective effects of standard versus high doses of telmisartan in hypertensive nondiabetic nephropathies. Am J Kidney Dis 2005;46:10749. Weinberg M, Weinberg A, Cord R, Zappe D. The effect of high-dose angiotensin II receptor blockade beyond maximal recommended doses in reducing urinary protein excretion. JRAAS 2002;2(Suppl 1):S1968. Weinberg AJ, Zappe DH, Ashton M, Weinberg MS. Safety and tolerability of high-dose angiotensin receptor blocker therapy in patients with chronic kidney disease: a pilot study. Am J Nephrol 2004;24:3405. Rossing K, Schjoedt KJ, Jensen BR, Boomsma F, Parving HH. Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria. Kidney Int 2005;68:11908. Muller GA, Zeisberg M, Strutz F. The importance of tubulointerstitial damage in progressive renal disease. Nephrol Dial Transplant 2000;15(Suppl 6):767. Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P, Paparella M, et al. Urinary N-acetylglucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant 2002;17:18906. Holdt-Lehmann B, Lehmann A, Korten G, Nagel H, Nizze H, Schuff-Werner P. Diagnostic value of urinary alanine aminopeptidase and N-acetyl-beta-D-glucosaminidase in comparison to alfa-1 microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 2000;297:93102. Soylemezoglu O, Wild G, Dalley AJ, MacNeil S, MilfordWard A, Brown CB, et al. Urinary and serum type III collagen: markers of renal fibrosis. Nephrol Dial Transplant 1997;12:18839. Teppo AM, Tornroth T, Honkanen E, Gronhagen-Riska C. Urinary amino-terminal propeptide of type III procollagen (PIIINP) as a marker of interstitial fibrosis in renal transplant recipients. Transplantation 2003;75:21139. / / / / NDT Advance Access published December 2, 2008 Nephrol Dial Transplant (2008) 1 of 2 Letter High-dose angiotensin-converting enzyme inhibitor attenuates oxidative stress in patients with chronic kidney disease Sir, A pharmacological blockade of the renin–angiotensin– aldosterone system (RAAS) constitutes a cornerstone strategy for inhibiting progression of chronic nephropathies. In a recent NDT issue, Tomas Berl [1] discussed the improvements in renal outcome associated with maximal RAAS inhibition achieved using combined therapies that included angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), renin inhibitors and mineralocorticoid receptor antagonists. Alternatively, patients were administered ACEI or ARB at doses highly exceeding those approved for blood pressure control. Here, we elaborate on this very interesting discussion by reporting that a double RAAS blockade with high-dose ACEI attenuates oxidative stress phenomena in patients with chronic kidney disease (CKD). In an open, randomized, cross-over study, 18 white adult patients (11 men and 7 women; mean age: 42 years) with nondiabetic proteinuric CKD were evaluated to test the hypothesis that high-dose ACEI (10 mg cilazapril) combined with standard ARB (telmisartan) therapy increases nephroprotection by lowering the level of potentially nephrotoxic, oxidative stress-dependent products. The trial treatment was based on 80-mg telmisartan therapy combined with either 5 mg cilazapril or 10 mg cilazapril for 2 months of the study; the alternative being used for the next 2 months. A commercial ELISA kit (Cayman Chemical Co., USA) was then used to measure the urinary excretion of 15-F2t -isoprostane in the treated patients. 15-F2t -isoprostane is accepted as a reliable and sensitive marker of oxidative stress in the human body [2.] It was found that the higher dose cilazapril treatment significantly reduced urinary levels of 15-F2t -isoprostane relative to the control group (ANOVA P = 0.008; post hoc P = 0.044) with no changes observed in systemic blood pressure, serum creatinine or potassium levels (Table 1). This finding may be of clinical relevance, as 15-F2t isoprostane has biological activity as a potent renal vasoconstrictor [3] and has been implicated as a causative mediator in hepatorenal syndrome [4]. Interestingly enough, we have previously demonstrated that a combined therapy with telmisartan and high-dose cilazapril (doubling the dose recommended for antihypertensive treatment) has no additional effect on proteinuria [5], a finding in accordance with the observations of Berl [1]. However, our present data suggest that high-dose administration of ACEI may attenuate oxidative stress, as indicated by reduced generation of potentially nephrotoxic isoprostanes, thus providing additional renal protection for patients with CKD. Conflict of interest statement. None declared. Editorial Note: Dr Berl had no further comments on this letter. 1 Department of Nephrology Transplantology & Internal Medicine 2 Department of Medical Chemistry Medical University of Gdansk 7 Debinki St. 80-211 Gdansk Poland 3 Blood Brain Barrier and Neuro-Oncology Program Oregon Health & Science University, 3181 SW San Jackson Park Rd, Portland, OR 97239, USA E-mail: mrenke@amg.gda.pl Marcin Renke1 Leszek Tylicki1 Narcyz Knap2 Przemyslaw Rutkowski1 Alexander Neuwelt3 Andriy Petranyuk2 Wojciech Larczynski1 Michał Wozniak2 Boleslaw Rutkowski1 1. Berl T. Maximizing inhibition of the renin-angiotensin system with high doses of converting enzyme inhibitors or angiotensin receptor blockers. Nephrol Dial Transplant 2008; 23: 2443–2447 2. Fam SS, Morrow JD. The isoprostanes: unique products of arachidonic acid oxidation—a review. Curr Med Chem 2003; 10: 1723–1740 3. Takahashi K, Nammour TM, Fukunaga M et al. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest 1992; 90: 136–141 4. Morrow JD, Moore KP, Awad JA et al. Marked overproduction of non-cyclooxygenase derived prostanoids (F2-isoprostanes) in the hepatorenal syndrome. J Lipid Mediat 1993; 6: 417–420 5. Tylicki L, Renke M, Rutkowski P et al. Dual blockade of the reninangiotensin-aldosterone system with high-dose angiotensin-converting enzyme inhibitor for nephroprotection: an open, controlled, randomized study. Scand J Urol Nephrol 2008; 13: 1–8 doi: 10.1093/ndt/gfn665 C The Author [2008]. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. For Permissions, please e-mail: journals.permissions@oxfordjournals.org 2 Nephrol Dial Transplant (2008) Table 1. Serum creatinine, potassium and urinary excretion of 15-F2t -isoprostane Parameter Randomization Cilazapril 5 mg Cilazapril 10 mg End of study Serum creatinine, mean ± SEM (mg/dL) Serum potassium, mean ± SEM (mmol/L) Urinary 15-F2t -isoprostane, geometric mean (95% CI) (ng/mg of creatinine) 1.28 ± 0.11 4.49 ± 0.12 0.63 (0.47–1.29) 1.15 ± 0.09 4.55 ± 0.11 0.69 (0.56–1.24) 1.20 ± 0.10 4.55 ± 0.14 0.39 (0.30–0.89) 1.17 ± 0.09 4.36 ± 0.14 0.67 (0.53–1.27) Triple Pharmacological Blockade of the Renin-Angiotensin-Aldosterone System in Nondiabetic CKD: An Open-Label Crossover Randomized Controlled Trial Leszek Tylicki, MD, PhD,1 Przemysław Rutkowski, MD, PhD,1 Marcin Renke, MD, PhD,1 Wojciech Larczyński, MD,1 Ewa Aleksandrowicz, PhD,2 Wiesława Lysiak-Szydlowska, MD, PhD,2 and Bolesław Rutkowski, MD, PhD1 Background: Agents inhibiting the renin-angiotensin-aldosterone (RAAS) system have an important role in slowing the progression of chronic kidney disease. We evaluated the hypothesis that the addition of an aldosterone receptor antagonist to an angiotensin-converting enzyme (ACE) inhibitor and angiotensin II type 1 (AT-1) receptor blocker (ARB) (triple RAAS blockade) may provide an additional benefit compared with an ACE inhibitor and ARB (double RAAS blockade). Design: Randomized open controlled crossover study. Setting & Participants: 18 whites (7 women, 11 men) from the Outpatient Department of Nephrology with chronic nondiabetic proteinuric kidney diseases, mean age 42.4 ⫾ 1.9 years (SEM). Interventions: In the 8-week run-in period, all participants received the ACE inhibitor cilazapril (5 mg), the ARB telmisartan (80 mg), and the diuretic hydrochlorothiazide (12.5 mg) as double RAAS blockade to achieve the target blood pressure of less than 130/80 mm Hg. Participants were then randomly assigned to 2 treatment sequences, either the addition of spironolactone (25 mg) (triple RAAS blockade) through 8 weeks followed by double RAAS blockade through 8 weeks (sequence 1) or double RAAS blockade followed by triple RAAS blockade (sequence 2). Main Outcome Measures: 24-hour urine protein excretion (primary end point) and markers of tubular injury and fibrosis (secondary end points). Analysis was performed using analysis of variance for repeated measurements. Results: At baseline, mean serum creatinine level was 1.16 ⫾ 0.09 mg/dL (103 ⫾ 8 mol/L), estimated glomerular filtration rate was 107.8 mL/min (95% confidence interval, 93 to 140.9 [1.8 mL/s; 95% confidence interval, 1.55 to 2.35; Cockcroft-Gault formula), and 24-hour mean proteinuria was 0.97 ⫾ 0.18 g. Mean urine protein excretion was 0.7 g/24 h (95% confidence interval, 0.48 to 0.92) less after triple RAAS blockade than after double RAAS blockade (P ⫽ 0.01), without change in blood pressure. Urine excretion of N-acetyl--D-glucosaminidase (P ⫽ 0.02) and amino-terminal propeptide of type III procollagen (P ⫽ 0.05) also significantly decreased. Potassium levels increased significantly after triple therapy (P ⫽ 0.02). However, no patient was withdrawn because of adverse effects. Limitations: Absence of blinding, small sample size, short treatment period, absence of histological assessment. Conclusions: Administration of an aldosterone receptor antagonist in addition to double RAAS blockade with an ACE inhibitor and ARB may slow the progression of chronic kidney disease. Additional studies are necessary to confirm this result. Am J Kidney Dis 52:486-493. © 2008 by the National Kidney Foundation, Inc. INDEX WORDS: Proteinuria; renin-angiotensin-aldosterone system; ACE inhibitor; angiotensin receptor blocker; aldosterone receptor blocker; spironolactone. he renin-angiotensin-aldosterone system (RAAS) has an important role in the progression of chronic kidney diseases (CKDs), and inhibition of the RAAS with angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor blockers (ARBs) may retard T CKD progression.1,2 Double pharmacological blockade of the RAAS with an ACE inhibitor and ARB is recommended as standard renoprotective management, at least in patients with nondiabetic proteinuric CKD.3,4 In our previous studies, we confirmed the validity of this therapy in From the Departments of 1Nephrology Transplantology and Internal Medicine and 2Clinical Nutrition and Laboratory Diagnostic, Medical University of Gdansk, Gdansk, Poland. Received September 26, 2007. Accepted in revised form February 14, 2008. Originally published online as doi: 10.1053/j.ajkd.2008.02.297 on April 17, 2008. Trial registration: clinicaltrials.gov, study number: NCT00528385. Address correspondence to Leszek Tylicki, MD, PhD, Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, De˛binki 7 St. Gdańsk 80-211, Poland. E-mail: leszek.tylicki@amg.gda.pl © 2008 by the National Kidney Foundation, Inc. 0272-6386/08/5203-0014$34.00/0 doi:10.1053/j.ajkd.2008.02.297 486 American Journal of Kidney Diseases, Vol 52, No 3 (September), 2008: pp 486-493 Triple RAAS Blockade as a Nephroprotection such patients and also in subjects after renal transplantation.5,6 However, neither ACE inhibitors nor ARBs, even in high doses or concomitant use, abrogate the progression of CKD completely. Innovative approaches are needed to keep patients with CKD off dialysis therapy. Additional blockade of the aldosterone pathway may prove to be such a beneficial therapeutic concept. Aldosterone, a final effector of the RAAS, has a significant role in the pathogenesis of CKD independently of angiotensin II through direct cellular action. This includes promoting inflammatory response, endothelial dysfunction, and fibrosis by increasing plasminogen activator inhibitor 1 and transforming growth factor 1 expression and reactive oxygen species stimulation.7 Other mechanisms include the ability of aldosterone to potentiate the deleterious effects of angiotensin II as a result of upregulation of angiotensin II receptor type AT-1.8 A number of observations suggested that the nongenomic vasoconstrictor action of aldosterone led to increased arterial and glomerular capillary pressure.9 Both ACE inhibitors and ARBs, even at currently approved doses, fail to suppress aldosterone synthesis effectively. This may occur, at least in part, because aldosterone synthesis is strongly regulated out of the renin-angiotensin axis via potassium levels, and adrenocorticotropic hormone.7 Moreover, the initial suppression of aldosterone is not sustained long term. In 40% to 50% of patients, an aldosterone escape phenomenon was observed; that is, circulating aldosterone levels increased after some months of treatment with an ACE inhibitor or ARB.10 Given these facts, additional administration of an aldosterone receptor antagonist to combination treatment with an ACE inhibitor and ARB, socalled triple RAAS blockade, may provide additional renal protection. To shed more light on this issue, we performed a randomized open controlled study to evaluate the influence of triple RAAS therapy on surrogate markers of kidney injury, ie, proteinuria, markers of tubular involvement, and kidney fibrosis. 487 our renal outpatient department. Inclusion criteria were age of 18 to 65 years, nondiabetic proteinuric CKD, normal or slightly impaired stable renal function expressed as serum creatinine level less than 1.7 mg/dL (⬍150 mol/L; estimated glomerular filtration rate [eGFR] ⬎ 45 mL/min [⬎0.75 mL/s]), stable proteinuria greater than 0.3 g/24 h at the randomization point, hypertension, and no steroids or other immunosuppressive treatment a minimum of 6 months before the study. Patients with nephrotic syndrome were excluded. The study was approved by the local ethical committee, and patients gave their written consent for participation in this study. General Protocol The study was a randomized open 2 ⫻ 2 crossover trial in which renal effects of double and triple RAAS blockade were compared. At the beginning, participants who met the inclusion criteria entered the 8-week run-in period, during which any previously used ACE inhibitors or ARBs were stopped. Cilazapril (Inhibace; Hoffman La-Roche, Basel, Switzerland) was continued or newly administered to patients who had not received this agent previously. A maximal recommended dose of 5 mg once daily in the morning was set. Patients also were administered hydrochlorothiazide in a dose of 12.5 mg once daily and telmisartan, 80 mg, once daily in the morning (Micardis; Boehringer Ingelheim, Ingelheim, Germany). There was no washout period between antihypertensive agents used previously and the study treatment involving cilazapril and telmisartan. To achieve the target office trough blood pressure (BP) of 130/80 mm Hg or less, adjuvant antihypertensive treatment with doxazosin was used, if necessary. When the target BP was achieved, patients received such adjusted therapy (background therapy) until the end of the run-in period, but not less than 6 weeks. Patients were recommended not to change their usual daily protein and sodium intake during the study periods. At the end of the run-in period, they were randomly assigned to 1 of 2 treatment sequences: 8-week background therapy with the addition of 25 mg of spironolactone/8-week background therapy without spironolactone (sequence 1) or 8-week background therapy without spironolactone/8-week background therapy with the addition of 25 mg of spironolactone (sequence 2; Fig 1). There was no washout between the 2 treatments in each sequence. Afterward, the same 8-week background therapy as in the run-in period was administered as a control period for stability of background proteinuria. METHODS Patients Patients of white race were recruited from March 2005 to February 2006 from the cohort that consecutively attended Figure 1. Study scheme. *Urine and blood were obtained for analyses. 488 Spironolactone, the aldosterone receptor antagonist (Spironol; Polfa Grodzisk, Grodzisk Mazowiecki, Poland), was administered once daily in the morning. Allocation was performed independent of the research team person according to a computer-generated randomization list. Dosages of cilazapril, telmisartan, and hydrochlorothiazide, once established in the run-in period, were unchanged throughout the study. Target BP was an office trough BP of 130/80 mm Hg or less. Drug adherence was assessed by means of tablet counts. At the end of each of the 2 treatment periods, values for office trough BP, 24-hour ambulatory BP, serum creatinine, potassium, hemoglobin, and plasma renin activity (PRA) and 24-hour urine excretion of protein (UPE), N-acetyl--D-glucosaminidase (NAG), ␣1-microglobulin (␣1m), amino-terminal propeptide of type III procollagen (PIIINP), creatinine, sodium, and urea were determined. Procedures and Laboratory Methods Office trough BP was measured using a mercury sphygmomanometer with the patient in a sitting position after 10 minutes of rest and expressed as a mean value of 2 consecutive measurements obtained 2 minutes apart. Ambulatory BP was measured continuously for 24 hours using the Mobil-ograph (version 12) monitoring system (I.E.M. GmbH, Stolberg, Germany). BP was measured every 15 minutes during the day (7:00 AM to 10:00 PM) and every 30 minutes during the night (10:00 PM to 7:00 AM). All patients were equipped with a scaled container and were strictly informed how to collect urine. On 2 different days, they collected two 24-hour urine samples. From those, mean values of UPE, sodium excretion, and urea excretion were calculated for data evaluation. Patients were asked not to perform heavy physical activity on urine collection days. Urea excretion was used to calculate protein intake according to the equation of Maroni et al11: protein intake normalized to weight (g/kg/d) ⫽ 6.25 ⫻ ([urea nitrogen excretion in urine (g/d)] ⫹ [0.0031 ⫻ body weight (kg)])/body weight (kg). eGFR was calculated according to the Cockroft-Gault equation.12 Blood samples for PRA were obtained after overnight fasting and 30 minutes at rest lying down before study drug administration. Samples were stored at ⫺75°C until assayed. PRA was measured by means of radioimmunoassay (RENCTK; DiaSorin, Stillwater, MN) that estimates the amount of angiotensin I generated by the action of renin on angiotensinogen. Hemoglobin, urea, potassium, sodium, protein, and creatinine were measured by using standard laboratory techniques. Adverse effects were recorded at each visit in response to questionnaires or as observed by the investigators. The first morning urine sample was collected for determination of PIIINP. Samples were stored at ⫺75°C until assayed. Urinary PIIINP was measured by using a radioimmunoassay kit obtained from Orion Diagnostica (Espoo, Finland). Intra-assay and interassay coefficients of variation were 3.0% and 6.5% for 2.8 and 2.7 g/L, respectively. The measuring range of the assay is 1.0 to 50 g/L, and the detection limit is 0.3 g/L. NAG and ␣1m were analyzed in the second morning spot-urine sample. NAG was determined by using the spectrophotometric method according to Maruhn13 and was described in detail elsewhere.6 Immunoturbidimetric test Tylicki et al (Tina-quant ␣1-microglobulin; Roche, Basel, Switzerland) was used for quantitative determination of ␣1m in urine. The detection limit of the method was 2 mg/L. Urinary NAG, ␣1m, and PIIINP were reported per milligram or gram of urine creatinine to correct the variation in urine concentration. Statistics Data from previous studies were used for sample size calculation.14,15 The primary end point of this study was a difference in 24-hour UPE in measurements available for each patient after treatment with double and triple RAAS blockade. Baseline 24-hour proteinuria of patients from this population of 0.75 ⫾ 0.5 g/24 h was predicted. Assuming a 30% decrease in proteinuria after adding spironolactone to double RAAS blockade, we predicted a decrease in proteinuria from 0.75 to 0.50 g/24 h with triple RAAS therapy. To give the study 80% power to detect such a difference as statistically significant (P ⬍ 0.05, 2 tailed) with an expected SD of 0.25 g/24 h, 18 patients had to complete the study. Secondary end points included urine NAG, ␣1m, and PIIINP excretion. Normality and homogeneity of variances were verified by means of Shapiro-Wilk test and Levene test, respectively. Because of their skewed distribution, diastolic BP, eGFR, PRA, and PIIINP urine excretion were logarithmically transformed before statistical analysis and expressed as geometric means and 95% confidence intervals. Other results are expressed as mean ⫾ SEM. Differences in variables measured more than twice were assessed by using analysis of variance (ANOVA) for repeated measurements with Bonferroni correction for paired comparisons, otherwise paired t-test. P less than 0.05 (2 tailed) is considered statistically significant. Data were evaluated using the Statistica (version 7.1; StatSoft Inc, Tulsa, OK) software package. To prevent or limit the possibility of a period effect, we introduced a degree of balance into the study design with a scheme of randomization allowing every treatment to be represented in every period with the same frequency (Fig 1). To check for the presence of period effect, values for variables at the randomization point and end of the study were compared. To prevent or limit the risk of carryover effect, we planned each treatment period for 8 weeks. Previous studies showed that effects of aldosterone receptor blockade on proteinuria were fully reversible within 4 weeks.14 Thus, prolonging each treatment period for 8 weeks allowed us to rule out a residual effect of previous treatment at the end of week 8, when proteinuria was measured. The Grizzle approach was used to investigate the possibility of a carryover effect from the first to the second treatment periods of the study.16 An analysis restricted to the first treatment period was planned if a carryover effect could not be excluded by using this approach. The test by Grubbs17 was used for detecting outliers. RESULTS Of 18 patients who entered the study, 18 (100%) completed the protocol (Fig 2). Baseline clinical data at the randomization point are listed in Table 1. To achieve the target BP, doxazosin (4 Triple RAAS Blockade as a Nephroprotection Figure 2. Patient flow through recruitment, randomization, and follow-up. Abbreviation: RAAS, renin-angiotensinaldosterone system. mg once daily) had to be supplemented in 1 of 18 patients in all treatment periods. Grizzle analysis excluded the possibility of a carryover effect between 2 treatment periods for UPE, PRA, urine NAG, ␣1m, and PIIINP excretion. To check for the presence of period effect, differences between main variables at the randomization point and the end of the study were compared and found not to be significant. Control of BP was adequate in all study periods; 17 of 18 patients reached the target office trough BP of less than 130/80 mm Hg. There also were no differences in ambulatory systolic and diastolic BP and daily protein and sodium intake between treatments (P ⫽ 0.9; P ⫽ 0.1; P ⫽ 0.2; and P ⫽ 0.3, respectively). Renal function assessed by means of serum creatinine and eGFR remained stable during the study periods (P ⫽ 0.6 and P ⫽ 0.9, respectively; Table 2). A significant increase in PRA was observed after treatment with triple RAAS blockade compared with double RAAS blockade (P ⫽ 0.02; Table 2). The increment in PRA was shown in 16 of 18 patients. Triple therapy provided an additional 55.37% decrease in proteinuria; ie, 0.7 g/24 h (95% confidence interval, 0.48 to 0.92) compared with double RAAS blockade (ANOVA P ⫽ 0.01; post 489 hoc P ⫽ 0.01; Table 2). The decrease in proteinuria was shown in 16 of 18 patients. Changes in proteinuria did not correlate with changes in systolic BP, diastolic BP, or PRA. The addition of spironolactone resulted in a significant decrease in urine NAG (ANOVA P ⫽ 0.006; post hoc P ⫽ 0.02) and PIIINP (ANOVA P ⫽ 0.03; post hoc P ⫽ 0.05) excretion compared with double RAAS blockade (Table 2). It was shown in 15 and 16 of 18 patients, respectively. ␣1m excretion decreased numerically after triple RAAS blockade (P ⫽ 0.9). The study treatments were well tolerated by all patients. Adverse effects were not reported in questionnaires. There was a significant increase in potassium levels after triple RAAS blockade compared with baseline (ANOVA P ⫽ 0.02; post hoc P ⫽ 0.02; Table 2). The increase in potassium levels after triple RAAS blockade was shown in 10 of 18 patients. In 2 patients, potassium levels significantly increased to 5.7 and 5.9 mmol/L, respectively. DISCUSSION In the present study, we show that administration of the aldosterone receptor antagonist spironolactone in addition to combination treatment with an ACE inhibitor and ARB leads to a further increase in RAAS blockade. A significant increase in PRA was observed after triple RAAS blockade, similar to other reports.18,19 The addition of spironolactone to double RAAS blockade with cilazapril and telmisartan Table 1. Patient Characteristics (at the randomization point) No. of patients Age (y) Women/men Primary nondiabetic nephropathy Minimal change disease Mesangial proliferative glomerulonephritis Immunoglobulin A nephropathy Chronic membranous glomerulonephritis Chronic membranoproliferative glomerulonephritis Focal sclerosing glomerulonephritis Chronic interstitial nephritis Amyloidosis Unknown Body mass index (kg/m2) 18 42.44 ⫾ 1.89 7/11 1 3 4 1 2 1 1 1 4 26.91 ⫾ 1.17 490 Tylicki et al Table 2. Results for BP, Protein Intake, Sodium Excretion, Potassium, Hemoglobin, Serum Creatinine, PRA, Proteinuria, and Urine Excretion of NAG, ␣1m, and PIIINP Randomization Point End of Triple RAAS Blockade End of Double RAAS Blockade Study End No. of patients 18 18 18 18 24-h systolic BP (mm Hg) 115.28 ⫾ 2.79 114.72 ⫾ 2.51 116.11 ⫾ 2.12 115.28 ⫾ 2.27 24-h diastolic BP (mm Hg) 73.83 (70.62-77.71) 70.17 (66.75-74.36) 71.63 (68.52-75.37) 70.99 (68.09-74.47) Sodium urine excretion (mmol/24 h) 276.33 ⫾ 16.29 252.41 ⫾ 24.94 238.76 ⫾ 23.11 258.94 ⫾ 22.26 Daily protein intake (g/kg/24 h) 1.09 ⫾ 0.08 1.05 ⫾ 0.09 1.04 ⫾ 0.07 0.91 ⫾ 0.06 Potassium (mEq/L) 4.5 ⫾ 0.12 4.81 ⫾ 0.12* 4.66 ⫾ 0.09 4.55 ⫾ 0.09 Hemoglobin (g/dL) 14.19 ⫾ 0.34 13.79 ⫾ 0.33 14.16 ⫾ 0.36 13.9 ⫾ 0.34 Serum creatinine (mg/dL) 1.16 ⫾ 0.09 1.18 ⫾ 0.09 1.15 ⫾ 0.1 1.17 ⫾ 0.1 eGFR (mL/min/1.73 m2) 107.8 (93-140.9) 106.7 (89.2-146.2) 103.5 (83.9-147) 99,6 (81.6-137.9) Urinary protein excretion (g/24 h) 0.97 ⫾ 0.18 0.51 ⫾ 0.1† 1.21 ⫾ 0.2 0.99 ⫾ 0.26 NAG excretion (IU/g creatinine) 3.76 ⫾ 0.59 2.19 ⫾ 0.21† 3.44 ⫾ 0.44 3.16 ⫾ 0.48 ␣1-Microglobulin excretion (mg/g 8.89 ⫾ 1.54 6.25 ⫾ 1.18 8.68 ⫾ 1.6 8.89 ⫾ 3.35 creatinine) 1.7 (1.38-2.56) 1.32 (1.14-2.0)† 2.8 (2.0-4.68) 1.35 (1.04-2.38) PIIINP excretion (g/g creatinine) PRA (ng/mL/h) — 3.78 (2.79-6.85)† 2.56 (1.94-4.78) — Note: To convert serum creatinine in mg/dL to mol/L, multiply by 88.4; eGFR in mL/min/1.73 m2 to mL/s/1.73 m2, multiply by 0.01667; hemoglobin in g/dL to g/L, multiply by 10. Potassium levels expressed in mEq/L and mmol/L are equivalent. Abbreviations: BP, blood pressure; NAG, N-acetyl--D-glucosaminidase; PIIINP, amino-terminal propeptide of type III procollagen; eGFR, estimated glomerular filtration rate; PRA, plasma renin activity. *Significant difference compared with randomization point (P ⬍ 0.05). †Significant difference compared with double renin-angiotensin-aldosterone system blockade (P ⬍ 0.05). resulted in a significant decrease in UPE of 55.4%. Of note, the decrease in UPE was not significantly associated with a decrease in BP. No confounding changes in renal function or protein and sodium intake were observed. UPE decreased in 16 of 18 patients who completed the study (Fig 3), suggesting that the antiproteinuric effect is not restricted to patients with aldosterone escape phenomenon, occurring in approximately 40% of patients receiving long-term pharIndividual patients data on UPE 2,6 2,4 2,2 2,0 UPE g/24 hours 1,8 1,6 1,4 1,2 1,0 0,8 0,6 0,4 0,2 0,0 Triple RAAS blockade Double RAAS blockade Figure 3. Individual patient data for 24-hour proteinuria (urinary protein excretion [UPE]) after double and triple renin-angiotensin-aldosterone system (RAAS) blockade. macological RAAS blockade,10 or patients with a particular type of nephropathy. The antiproteinuric effect of spironolactone seen in our study confirms and extends findings of previous clinical studies in patients with nondiabetic CKD.15,20 In a double-blind placebo-controlled study performed in 41 patients with various CKDs, Chrysostomou and Becker15 showed that the addition of the aldosterone receptor antagonist to an ACE inhibitor resulted in a 42% decrease in proteinuria that was sustained up to 12 months. Of interest, they showed for the first time that triple therapy offered an advantage to double therapy with an ACE inhibitor and ARB, causing a greater proteinuria decrease by 32.5%. However, they observed no differences between triple RAAS blockade and a combination of ACE inhibitor and spironolactone. In a prospective randomized open-label study, Bianchi et al evaluated the effects of spironolactone (25 mg/d for 1 y) on proteinuria and eGFR in 83 patients with CKD already treated with an ACE inhibitor and/or ARB.14 After 1 year of therapy, proteinuria and aldosterone levels decreased significantly. Their subgroup analysis performed in 43 individuals treated with a combination of an ACE inhibitor and ARB showed that the addition of an aldoste- Triple RAAS Blockade as a Nephroprotection rone receptor antagonist to double RAAS blockade may provide an additional significant decrease in proteinuria by even 43%. Unfortunately, the study of Chrysostomou and Becker,15 although very interesting, did not use an ACE inhibitor and ARB in their maximal recommended doses; therefore, it did not answer the crucial question about whether triple RAAS blockade provided additional renoprotection in comparison to combination ACE-inhibitor and ARB therapy. In the report by Bianchi et al, there was no information about doses of the ACE inhibitor and ARB used in the study.14 The particular strength of our study is to observe a decrease in proteinuria when spironolactone was added to double RAAS blockade using an ACE inhibitor and ARB in maximal recommended hypotensive doses. These findings point toward a potential benefit of blockade of all components of the RAAS with the use of an aldosterone receptor antagonist, ACE inhibitor, and ARB as a new promising nephroprotective strategy to effectively decrease the deleterious actions of both angiotensin II and aldosterone in patients with CKD. One may speculate about whether increasing doses of an ACE inhibitor and/or ARB to greater than commonly recommended levels may provide additional nephroprotection. Aranda et al21 showed that a high dose of telmisartan (ie, 160 mg) produced a greater decrease in proteinuria than the standard dose of 80 mg. These findings indicate that maximal recommended hypotensive doses of an ARB may be not optimal in the aspect of nephroprotection. Of interest also may be the issue of whether divided or bedtime administration of RAAS blockers may provide a better antiproteinuric response in a comparison with a 1-time morning administration of the same daily doses of these agents.22 Several mechanisms may be involved in the antiproteinuric effect of aldosterone blockade. First, as a result of differential effects on the afferent and efferent glomerular arterioles,9 aldosterone could increase intraglomerular pressure, an action independent of that of angiotensin II. Using isolated afferent and efferent arterioles from rabbit kidneys, Arima et al9 showed that aldosterone exerted a vasoconstriction action on both the afferent and efferent arterioles, but the sensitivity of the efferent arterioles to aldosterone was greater than that of the afferent arte- 491 rioles. Another potential mechanism incorporates the ability of aldosterone to potentiate the pressor effects of angiotensin II as a result of upregulation of angiotensin II receptors in vascular smooth muscle cells.8 Worthy of analysis is the issue of whether the renal benefit of additional aldosterone blockade lies in its diuretic effect or its ability to modulate the non–volume-mediated effects of aldosterone. One should realize that the addition of a diuretic to pharmacological blockade of the RAAS may decrease proteinuria further.23 To reduce the influence of sodium-dependent mechanisms on study results, all subjects received an unchanged dose of diuretic, hydrochlorothiazide, during all periods of the study. In addition, patients were instructed not to change their daily sodium intake during study periods. Sodium excretion was monitored and found not to change during all study phases, which may suggest that the renal effect of spironolactone was not caused by diuretic effects of the drug. Of course, we cannot completely exclude such a mechanism. To solve the problem, a study design involving direct comparison of renal effects of spironolactone and a diuretic without aldosterone antagonism properties in addition to double pharmacological RAAS blockade should be adopted. No clinical evidence is available about whether the addition of an aldosterone receptor antagonist can inhibit the long-term progression of CKD to end-stage failure. Promising pilot data recently were published by Bianchi et al, who showed that the monthly rate of decrease in eGFR from baseline was lower in patients treated with combined RAAS blockade including spironolactone than in controls without an aldosterone receptor antagonist.14 In a proteinuriainduced renal damage model, a combination of ACE inhibitor and spironolactone recently was shown to decrease tubular damage and prevent kidney fibrosis,24 fundamental predictors of kidney outcome.25 To evaluate tubulointerstitial effects of our interventions, the tubular involvement markers NAG and ␣1m and an indirect marker of kidney fibrosis, PIIINP, were analyzed. A close association between urinary PIIINP excretion and degree of interstitial fibrosis previously was evidenced.26 During the synthesis and deposition of type III collagen, PIIINP is degraded from the collagen and secreted into the 492 surroundings. The increased excretion of NAG is believed to be a specific marker of tubular injury in many renal pathological states, including nondiabetic CKD.27 Increased urinary excretion of ␣1m, a low-molecular-weight protein physiologically filtered and reabsorbed by tubular cells, might indicate the decreased capacity of its reabsorption by such cells and might be the marker of established tubular damage, with greater urinary concentrations pointing to greater severity of damage.28 In the present study, triple RAAS blockade was shown to decrease both NAG and PIIINP compared with double RAAS blockade, and these effects were completely independent of BP changes. Decreased ␣1m levels also were observed; however, the difference did not reach the significance level. These beneficial renal effects may contribute to the decrease in tubulotoxic proteinuria, as well as direct nonhemodynamic consequences of aldosterone antagonism, including decreased production of such prosclerotic cytokines as transforming growth factor 1, plasminogen activator inhibitor type 1, and decreased macrophage infiltration, processes involved in the development of fibrosis.29 Thus, we expanded the evidence of the beneficial renal impact of triple RAAS blockade beyond looking at proteinuria. A potential limitation of the study is the relatively small sample size, which is sufficiently powered to detect a significant difference equal to the SD value between treatment periods. Twenty-four–hour urine collections used to assess proteinuria may be associated with significant collection errors, largely because of improper timing and missed samples, leading to overcollection and undercollection. Another limitation may be the relatively short treatment periods, during which beneficial tubulointerstitial effects may not yet fully develop. In addition, one should realize that the potential benefits for tubules and interstitium were extrapolated from presumptive early surrogates. Evidence may be provided by only histological examination. Side effects of triple RAAS blockade also need to be considered. There is potential risk of life-threatening hyperkalemia during aldosterone receptor blockade, particular when patients are treated with other agents that increase potassium levels, such as ACE inhibitors and ARBs.30 Because the risk of hyperkalemia is clearly dose Tylicki et al dependent, we used a low dose of spironolactone. In addition, only patients with normal or slightly impaired kidney function were included in the study. Within this regimen, triple RAAS blockade induced only moderate hyperkalemia. Although hyperkalemia was not a clinical problem in our study, we do not advocate the use of triple RAAS blockade without careful screening and ongoing monitoring of candidate patients. There were no reports of antiandrogen side effects in our study, but it is necessary to note that exposure time was short. In summary, we found that an aldosterone receptor antagonist in addition to recommended renoprotective treatment using combination therapy with an ACE inhibitor and ARB, socalled triple RAAS blockade, decreased proteinuria and urine excretion of proteins associated with tubular damage and interstitial renal fibrosis and thus may have a beneficial effect on the outcome of patients with proteinuric nondiabetic CKD. ACKNOWLEDGEMENTS Results of this study were presented in abstract form during the 44th European Renal Association-European Dialysis and Tansplant Association Congress, Barcelona, Spain, on June 21-24, 2007. Support: The study was supported by a grant from the Polish Committee for Scientific Research (KBN) through the Medical University of Gdansk (ST-4). The authors thank Roche Polska and Boehringer Ingelheim Polska for providing the drugs. The drug providers and sponsors had no involvement in the study design, patient recruitment, analysis, interpretation of data, writing of the report, or the decision to submit the report for publication. Financial Disclosure: None. REFERENCES 1. Tylicki L, Larczynski W, Rutkowski B: Renal protective effects of the renin-angiotensin-aldosterone system blockade: From evidence-based approach to perspectives. Kidney Blood Press Res 28:230-242, 2005 2. Remuzzi G, Perico N, Macia M, Ruggenenti P: The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl 99:S57S65, 2005 3. Nakao N, Yoshimura A, Morita H, et al: Combination treatment of angiotensin-II receptor blocker and angiotensinconverting-enzyme inhibitor in non-diabetic renal disease (COOPERATE): A randomised controlled trial. Lancet 361: 117-124, 2003 4. Ruggenenti P, Remuzzi A: Is therapy with combined ACE inhibitor and angiotensin receptor antagonist the new gold standard of treatment for nondiabetc, chronic proteinuric nephropathies? NephSAP 2:235-237, 2003 Triple RAAS Blockade as a Nephroprotection 5. Rutkowski P, Tylicki L, Renke M, et al: Low-dose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am J Kidney Dis 43:260-268, 2004 6. Tylicki L, Biedunkiewicz B, Chamienia A, et al: Renal allograft protection with angiotensin II type 1 receptor antagonists. Am J Transplant 7:243-248, 2007 7. Hollenberg NK: Aldosterone in the development and progression of renal injury. Kidney Int 66:1-9, 2004 8. Iglarz M, Touyz RM, Viel EC, Amiri F, Schiffrin EL: Involvement of oxidative stress in the profibrotic action of aldosterone: Interaction with the renin-angiotension system. Am J Hypertens 17:597-603, 2004 9. Arima S, Kohagura K, Xu HL, et al: Nongenomic vascular action of aldosterone in the glomerular microcirculation. J Am Soc Nephrol 14:2255-2263, 2003 10. Lakkis J, Lu W, Weir M: RAAS escape: A real clinical entity that may be important in the progression of cardiovascular and renal disease. Curr Hypertens Rep 5:408417, 2003 11. Maroni BJ, Steinman TI, Mitch WE: A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 27:58-65, 1985 12. Cockcroft DW, Gault MH: Prediction of creatinine clearance from serum creatinine. Nephron 16:31-41, 1976 13. Maruhn D: Rapid calorimetric assay of -galactosidase and N-acetyl--D-glucosaminidase in human urine. Clin Chim Acta 73:453-461, 1976 14. Bianchi S, Bigazii R, Campese VM: Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 70:21162123, 2006 15. Chrysostomou A, Becker G: Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med 345:925-926, 2001 16. Senn S: Cross-over Trials in Clinical Research. Chichester, NY, Wiley, 2002 17. Grubbs FE: Procedures for detecting outlying observations. Technometrics 11:1-21, 1969 18. Schjoedt KJ, Rossing K, Juhl TR, et al: Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 70:536-542, 2006 19. Rossing K, Schjoedt KJ, Smidt UM, Boomsma F, Parving HH: Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: A randomized, double-masked, cross-over study. Diabetes Care 28:2106-2112, 2005 493 20. Nitta K, Uchida K, Nihei H: Spironolactone and angiotensin receptor blocker in nondiabetic renal diseases. Am J Med 117:444-445, 2004 21. Aranda P, Segura J, Ruilope LM, et al: Long-term renoprotective effects of standard versus high doses of telmisartan in hypertensive nondiabetic nephropathies. Am J Kidney Dis 46:1074-1079, 2005 22. Minutolo R, Gabbai FB, Borrelli S, et al: Changing the timing of antihypertensive therapy to reduce nocturnal blood pressure in CKD: An 8-week uncontrolled trial. Am J Kidney Dis 50:908-917, 2007 23. Butter H, Hemmelder M, Navis G, De Jong P, De Zeeuw D: The blunting of the antiproteinuric efficacy of ACE inhibition by high sodium intake can be restored by hydrochlorothiazide. Nephrol Dial Transplant 13:16821685, 1998 24. Kramer AB, van der Meulen EF, Hamming I, van Goor H, Navis G: Effect of combining ACE inhibition with aldosterone blockade on proteinuria and renal damage in experimental nephrosis. Kidney Int 71:417-424, 2007 25. Abbate M, Zoja C, Rottoli D, et al: Antiproteinuric therapy while preventing the abnormal protein traffic in proximal tubule abrogates protein-and complement-dependent interstitial inflamation in experimental renal disease. J Am Soc Nephrol 10:804-813, 1999 26. Teppo AM, Tornroth T, Honkanen E, GronhagenRiska C: Urinary amino-terminal propeptide of type III procollagen (PIIINP) as a marker of interstitial fibrosis in renal transplant recipients. Transplantation 75:2113-2119, 2003 27. Bazzi C, Petrini C, Rizza V, et al: Urinary Nacetylglucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant 17:1890-1896, 2002 28. Holdt-Lehmann B, Lehmann A, Korten G, et al: Diagnostic value of urinary alanine aminopeptidase and N-acetyl--D-glucosaminidase in comparison to alfa-1 microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 297:93-102, 2000 29. Sawathiparnich P, Murphey LJ, Kumar S, Vaughan DE, Brown NJ: Effect of combined AT1 receptor and aldosterone receptor antagonism on plasminogen activator inhibitor-1. J Clin Endocrinol Metab 88:3867-3873, 2003 30. Wrenger E, Muller R, Moesenthin M, et al: Interaction of spironolactone with ACE inhibitors or angiotensin receptor blockers: Analysis of 44 cases. BMJ 327:147-149, 2003 Spironolactone Attenuates Oxidative Stress in Patients With Chronic Kidney Disease Marcin Renke, Leszek Tylicki, Narcyz Knap, Przemyslaw Rutkowski, Alexander Neuwelt, Wojciech Larczynski, Michal Wozniak and Boleslaw Rutkowski Hypertension 2008;52;e132-e133; originally published online Sep 29, 2008; DOI: 10.1161/HYPERTENSIONAHA.108.120568 Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514 Copyright © 2008 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://hyper.ahajournals.org/cgi/content/full/52/5/e132 Subscriptions: Information about subscribing to Hypertension is online at http://hyper.ahajournals.org/subscriptions/ Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, a division of Wolters Kluwer Health, 351 West Camden Street, Baltimore, MD 21202-2436. Phone: 410-528-4050. Fax: 410-528-8550. E-mail: journalpermissions@lww.com Reprints: Information about reprints can be found online at http://www.lww.com/reprints Downloaded from hyper.ahajournals.org at NATIONAL INSTHEALTH LIB on November 13, 2008 Letter to the Editor Letters to the Editor will be published, if suitable, as space permits. They should not exceed 1000 words (typed, double-spaced) in length and may be subject to editing or abridgment. Spironolactone Attenuates Oxidative Stress in Patients With Chronic Kidney Disease To the Editor: In one of the latest issues of Hypertension, Michea et al1 reported that the mineralocorticoid receptor antagonist spironolactone attenuates cardiac hypertrophy and oxidative stress of the heart in uremic rats. The results of our recent clinical study indicate that spironolactone acts to decrease the amount of oxidative stress in patients being treated for chronic kidney disease. In an open, randomized, crossover study, 16 white adult patients (10 men and 6 women; mean age: 41 years) with nondiabetic proteinuric chronic kidney disease were evaluated to test the hypothesis that spironolactone combined with standard nephroprotective therapy may act as a clinically beneficial antioxidant. All of the study participants, during a preliminary period of 8 weeks, received the angiotensin-converting enzyme inhibitor cilazapril (5 mg), angiotensin II type 1 receptor blocker telmisartan (80 mg), and diuretic hydrochlorothiazide (12.5 mg), reducing the blood pressure to ⬍130/80 mm Hg. The trial treatment was either based solely on the unchanged double blockade of the renin-angiotensin system or combined with 25 mg of spironolactone, thus providing triple renin-angiotensin system blockade during the first 2 months of the study, with the alternative being used for the next 2 months. A commercial ELISA kit (Cayman Chemical Co) was then used to measure the urinary excretion of 15-F2t-isoprostane, widely accepted as a reliable and sensitive marker of oxidative stress in the human body.2 It was found that spironolactone significantly reduced urinary levels of 15-F2t-isoprostane relative to the control group (ANOVA P⫽0.035; posthoc P⫽0.041), with no change observed in systemic blood pressure or serum creatinine levels (Table). This finding may be of clinical relevance, because 15-F2t-isoprostane isoprostane has biological activity as a potent renal vasoconstrictor3 and has been implicated as a causative mediator in hepatorenal syndrome.4 Interestingly, Furumatsu et al5 recently observed a beneficial effect from the incorporation of spironolactone into a combined treatment regimen consisting of angiotensin-converting enzyme inhibitor and angiotensin II type 1 receptor blocker for use against chronic kidney disease; Furumatsu et al5 specifically noted improved intrarenal hemodynamics, as well as decreased proteinuria levels, in patients receiving spironolactone. Thus, taken together with the findings of previous studies, our results indicate that spironolactone may be a useful addition to standard nephroprotective therapy, playing a beneficial role as a clinically effective antioxidant. Source of Funding The study was fully supported by Medical University of Gdansk via ST-U grant. Disclosures None. Marcin Renke Leszek Tylicki Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk Gdansk, Poland Narcyz Knap Department of Medical Chemistry Medical University of Gdansk Gdansk, Poland Przemysław Rutkowski Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk Gdansk, Poland Alexander Neuwelt Blood Brain Barrier and Neuro-Oncology Program Oregon Health and Science University Portland, Ore Wojciech Larczyński Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk Gdansk, Poland Michał Woźniak Department of Medical Chemistry Medical University of Gdansk Gdansk, Poland Bolesław Rutkowski Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk Gdansk, Poland Table. Serum Creatinine and Urinary Excretion of 15-F2t-Isoprostane Parameter Randomization Spironolactone Control End of Study Serum creatinine, mean⫾SEM, mg/dL 1.12⫾0.08 1.16⫾0.10 1.13⫾0.11 1.09⫾0.10 Urinary 15-F2t-isoprostane, geometric mean (95% CI), ng/mg of creatinine 0.76 (0.48 to 2.48) 0.65 (0.51 to 0.98) 0.94 (0.67 to 2.55) 0.91 (0.55 to 2.51) (Hypertension. 2008;52:e132-e133.) © 2008 American Heart Association, Inc. Hypertension is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.108.120568 e132 INSTHEALTH LIB on November 13, 2008 Downloaded from hyper.ahajournals.org at NATIONAL Letter to the Editor 1. Michea L, Villagrán A, Urzúa A, Kuntsmann S, Venegas P, Carrasco L, Gonzalez M, Marusic ET. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and prevents oxidative stress in uremic rats. Hypertension. 2008;52:1– 6. 2. Fam SS, Morrow JD. The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr Med Chem. 2003;10:1723–1740. 3. Takahashi K, Nammour TM, Fukunaga M, Ebert J, Morrow JD, Roberts LJ, Hoover RL, Badr KF. Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest. 1992;90:136 –141. e133 4. Morrow JD, Moore KP, Awad JA, Ravenscraft MD, Marini G, Badr KF, Williams R, Roberts LJ. Marked overproduction of non-cyclooxygenase derived prostanoids (F2-isoprostanes) in the hepatorenal syndrome. J Lipid Mediat. 1993;6:417– 420. 5. Furumatsu Y, Nagasawa Y, Tomida K, Mikami S, Kaneko T, Okada N, Tsubakihara Y, Imai E, Shoji T. Effect of renin-angiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker. Hypertens Res. 2008;31:59 – 67. Downloaded from hyper.ahajournals.org at NATIONAL INSTHEALTH LIB on November 13, 2008 Original Paper Kidney Blood Press Res 2008;31:404–410 DOI: 10.1159/000185828 Received: March 27, 2008 Accepted: October 24, 2008 Published online: December 18, 2008 The Effect of N-Acetylcysteine on Proteinuria and Markers of Tubular Injury in Non-Diabetic Patients with Chronic Kidney Disease A Placebo-Controlled, Randomized, Open, Cross-Over Study Marcin Renke a Leszek Tylicki a Przemysław Rutkowski a Wojciech Larczyński a Ewa Aleksandrowicz b Wiesława Łysiak-Szydłowska b Bolesław Rutkowski a Departments of a Nephrology, Transplantology and Internal Medicine and b Clinical Nutrition and Laboratory Diagnostics, Medical University of Gdansk, Gdansk , Poland Key Words N-Acetylcysteine ⴢ Chronic kidney disease ⴢ Proteinuria ⴢ Tubular injury Abstract Background: Inhibition of the renin-angiotensin-aldosterone system with angiotensin-converting enzyme inhibitors (ACEI) and/or angiotensin II subtype 1 receptor antagonists (ARB) constitutes a strategy in the management of patients with chronic kidney disease. There is still no optimal therapy which can stop the progression of chronic kidney disease. Antioxidants such as N-acetylcysteine (NAC) have been reported as a promising strategy in this field. Methods: In a placebo-controlled, randomized, open, 2-period cross-over study, we evaluated the influence of NAC (1,200 mg/day) added to renin-angiotensin-aldosterone system blockade on proteinuria and surrogate markers of tubular injury and renal fibrosis in 20 non-diabetic patients with proteinuria (0.4–6.36 g/24 h) with normal or decreased kidney function (estimated glomerular filtration rate 61–163 ml/min). Subjects entered the 8-week run-in period during which the therapy using ACEI and/or ARB was established with blood pressure below 130/80 mm Hg. Next, patients were randomly assigned to 1 of 2 treatment sequences: NAC/washout/ © 2008 S. Karger AG, Basel 1420–4096/08/0316–0404$24.50/0 Fax +41 61 306 12 34 E-Mail karger@karger.ch www.karger.com Accessible online at: www.karger.com/kbr placebo or placebo/washout/NAC. Clinical evaluation and laboratory tests were performed at the randomization point and after each period of the study. Results: No significant changes in laboratory tests were observed. Conclusion: NAC had no effect on proteinuria, surrogate markers of tubular injury or renal fibrosis in non-diabetic patients with chronic kidney disease. Copyright © 2008 S. Karger AG, Basel Introduction Pharmacological inhibition of the renin-angiotensinaldosterone system constitutes a cornerstone strategy in the management of patients with chronic nephropathies with proteinuria and with chronic renal failure [1]. Angiotensin-converting enzyme inhibitors (ACEI) as well as angiotensin II subtype 1 receptor antagonists (ARB) have been shown to decrease proteinuria, reduce the local renal inflammatory processes and slow the progression of renal insufficiency [2–6]. Despite recent progress, there is still no optimal therapy which stops the progression of renal disease. Therefore, it is necessary to search for alternative therapeutic strategies which can further improve renal outcome. The administration of various anMarcin Renke, MD, PhD Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk, Debinki 7 PL–80-211 Gdansk (Poland) Tel. +48 58 349 25 05, Fax +48 58 346 11 86, E-Mail mrenke@amedec.amg.gda.pl Table 1. Patient characteristics at baseline Sequence 1 NAC 1,200 mg/day Washout Placebo Parameter Random End point Run-in period Sequence 2 Placebo Washout NAC 1,200 mg/day 8 weeks 8 weeks 8 weeks 8 weeks Fig. 1. Study scheme. tioxidants has been reported to exhibit beneficial effects in a number of experimental models of chronic kidney diseases, suggesting that reactive species (RS), their sources and the signalling pathways modified by RS may represent important therapeutic targets to halt or attenuate renal injury [7]. N-Acetylcysteine (NAC), a synthetic precursor of reduced glutathione (GSH), is a thiol-containing compound which stimulates the intracellular synthesis of GSH, enhances glutathione-S-transferase activity and acts solely as an RS scavenger [8]. NAC has been shown to prevent renal function in animal studies [9–12], but clinical data concerning the renal effects of NAC are still very limited [13–15]. Consequently, in the present study, we evaluated the effects of the addition of NAC to background nephroprotective therapy with ACEI and/or ARB on proteinuria and renal function as well as surrogate markers of tubular injury and renal fibrosis in non-diabetic patients with chronic kidney disease. Patients and Methods Patients Patients were selected from the cohort that attended our renal outpatients department. The inclusion criteria were as follows: age 18–65 years, chronic non-diabetic proteinuric nephropathy, normal or slightly impaired stable renal function, expressed as an estimated glomerular filtration rate (eGFR) above 60 ml/min, stable proteinuria above 300 mg/24 h and no steroids or other immunosuppressive treatment for a minimum of 6 months before the study. Stable renal function and proteinuria were defined as a variability of serum creatinine and proteinuria of less than 20% during the 6 months before the patients started the study. A Placebo-Controlled, Randomized, Open, Cross-Over Study Females/males Age, years (mean 8 SEM) Systolic blood pressure, mm Hg (mean 8 SEM) Mean diastolic blood pressure, mm Hg Urinary protein excretion, g/24 h Serum creatinine, mg/dl (mean 8 SEM) eGFR, ml/min (mean 8 SEM) BMI Histopathological diagnosis Mesangial glomerulonephritis Mesangiocapillary glomerulonephritis Membranous glomerulonephritis Focal sclerosing glomerulonephritis Other primary chronic glomerulonephritis Unknown non-diabetic proteinuric chronic kidney diseases Background hypotensive therapy ACEI and ARB ACEI ARB Diuretic (hydrochlorothiazide 12.5 mg) Doxazosin (8 mg) 8/12 39.3582.6 118.1582.8 75.9 (71.5–80.3) 1.41 (0.75–2.08) 1.0380.05 100.985.9 25.33 (23.65–27.0) 13 8 2 1 1 1 7 10 9 1 13 1 Values are numbers of patients, except where indicated otherwise. Figures shown in parentheses are ranges. General Protocol The study was a prospective, placebo-controlled, randomized, open, 2-period cross-over trial in which the effects on the kidney of the addition of NAC to background nephroprotective therapy with ACEI and/or ARB were evaluated. At the beginning, subjects entered the 8-week run-in period during which the background nephroprotective therapy using pharmacological blockade of the renin-angiotensin-aldosterone system was established with the target blood pressure (BP) below 130/80 mm Hg (table 1). At the end of the run-in period, patients were randomly assigned to 1 of 2 treatment sequences: 8-week NAC (1,200 mg/day)/8-week washout-background therapy/8-week placebo (sequence 1) or 8-week placebo/8-week washout-background therapy/8-week NAC (1,200 mg/day) (sequence 2) (fig. 1). Allocation was performed by a person who was independent of the research team according to a computer-generated randomization list. The patients received 600 mg of NAC as effervescent tablets (ACC 600; Hexal AG) twice a day. The target BP during the whole study was an office trough BP of 130/80 mm Hg or less. To achieve a comparable BP level during all of the treatment periods, adjuvant antihypertensive treatment with doxazosin was allowed. The dosages of ACEI, ARB and diuretics, once established in the run-in period, were left unchanged throughout the study, including in the washout period. At the randomization point and after Kidney Blood Press Res 2008;31:404–410 405 Table 2. Changes in parameters after NAC and placebo Proteinuria (DPE), g/24 h Serum creatinine, mg/dl eGFR, ml/min PIIINP excretion, g/g creatinine NAG excretion, IU/creatinine ␣1m excretion, mg/g creatinine Baseline-NAC NAC (+) 0.99 (0.68–2.06) 1.02 (0.94–1.15) 101.386.5 0.94 (0.81–1.28) 1.63 (1.36–3.23) 8.682.4 0.96 (0.74–1.72) 0.98 (0.91–1.08) 105.787.1 1.19 (0.99–1.65) 1.35 (0.86–2.73) 7.8684.53 ⌬ Baseline-placebo Placebo –0.1380.23 –0.0580.02 4.3881.9 0.1580.22 –0.6780.29 –3.8282.75 0.80 (0.54–1.86) 1.02 (0.93–1.15) 95.187.7 1.00 (0.86–1.37) 1.67 (1.36–3.36) 9.8983.08 0.89 (0.69–1.71) 1.02 (0.94–1.12) 101.786.4 0.95 (0.81–1.28) 1.27 (0.97–2.60) 6.1782.27 ⌬ –0.00180.13 –0.0180.03 6.683.5 –0.0880.12 –0.5780.37 –1.5382.28 p 0.6 0.31 0.59 0.34 0.83 0.52 Figures shown in parentheses are ranges. the end of each treatment period, office trough BP, serum creatinine, potassium, proteinuria measured as 24-hour urine protein excretion (DPE), sodium excretion, urea excretion, surrogate markers of tubular injury, i.e. urine excretion of N-acetyl-D -glucosaminidase (NAG) and ␣-1 microglobulin (␣1m), and an indirect marker of renal fibrosis, i.e. amino-terminal propeptide of type III procollagen (PIIINP), were determined. The study was approved by the local ethical committee and the investigated patients all gave their informed consent. The study was registered in www.clinicaltrials.gov and received a positive opinion (NCT00572663). Procedures and Laboratory Analyses The office trough BP was measured by a Speidel and Keller sphyngomanometer with the patient in a sitting position after 10 min of rest and expressed as the mean value of 2 consecutive measurements taken 2 min apart. DPE, Na excretion and urea excretion were evaluated on the basis of 24-hour urine collection. All of the patients were supplied with a scaled container and were strictly informed how to collect 24-hour urine. They collected two 24-hour urines, from which the mean value of DPE was calculated for data evaluation. Patients were asked not to perform heavy physical activity on the urine collection days and were recommended not to change their usual daily protein and sodium intake during the study period. The excretion of urea was used to calculate the protein intake according to the Maroni equation: protein intake normalized to weight (g/kg/ day) = 6.25 ! ([urea-N-excretion urine 24 h (g/day)] + [0.0031 ! body weight (kg)])/body weight (kg) [16]. eGFR was calculated according to the Cockcroft-Gault formula. The first-morning urine sample was collected for the determination of PIIINP. The samples were stored at –75 ° C until assayed. Urinary PIIINP was measured using a radioimmunoassay kit obtained from Orion Diagnostica (Espoo, Finland). The intra- and interassay coefficients of variation were 3.0 and 6.5% for 2.8 and 2.7 g/l, respectively. The measuring range of the assay is from 1.0 to 50 g/l, and the detection limit is 0.3 g/l. NAG and ␣1m were analysed in the second-morning spot urine sample. NAG was determined by the spectrophotometric method according to Maruhn [17]. Incubation medium contained, in a final volume of 0.4 ml, 5 nmol/l p-nitrophenyl-2-acetamido--D -glucopyranoside as a substrate in 50 mmol/l citrate buffer (pH 4.14). The reaction was started by the addition of 0.2 ml of undialysed urine, carried out for 15 min at 37 ° C, and then terminated with 1 ml of glycine buffer, pH 10.5. Absorbance was measured at 405 nm 406 Kidney Blood Press Res 2008;31:404–410 against a sample terminated at time zero. The calculation of the NAG level was performed from the molar extinction coefficient of the product of the reaction, p-nitrophenol, equal to 18.5 cm 2/ mol. From the preliminary experiments it was clear that the dialysis of urine did not affect the NAG level in urine. An immunoturbidimetric test (Tina-quant ␣1-microglobulin; Roche, Basel, Switzerland) was used for the quantification of ␣1m in urine. The detection limit of the method was 2 mg/l. Urinary NAG, ␣1m and PIIINP were reported per milligram or gram of urine creatinine to correct the variation in urine concentration. Potassium, sodium, urea, protein and creatinine levels were measured by standard laboratory techniques. Adverse effects were recorded at each visit in response to questionnaires or as observed by the investigators. Statistics The primary end point of this study was a change in DPE in measurements available for each patient after treatment with NAC and placebo. A sample size of 18 patients adequately allowed a power of 80% to detect a difference in variables equal to withinpatient standard deviation, that is a standardized effect size of 1.0 at a significance level of 0.05 (2-tailed). Secondary end points included urine NAG, ␣1m and PIIINP excretion. Normality and homogeneity of the variances were verified by means of the Shapiro-Wilk and Levene tests, respectively. Because of their skewed distribution, diastolic BP, DPE, NAG excretion, PIIINP, serum creatinine and daily protein intake were logarithmically transformed before statistical analysis and expressed as geometric means and 95% confidence intervals. Other results are presented as means 8 SEM. Differences in variable changes between treatment with NAC and placebo were assessed using Student’s t test (table 2). Differences in variables measured more than twice (table 3) were assessed using ANOVA. A p value less than 0.05 (2tailed) was considered statistically significant. Data were evaluated using the Statistica (version 7.1, StatSoft Inc., Tulsa, Okla., USA) software package. Results Of the 20 patients who entered the study, 19 (95%) completed the protocol. One patient dropped out because of the withdrawal of informed consent, but not due to a Renke et al. Table 3. Changes in parameters during the study Parameter Randomization point After NAC After placebo p Na urine excretion, mmol/24 h Daily protein intake, g/24 h Systolic BP, mm Hg Diastolic BP, mm Hg 242.8821.6 1.02 (0.93–1.14) 118.282.8 75.4 (71.5–80.3) 243.3813.5 1.0 (0.94–1.09) 121.182.13 77.5 (74.0–81.7) 221.3824.98 0.93 (0.83–1.09) 123.782.53 78.6 (74.8–83.2) 0.56 0.36 0.14 0.41 Figures shown in parentheses are ranges. side effect of the therapy. Clinical characteristics of the patients are listed in table 1. 24-Hour Urine Protein Excretion There were no significant changes in DPE level after NAC as compared to placebo (table 2). Urinary NAG and ␣1m Excretion There were no significant changes in urinary NAG and ␣1m excretion levels after adding NAC as compared to placebo (table 2). PIIINP Excretion There were no significant changes in urinary PIIINP after adding NAC as compared to placebo (table 2). BP, Renal Function, Sodium and Protein Intake The control of BP was adequate during all study periods; all patients achieved a target office trough BP of below 130/80 mm Hg. There were no differences in office trough systolic and diastolic BP between the treatment periods. Renal function assessed by means of serum creatinine and eGFR remained stable throughout the study periods. There were no differences in sodium and protein intake between treatment periods (table 3). Adverse Effects NAC therapy was well tolerated by all patients. Adverse effects were not reported. Discussion Evidence is available that oxidative stress contributes to the pathophysiology of kidney injury [7]. First, RS are suggested to induce processes known to be involved in chronic renal scarring, such as cell proliferation, apoptosis, inflammation and vascular injury [18–21]. RS also A Placebo-Controlled, Randomized, Open, Cross-Over Study participate in vascular smooth muscle cell growth and migration [22], impairment of endothelial-dependent vascular relaxation [23] and the development of atherosclerosis [24], processes closely related to vascular injury. Second, induction of oxidative stress at the kidney level may cause pathological changes resembling those seen in chronic kidney diseases. Rats subjected to sustained impairment of antioxidant defence displayed enhanced expression of genes for interstitial and basement membrane collagens, increased interstitial infiltration, proteinuria and decreased glomerular filtration. More than a 3-fold increase in transforming growth factor-1 mRNA expression was also found, suggesting a critical role of this cytokine in oxidative kidney damage [25]. Third, increased generation of RS has been shown to occur in glomerulonephritis [26], interstitial fibrosis [27], hypertensive nephroangiosclerosis [28] and obstructive nephropathy [29]. Human studies support this concept as well. Increased glomerular expression of antioxidant enzymes was found in IgA nephropathy and lupus nephritis [30]. Neutrophils taken from patients with glomerulonephritis show higher RS generation than in those taken from healthy individuals [31]. Finally, the administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of renal scarring in numerous animal models of kidney diseases. These include vitamins, ␣-lipoic acid, melatonin, dietary flavonoids, phytoestrogens and many others [reviewed in 7]. Given these facts one may consider the concept that antioxidants might be applied therapeutically as a nephroprotective strategy. Antioxidant strategies are based on 2 main mechanisms: the inhibition of RS generation and the enhancement of RS elimination. NAC, a synthetic precursor of GSH, is a thiol-containing compound which stimulates the intracellular synthesis of GSH, enhances glutathioneS-transferase activity and acts solely as an RS scavenger [8, 32]. The rationale for the use of this antioxidant in Kidney Blood Press Res 2008;31:404–410 407 kidney diseases stems also from findings that NAC suppresses plasma and tissue angiotensin-converting enzyme activity [33], attenuates the cytotoxic properties of advanced glycation end products [34] and decreases the homocysteine plasma level [35]. NAC was also found to decrease systemic BP [36]. Some reports [37], but not all [38], have shown that it can inhibit NF-B activation in renal mesangial and epithelial cells. Interventional animal studies have confirmed the nephroprotective properties of NAC in cyclosporine- and mercury-induced nephrotoxicity as well as in ischemia/ reperfusion injury [39–42]. The attenuation of histological abnormalities involving tubular injury as well as preservation of renal function were observed after NAC. In contrast, benefits of NAC administration were not found in a model of interstitial inflammation [38]. Clinical data on this point are very limited and exclusively associated with the prevention of contrast-induced nephropathy. In a randomized placebo-controlled study of 83 patients, Tepel et al. [43] showed that oral administration of NAC in combination with hydration significantly reduces the incidence of radiocontrast nephropathy. The results of subsequent studies are not unequivocal [44]. Some of them confirmed the preventive effect of NAC against contrast injury [45], while some did not [46, 47]. Nor were there shown to be any protective effects of NAC on the kidney in patients undergoing cardiac surgery and elective aortic aneurysm repair [14, 15]. To the best of our knowledge, the present study is the first to evaluate the influence of NAC on the progression of chronic kidney disease. We analysed the effects of NAC on proteinuria, the fundamental marker of glomerular injury and impaired glomerular permselectivity as well as a marker of poor long-term renal outcome. Considering that tubular epithelial cell injury may initiate the fibrotic process in kidneys and the fact that the extent of tubulointerstitial damage is a crucial predictor of renal outcome [48], tubular cells have become a site of particular interest in the kidney. To evaluate the tubulointerstitial effects of our interventions, the tubular involvement markers NAG and ␣1m, as well as an indirect marker of kidney fibrosis, PIIINP, were analysed. A close association between urinary PIIINP excretion and the degree of interstitial fibrosis was previously evidenced [49]. During the synthesis and deposition of type III collagen, PIIINP is degraded from the collagen and secreted into the surroundings. The increased excretion of NAG is thought to be a specific marker of tubular injury in many renal pathologies including non-diabetic chronic kidney disease [50]. Increased urinary excretion of ␣1m, a low-weight 408 Kidney Blood Press Res 2008;31:404–410 protein physiologically filtered and reabsorbed by tubular cells, might indicate the reduced capacity of its reabsorption by such cells, and thus it might be a marker of established tubular damage, with greater urinary concentrations pointing to greater severity of damage [51]. In the present study, the administration of NAC induced no change in proteinuria levels in patients with non-diabetic chronic kidney disease. The therapy did not affect the urine excretion of tubular enzymes, suggesting no improvement in tubular status either. NAC did not change urine excretion of PIIINP. Given the fact that urinary PIIINP was previously found to originate from the kidney [49], one may assume that the addition of NAC to standard therapy with ACEI and ARB did not beneficially affect the fibrotic processes in the kidney. We do not know why this was so, but at least 3 explanations may be considered. First, one should take into account the relatively short treatment period, during which beneficial renal effects may not yet fully develop. Second, one should realize that the potential benefits for tubules and the interstitium were extrapolated from presumptive early surrogates. Evidence may be provided only by histological examinations. Finally, we should also consider that NAC may not actually reveal nephroprotective properties. Incidentally, NAC was suggested to increase the expression of collagen I and IV and transforming growth factor- [32]. Other authors reported that NAC has some value as an antioxidant, but only in oxidative stress conditions [52]. Moreover, at doses as low as 1,200 mg daily, it may even exert pro-oxidative properties in persons with normal intracellular GSH levels [53]. It is unlikely that confounding factors influenced the present study outcomes. There were no differences during the treatment periods with respect to BP, patients’ sodium and protein intake or renal function. The authors think that the nephroprotective properties of NAC need to be further addressed in future controlled long-term studies. A potential limitation of the present study is the relatively small sample size, which is sufficiently powered to detect a significant difference equal to the standard deviation value between treatment periods. Twenty-fourhour urine collections used to assess proteinuria may be associated with significant collection errors, largely because of improper timing and missed samples, leading to over- and undercollection. Another limitation may be the relatively short treatment periods, during which beneficial tubulointerstitial effects may not yet fully develop. In addition, as mentioned above, one should realize that the potential benefits for tubules and the interstitium were Renke et al. extrapolated from presumptive early surrogates. Evidence may be provided only by histological examination. In conclusion, the results of the present study suggest that NAC neither influences proteinuria level nor exerts a beneficial effect against tubular injury and kidney fibrosis. Acknowledgements This study was supported by a grant from the Polish Committee for Scientific Research via the Medical University of Gdansk (ST-4). The authors thank Hexal Polska and Adamed Polska for providing drugs. References 1 Tylicki L, Larczynski W, Rutkowski B: Renal protective effects of the renin-angiotensinaldosterone system blockade: from evidencebased approach to perspectives. Kidney Blood Press Res 2005;28:230–242. 2 Renke M, Tylicki L, Rutkowski P, Rutkowski B: Low-dose angiotensin II receptor antagonists and angiotensin II-converting enzyme inhibitors alone or in combination for treatment of primary glomerulonephritis. Scand J Urol Nephrol 2004; 38:427–433. 3 Renke M, Tylicki L, Rutkowski P, Wojnarowski K, Lysiak-Szydlowska W, Rutkowski B: Low-dose dual blockade of the renin-angiotensin system improves tubular status in non-diabetic proteinuric patients. Scand J Urol Nephrol 2005; 39:511–517. 4 Rutkowski P, Tylicki L, Renke M, Korejwo G, Zdrojewski Z, Rutkowski B: Low-dose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am J Kidney Dis 2004;43:260–268. 5 Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Aleksandrowicz E, Lysiak-Szydlowska W, Rutkowski B: Renal allograft protection with angiotensin II type 1 receptor antagonists. Am J Transplant 2007;7:243–248. 6 Tylicki L, Rutkowski P, Renke M, Rutkowski B: Addition of aldosterone receptor blocker to dual renin-angiotensin-aldosterone blockade leads to limitation of tubulointerstitial injury of kidney. Kidney Int 2007; 72: 1164–1165. 7 Tylicki L, Rutkowski B, Horl WH: Antioxidants: a possible role in kidney protection. Kidney Blood Press Res 2003;26:303–314. 8 Aruoma O, Halliwell B, Hoey B, Butler J: The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 1989; 6:593–597. 9 Modi M, Kaul RK, Kannan GM, Flora SJ: Coadministration of zinc and n-acetylcysteine prevents arsenic-induced tissue oxidative stress in male rats. J Trace Elem Med Biol 2006;20:197–204. A Placebo-Controlled, Randomized, Open, Cross-Over Study 10 de Araujo M, Andrade L, Coimbra TM, Rodrigues AC Jr, Seguro AC: Magnesium supplementation combined with N-acetylcysteine protects against postischemic acute renal failure. J Am Soc Nephrol 2005; 16: 3339– 3349. 11 Cao Z, Bonnet F, Candido R, Nesteroff SP, Burns WC, Kawachi H, Shimizu F, Carey RM, De Gasparo M, Cooper ME: Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury. J Am Soc Nephrol 2002; 13: 1773– 1787. 12 Yenicerioglu Y, Yilmaz O, Sarioglu S, Ormen M, Akan P, Celik A, Camsari T: Effects of Nacetylcysteine on radiocontrast nephropathy in rats. Scand J Urol Nephrol 2006; 40: 63–69. 13 Sahin G, Yalcin AU, Akcar N: Effect of Nacetylcysteine on endothelial dysfunction in dialysis patients. Blood Purif 2007; 25: 309– 315. 14 Ristikankare A, Kuitunen T, Kuitunen A, Uotila L, Vento A, Suojaranta-Ylinen R, Salmenpera M, Poyhia R: Lack of renoprotective effect of i.v. N-acetylcysteine in patients with chronic renal failure undergoing cardiac surgery. Br J Anaesth 2006; 97: 611– 616. 15 Macedo E, Abdulkader R, Castro I, Sobrinho AC, Yu L, Vieira JM Jr: Lack of protection of N-acetylcysteine (NAC) in acute renal failure related to elective aortic aneurysm repair – a randomized controlled trial. Nephrol Dial Transplant 2006;21:1863–1869. 16 Maroni BJ, Steinman TI, Mitch WE: A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 1985; 27:58–65. 17 Maruhn D: Rapid calorimetric assay of -galactosidase and N-acetyl--D -glucosaminidase in human urine. Clin Chim Acta 1976; 73:453–461. 18 Goligorsky M, Morgan M, Suh H, Safirstein R, Johnson R: Mild oxidative stress: cellular mode of mitogenic effect. Ren Fail 1992; 14: 385–389. 19 Hannken T, Schroeder R, Stahl RA, Wolf G: Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Kidney Int 1998; 54:1923–1933. 20 Sugiyama H, Kashihara N, Makino H, Yamasaki Y, Ota Z: Reactive oxygen species induce apoptosis in cultured human mesangial cells. J Am Soc Nephrol 1996; 7:2357–2363. 21 Baldwin AS Jr: The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14:649–683. 22 Griendling K, Minieri C, Ollerenshaw J, Alexander R: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74:1141–1148. 23 Keaney JJ, Xu A, Cunningham D, Jackson T, Frei B, Vita J: Dietary probucol preserves endothelial function in cholesterol-fed rabbits by limiting vascular oxidative stress and superoxide generation. J Clin Invest 1995; 95: 2520–2529. 24 Iuliano L: The oxidant stress hypothesis of atherogenesis. Lipids 2001; 36(suppl):S41– S44. 25 Nath K, Grande J, Croatt A, Haugen J, Kim Y, Rosenberg M: Redox regulation of renal DNA synthesis, transforming growth factorbeta1 and collagen gene expression. Kidney Int 1998;53:367–381. 26 Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861–869. 27 Moriyama T, Kawada N, Nagatoya K, Horio M, Imai E, Hori M: Oxidative stress in tubulointerstitial injury: therapeutic potential of antioxidants towards interstitial fibrosis. Nephrol Dial Transplant 2000; 15:47–49. 28 Trolliet MR, Rudd MA, Loscalzo J: Oxidative stress and renal dysfunction in salt-sensitive hypertension. Kidney Blood Press Res 2001;24:116–123. Kidney Blood Press Res 2008;31:404–410 409 29 Young MR, Young IS, Johnston SR, Rowlands BJ: Lipid peroxidation assessment of free radical production following release of obstructive uropathy. J Urol 1996;156:1828– 1832. 30 Wang J, Ger L, Tseng H: Expression of glomerular antioxidant enzymes in human glomerulonephritis. Nephron 1997; 76:32–38. 31 Macconi D, Zanoli A, Orisio S, Longaretti L, Magrini L, Rota S, Radice A, Pozzi C, Remuzzi G: Methylprednisolone normalizes superoxide anion production by polymorphs from patients with ANCA-positive vasculitides. Kidney Int 1993;44:215–220. 32 Shan Z, Tan D, Satriano J, Silbiger S, Schlöndorff D: Intracellular glutathione influences collagen generation by mesangial cells. Kidney Int 1994;46:388–395. 33 Boesgaard S, Aldershvile J, Poulsen HE, Christensen S, Dige-Petersen H, Giese J: Nacetylcysteine inhibits angiotensin converting enzyme in vivo. J Pharmacol Exp Ther 1993;265:1239–1244. 34 Loske C, Neumann A, Cunningham A, Nichol K, Schinzel R, Riederer P, Munch G: Cytotoxicity of advanced glycation endproducts is mediated by oxidative stress. J Neural Transm 1998;105:1005–1015. 35 Hultberg B, Andersson A, Masson P, Larson M, Tunek A: Plasma homocysteine and thiol compound fractions after oral administration of N-acetylcysteine. Scand J Clin Lab Invest 1994;54:417–422. 36 Tian N, Rose RA, Jordan S, Dwyer TM, Hughson MD, Manning RD Jr: N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. J Hypertens 2006;24:2263–2270. 37 Otieno M, Anders M: Cysteine S-conjugates activate transcription factor NF-kappa B in cultured renal epithelial cells. Am J Physiol 1997;273:F136–F143. 410 38 Rangan GK, Wang Y, Tay YC, Harris DC: Inhibition of nuclear factor-kappaB activation reduces cortical tubulointerstitial injury in proteinuric rats. Kidney Int 1999; 56: 118– 134. 39 Girardi G, Elias MM: Effectiveness of N-acetylcysteine in protecting against mercuric chloride-induced nephrotoxicity. Toxicology 1991;67:155–164. 40 Tariq M, Morais C, Sobki S, Al Sulaiman M, Al Khader A: N-acetylcysteine attenuates cyclosporin-induced nephrotoxicity in rats. Nephrol Dial Transplant 1999; 14:923–929. 41 Pincemail J, Defraigne JO, Detry O, Franssen C, Meurisse M, Limet R: Ischemia-reperfusion injury of rabbit kidney: comparative effects of desferrioxamine and N-acetylcysteine as antioxidants. Transplant Proc 2000; 32:475–476. 42 Di Giorno C, Pinheiro HS, Heinke T, Franco MF, Galante NZ, Pacheco-Silva A, Camara NO: Beneficial effect of N-acetyl-cysteine on renal injury triggered by ischemia and reperfusion. Transplant Proc 2006;38:2774–2776. 43 Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W: Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 2000;343:180–184. 44 Tepel M, Aspelin P, Lameire N: Contrast-induced nephropathy: a clinical and evidencebased approach. Circulation 2006;113:1799– 1806. 45 Baker CS, Wragg A, Kumar S, De Palma R, Baker LR, Knight CJ: A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study. J Am Coll Cardiol 2003;41:2114–2118. 46 Webb JG, Pate GE, Humphries KH, Buller CE, Shalansky S, Al Shamari A, Sutander A, Williams T, Fox RS, Levin A: A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect. Am Heart J 2004; 148: 422– 429. Kidney Blood Press Res 2008;31:404–410 47 Miner SE, Dzavik V, Nguyen-Ho P, Richardson R, Mitchell J, Atchison D, Seidelin P, Daly P, Ross J, McLaughlin PR, Ing D, Lewycky P, Barolet A, Schwartz L: N-acetylcysteine reduces contrast-associated nephropathy but not clinical events during long-term follow-up. Am Heart J 2004; 148:690–695. 48 Bohle A, Mackensen-Haen S, von Gise H, Grund K, Wehrmann M, Batz C, Bogenschutz O, Schmitt H, Nagy J, Muller C, Muller G: The consequences of tubulo-interstitial changes for renal function in glomerulopathies. Pathol Res Pract 1990; 186: 135–144. 49 Teppo AM, Tornroth T, Honkanen E, Gronhagen-Riska C: Urinary amino-terminal propeptide of type III procollagen (PIIINP) as a marker of interstitial fibrosis in renal transplant recipients. Transplantation 2003; 75:2113–2119. 50 Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P, Paparella M, D’Amico G: Urinary Nacetylglucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant 2002; 17: 1890– 1896. 51 Holdt-Lehmann B, Lehmann A, Korten G, Nagel H, Nizze H, Schuff-Werner P: Diagnostic value of urinary alanine aminopeptidase and N-acetyl-beta-D -glucosaminidase in comparison to alpha-1 microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 2000;297:93–102. 52 Burgunder J, Varriale A, Lauterburg B: Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur J Clin Pharmacol 1989; 36: 127– 131. 53 Kleinveld H, Demacker P, Stalenhoef A: Failure of N-acetylcysteine to reduce low-density lipoprotein oxidizability in healthy subjects. Eur J Clin Pharmacol 1992; 43: 639– 642. Renke et al. WWW. M ED S CI M ONIT .COM Product Investigation The effect of N-acetylcysteine on blood pressure and markers of cardiovascular risk in non-diabetic patients with chronic kidney disease: A placebo-cotrolled, randomized, cross-over study Authors’ Contribution: A Study Design B Data Collection C Statistical Analysis D Data Interpretation E Manuscript Preparation F Literature Search G Funds Collection Marcin Renke ABCDEF, Leszek Tylicki ABCDE, Przemysław Rutkowski ABCDE, Wojciech Larczynski1 B, Alexander Neuwelt2 EF, Ewa Aleksandrowicz3 B, Wiesława Łysiak-Szydłowska3 AB, Bolesław Rutkowski1 ADE 1 PI 1 R SO O N N A LY L U 1 SE Received: 2009.09.07 Accepted: 2010.02.08 Published: 2010.07.01 Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland Blood Brain Barrier and Neuro-Oncology Program, Oregon Health & Science University, Portland, OR, U.S.A. 3 Department of Clinical Nutrition and Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland 1 2 Source of support: The study was supported by a grant from the Polish Committee for Scientific Research via the Medical University of Gdansk (ST-4). The authors thank Hexal Polska and Adamed Polska for providing drugs Summary Background: Material/Methods: Cardiovascular complications in patients with chronic kidney disease (CKD) are frequent. They show increased cardiovascular mortality and morbidity attributable to accumulation of several risk factors; e.g., hypertension, oxidative stress and elevated plasma homocysteine concentration. Despite recent progress in their management, there is still no optimal therapy that can stop progression of CKD and decrease cardiovascular outcome in these patients. Antioxidants, e.g., N-acetylcysteine (NAC), have been suggested as a promising medicament in this field. In a placebo-controlled, randomized, two-period cross-over study we evaluated the influence of eight weeks of NAC therapy (1200 mg/day) added to pharmacological renin-angiotensin system blockade on ambulatory blood pressure and surrogate markers of cardiovascular risk and injury in 20 non-diabetic patients with albuminuria [30–915 mg per creatinine mg] and normal or slightly decreased kidney function [eGFR 61–163 ml/min]. After eight weeks run-in period during which the therapy using angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers was settled, patients were randomly assigned to one of two treatment sequences: NAC/washout/placebo or placebo/washout/NAC. PE This copy is for personal use only - distrib This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. © Med Sci Monit, 2010; 16(7): PI13-18 PMID: 20581787 Results: Conclusions: key words: Full-text PDF: Word count: Tables: Figures: References: Author’s address: No significant changes in blood pressure, albuminuria and homocysteine plasma level were observed. NAC had no effect on blood pressure and surrogate markers of cardiovascular injury in non-diabetic patients with CKD. N-acetylcysteine • blood pressure • chronic kidney disease • albuminuria • homocyteine http://www.medscimonit.com/fulltxt.php?ICID=880910 2715 3 1 45 Marcin Renke, Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Debinki 7 Str., 80-211 Gdansk, Poland, e-mail: mrenke@gumed.edu.pl Current Contents/Clinical Medicine • IF(2009)=1.543 • Index Medicus/MEDLINE • EMBASE/Excerpta Medica • Chemical Abstracts • Index Copernicus PI13 Electronic PDF security powered by ISL-science.com Med Sci Monit, 2010; 16(7): PI13-18 Background Table 1. Patient characteristics at baseline. Parameter Gender: female/male (n) 8/12 39.35±2.6 Mean systolic blood pressure mmHg (±SEM) 118.15±2.8 Mean diastolic blood pressure mmHg 75.9 (71.5–80.3) SE Mean age years (±SEM) Albuminuria mg/g creatinine Risk factors for CVD in CKD may be divided into two broad categories: traditional and nontraditional [9]. The traditional cardiovascular risk factors, such as hypertension, left ventricular hypertrophy, diabetes mellitus, smoking, dyslipidemia and older age, are common in these patients but are not adequate to fully explain the high prevalence of CVD. It has been documented that patients with CKD also are exposed to other nontraditional uremia-related risk factors, such as anemia, altered calcium-phosphorus metabolism, inflammation, malnutrition, and oxidative stress (OS) [10,11]. OS occurs when reactive oxygen species (ROS) production exceeds local antioxidant capacity, resulting in increased oxidation of important macromolecules, including proteins, lipids, carbohydrates, and damage to DNA structure [12]. There is increasing evidence associating the role of ROS with ischemia-reperfusion injury in the heart and in the pathogenesis of atherosclerosis, hypertension, and heart failure [13]. Evidence shows that OS contributes to the pathophysiology of cardiovascular complications. OS is the central mechanism by which risk factors, such as hyperlipidemia, hypertension, diabetes mellitus, and smoking, lead to vascular damage and the clinical sequelae of atherosclerosis. Given these facts, OS may be a potentially important treatment target, and the administration of antioxidants may be a promising supplement to RAAS in reducing cardiovascular complications. N-acetylcysteine (NAC), a synthetic precursor of reduced glutathione (GSH), is a thiol-containing compound that stimulates the intracellular synthesis of GSH, enhances glutathione-S-transferase activity, and acts as an ROS scavenger [14]. In addition to its antioxidant properties, NAC has other biological actions that may be helpful in cardiovascular protection. By stabilizing nitric oxide (NO), NAC may have a vasodilatory effect in certain situations [15]. In addition, NAC’s sulfhydryl group may inhibit angiotensinconverting enzyme, reducing production of the vasoconstrictor angiotensin II. NAC has also been shown to reduce systemic blood pressure in animals [15,16]. In the present study we evaluated the effects of addition of NAC to background RAAS treatment on blood pressure and important cardiovascular risk factors, i.e., albuminuria and plasma homocysteine levels. 181.7 (160–365) Serum creatinine mg/dl (±SEM) eGFR ml/min (±SEM) BMI kg/m2 R SO O N N A LY L U Cardiovascular disease (CVD) in patients with chronic kidney disease (CKD) is frequent and accounts for approximately 40% of all deaths in these patients. Cardiovascular mortality is considerably higher in CKD patients than in the general population [1–3]. Pharmacological inhibition of the renin-angiotensin-aldosterone system (RAAS) constitutes a cornerstone strategy in the management of patients with CKD, slowing the progression of renal insufficiency [4–7], as well as reducing cardiovascular complications [8]. Despite recent progress, there is still no optimal therapy that can halt progression of renal disease and completely protect patients with CKD against cardiovascular problems. Therefore, it is necessary to search for alternative therapeutic strategies to further improve patient outcomes. PE This copy is for personal use only - distrib This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. Product Investigation 1.03±0.05 100.9±5.9 25.33 (23.65–27.0) Background hypotensive therapy: (n) ACEI and AT1RA 10 ACEI 9 AT1RA 1 Diuretic (Hydrochlorotiazide 12.5 mg) 13 Material and Methods Individuals Patients were selected from the cohort that attended our renal outpatient department. The inclusion criteria were established as follows: age 18–65 years, chronic non-diabetic proteinuric nephropathy, normal or slightly impaired stable renal function expressed as estimated glomerular filtration rate (eGFR) above 60 ml/min, stable albuminuria above 300 mg/ 24 hours, and no steroids or other immunosuppressive treatment for a minimum of six months before the study. General protocol The study was a prospective, placebo-controlled, randomized, two-period cross-over trial in which the renal effects of adding NAC to background nephroprotective therapy with angiotensin-converting enzyme inhibitors (ACEI) and/or angiotensin II receptor antagonists (AT1RA) were evaluated. At the beginning, subjects entered the eight weeks run-in period during which the background nephroprotective therapy using pharmacological blockade of RAAS was settled with the target blood pressure (BP) below 130/80 mmHg (Table 1). At the end of the run-in period, patients were randomly assigned to one of two treatment sequences: 8-week NAC (1200 mg/day)/ 8-week washout – background therapy/ 8-week placebo (sequence 1), or 8-week placebo/ 8-week washout – background therapy/ 8-week NAC (1200 mg/day) (sequence 2) (Figure 1). Allocation was performed by a person that was independent of the research team person according to a computer generated randomization list. The patients received 1200 mg of NAC as effervescent tablets (ACC 600, Hexal AG) divided into two doses a day. The target BP throughout the study was a BP PI14 Electronic PDF security powered by ISL-science.com Renke M et al – NAC and cardiovascular risk factors Figure 1. Study scheme. Sequence 1 Random Run in period I NAC-1200 mg/day I Washout Placebo End-point I I Washout 8-weeks NAC-1200 mg/day 8-weeks PI R SO O N N A LY L U PLacebo 8-weeks SE I Sequence 2 8-weeks of 130/80 mmHg or less. The dosages of ACEI, AT1RA and diuretics, once established in the run-in period, were left unchanged throughout the study, including in the washout period. At the randomization point and after the end of each of the treatment periods ambulatory BP (ABP), serum creatinine and the surrogate markers of cardiovascular injury homocysteine and albuminuria were determined. Nondipper status was defined as a night-day (N/D) ratio of mean ABP greater than 0.9. The study was approved by the local ethics committee (NKEBN/153/2004) and registered in www.clinicaltrials.gov (NCT00572663). The investigated patients all gave their informed consent. Procedures and laboratory analyses The office trough BP was measured by Speidel+Keller sphyngomanometer in a sitting position after 10 minutes of rest and expressed as a mean value of two consecutive measurements taken two minutes apart. Ambulatory BP was measured continuously for 24-h using the Mobil-o-graph (version 12) monitoring system. BP was measured every 15 minutes during the day (7:00 a.m. to 10:00 p.m.) and every 30 minutes during the night (10:00 p.m. to 7:00 a.m.). Results of office BP measurements were analysed for systolic (SBP) and diastolic (DBP); those of ABP measurements for 24-h SBP, 24-h DBP as well as day-time (D) and night-time (N) values. A night-day (N/D) ratio of mean ABP was calculated. Albuminuria excretion was measured in a first morning spot urine sample. A first morning urine specimen is preferable because it correlates best with 24-hour protein excretion and is required to avoid postural albuminuria. The authors calculated the ratio of albumin to creatinine to correct for the variations in urinary concentration due to hydration. The concentration of albumin was measured by enzyme-linked immunosorbent assay (ELISA) using an Albumin (Immunodiagnostic AG, Bensheim, Germany) kit in accordance with manufacturer’s recommendations. The intra-assay and inter-assay coefficients of variations for this assay were 5.0% and 8.0%, respectively. The measurements of two samples collected within one week were averaged. Sodium (Na) and urea excretion were evaluated on the basis of 24-hour urine collection. All patients were equipped with a scaled container and were strictly informed how to collect 24-hour urine. They collected two 24-hour urines, and of those the mean value of Na excretion were calculated for data evaluation. Patients were asked not to perform heavy physical activity on the urine collection days and were PE This copy is for personal use only - distrib This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. Med Sci Monit, 2010; 16(7): PI13-18 instructed not to change their usual daily protein and sodium intake during the study period. eGFR was calculated according to the Cockroft-Gault equation. The serum sample was collected for the quantitative determination of total L-homocysteine level. The samples are stored at –75°C until assayed. Homocysteine was measured via Enzyme Immunoassay (EIA) using a kit obtained from Axis-Shield Diagnostic Ltd. (United Kingdom). The homocysteine reference range was established based on 95% confidence limits as 5–15 µmol/L. The calibration range was from 2 to 50 µmol/L. The Axis Homocysteine Enzyme Immunoassay was compared to the University of Bergen HPLC method. Creatinine levels were measured by standard laboratory techniques. Adverse effects were recorded at each visit in response to questionnaires or as observed by the investigators. Statistics The primary end point of this study was a change in ABP in measurements available for each patient after treatment with NAC and placebo. A sample size of 18 patients adequately allowed a power of 80% to detect a difference in a standardised effect size of 1.0 at a significance level of 0.05 (two-tailed). Data from our pilot measurements and previous studies were used to sample size calculations. A baseline mean blood pressure of 130/80 mmHg was predicted, consistent with target blood pressure of the run-in period. According to previous studies we assumed a reduction in systolic and diastolic blood pressure of approximately 5%, i.e. from 130 to 123.5 mmHg and from 80 to 76 mmHg, respectively, with NAC and no changes with placebo. To give the study an 80% power to detect such a difference as statistically significant (p<0.05; two-tailed) with a standardised effect size of 1.0 (difference between blood pressure changes in NAC and control group equal to one standard deviation), 18 patients had to complete the study. Secondary end points included albuminuria and homocysteine levels. Normality and homogeneity of the variances were verified by means of the Shapiro-Wilk test and Levene test, respectively. Because of their skewed distribution, diastolic and systolic ABP, albuminuria and serum creatinine were logarithmically transformed before statistical analysis and expressed as geometric means and 95% confidence intervals. Other results are presented as means ±SEM. Differences in variables’ changes between treatment with NAC and placebo were assessed using Student’s t-test (Table 2). Differences in variables measured more than PI15 Electronic PDF security powered by ISL-science.com Med Sci Monit, 2010; 16(7): PI13-18 Table 2. Changes of parameters after NAC and placebo. Baseline–NAC NAC (+) Δ Baseline–Placebo Placebo Δ P Albuminuria 152.4 (129–315.5) 202.8 (106–299) –14.6±45.6 mg/g creatinine 135.8(115.7–264.7) 107.4 (88.5–230.2) –30.9±18.4 0.3 Serum creatinine 1.02 (0.94–1.15) mg/dl 0.98 (0.91–1.08) –0.05±0.02 1.02 (0.93–1.15) 1.02 (0.94–1.12) –0.01±0.03 0.31 eGFR ml/min. 101.3±6.5 105.7±7.1 4.38±1.9 95.1±7.7 101.7±6.4 0.59 Homocysteine 12.2±0.84 µmol/L 13.9±1.23 1.52±1.55 13.3±0.72 13.24±0.94 6.6±3.5 SE –0.05±1.0 0.63 To convert serum creatinine in mg/dL to µmol/L, multiply by 88.4; eGFR in mL/min/1.73 m2 to mL/s/1.73 m2, multiply by 0.01667. R SO O N N A LY L U Table 3. Changes of parameters during the study. Parameter Randomisation point 242.8±21.6 After NAC Na urine excretion mmol/24h Daily protein intake g/kg/24h 1.02 (0.93–1.14) Systolic BP mmHg 114.8 (110.2–120.4) 243.3±13.5 1.0 (0.94–1.09) 115.8 (111.5–120.7) After placebo p 221.3±24.98 0.56 0.93 (0.83–1.09) 0.36 117.7 (112.2–124.2) 0.68 Systolic Daytime BP mmHg 118.8±2.5 121.6±1.3 122.3±2.6 0.77 Systolic Nighttime BP mmHg 104.2±2.5 108.5±2.4 106.8±3.2 0.63 Diastolic BP mmHg 72.3 (69–76.5) 74.1 (71.2–77.5) 74.9 (70.7–80.2) 0.39 Diastolic Daytime BP mmHg 75.9±1.6 77.1±1.3 79.0±2.2 0.41 Diastolic Nighttime BP mmHg 64.5±2.2 65.6±2.7 65.7±2.7 0.69 N/D ratio Systolic BP mmHg 0.88±0.01 0.89±0.02 0.87±0.01 0.7 N/D ratio Diastolic BP mmHg 0.85±0.02 0.85±0.01 0.83±0.02 0.9 twice (Table 3) were assessed using ANOVA. P values less than 0.05 (2-tailed) were considered statistically significant. Data were evaluated using Statistica (version 7.1; StatSoft Inc, Tulsa, OK) software package. Albuminuria Results Renal function, sodium and protein intake Of the 20 patients who entered the study, 19 (95%) completed the protocol. One subject dropped out because of the withdrawal of informed consent non-dependent on a side effect of therapy. Clinical characteristics of patients are listed in Table 1. Renal function assessed by means of serum creatinine and eGFR remained stable during the study periods. There were no differences in sodium and protein intake between treatment periods (Tables 2, 3). PE This copy is for personal use only - distrib This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. Product Investigation Blood pressure The control of BP was adequate in all study periods; all patients reached the target office trough BP below 130/80 mmHg. There were no differences in systolic and diastolic ABP between the treatment periods. N/D ratio was unchanged during the study period (Table 3). Homocysteine There were no significant differences between homocysteine plasma levels at the end of the two treatment periods (Table 2). There were no significant changes in albuminuria after NAC as compared to placebo (Table 2). Adverse effects NAC therapy was well tolerated by all patients. Adverse effects were not reported. Discussion Evidence is available that OS contributes to the pathophysiology of cardiovascular complications. The overproduction of ROS leads to the loss of NO bioavailability, endothelial dysfunction, lipid peroxidation, atherosclerosis and plaque instability [11]. OS presents in early stages of CKD and appears to increase significantly during the progression of nephropathies [17–19]. These facts suggest that PI16 Electronic PDF security powered by ISL-science.com in dialyzed patients. NAC improved coronary and peripheral vascular function in atherosclerosis and attenuated pulmonary vascular endothelial damage induced by tumor necrosis factor-alfa [33,34]. Tepel et al. [35] reported that use of 600 mg NAC twice daily in 134 patients for two years reduced composite cardiovascular endpoints in HD patients. In many studies NAC has been reported to reduce albuminuria in acute states of endothelial injury, including contrastinduced glomerular injury [36]; however, other studies have failed to confirm such beneficial effects of NAC. The results of the Sharif study showed that low concentrations of NAC do not offer better endothelial protection than does heparinized saline. At the maximum concentration NAC even impaired endothelial relaxation in human saphenous veins [37]. Miner et al. reported that endothelial function was unaffected by NAC in cardiac transplant patients [38]. Similarly, NAC did not affect the albumin/creatinine ratio in severe sepsis, indicating that NAC might not abrogate sepsis-induced endothelial dysfunction [39]. PI R SO O N N A LY L U Caballos-Picot et al. investigated the glutathione antioxidant system in patients with CKD and demonstrated diminished plasma glutathione levels and a profound drop in glutathione peroxidise function [20]. Others have demonstrated a generalized increase in thiol oxidation and a concomitant decrease in both protein-associated and low molecular weight reduced plasma thiols [11]. Of particular note, extracellular thiols constitute an important component in antioxidant defence relevant to cardiovascular disease [21]. These facts strongly support the choice of NAC, a thiol containing antioxidant, as a cardioprotective agent. The rationale for the use of NAC stems also from findings that NAC suppresses plasma and tissue angiotensin-converting enzyme activity [22,23] and attenuates cytotoxic properties of advanced glycation end-products (AGEs) [24]. Renke M et al – NAC and cardiovascular risk factors SE antioxidants might be applied therapeutically as a cardioprotective strategy in CKD. We thus analyzed the influence of NAC administration on important cardiovascular risk factors (systemic BP, albuminuria and homocysteine plasma levels) in CKD patients. In experimental studies NAC was found to decrease BP in rats via enhancing NO-dependent vasodilation [15,16,25]. We believe the present study is the first to clinically evaluate the influence of NAC on BP in CKD patients. Ambulatory BP was analyzed, a technique with improved prognostic value over office BP as a predictor of cardiac outcome in a CKD population [26]. ABP monitoring also provides valuable information about the circadian rhythm of BP. Lack of a BP decrease of at least 10% at night (nondipping phenomenon) is suggested to be associated with enhanced cardiovascular mortality and morbidity in the CKD and general population [26]. In the present study we didn’t find changes in systolic and diastolic BP after NAC administration, and no changes in circadian rhythm of BP were observed. This finding is in contrast to a recently published report on hypertensive patients with type 2 diabetes [27], which found that NAC and L-arginine administration for six months reduced systolic, diastolic and mean BP. NAC was demonstrated to enhance the bioavailability of NO by forming S-nitrosoNacetylcysteine and S-nitrocysteine and neutralizing ROS. NO is the most important endothelium-derived vasorelaxant, producing baseline vasodilatation and thus contributing to the maintenance of normal blood flow [28]. PE This copy is for personal use only - distrib This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. Med Sci Monit, 2010; 16(7): PI13-18 In the present study the influence of NAC on endothelial function was analyzed. Albuminuria is thought to be a marker of extensive endothelial dysfunction or generalised vasculopathy, which may lead to heightened atherogenic states. One possible explanation is that endothelial dysfunction might promote increased penetration of atherogenic lipoprotein particles through the arterial wall [29]. Albuminuria is also an established risk factor for cardiovascular morbidity and mortality [30]. In this study no beneficial effects of NAC on albuminuria were observed. In many previous reports, NAC was shown to improve endothelial function. For instance, NAC has been demonstrated to improve brachial artery endothelial function as assessed using high-resolution ultrasound in patients with coronary artery diseases [31]. Sahin et al. [32] proved that oral administration of 600 mg NAC twice daily could improve endothelial function by preventing the reduction of flow-mediated dilatation as measured in high-resolution Doppler ultrasound of the brachial artery We don’t know exactly why NAC was ineffective in reducing BP and albuminuria in the present study, but at least three explanations may be considered. First, one should take into account the relatively short treatment period used, during which beneficial endothelial effects may not have had time to fully develop. Second, NAC was previously suggested to protect against development of hypertension and decrease elevated BP, but it may not affect BP in a normal range. Third, the authors have taken as an axiom that NAC attenuates OS, but they did not document real antioxidant effects in the studied patients. We should also consider that NAC may actually have no protective effects. Other authors reported that NAC has some value as an antioxidant, but only in certain conditions [40]. Moreover, at doses as low as 1200 mg daily, NAC may even exert pro-oxidative properties in persons with the normal intracellular GSH level [41]. It is also possible that NAC may elicit some toxic effects; for instance, systemic toxicity of NAC after intravenous infusion was previously documented [42]. There is strong evidence that the reduction of elevated plasma homocysteine concentrations in patients with CKD is of clinical importance. A recent study showed an association of quartiles of plasma homocysteine concentration with mortality in patients with end-stage renal failure [43], and prospective study demonstrated that the relative risk for cardiovascular events, including death, increased 1% per micromolar increase in plasma homocysteine concentration [44]. In some previous reports [31,45] suggested NAC alters the protein-binding of thiol components in plasma, displaces circumlating thiols from their protein binding sites, increases homocysteine urine excretion and decreases homocysteine plasma levels. The authors failed to confirm such beneficial effects in their population with CKD. Previously, Miner and colleagues reported no changes in homocysteine plasma levels after NAC supplementation in cardiac transplant recipients [38]. The explanation for these negative results may be that homocysteine plasma levels were in the normal range in all participants. Conclusions In conclusion, the results of the present study suggest that NAC used over a short time period neither influences PI17 Electronic PDF security powered by ISL-science.com Med Sci Monit, 2010; 16(7): PI13-18 homocysteine plasma levels nor exerts beneficial effects against albuminuria and blood pressure elevation in patients with CKD stage 1 and 2. 23. Tylicki L, Renke M, Rutkowski P et al: Effects of N-Acetylcysteine on Angiotensin-Converting Enzyme Plasma Activity in Patients with Chronic Kidney Diseases. Blood Purif, 2008; 26(4): 354 References: 24. Loske C, Neumann A, Cunningham AM et al: Cytotoxicity of advanced glycation endproducts is mediated by oxidative stress. J Neural Transm, 1998; 105(8–9): 1005–15 1. Foley RN, Parfrey PS: Cardiovascular disease and mortality in ESRD. J Nephrol, 1998; 11(5): 239–45 25. Tian N, Rose RA, Jordan S et al: N-Acetylcysteine improves renal dysfunction, ameliorates kidney damage and decreases blood pressure in salt-sensitive hypertension. J Hypertens, 2006; 24(11): 2263–70 3. Shishehbor MH, Oliveira LP, Lauer MS et al: Emerging cardiovascular risk factors that account for a significant portion of attributable mortality risk in chronic kidney disease. Am J Cardiol 2008, 101(12): 1741–46 27. Martina V, Masha A, Gigliardi V et al: Long-term N-acetylcysteine and L-arginine administration reduces endothelial activation and systolic blood pressure in hypertensive patients with type 2 diabetes. Diabetes Care, 2008; 31: 940–44 28. Rubanyi G: Endothelium-derived relaxing and contracting factors. J Cell Biochem, 1991; 47: 27–36 29. Schmieder R, Schrader J, Zidek W et al: Low-grade albuminuria and cardiovascular risk: what is the evidence? Clin res Cardiol, 2007; 96: 247–57 R SO O N N A LY L U 4. Tylicki L, Rutkowski P, Renke M et al: Triple Pharmacological Blockade of the Renin-Angiotensin-Aldosterone System in Nondiabetic CKD: An Open-Label Crossover Randomized Controlled Trial. Am J Kidney Dis, 2008; 52(3): 486–93 26. Agarwal R, Andersen MJ: Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int, 2006; 69(7): 1175–80 SE 2. Weiner DE, Tighiouart H, Amin MG et al: Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol, 2004; 15(5): 1307–15 5. Renke M, Tylicki L, Rutkowski P et al: Low-dose dual blockade of the renin-angiotensin system improves tubular status in non-diabetic proteinuric patients. Scand J Urol Nephrol, 2005; 39(6): 511–17 6. Tylicki L, Larczynski W, Rutkowski B: Renal protective effects of the renin-angiotensin-aldosterone system blockade: from evidence-based approach to perspectives. Kidney Blood Press Res, 2005; 28: 230–42 7. Rutkowski P, Tylicki L, Renke M et al: Low-dose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am J Kidney Dis, 2004; 43(2): 260–68 8. Mann JF, Gerstein HC, Pogue J et al: Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med, 2001; 134(8): 629–36 9. Sarnak MJ, Levey AS: Cardiovascular disease and chronic renal disease: a new paradigm. Am J Kidney Dis, 2000; 35(4 Suppl.1): S117–31 10. Canaud B, Cristol J, Morena M et al: Imbalance of oxidants and antioxidants in haemodialysis patients. Blood Purif, 1999; 17(2–3): 99–106 11. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM: The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int, 2002; 62(5): 1524–38 12. Sies H: Oxidative stress: oxidants and antioxidants. Exp Physiol, 1997; 82(2): 291–95 13. Tylicki L, Rutkowski B, Horl WH: Antioxidants: a possible role in kidney protection. Kidney Blood Press Res, 2003; 26(5–6): 303–14 14. Aruoma OI, Halliwell B, Hoey BM, Butler J: The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med, 1989; 6(6): 593–97 PE This copy is for personal use only - distrib This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. Product Investigation 15. Zicha J, Dobesova Z, Kunes J: Antihypertensive mechanisms of chronic captopril or N-acetylcysteine treatment in L-NAME hypertensive rats. Hypertens Res, 2006; 29(12): 1021–27 16. Rauchova H, Pechanova O, Kunes J et al: Chronic N-acetylcysteine administration prevents development of hypertension in N(omega)-nitroL-arginine methyl ester-treated rats: the role of reactive oxygen species. Hypertens Res, 2005; 28(5): 475–82 30. Gerstein H, Mann J, Yi Q et al: HOPE Study Investigators. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA, 2001; 286: 421–26 31. Yenicerioglu Y, Yilmaz O, Sarioglu S et al: Effects of N-acetylcysteine on radiocontrast nephropathy in rats. Scand J Urol Nephrol, 2006; 40(1): 63–69 32. Sahin G, Yalcin AU, Akcar N: Effect of N-acetylcysteine on endothelial dysfunction in dialysis patients. Blood Purif, 2007; 25(4): 309–15 33. Andrews N, Prasad A, Quyyumi A: N-acetylcysteine improves coronary and peripheral vascular function. J Am Coll Cardiol, 2001; 37: 117–23 34. Hashimoto S, Gon Y, Matsumoto K et al: N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinasemediated IL-8 production by human pulmonary vascular endothelial cells. Br J Pharmacol, 2001; 132: 270–76 35. Tepel M, van der Giet M, Statz M et al: The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation, 2003; 107(7): 992–95 36. Webb JG, Pate GE, Humphries KH et al: A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect. Am Heart J, 2004; 148(3): 422–29 37. Sharif M, Bayraktutan U, Young I, Soong C: N-Acetylcysteine Does Not Improve the Endothelial and Smooth Musele Function in the Human Saphenous Vein. Vasc Endovasc Surg, 2007; 41: 239–45 38. Miner SE, Dzavik V, Nguyen-Ho P et al: N-acetylcysteine reduces contrast-associated nephropathy but not clinical events during long-term follow-up. Am Heart J, 2004; 148(4): 690–95 39. Spapen H, Diltoer M, Nguyen D et al: Effects of N-acetylcysteine on microalbuminuria and organ failure in acute severe sepsis: results of a pilot study. Chest, 2005; 127: 1413–19 40. Burgunder JM, Varriale A, Lauterburg BH: Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur J Clin Pharmacol, 1989; 36(2): 127–31 17. Dounousi E, Papavasiliou E, Makedou A et al: Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis, 2006; 48: 752–60 41. Kleinveld HA, Demacker PN, Stalenhoef AF: Failure of N-acetylcysteine to reduce low-density lipoprotein oxidizability in healthy subjects. Eur J Clin Pharmacol, 1992; 43(6): 639–42 18. Hakim FA, Pflueger A: Role of oxidative stress in diabetic kidney disease. Med Sci Monit, 2010; 16(2): RA37–48 42. Lynch R, Robertson R: Anaphylactoid reactions to intravenous N-acetylcysteine: a prospective case controlled study. Accid Emerg Nurs, 2004; 12: 10–15 19. Pflueger A, Abramowitz D, Calvin AD: Role of oxidative stress in contrast-induced acute kidney injury in diabetes mellitus. Med Sci Monit, 2009; 15(6): RA125–36 20. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M et al: Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med, 1996; 21(6): 845–53 21. Mills BJ, Weiss MM, Lang CA et al: Blood glutathione and cysteine changes in cardiovascular disease. J Lab Clin Med, 2000; 135(5): 396–401 22. Boesgaard S, Aldershvile J, Poulsen HE et al: N-acetylcysteine inhibits angiotensin converting enzyme in vivo. J Pharmacol Exp Ther, 1993; 265(3): 1239–44 43. Dierkes J, Domröse U, Westphal S et al: Cardiac Troponin T Predicts Mortality in Patients With End-Stage Renal Disease Circulation, 2000; 102: 1964–69 44. Moustapha A, Naso A, Nahlawi M: Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation, 1997; 97: 138–41 45. Ventura P, Panini R, Pasini M et al: N-Acetylcysteine reduces homocysteine plasma levels after single intravenous administration by increasing thiols urinary excretion. Pharmacol Res, 1999; 40: 345–50 PI18 Electronic PDF security powered by ISL-science.com Letter to the Editor Published online: May 19, 2008 Blood Purif 2008;26:354 DOI: 10.1159/000133431 Effects of N-Acetylcysteine on AngiotensinConverting Enzyme Plasma Activity in Patients with Chronic Kidney Diseases Leszek Tylicki a Marcin Renke a Przemyslaw Rutkowski a Wojciech Larczynski a Ewa Aleksandrowicz b Wieslawa Lysiak-Szydlowska b Boleslaw Rutkowski a a Department of Nephrology, Transplantology and Internal Medicine, and a Department of Clinical Nutrition, Medical University of Gdansk , Poland In one of the previous issues of Blood Purification Sahin et al. [1] reported that N-acetylcysteine (NAC) could improve endothelial dysfunction in patients with chronic kidney disease (CKD). The authors suggested that this effect is related to the action of NAC as an antioxidant, i.e. free-radical scavenger, or as a reactive sulfhydryl compound that increases the reducing capacity of the cell. Here, we would like to extend these observations and present the results of our recent clinical study which indicate that NAC could also interfere with the renin-angiotensin system reducing the concentration of circulating angiotensin-converting enzyme (ACE). In a placebo-controlled, randomized, open two-period cross-over study, we evaluated the influence of NAC on plasma concentration of ACE in 20 nondiabetic patients with persistent proteinuria (0.4–6.36 g per 24 h) with normal or slightly lowered kidney function (eGFR 61–163 ml/min). Subjects entered the 8-week run-in period during which antihypertensive therapy was settled with a target blood pressure below 130/80 mm Hg. Next, patients were randomly assigned to one of two treatment sequences: 8 weeks NAC (1,200 mg/day)/8 weeks washout/ 8 weeks placebo (sequence 1) or 8 weeks placebo/8 weeks washout/8 weeks NAC (1,200 mg/day) (sequence 2). The dosages of any drugs once established in the run-in period, were left unchanged throughout the study, as well as in the washout period. Circulating ACE concentration was determined in plasma with a commercial ELISA system (Human ACE Immunoassay Quantikine, R&D Systems, Minneapolis, Minn., USA). NAC significantly reduced ACE concentration (⌬ mean 8 SEM) relative to placebo (–20.13 8 8.96 vs. –7.59 8 7.43 ng/ml; p = 0.036). A similar conclusion was reached previously in experimental conditions showing that different antioxidants including NAC may decrease local endothelial ACE activity [2]. The molecular and cellular mechanisms by which oxidative stress may mediate ACE activity are not clear so far. Given that increased endothelial expression of ACE plays an important role in cardiovascular remodeling [3], one may indicate that NAC not only improves endothelial © 2008 S. Karger AG, Basel 0253–5068/08/0264–0354$24.50/0 Fax +41 61 306 12 34 E-Mail karger@karger.ch www.karger.com Accessible online at: www.karger.com/bpu dysfunction but also prevents against vascular and myocardial structural changes. It may have a great clinical implication given that the population with CKD is at very high risk of cardiovascular complications. References 1 Sahin G, Yalcin AU, Akcar N: Effect of Nacetylcysteine on endothelial dysfunction in dialysis patients. Blood Purif 2007; 25: 309– 315. 2 Usui M, Egashira K, Kitamoto S, Koyanagi M, Katoh M, Kataoka C, Shimokawa H, Takeshita A: Pathogenic role of oxidative stress in vascular angiotensin-converting enzyme activation in long-term blockade of nitric oxide synthesis in rats. Hypertension 1999;34:546–551. 3 Takemoto M, Egashira K, Usui M, Numaguchi K, Tomita H, Tsutsui H, Shimokawa H, Sueishi K, Takeshita A: Important role of tissue angiotensin-converting enzyme activity in the pathogenesis of coronary vascular and myocardial structural changes induced by long-term blockade of nitric oxide synthesis in rats. J Clin Invest 1997;99:278–287. Dr. Leszek Tylicki Department of Nephrology, Transplantology and Internal Medicine Medical University of Gdansk PL–80211 Gdansk (Poland) Tel./Fax +48 58 346 1186, E-Mail leszek.tylicki@amg.gda.pl Vol. 57, No 4/2010 547–552 on-line at: www.actabp.pl Regular paper Atorvastatin improves tubular status in non-diabetic patients with chronic kidney disease — placebo controlled, randomized, cross-over study Marcin Renke1*, Leszek Tylicki1, Przemysław Rutkowski1, Alexander Neuwelt2, Wojciech Larczyński1, Marcin Ziętkiewicz3, Ewa Aleksandrowicz4, Wiesława Łysiak-Szydłowska4 and Bolesław Rutkowski1 Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Poland; 2Blood Brain Barrier and NeuroOncology Program, Oregon Health & Science University, Portland, Oregon, USA; 3Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, and 4Department of Clinical Nutrition and Laboratory Diagnostics, Medical University of Gdansk, Poland 1 Background. There is evidence that dyslipidemia is associated with chronic kidney disease (CKD) and it has been implicated in the progression of renal damage. Optimal management of dyslipidemia should therefore lead to renal benefits. A number of experimental models demonstrate a beneficial effect of statins in ameliorating renal damage. However, the exact mechanism by which statins protect against renal damage remains unclear. Methods. In a placebo-controlled, randomized, cross-over study we evaluated the influence of atorvastatin (ATO) 40 mg/day added to the renin-angiotensinaldosterone systeme (RAAS) blockade on proteinuria and surrogate biomarkers of tubular damage or injury in 14 non-diabetic patients with proteinuria (0.4–1.8 g per 24 h) with normal or declined kidney function (eGFR 55–153 ml/min). In the eight-week run-in period, therapy using angiotensin converting enzyme inhibitors (ACEI) and/or angiotensin II subtype 1 receptor antagonists (ARB) was adjusted to achieve a blood pressure below 130/80 mm Hg. Next, patients were randomly assigned to one of two treatment sequences: ATO/washout/placebo or placebo/washout/ATO. Clinical evaluation and laboratory tests were performed at the randomization point and after each period of the study. The primary end point of this study was a change in proteinuria measured as 24-h urine protein excretion (DPE). Secondary end points included urine N-acetyl-β-d-glucosaminidase (NAG) and α1-microglobulin (α1m) excretion. Results. The ATO therapy significantly reduced urine excretion of α1m (p=0.033) and NAG (p=0.038) as compared to placebo. There were no differences in proteinuria, blood pressure, eGFR and serum creatinine between the ATO and placebo groups. Conclusion. Atorvastatin treatment is safe and improves biomarkers of tubular damage or injury in non-diabetic patients with CKD. Keywords: Atorvastatin, kidney, chronic kidney disease, proteinuria, tubular injury Received: 21 May, 2010; revised: 16 October, 2010; accepted: 06 November, 2010; available on-line: 16 November, 2010 INTRODUCTION Despite recent progress, there is still no optimal therapy that stops progression of renal disease. Therefore, it is necessary to search for alternative therapeu- tic strategies which can further improve renal outcome (Renke et al., 2010). There is evidence that dyslipidemia is associated with chronic kidney disease (CKD) (Guijarro & Keane, 1993; Samuelsson et al., 1997). Experimental studies have established that lipids are damaging to the kidney (Keane et al., 1988; Rutkowski et al., 2003). The administration of various statins has been reported to exhibit beneficial effects in a number of experimental models of chronic kidney diseases suggesting that lipids may represent important therapeutic targets to halt or attenuate renal injury (Tylicki et al., 2003). The benefits of statins can be explained not only by their lipid-lowering potential but also by non-lipid related mechanisms, the so called “pleiotropic effects”. Several studies have evaluated the effects of statins on the progression of CKD in human subjects but the results are controversial (Chan et al., 1992; Fuiano et al., 1996; Bianchi et al., 2003; Strippoli et al., 2008; Banach et al., 2009). Considering the prognostic impact of proteinuria reduction on long-term renal outcome, in the present study we evaluated the effects of addition of atorvastatin (ATO), a 3-hydroxy-3-methyglutaryl coenzyme A (HMG-CoA) reductase inhibitor, to background nephroprotective therapy consisting of angiotensin converting enzyme inhibitors (ACEI) and/or angiotensin II subtype 1 receptor antagonists (ARB). ATO, in contrast to many other statins, does not require dosage modification at any level of renal function (K/DOQI 2003). The patients were then evaluated for proteinuria, inflammation, renal function, and surrogate biomarkers of tubular injury. The primary end point of this study was a change in proteinuria measured as 24-h urine protein excretion (DPE), in measurements available for each patient. Secondary end points included urine N-acetyl-β-d-glucosaminidase (NAG) and α1microglobulin (a1m) excretion. * e-mail: mrenke@gumed.edu.pl Abbreviations: α1m, α1-microglobulin; ACEI, angiotensin converting enzyme inhibitors; ALAT, alanine aminotransferase; ARB, angiotensin II subtype 1 receptor antagonists; ASAT, aspartate aminotransferase; ATO, atorvastatin; BMI, body mass index; BP, blood pressure; CK, creatine phosphokinase; CKD, chronic kidney disease; CVD, cardiovascular diseases; DPE, 24-h urinary protein excretion; eGFR, estimated glomerular filtration rate; hsCRP, high sensitive Creactive protein; NAG, N-acetyl-β-d-glucosaminidase; RAAS-rennin, angiotensin-aldosterone systeme 548 M. Renke and others METHODS Patients were selected from a cohort that attended our renal outpatients’ department. The inclusion criteria were as follows: age 18–65 years, chronic non-diabetic proteinuric nephropathy without dyslipidemia, normal or slightly impaired stable renal function expressed as estimated glomerular filtration rate (eGFR) above 45 ml/min, stable proteinuria above 300 mg/24 h, and no steroids or other immunosuppressive treatment for a minimum of six months before the study. Stable renal function and proteinuria were defined as a variability of serum creatinine and proteinuria less than 25 % during six months before the start of the study. Patients with total cholesterol less than 200 mg/dl, low-density lipoprotein (LDL) cholesterol < 130 mg/dl, and triglycerides < 150 mg/ dl were included. Exclusion criteria were as follows: nephritic syndrome, diabetes mellitus, cardiovascular disease (CVD), potassium serum level > 5.1 mmol/l, history of malignancy including leukemia and lymphoma, fertile women who were not taking oral contraceptives, pregnant or lactating women, patients with active liver disease, i.e., aspartate aminotransferase (ASAT) or alanine aminotransferase (ALAT) values more than three times the upper reference values, and known or suspected contraindications to the study medications, including a history of adverse reactions to statins, ACEI or ARB. General protocol. The study was a prospective, placebo-controlled, randomized, two-period cross-over trial in which the renal effects of adding ATO (Sortis; Parke-Davis, Pfizer Polska) to background nephroprotective therapy with ACEI and/or ARB (Xartan; Adamed Polska) were evaluated. At the beginning, subjects entered an eight week run-in period during which the background nephroprotective therapy using pharmacological blockade of RAAS was adjusted to give a target blood pressure (BP) below 130/80 mm Hg (Table 1). At the end of the run-in period, patients were randomly assigned to one of two treatment sequences: twelve-week ATO (40 mg/day)/12week washout — background therapy/12-week placebo (sequence 1) or 12-week placebo/12-week washout — background therapy/12-week ATO (40 mg/day) (sequence 2) (Fig. 1). Allocation was performed by a Figure 1. 2010 person that was independent of the research team according to a computer generated randomized list. The patients received 40 mg of ATO as tablets (Sortis 40, Pfizer) once a day. The target BP during the whole study was an office visit BP of 130/80 mm Hg or less. The dosages of ACEI, ARB and diuretics, once established in the run-in period, were left unchanged throughout the study and in the washout period. At the randomization point and after the end of each treatment periods, office trough BP, serum creatinine, potassium, proteinuria measured as 24-h urine protein excretion (DPE), sodium excretion (Na ex), urea excretion, and surrogate markers of tubular injury (urine excretion of N-acetyl-β-d-glucosaminidase (NAG), α-1-microglobulin (α1m)) were determined. The study was approved by the local ethical committee (NKEBN/749/2003) and all the patients gave informed consent. The study was registered at www.clinicaltrials. gov and received a positive opinion (NCT00572312). Procedures and laboratory analyses. The office trough BP was measured with Speidel+Keller sphyngomanometer in a sitting position after 10 min of rest and expressed as a mean value of two consecutive measurements taken 2 min apart. DPE, Na ex and urea excretion were evaluated on the basis of 24-h urine collection. All patients were equipped with a scaled container and were strictly informed how to collect 24-h urine. They collected two 24-h urines — of those the mean value of DPE was calculated for data evaluation. Patients were asked not to perform heavy physical activity on the urine collection days and were recommended not to change their usual daily protein and sodium intake during the study period. The excretion of urea was used to calculate the protein intake according to Maroni equation: protein intake normalized to weight (g/kg per day)=6.25×([ureaN-excretion urine 24 h (g/day)]+[0.0031×body weight (kg)])/ body weight (kg) (Maroni et al., 1985). eGFR was calculated according to Cockcroft-Gault formula (Cockcroft & Gault, 1976). NAG and α1m were analyzed in the second morning spot urine sample. NAG was determined by the spectrophotometric method according to Maruhn (1976). Incubation medium contained in a final volume of 0.4 ml, 5 nmol/l P-nitrophenyl-2-acetamido-β-d-glucopyranoside as a substrate in 50 mmol/l citrate buffer (pH 4.14). The reaction was started by the addition of 0.2 ml of undialysed urine, carried out for 15 min. at 37 °C, and then terminated with 1 ml of glycine buffer, pH 10.5. Absorbance was measured at 405 nm against a sample terminated at time zero. The calculation of the NAG level was made from the molar absorbance coefficient of the product of the reaction, P-nitrophenol, equal to 18.5 cm2/μmol. From preliminary experiments it was clear that the dialysis of urine did not affect NAG level in urine. Immunoturbidimetric test (Tina-quant α1-microglobulin, Roche, Basel, Switzerland) was used for quantification of Vol. 57 Atorvastatin in chronic kidney diseases Table 1. Patient characteristics at baseline Parameter Gender: female/male (n) 7/7 Mean age (years) 34.2 ± 6.94 Mean systolic blood pressure (mm Hg) 111.5 ± 7.8 Mean diastolic blood pressure (mm Hg) 71.2 (66.4–75.7) Urinary protein excretion (g/24 h) 0.85 (0.35–1.8) Serum creatinine (mg/dl) 1.05 ± 0.27 eGFR (ml/min) 104.7 ± 33.3 Total cholesterol (mg/dl) 191.9 ± 21 hsCRP (mg/l) 0.91 (0.33–2.22) BMI (kg/m2) 25.97 (23.3–29.3) Histopatological diagnosis: (n) 8 Mesangial glomerulonephritis 1 Mesangiocapillary glomerulonephritis 3 Membranous glomerulonephritis 1 IgA nephropathy 3 Unknown non-diabetic proteinuric chronic kidney diseases 6 Background hypotensive therapy: (n) ACEI and ARB 10 ACEI 3 ARB 1 Note: To convert serum creatinine in mg/dl to µmol/l, multiply by 88.4; eGFR in ml/min/1.73 m2 to ml/s/1.73 m2, multiply by 0.01667; Abbreviations: BMI, Body mass index; hsCRP, high sensitive C-reactive protein; eGFR, estimated glomerular filtration rate α1m in urine. The detection limit of the method was 2 mg/l. Urinary NAG and α1m were reported per mg or g of urine creatinine to correct for the variation in urine concentration. We measured high sensitive C-reactive protein (hsCRP) with a commercial ELISA Kit (DRG, EIA-3954) and reported it in mg/l. Total cholesterol, LDL cholesterol, HDL cholesterol, serum triglyceride, ASAT, ALAT, creatine phosphokinase (CK), potassium, sodium, urea, protein and creatinine levels were measured in fresh blood samples drawn after fasting overnight for at least 12 h. These parameters were measured by standard laboratory techniques. Body mass index (BMI) was calculated asmass (kilograms) divided by height (meters) squared. Adverse effects were recorded at each visit in response to questionnaires or as observed by the investigators. 549 Statistics. The primary end point of this study was a change in DPE in measurements available for each patient. A sample size of 12 patients adequately allowed a power of 80 % to detect a difference in variables equal to within patient standard deviation, that is a standardized effect size of 1.0 at a significance level of 0.05 (two-tailed). Secondary end points included urine NAG and a1m excretion. Normality and homogeneity of the variances were verified by means of the Shapiro-Wilk test and Levene test, respectively. Because of their skewed distribution, diastolic BP, DPE, NAG excretion, hsCRP, serum creatinine and daily protein intake were logarithmically transformed before statistical analysis and expressed as geometric means and 95 % confidence intervals. Other results are presented as means ± S.E.M. Differences in variable changes between treatment with ATO and placebo were assessed using Student’s t-test (Table 2). Differences in variables measured more than twice (Table 3) were assessed using ANOVA. P values less than 0.05 (2-tailed) were considered statistically significant. Data were evaluated using Statistica (version 7.1; StatSoft Inc., Tulsa, OK) software package. RESULTS Of the 14 patients who entered the study, 12 (86 %) completed the protocol. Two of them were dropped out because of withdrawal of informed consent. This decision was not due a side effect of therapy. Clinical characteristics of patients are listed in Table 1. Twenty-four-hour urine protein excretion (DPE) There was no significant change in DPE after ATO as compared to placebo (Table 2). Table 2. Changes of parameters after ATO and placebo Baseline — ATO Δ Baseline — Placebo Δ p DPE (g/24 h) –0.23 ± 0.08 –0.001 ± 0.13 0.98 α1m excretion (mg/g creat.) –8.18 ± 3.39 –0.17 ± 0.68 0.033 NAG excretion (IU/creatinine) –0.92 ± 0.29 –0.16 ± 0.18 0.038 Total cholesterol (mg/dl) –68.88 ± 7.52 –0.11 ± 8.44 0.001 LDL-C (mg/dl) –49.0 ± 4.25 –3.22 ± 6.02 0.001 HDL-C (mg/dl) –5.88 ± 2.85 –1.22 ± 1.21 0.14 Triglycerides (mg/dl) –21.88 ± 14.2 15.4 ± 16.16 0.12 Note: To convert total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) in mg/dl to mmol/l multiply by 0.02586. To convert triglycerides in mg/dl to mmol/l multiply by 0.01129. Abbreviations: DPE, urinary protein excretion; α1m, α1-microglobulin; NAG, N-acetyl-β-d-glucosaminidase 550 M. Renke and others 2010 Table 3. Changes of parameters during the study Randomization point After ATO After Placebo p 223.9 ± 28.8 208.8 ± 27.3 215.1 ± 28.4 0.68 1.1 (0.93–1.14) 1.0 (0.94–1.12) 1.12 (0.83–1.39) 0.64 1.05 ± 0.1 1.07 ± 0.1 1.12 ± 0.1 0.08 hsCRP (mg/l) 0.91 (0.3–2.21) 0.47 (0.29–0.77) 0.77 (0.4–1.49) 0.47 ALAT (IU/l) 22.3 (18.6–27.8) 29.6 (19.3–48.2) 22.2 (17.1–30.5) 0.049 ASAT (IU/l) 20.4 (17.8–23.8) 25.2 (16.8–38.6) 19.9 (17.4–23.0) 0.089 97 (18–252) 111.8 (85.7–153) 93.5 (18–240.6) 0.14 Parameter Sodium urine excretion (mmol/24 h) Daily protein intake (g/24 h) Serum creatinine (mg/dl) Creatine phosphokinase (IU/l) Systolic blood pressure (mmHg) 111.5 ± 2.5 114.4 ± 2.12 115.0 ± 1.97 0.27 Diastolic blood pressure (mmHg) 71.2 (66.4–76.6) 72.1 (68.8–75.6) 69.5 (67.5–71.5) 0.67 Note: To convert serum creatinine in mg/dl to µmol/l, multiply by 88.4. Abbreviations: hsCRP, high sensitive C-reactive protein; ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase Urinary NAG and α1m excretion Urinary NAG (p=0.038) and α1m excretion (p=0.033) decreased significantly after adding of ATO as compared to placebo (Table 2). Serum lipid levels Total cholesterol (p=0.001) and LDL cholesterol (p=0.001) decreased significantly after ATO as compared to placebo. There were no significant changes in triglyceride and HDL cholesterol during the study (Table 2). Blood pressure, renal function, hsCRP, sodium and protein intake The control of BP was adequate in all study periods; all patients reached the target office trough BP below 130/80 mm Hg. There were no differences in office trough systolic and diastolic BP between the treatment periods. Renal function assessed by means of serum creatinine and eGFR remained stable throughout the study. hsCRP levels had a tendency to decrease in ATO treatment but it was not statistically significant (p=0.47). There were no differences in sodium and protein intake between treatment periods (Table 3). Safety ATO therapy was well tolerated by all patients. Adverse effects were not reported. ASAT and CK were unchanged during the study period. ALAT statistically increased after ATO (p=0.049) but it was still in the normal range. DISCUSSION To the best of our knowledge, the present study was the first to evaluate the influence of atorvastatin, an HMG-CoA reductase inhibitor, on the markers of renal outcome in proteinuric CKD patients without dyslipidemia and CVD. We analysed the effects of ATO (40 mg/day) on proteinuria, the fundamental marker of glomerular injury and impaired glomerular permselectivity. Proteinuria is also a marker of long-term renal outcome. In the present study, the administration of ATO provided no change in proteinuria level (p=0.98) in non-diabetic CKD patients. Only a few randomized controlled trials directly addressing the effect of statins on renal function and proteinuria have been reported. Most of those studies were of small size or short duration, used a variety of statins, and many did not include a placebo arm. Some of them suggest that statins reduce proteinuria and the rate of decline of GFR (Bianchi et al., 2003; Tonelli, 2006). These positive effects have been summarized in published meta-analyses (Fried et al., 2001; Sandhu et al., 2006; Strippoli et al., 2008). Interestingly, there are also studies suggesting that statins, particularly at high doses, may increase proteinuria (Deslypere et al., 1990; Verhulst et al., 2004). Finally, the National Lipid Association Statin Safety Task Force recently reported that statin-induced proteinuria is not associated with renal impairment or renal failure (McKenney et al., 2006). Considering that tubular epithelial cell injury may initiate the fibrosis process in kidneys and the fact that the extent of tubulointerstitial damage is a crucial predictor of renal outcome, tubular cells have become a renal site of particular interest. To evaluate tubulointerstitial effects of our interventions, the tubular involvement markers NAG and α1m were analysed (Bazzi et al., 2002). An increased excretion of NAG is thought to be a specific marker of tubular injury in many renal pathologies including non-diabetic CKD (Bazzi et al., 2002). Increased urinary excretion of α1m, a low-weight protein physiologically filtered and reabsorbed by tubular cells, might indicate a reduced capacity of its reabsorption by such cells and it might be a marker of established tubular damage, with greater urinary concentrations pointing to greater severity of damage (Holdt-Lehmann et al., 2000). Our results show that treatment with ATO reduces markers of tubular injury. Similar results (although in experimental models) were described by Tsujihata and co-workers (2008). That group reported that ATO had inhibitory effects on renal tubular cell injury. In human subjects Nakamura and co-workers (2006) presented data suggesting that pitavastatin ameliorated tubulointerstitial damage in CKD patients. That effect was independent of the lipid-lowering effect (Nakamura et al., 2006). The pleiotropic effects of statins have important clinical implications, independent of their lipid-lowering effects (Fathi et al., 2004; Tonelli et al., 2004; Epstein and Campese, 2005; Nissen et al., 2005; Ridker et al., 2005; Goicoechea et al., 2006; Panichi et al., 2006; Renke et al., 2010). In our previous pilot study we confirmed that ATO therapy attenuated oxidative stress in patients with CKD (Renke et al., 2010). They are at an increased risk Vol. 57 Atorvastatin in chronic kidney diseases for CVD, and recent reviews suggested that inflammation and oxidative stress could be the primary mediators explaining the burden of CVD in CKD patients (Arici & Walls, 2001). Moreover, inflammation plays a central role in the progression of CKD (Tonelli et al., 2005; Zoja et al., 2006). Our study used hsCRP, a protein found in the blood, as a marker of inflammation. Interestingly, patients with elevated basal levels of CRP are at an increased risk of diabetes, hypertension and cardiovascular disease (Pradhan et al., 2001; Dehghan et al., 2007). In our study this parameter had a tendency to decrease with ATO treatment, but the result was not statistically significant (p=0.47). The fact that most of the patients had serum hsCRP levels in the normal range at the beginning of the study is probably the main reason why our results are different from those of some other authors (Chang et al., 2002; Ichihara et al., 2002; Vernaglione et al., 2004). Our study confirms the findings of others (Newman et al., 2006; Shurraw & Tonelli 2006; Newman et al., 2008) that ATO therapy is well tolerated by CKD patients. Adverse effects were not reported during the study period. It is unlikely that confounding factors might have influenced the outcome of the present study. The treatment periods did not differ with respect to blood pressure, patients` sodium and protein intake as well as renal function. We believe that the nephroprotective properties of ATO need to be addressed further in future controlled long term studies. A potential limitation of the study is the relatively small sample size, although it was sufficiently powered to detect a significant difference equal to the S.D. value between treatment periods. A further limitation would be the fact that the participants were selected on the basis of their stability. The 24-h urine collections used to assess proteinuria may be associated with significant collection errors, largely because of improper timing and missed samples, leading to over- and under-collection. In addition, one should realize that the potential benefits for tubules and interstitium were extrapolated from presumptive early surrogates. Such evidence should be confirmed by histological examination. In conclusion, the study results suggest that treatment with ATO (40 mg/day) for 12 weeks in nondialysis patients with CKD induced, in addition to its lipid-lowering effect, a significant decrease in biomarkers of tubular injury and damage without change in proteinuria. The treatment was safe and well tolerated by patients. Acknowledgements The study was supported by grant from the Committee for Scientific Research through the Medical University of Gdansk (ST-4 and W-80). The authors thank Pfizer Polska and Adamed for providing drugs. The drug providers and sponsors had no involvement in the study design, patient recruitment, analysis, interpretation of data, writing of the report, or the decision to submit the report for publication. REFERENCES “Kidney Disease Outcomes Quality Initiative (K/DOQI) Group” (Corporate Author) (2003). K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am J Kidney Dis 41 (4 Suppl 3): I-IV, S1–S91. Arici M, Walls J (2001) End-stage renal disease atherosclerosis and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int 59: 407–14. 551 Banach M, Mikhailidis DP, Kjeldsen SE, Rysz J (2009) Time for new indications for statins? Med Sci Monit 15: MS1–MS5. Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P, Paparella M, D’Amico G (2002) Urinary N-acetyl-β-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant 17: 1890–1896. Bianchi S, Bigazzi R, Caiazza A, Campese VM (2003) A controlled prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis 41: 565–70. Chan PC, Robinson JD, Yeung WC, Cheng IK, Yeung HW, Tsang MT (1992) Lovastatin in glomerulonephritis patients with hyperlipidaemia and heavy proteinuria. Nephrol Dial Transplant 7: 93–99. Chang JW, Yang WS, Min WK, Lee SK, Park JS, Kim SB (2002) Effects of simvastatin on high-sensitivity C-reactive protein and serum albumin in hemodialysis patients. Am J Kidney Dis 39: 1213–1217. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41. Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, Stijnen T, Hofman A, Schram MT, Witteman JC (2007) Genetic variation C-reactive protein levels and incidence of diabetes. Diabetes 56: 872–878. Deslypere JP, Delanghe J, Vermeulen A (1990) Proteinuria as complication of simvastatin treatment. Lancet 336: 1453. Epstein MV, Campese M (2005) Pleiotropic effects of 3-hydroxy-3methylglutaryl coenzyme a reductase inhibitors on renal function. Am J Kidney Dis 45: 2–14. Fathi R, Isbel N, Short L, Haluska B, Johnson D, Marwick TH (2004) The effect of long-term aggressive lipid lowering on ischemic and atherosclerotic burden in patients with chronic kidney disease. Am J Kidney Dis 43: 45–52. Fried LF, Orchard TJ, Kasiske BL (2001) Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 59: 260–269. Fuiano G, Esposito C, Sepe V, Colucci G, Bovino M, Rosa M, Balletta M, Bellinghieri G, Conte G, Cianciaruso B, Dal Canton A (1996) Effects of hypercholesterolemia of renal hemodynamics: study in patients with nephrotic syndrome. Nephron 73: 430–435. Goicoechea M, de Vinuesa SG, Lahera V, Cachofeiro V, GomezCampdera F, Vega A, Abad S, Luno J (2006) Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J Am Soc Nephrol 17 (12 Suppl 3): S231–S235. Guijarro CW, Keane F (1993) Lipid abnormalities and changes in plasma proteins in glomerular diseases and chronic renal failure. Curr Opin Nephrol Hypertens 2: 372–379. Holdt-Lehmann B, Lehmann A, Korten G, Nagel H, Nizze H, Schuff-Werner P (2000) Diagnostic value of urinary alanine aminopeptidase and N-acetyl-β-d-glucosaminidase in comparison to α1-microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 297: 93–102. Ichihara A, Hayashi M, Ryuzaki M, Handa M, Furukawa T, Saruta T (2002) Fluvastatin prevents development of arterial stiffness in haemodialysis patients with type 2 diabetes mellitus. Nephrol Dial Transplant 17: 1513–1517. Keane WF, Kasiske BL, O’Donnell MP (1988) Hyperlipidemia and the progression of renal disease. Am J Clin Nutr 47: 157–160. Maroni BJ, Steinman TI, Mitch WE (1985) A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 27: 58–65. Maruhn D (1976) Rapid calorimetric assay of β-galactosidase and N-acetyl-β-d-glucosaminidase in human urine. Clin Chim Acta 73: 453–461. McKenney JM, Davidson MH, Jacobson TA, Guyton JR (2006) Final conclusions and recommendations of the National Lipid Association Statin Safety Assessment Task Force. Am J Cardiol 97: 89C94C. Nakamura T, Sugaya T, Kawagoe Y, Suzuki T, Inoue T, Node K (2006) Effect of pitavastatin on urinary liver-type fatty-acid-binding protein in patients with nondiabetic mild chronic kidney disease. Am J Nephrol 26: 82–86. Newman C, Tsai J, Szarek M, Luo D, Gibson E (2006) Comparative safety of atorvastatin 80 mg versus 10 mg derived from analysis of 49 completed trials in 14236 patients. Am J Cardiol 97: 61–67. Newman CB, Szarek M, Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Demicco DA, Auster S, Fuller JH (2008) The safety and tolerability of atorvastatin 10 mg in the Collaborative Atorvastatin Diabetes Study (CARDS) Diab Vasc Dis Res 5: 177–183. Nissen SE, Tuzcu EM, Schoenhagen P, Crowe T, Sasiela WJ, Tsai J, Orazem J, Magorien RD, O’Shaughnessy C, Ganz P (2005) Statin therapy LDL cholesterol C-reactive protein and coronary artery disease. N Engl J Med 352: 29–38. Panichi V, Paoletti S, Mantuano E, Manca-Rizza G, Filippi C, Santi S, Taccola D, Donadio C, Tramonti G, Innocenti M, Casto G, Consani C, Sbragia G, Franzoni F, Galetta F, Panicucci E, Barsotti G (2006) In vivo and in vitro effects of simvastatin on inflammatory markers in pre-dialysis patients. Nephrol Dial Transplant 21: 337–344. 552 M. Renke and others Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) Creactive protein interleukin 6 and risk of developing type 2 diabetes mellitus. Jama 286: 327–334. Renke M, Knap N, Tylicki L, Rutkowski P, Neuwelt A, Larczynski W, Wozniak M, Rutkowski B (2010a) Atorvastatin attenuates oxidative stress in patients with chronic kidney disease. Med Sci Monit 16: LE3–LE3. Renke M, Tylicki L, Rutkowski P, Knap N, Zietkiewicz M, Neuwelt A, Aleksandrowicz E, Lysiak-Szydlowska W, Wozniak M, Rutkowski B (2010b) Effect of pentoxifylline on proteinuria markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease — placebo controlled randomized cross-over study. Acta Biochim Pol 57: 119–123. Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe CH, Pfeffer MA, Braunwald E (2005) C-reactive protein levels and outcomes after statin therapy. N Engl J Med 352: 20–28. Rutkowski B, Szolkiewicz M, Korczynska J, Sucajtys E, Stelmanska E, Nieweglowski T, Swierczynski J (2003) The role of lipogenesis in the development of uremic hyperlipidemia. Am J Kidney Dis 41 (3 Suppl 1): S84–S88. Samuelsson O, Mulec H, Knight-Gibson C, Attman PO, Kron B, Larsson R, Weiss L, Wedel H, Alaupovic P (1997) Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant 12: 1908–1915. Sandhu S, Wiebe N, Fried LF, Tonelli M (2006) Statins for improving renal outcomes: a meta-analysis. J Am Soc Nephrol 17: 2006–2016. Shurraw SM, Tonelli M (2006) Statins for treatment of dyslipidemia in chronic kidney disease. Perit Dial Int 26: 523–539. 2010 Strippoli GF, Navaneethan SD, Johnson DW, Perkovic V, Pellegrini F, Nicolucci A, Craig JC (2008) Effects of statins in patients with chronic kidney disease: meta-analysis and meta-regression of randomised controlled trials. Bmj 336: 645–651. Tonelli M (2006) The effect of statins on preservation of kidney function in patients with coronary artery disease. Curr Opin Cardiol 21: 608–612. Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, Sacks FM, Furberg C, Cobbe SM, Simes J, Craven T, West M (2004) Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 110: 1557–1563. Tonelli M, Sacks F, Pfeffer M, Jhangri GS, Curhan G (2005) Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int 68: 237–245. Tsujihata M, Momohara C, Yoshioka I, Tsujimura A, Nonomura N, Okuyama A (2008) Atorvastatin inhibits renal crystal retention in a rat stone forming model. J Urol 180: 2212–2217. Tylicki L, Rutkowski B, Horl WH (2003) Antioxidants: a possible role in kidney protection. Kidney Blood Press Res 26: 303–314. Verhulst A, D’Haese PC, De Broe ME (2004) Inhibitors of HMGCoA reductase reduce receptor-mediated endocytosis in human kidney proximal tubular cells. J Am Soc Nephrol 15: 2249–2257. Vernaglione L, Cristofano C, Muscogiuri P, Chimienti S (2004) Does atorvastatin influence serum C-reactive protein levels in patients on long-term hemodialysis? Am J Kidney Dis 43: 471–478. Zoja C, Abbate M, Remuzzi G (2006) Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens 15: 250–257. This copy is for personal use only - distrib Letter to Editor Dear Editor, R SO O N N A LY L U The pharmacological blockade of the renin-angiotensin-aldosterone system (RAAS) is a cornerstone strategy for inhibiting progression of chronic nephropathies. In a recent Medical Science Monitor paper, Banach et al. [1] discussed the role of statins in patients with chronic kidney disease (CKD). Here we elaborate on this very interesting discussion by reporting that atorvastatin attenuates oxidative stress phenomena in patients with CKD. tion has no additional effect on proteinuria [5], a finding in opposition with the observations of Bianchi et al. [6]. However, our present data suggest that atorvastatin may attenuate oxidative stress, as indicated by reduced generation of potentially nephrotoxic isoprostanes, thus providing additional renal protection for patients with CKD. SE Atorvastatin attenuates oxidative stress in patients with chronic kidney disease In a randomized, placebo controlled, cross-over study, 14 white adult patients (7 men and 7 women; mean age: 34 years) with nondiabetic proteinuric CKD were evaluated to test the hypothesis that atorvastatin 40 mg (ATO) combined with standard angiotensin converting enzyme inhibitors (ACEI) and/or angiotensin receptor blockers (ARB) therapy increases nephroprotection by lowering the level of potentially nephrotoxic oxidative stress-dependent products. Subjects entered the 8 weeks run-in period when the therapy using ACEI and/or ARB. Next, patients were randomly assigned to one of two treatment sequences: ATO/ washout/placebo or placebo/washout/ATO. Clinical evaluation and ambulatory blood pressure with laboratory tests were performed at the randomization point and after each of 3 periods in the study (every 12 weeks). A commercial ELISA kit (Cayman Chemical Co) was then used to measure the urinary excretion of 15-F2t-isoprostane in the treated patients. 15-F2t-isoprostane is accepted as a reliable and sensitive marker of oxidative stress in the human pathologies [2]. PE This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. This copy is for personal use only - distribution prohibited. py is for personal use only - distribution prohibited. WWW. M ED S CI M ONIT.COM It was found that the ATO treatment significantly reduced urinary levels of 15-F2t-isoprostane relative to the placebo group (ANOVA P=0.019) with no changes observed in systemic blood pressure, eGFR and serum creatinine (Table 1). This finding may be of clinical relevance, as 15-F2t-isoprostane has biological activity as a potent renal vasoconstrictor [3] and has been implicated as a causative mediator in hepatorenal syndrome [4]. Interestingly enough, we have previously demonstrated that a combined therapy with ATO and standard nephroprotec- References: 1. Banach M, Mikhalidis DP, Kjedsen SE, Rysz J: Time for new indications for statins? Med Sci Monit, 2009; 15(12): MS1–5 LE 2. Fam SS, Morrow JD: The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr Med Chem, 2003, 10: 1723–40 3. Takahashi K, Nammour TM, Fukunaga M et al: Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors. J Clin Invest, 1992; 90: 136–41 4. Morrow JD, Moore KP, Awad JA et al: Marked overproduction of noncyclooxygenase derived prostanoids (F2-isoprostanes) in the hepatorenal syndrome. J Lipid Mediat, 1993; 6: 417–20 5. Renke M, Rutkowski P, Tylicki L et al: The effect of atorvastatin on proteinuria and markers of tubular injury In non-diabetic patients with chronic kidney disease – placebo controlled, randomized, cross-over study. Int Urol Nephrol, 2009; in press 6. Bianchi S, Bigazzi R, Caiazza A, Campese VM: A controlled, prospective study of effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis, 2003; 41: 565–70 Sincerelly, Marcin Renke1, Narcyz Knap2, Leszek Tylicki1, Przemyslaw Rutkowski1, Alexander Neuwelt3, Wojciech Larczynski1, Michal Wozniak2 Boleslaw Rutkowski1 1 Department of Nephrology, Transplantology & Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland 2 Department of of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland 3 Blood Brain Barrier and Neuro-Oncology Program, Oregon Health & Science University, Portland, OR, U.S.A. Marcin Renke, Department of Nephrology, Transplantology & Internal Medicine, Medical University of Gdańsk, Debinki 7 Str., 80-211 Gdańsk, Poland, e-mail: mrenke@gumed.edu.pl Received: 2010.01.02 Table 1. Changes of eGFR and Urine Excretion of iPF2α after atorvastatin-ATO and placebo. Baseline – ATO Δ Baseline – Placebo Δ P eGFR (ml/min.) –3.37±2.68 1.18±0.09 0.420 Urine Excretion of iPF2α (ng/mg creatinine) –1.41±0.69 0.53±0.29 0.019 Current Contents/Clinical Medicine • IF(2008)=1.514 • Index Medicus/MEDLINE • EMBASE/Excerpta Medica • Chemical Abstracts • Index Copernicus LE3 Electronic PDF security powered by ISL-science.com PRACE POGL¥DOWE Marcin RENKE Przemys³aw RUTKOWSKI Leszek TYLICKI Marcin ZIÊTKIEWICZ Wojciech LARCZYÑSKI Boles³aw RUTKOWSKI Pentoksyfilina stary lek czy nowa nadzieja nefrologii? Katedra i Klinika Nefrologii Transplantologii i Chorób Wewnêtrznych Akademia Medyczna, Gdañsk Kierownik: Prof. dr hab. med. Boles³aw Rutkowski Farmakologiczna blokada uk³adu renina-angiotensyna-aldosteron (RAA) stanowi obecnie podstawow¹ strategiê leczenia przewlek³ych nerfopatii przebiegaj¹cych z bia³komoczem lub w fazie przewlek³ej niewydolnoci nerek. Wprowadzenie leków hamuj¹cych uk³ad RAA do terapii pacjentów z uszkodzeniem nerek doprowadzi³o do zwolnienia tempa progresji niewydolnoci nerek. Nie uda³o siê jednak jak do tej pory ca³kowicie zahamowaæ jej postêpu. Sk³oni³o to do poszukiwañ uzupe³niaj¹cych strategii terapeutycznych. Byæ mo¿e pentoksyfilina (PTF) lek znany i stosowany od wielu lat m.in. w przewlek³ym niedokrwieniu koñczyn dolnych i zaburzeniach kr¹¿enia mózgowego bêdzie cennym uzupe³nieniem terapii blokuj¹cej uk³ad RAA i umo¿liwi pe³niejsz¹ ochronê funkcji nerek. Dane z badañ dowiadczalnych oraz pierwsze doniesienia kliniczne pozwalaj¹ mieæ nadziejê, ¿e znaleziono kolejny orê¿ w walce z chorobami nerek. Lek ten ma cenne w³aciwoci antycytokinowe, co pozwala na prze³amanie opornoci na dzia³anie erytropoetyny, zmniejsza nasilenie stanu zapalnego i byæ mo¿e spowalnia tempo powstawania mia¿d¿ycy miêdzy innymi przez ograniczenie produkcji reaktywnych form tlenu. Prawdopodobnie najbli¿sze lata przynios¹ odpowied na pytanie, czy faktycznie PTF jest now¹ nadziej¹ nefrologii. Pharmacological inhibition of the renin-angiotensin-aldosteron system (RAAS) constitutes a cornerstone strategy in the management of patients with chronic nephropathies with proteinuria and with chronic renal failure. Angiotensin converting enzyme inhibitors (ACEI) as well as angiotensin II subtype 1 receptor antagonists have been shown to decrease proteinuria, reduce the local renal inflammatory processes and slow the progression of renal insufficiency. Despite recent progress, there is still no optimal therapy that would stop progression of renal disease. May be pentoxifilline (PTF) - the old medication which is still used to treat peripheral vascular disease and brain ischemia will be the new adjunct to RAAS blockade. In addition, PTF has been shown to decrease the production of pro-inflammatory cytokines and reactive oxygen species. PTF therapy may improve the hemoglobin response in patients with previously rh-EPO resistant anemia in renal failure. This may occur due to inhibition of proinflammatory cytokine production. Probably in the next few years we will get answer to the question of PTF role in nephrology. Wstêp Uk³ad renina-angiotensyna-aldosteron (RAA) odgrywa kluczow¹ rolê w regulacji cinienia têtniczego, utrzymaniu homeostazy wodno-elektrolitowej oraz procesach zwi¹zanych ze wzrostem i proliferacj¹ komórek. Podstawowym zadaniem uk³adu RAA jest utrzymanie sta³ej objêtoci p³ynu wewn¹trznaczyniowego oraz systemowego cinienia krwi. Angiotensyna II (Ang II) jest g³ównym efektorem uk³adu RAA i w trakcie jego aktywacji indukuje obkurczenie naczyñ krwiononych oraz nasilenie reabsorbcji sodu w cewkach nerkowych bezporednio lub poprzez pobudzenie uk³adu adrenergicznego oraz zwiêkszenie produkcji aldosteronu i wazopresyny. Mimo roli, jak¹ odgrywa uk³ad RAA w utrzymaniu homeostazy, jego przewlek³e pobudzenie prowadziæ mo¿e do niekorzystnych nastêpstw w uk³adzie ser- cowo-naczyniowym. Wykazano, ¿e Ang II odgrywa kluczow¹ rolê w procesach zwi¹zanych z uszkodzeniem nerek oraz rozwojem i progresj¹ przewlek³ej ich niewydolnoci. Udzia³ uk³adu RAA w procesach chorobowych w obrêbie nerek nie ogranicza siê tylko do dzia³ania Ang II. Wykazano, ¿e aldosteron mo¿e równie¿ bezporednio stymulowaæ procesy w³óknienia w nerkach na drodze aktywacji TGF-ß1. Do patologicznych zmian w obrêbie nerek dochodzi te¿ wskutek dzia³añ katecholamin uwalnianych z zakoñczeñ nerwowych obwodowego uk³adu adrenergicznego, który stymulowany jest przez Ang II centralnie oraz obwodowo [38]. Dysponujemy dwiema podstawowymi grupami leków zmniejszaj¹cymi efekty dzia³ania uk³adu RAA. Ograniczaj¹ one efekty biologiczne zwi¹zane z aktywacj¹ receptorów AT-1. Inhibitory konwertazy angioten- Dodatkowe s³owa kluczowe: pentoksyfilina nefroprotekcja niedokrwistoæ k³êbuszkowe zapalenie nerek nefropatia cukrzycowa Additional key words: pentoxyfilline kidney protection anemia glomerulonephritis diabetic nephropathy Adres do korespondencji: Dr med. Marcin Renke Katedra i Klinika Nefrologii, Transplantologii i Chorób Wewnêtrznych AM Gdañsk 80-211, ul. Dêbinki 7 Tel./Fax: +48 58 3461186 e-mail: mrenke@amg.gda.pl 358 Pentoxifylline old drug or new hope for nephrology? Przegl¹d Lekarski 2008 / 65 / 7-8 M. Renke i wsp. syny II (IKA) realizuj¹ to poprzez hamowanie aktywnoci podstawowego enzymu uk³adu RAA, konwertuj¹cego angiotensynê (KA) i zmniejszenie syntezy Ang II. Blokada ta nie jest jednak zupe³na z powodu syntezy Ang II szlakami enzymatycznymi niezale¿nymi od KA, jak równie¿ zjawiska okrelanego jako ucieczka od IKA, to jest opornoci na dzia³anie IKA, rozwijaj¹cej siê u czêci pacjentów po pewnym czasie skutecznego leczenia tymi lekami. Antagonici receptora AT-1 (ARA) blokuj¹ wi¹zanie Ang II z ich najwa¿niejszym receptorem, przy zachowanej syntezie peptydu [37]. Wprowadzenie leków hamuj¹cych uk³ad RAA do terapii pacjentów z uszkodzeniem nerek doprowadzi³o do zwolnienia tempa progresji niewydolnoci nerek [13,3234,36,39]. Nie uda³o siê jednak jak do tej pory ca³kowicie zahamowaæ jej postêpu. Sk³ania to do poszukiwañ uzupe³niaj¹cych strategii terapeutycznych. Jednym z leków, który od wielu lat pojawia siê w krêgu zainteresowania nefrologów jest pentoksyfilina (PTF). Pierwsze doniesienia na temat farmakokinetyki tego preparatu wród chorych z przewlek³¹ niewydolnoci¹ nerek pochodz¹ sprzed 30 lat [35]. Jednak dopiero wyniki badañ z ostatnich lat pozwalaj¹ mieæ nadziejê, ¿e posiadamy cenny lek, który mo¿e mieæ wp³yw na rokowanie pacjentów z chorobami nerek. Pentoksyfilina miejsce w nefrologii Ochrona funkcji nerki przeszczepionej oraz nerek po transplantacji innych narz¹dów. Historycznie rzecz bior¹c pocz¹tkowo zwrócono uwagê na potencjalnie korzystne dzia³anie PTF wród chorych po transplantacji narz¹dów. Istnieje wiele badañ dowiadczalnych potwierdzaj¹cych tezê, ¿e PTF chroni funkcjê nerek po transplantacji narz¹dów [1,2]. Lek ten mia³ miêdzy innymi ograniczaæ dzia³anie nefrotoksyczne cyklosporyny rutynowo stosowanej wród chorych po transplantacji. Niestety, wiêkszoæ przeprowadzonych randomizowanych badañ klinicznych nie potwierdzi³a nefroprotekcyjnego dzia³ania PTF w tej grupie pacjentów [6,29,30]. Leczenie wspomagaj¹ce pierwotnych i wtórnych glomerulopatii Kilka badañ eksperymentalnych podkrela korzystn¹ rolê PTF w leczeniu k³êbuszkowych zapaleñ nerek. Badania dotycz¹ miêdzy innymi modelu glomerulopatii mezangialnej [7] oraz glomerulopatii z przeciwcia³ami przeciw b³onie podstawnej k³êbuszka (anty GBM) [9]. Niestety, dane kliniczne s¹ sk¹pe, ale istnieje kilka ciekawych doniesieñ na ten temat. W 2001 roku Doucloux i wsp. [14] przedstawili wyniki badañ przeprowadzonych w grupie 10 chorych z potwierdzonym biopsyjnie b³oniastym k³êbuszkowym zapaleniem nerek, którzy nie odpowiedzieli na typowe leczenie sterydami i do standartowej terapii otrzymali PTF w dawce 1200 mg/dziennie przez okres 6 miesiêcy. Stwierdzono istotne statystycznie zmniejszenie dobowej utraty bia³ka (p=0,001), obni¿enie poziomu czynnika martwicy nowotworu (TNF=tumor necrosis factor) w surowicy (p=0,001) i moczu (p=0,02) oraz zwiêkPrzegl¹d Lekarski 2008 / 65 / 7-8 szenie poziomu albumin w surowicy krwi (p=0,0004) przy niezmienionym stê¿eniu kreatyniny w surowicy krwi. W innym badaniu, które objê³o 11 chorych z opornym na typowe leczenie immunosupresyjne zespo³em nerczycowym w przebiegu nefropatii toczniowej, stwierdzono istotne statystycznie zmniejszenie dobowej utraty bia³ka (p=0,003) pod wp³ywem stosowanej PTF w dawce od 800 do 1600 mg dziennie przez 6 miesiêcy. Leczenie by³o dobrze tolerowane, ¿aden chory nie przerwa³ terapii z powodu objawów ubocznych stosowanego leczenia [16]. W innym badaniu klinicznym, którego wyniki opublikowano ostatnio, 17 chorych z pierwotnym k³êbuszkowym zapaleniem nerek i funkcj¹ nerek okrelan¹ jako szacunkowy wskanik filtracji k³êbuszkowej (eGFR=estimated Glomerular Filtration Rate) pomiêdzy 25 a 115 ml/min./1,73 m2 otrzymywa³o 800 mg dziennie PTF przez 6 miesiêcy. Leczenie by³o dobrze tolerowane i pozwoli³o na zmniejszenie dobowej utraty bia³ka [8]. Zapobieganie rozwojowi i leczenie nefropatii cukrzycowej Istnieje szereg badañ eksperymentalnych podkrelaj¹cych ochronn¹ rolê PTF w wywo³ywanej dowiadczalnie cukrzycy, szczególnie w zapobieganiu rozwojowi nefropatii cukrzycowej [12,17]. Istniej¹ te¿ nieliczne niestety doniesienia kliniczne podkrelaj¹ce rolê PTF w ochronie funkcji nerek wród chorych z cukrzyc¹ typu 2. Navarro i wsp. [28] opublikowali w 1999 roku wyniki prospektywnego badania przeprowadzonego w grupie 24 chorych na cukrzycê z niewydolnoci¹ nerek (klirens kreatyniny < 35 ml/min.). 14 chorych otrzymywa³o doustnie 400 mg PTF dziennie przez okres 6 miesiêcy, natomiast 10 pacjentów stanowi³o grupê kontroln¹. W grupie badanej stwierdzono statystycznie znamienne zmniejszenie dobowej utraty bia³ka i zmniejszenie w surowicy TNF-a w porównaniu do grupy kontrolnej (p<0,001) po 6 miesi¹cach badania. Stê¿enie kreatyniny w surowicy krwi i klirens kreatyniny pozosta³y niezmienione w obu grupach podczas badania. Znaleziono równie¿ korelacjê pomiêdzy redukcj¹ dobowej utraty bia³ka i zmniejszeniem TNF-a (r=0,72, p<0,01). Wed³ug autorów wiadczy to o istotnej roli cytokin w progresji nefropatii cukrzycowej oraz znaczeniu PTF jako leku antycytokinowego w ochronie funkcji nerek w tym typie nefropatii. W innym badaniu tej grupy autorów z 2003 roku udowodniono, ¿e podawanie PTF wród chorych z cukrzyc¹ typu 2 nie tylko ogranicza bia³komocz, ale równie¿ zmniejsza wydalanie N-acetylbeta-glucosaminidazy (NAG), który jest markerem uszkodzenia cewek nerkowych [3]. Badanie by³o prospektywne i przeprowadzone na grupie 45 chorych z cukrzyc¹ typu 2 (30 chorych otrzymywa³o 1200 mg PTF na dobê przez 4 miesi¹ce, a 15 chorych stanowi³o grupê kontroln¹). Wyniki porównywano z badaniami 15 zdrowych osób w podobnym wieku i podobnym rozk³adzie p³ci. Uzyskane dane pozwoli³y wyci¹gn¹æ wnioski, które podkrelaj¹ ochronn¹ rolê PTF w populacji chorych z nefropati¹ cukrzycow¹ w przebiegu cukrzycy typu 2 [27]. W innym stosunkowo niedawno opubliko- wanym randomizowanym, kontrolowanym badaniu ten sam autor ocenia³ efekt podawanego doustnie PTF w dawce 1200 mg w grupie 30 chorych z cukrzyc¹ typu 2 w porównaniu do 31 pacjentów w grupie kontrolnej. Wszyscy pacjenci byli leczeni standardow¹ terapi¹ nefroprotekcyjn¹ z u¿yciem blokera dla receptora AT 1 dla angiotensyny II (ARA) przez okres co najmniej jednego roku. Stwierdzono w grupie otrzymuj¹cej dodatkowo PTF istotne statystycznie (p <0,001) zmniejszenie albuminurii oraz zmniejszenie wydalania z moczem TNF-a. Efekt ten by³ niezale¿ny od zmian cinienia têtniczego i kontroli metabolicznej [26]. Rola PTF w leczeniu wspomagaj¹cym niedokrwistoci Obecnie nie ma w¹tpliwoci, ¿e stosowanie erytropoetyny (EPO) u chorych z przewlek³¹ chorob¹ nerek (PChN) niesie ze sob¹ wiele korzyci [18,21]. Pierwsze obserwacje kliniczne dotycz¹ce leczenia PTF w ma³ych grupach chorych z PChN i niedokrwistoci¹ s¹ bardzo obiecuj¹ce. W badaniu prospektywnym Navarro i wsp. z 1999 roku [25] przedstawiono wyniki 7 pacjentów z klirensem kreatyniny < 30 ml/min. leczonych PTF w dawce 400 mg doustnie przez okres 6 miesiêcy. Obserwowano znamienny statystycznie wzrost wartoci hemoglobiny (9,9 ± 0,5 g/dl vs 10,6 ± 0,6 g/dl) przy niezmiennym poziomie EPO w surowicy. Jednoczenie poziom TNF-a w surowicy pacjentów otrzymuj¹cych PTF obni¿y³ siê znamiennie, przy braku zmian w grupie kontrolnej. W innym opublikowanym w 2004 roku badaniu [11] przeprowadzonym wród 16 chorych z PChN (11 leczonych hemodializ¹, 4 leczonych dializ¹ otrzewnow¹ i 1 z niewydolnoci¹ nerki przeszczepionej) oraz z³¹ odpowiedzi¹ na stosowane leczenie EPO, które definiowano jako poziom hemoglobiny < 10,7 g/dl na 6 miesiêcy przed w³¹czeniem do badania przy dawce EPO a 12 000 IU/tydzieñ, wykazano korzystne dzia³anie PTF. Chorzy otrzymali lek doustnie 400 mg/dobê przez 4 miesi¹ce. 12 pacjentów ukoñczy³o badanie, wród nich poziom hemoglobiny wzrós³ z 9,5 ± 0,9 g/dl przed terapi¹ do 11,7 ± 1,0 g/dl (p=0,0001) po 4 miesi¹cach stosowania PTF. Efekt ten t³umaczono dzia³aniem przeciwzapalnym, u pod³o¿a którego le¿y hamowanie dzia³ania cytokin prozapalnych TNF-a i IFN-g. Obecnie mo¿na spodziewaæ siê opublikowania wyników badania przeprowadzonego wród 160 chorych z PChN leczonych EPO lub darbaerytropoetyn¹ a oraz PTF. Zosta³o ono zaprojektowane jako badanie randomizowane podwójnie lepe, kontrolowane placebo z grup¹ kontroln¹ st¹d jego wyniki mog¹ odpowiedzieæ na wiele nurtuj¹cych pytañ dotycz¹cych roli PTF w leczeniu wspomagaj¹cym chorych z PChN i niedokrwistoci¹ [21]. Inne potencjalnie korzystne dzia³ania PTF w nefrologii W badaniach eksperymentalnych stwierdzono, ¿e PTF ma hamuj¹cy wp³yw na syntezê kolagenu przez komórki b³ony otrzewnej u ludzi, co mog³oby potencjalnie znaleæ zastosowanie w leczeniu b¹d zapobieganiu wyst¹pienia bardzo gronego 359 sji PChN przedstawiono na rycinie 1. Istniej¹ równie¿ doniesienia podkrelaj¹ce potencjaln¹ rolê PTF w zapobieganiu rozwojowi ostrej niewydolnoci nerek (ONN). Mo¿e do tego dochodziæ poprzez dzia³anie stymuluj¹ce produkcjê prostaglandyn prowadz¹cych do rozszerzenia naczyñ nerkowych [40] lub na drodze zmniejszenia efektów endotoksemii towarzysz¹cej ONN [41]. Warto dodaæ, ¿e dzia³anie antycytokinowe PTF mog¹ znaleæ zastosowanie nie tylko w nefrologii, ale równie¿ w reumatologii, diabetologii i kardiologii. Rycina 1 Schemat potencjalnego udzia³u pentoksyfiliny (PTF) w hamowaniu progresji PChN. Scheme of potential pentoxifylline role in prevention of chronic renal failure progression. powik³ania przewlek³ego leczenia dializ¹ otrzewnow¹ jakim jest stwardniaj¹ce zapalenie otrzewnej (EPS) [15]. Stwierdzono równie¿, ¿e PTF w badaniach eksperymentalnych hamuje u szczurów p³ytkowy czynnik wzrostu (PDGF) i TGF-ß, co mog³oby mieæ znaczenie w hamowaniu progresji mia¿d¿ycy naczyñ, tak powszechnej wród chorych z PChN [10]. PTF poprzez wp³yw na receptory dla TNF-a ma te¿ mieæ wp³yw na zwolnienie katabolizmu bia³ek wród chorych jeszcze nie dializowanych, ale z zaawansowan¹ PChN [4]. Mo¿e mieæ to znaczeniu w zapobieganiu rozwojowi niedo¿ywienia w tej grupie chorych, na które jest szczególnie nara¿ona ta populacja. Jak wiemy istnieje cis³y zwi¹zek niedo¿ywienia ze miertelnoci¹ wród chorych z PChN [20]. Inne ciekawe doniesienia podkrelaj¹ rolê PTF w ochronie funkcji nerek chorych poddawanych radioterapii i chemioterapii [22,31]. Istnieje te¿ pilota¿owe badanie, w którym stosowano profilaktycznie PTF do¿ylnie u chorych poddawanych zabiegom kardiochirurgicznym. Wyniki badañ 20 pacjentów powy¿ej 80 roku ¿ycia, którzy otrzymywali PTF w trakcie i w dwóch kolejnych dobach po zabiegu przês³owania aortalnowieñcowego porównano z wynikami 20 chorych z grupy kontrolnej, którzy otrzymywali placebo. By³o to prospektywne, randomizowane, kontrolowane placebo badanie, które pozwoli³o na wykazanie korzyci p³yn¹cych z tego typu postêpowania, które polega³y na ochronie funkcji nerek, ale równie¿ 360 w¹troby i ródb³onka naczyñ [5]. Korzystne dzia³anie nefroprotekcyjne PTF w po³¹czeniu z indometacyn¹ i alfa-tokoferolem, wykazano równie¿ w badaniu klinicznym przeprowadzonym wród 54 chorych poddawanych zabiegom urologicznym lub ESWL z powodu kamicy dróg moczowych [19]. Domniemane mechanizmy dzia³ania nefroprotekcyjnego PTF Na podstawie przeprowadzonych badañ wiadomo, ¿e PTF poza znanym od wielu lat dzia³aniem przeciwzakrzepowym m.in. poprzez wp³yw na funkcjê p³ytek krwi, posiada jeszcze szereg innych potencjalnie korzystnych dzia³añ. Stwierdzono wp³yw hamuj¹cy PTF na produkcjê cytokin pozapalnych, takich jak TNF-a, przez monocyty i limfocyty T, czy te¿ interferonu a przez wspomniane limfocyty. Wydaje siê, ¿e to dzia³anie antycytokinowe mo¿e mieæ znaczenie zarówno w hamowaniu progresji PChN [27], jak i poprawie wartoci hemoglobiny wród chorych z zaawansowan¹ PChN leczonych EPO z powodu niedokrwistoci [21,24]. Wiele wskazuje na to, ¿e wygaszanie stanu zapalnego mo¿e te¿ pe³niæ istotn¹ rolê w zapobieganiu rozwojowi niedo¿ywienia wród pacjentów z PChN [4]. Ponadto, PTF poprzez dzia³anie zwalniaj¹ce podzia³y komórkowe oraz hamowanie produkcji kolagenu [10] mo¿e spowalniaæ postêp ró¿nych nefropatii, które mog¹ prowadziæ do rozwoju PChN [8,42]. Uproszczony schemat potencjalnego udzia³u PTF w hamowaniu progrePrzegl¹d Lekarski 2008 / 65 / 7-8 Podsumowanie Obecnie powszechnie uwa¿a siê, ¿e hamowanie uk³adu RAA pozwala na zwolnienie tempa utraty funkcji nerek wród chorych z PChN. Od kilku lat terapia oparta na IKA i ARA jest preferowanym leczeniem nadcinienia i standartowym postêpowaniem nefroprotekcyjnym wród chorych z ró¿nymi typami nefropatii [13,23,36,37]. Nie uda³o siê jednak ca³kowicie zahamowaæ jej postêpu. Sk³ania to do poszukiwañ uzupe³niaj¹cych strategii terapeutycznych. Jednym z leków, który od wielu lat pojawia siê w krêgu zainteresowania nefrologów jest pentoksyfilina. Wydaje siê, ¿e PTF mo¿e byæ stosowana w terapii uzupe³niaj¹cej u chorych z PChN przebiegaj¹c¹ z bia³komoczem. Wymaga to jednak potwierdzenia w du¿ych, kontrolowanych badaniach klinicznych. Byæ mo¿e PTF znajdzie sta³e miejsce w terapii chorych leczonych nerkozastêpczo, zarówno metod¹ hemodializy, jak i dializy otrzewnowej. Wstêpne doniesienia na temat poprawy wartoci hematologicznych w tej grupie chorych, czy zapobieganiu niedo¿ywienia, ograniczaniu stanu zapalnego, czy wreszcie zapobieganiu wyst¹pienia gronych powik³añ jak np. stwardniaj¹cego zapalenia otrzewnej s¹ interesuj¹ce i wymagaj¹ wyjanienia. Równie¿ nie do koñca poznana jest rola PTF w profilaktyce uszkodzeñ nerek w okresie oko³ooperacyjnym, podczas radio czy chemioterapii oraz w leczeniu urologicznym. Wstêpne doniesienia nakazuj¹ prowadzenie dalszych badañ szczególnie, ¿e dotychczasowe wyniki s¹ zachêcaj¹ce, a badana substancja jest tania i stosunkowo dobrze tolerowana przez chorych. Pimiennictwo 1. Albornoz L.E., Sanchez S.B., Bandi J.C. et al.: Pentoxifylline reduces nephrotoxicity associated with cyclosporine in the rat by its rheological properties. Transplantation 1997, 27, 1404. 2. Ates E., Sharma P., Erkasap S. et al.: Cyclosporine nephrotoxicity in the ischemic kidney and the protective effect of pentoxyfilline - a study in the rat. Transplantation 1996, 27, 864. 3. Bazzi C., Petrini C., Rizza V. et al.: Urinary N-acetylbeta-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transplant. 2002, 17, 1890. 4. Biolo G., Ciocchi B., Bosutti A. et al.: Pentoxifylline actuely reduces protein catabolism in chronically uremic patients. Am. J. Kidney Dis. 2002, 40, 1162. 5. Boldt J., Brosch C., Piper S.N. et al.: Influence of prophylactic use of pentoxyfilline on postoperative organ function in elderly cardiac surgery patients Crit. Care Med. 2001, 29, 952. 6. Carrier M., Pelletier G.B., White M. et al.: Effect of pentoxyfilline on renal toxicity of cyclosporine: results of a clinical trial after heart transplantation. J. Heart Lung Transplant. 1996, 15, 1179. M. Renke i wsp. 7. Chen Y.M., Chien C.T., Hu-Tsai M.I. et al.: Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int. 1999, 56, 932. 8. Chen Y.M., Lin S.L., Chiang W.C. et al.: Pentoxifylline ameliorates through suppresion of renal monocyte chemoattractant protein-1 in patients with proteinuric primary glomerular diseases. Kidney Int. 2006, 69, 1410. 9. Chen Y.M., Mg Y.Y., Lin S.L. et al.: Pentoxifylline suppresses renal tumour necrosis factor-alpha and ameliorates experimental crescentic glomerulonephritis in rats. Nephrol. Dial. Transplant. 2004, 19, 1106. 10. Chen Y.M., Wu K.D., Tsai T.J. et al.: Pentoxifylline inhibits PDGF-induced proliferation of and TGF-beta stimulated collagen synthesis by vascular smooth muscle cells. J. Mol. Cell Cardiol. 1999, 31, 773. 11. Cooper A., Mikhail A., Lethbridge M. et al.: Pentoxifylline improves hemoglobin level in patients with erythropoietin-resistant anemia in renal falure. J. Am. Soc. Nephrol. 2004, 15, 1877. 12. Davila-Esqueda M.E., Vertiz-Hernandez A.A., Martinez-Morales F.: Comparative analysis of renoprotective effects of pentoxyfilline and vitamin E on streptozotocin induced diabetes mellitus. Ren. Fail. 2005, 27, 115. 13. de Zeeuw D., Remuzzi G., Parving H.H. et al.: Proteinuria a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004, 65, 2309. 14. Ducloux D., Bresson-Vautrin C., Chalopin J.: Use of pentoxifylline in membranous nephropathy. Lancet 2001, 26, 1672. 15. Fang C.C., Lai M.N., Chien C.T. et al.: Effects of pentoxifylline on peritonela fibroblasts and silica induced peritoneal fibrosis. Perit. Dial. Int. 2003, 23, 228. 16. Galindo-Rodriguez G., Bustamante R., EsquivelNava G. et al.: Pentoxifylline in the treatment of refractory nephrotic syndrome secondary to lupus nephritis. J. Rheumatol. 2003, 30, 2382. 17. Gunduz Z., Canoz O., Per H. et al.: The effects of pentoxifylline on diabetic renal changes in streptozotocin induced diabetes mellitus. Ren. Fail. 2004, 26, 597. 18. Jungers P., Choukroun G., Oualim Z. et al.: Beneficial influence of recombinant human erythropoietin therapy on the rate of progression of chronic renal failure in predialysis patients. Nephrol. Dial. Transplant. 2001, 16, 307. Przegl¹d Lekarski 2008 / 65 / 7-8 19. Kazachenko A.V., Dzeranov N.K., Ianenko E.K. et al.: Ways of prevention of kidney lesions during nephrolithotomy or extracorporeal lithotripsy in nephrolithiasis. Urol. Nefrol. 1998, 4, 10. 20. Liu Y., Coresh J., Eustace J.A. et al.: Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 2004, 28, 451. 21. Macdougall IC.: Could anti-inflammatory cytokine therapy improve poor treatment outcomes in dialysis patients? Nephrol. Dial. Transplant. 2004, 19, (Suppl. 5) 73. 22. Moulder J.E., Cohen E.P.: Future strategies for mitigation and treatment of chronic radiation induced normal tissue injury. Semin. Radiat. Oncol. 2007, 17, 141. 23. Nakao N., Yoshimura A., Morita H. et al.: Combination treatment of angiotensin II receptor blocker and angiotensin converting enzyme inhibitor in nondiabetic renal disease (COOPERATE): a randomised controlled trial. Lancet 2003, 361, 117. 24. Navarro J.F., Mora-Fernandez C.: The role of TNFa in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev. 2006, 17, 441. 25. Navarro J.F., Mora C., Garcia J. et al.: Effects of pentoxyfilline on the haematologic status in anaemic patients with advanced renal failure. Scand. J. Urol. Nephrol. 1999, 33, 121. 26. Navarro J.F., Mora C., Muros M. et al.: Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: a short-term, randomized, controlled trial J. Am. Soc. Nephrol. 2005, 16, 2119. 27. Navarro J.F., Mora C., Muros M. et al.: Effects of pentoxifylline on urinary N-acetyl-beta-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. Am. J. Kidney Dis. 2003, 42, 264. 28. Navarro J.F., Mora C., Rivero A. et al.: Urinary protein excretion and serum tumor necrosis factor in diabetic patients with advanced renal failure: effects of pentoxyfilline administration. Am. J. Kidney Dis. 1999, 33, 453. 29. Noel C., Hazzan M., Coppin M.C. et al.: A randomized controlled trial of pentoxyfilline for the prevention of delayed graft function in cadaveric kidney graft. Clin. Transplant. 1997, 11, 169. 30. Noel C., Hazzan M., Labalette M. et al.: Improvement in the outcome of rejection with pentoxyfilline in renal transplantation: a randomized controlled trial. Transplantation 1998, 15, 385. 31. Ramesh G., Reeves W.B.: TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin injury. J. Clin. Invest. 2002, 110, 835. 32. Renke M., Tylicki L., Rutkowski P. et al.: Angiotensin II receptor antagonists and angiotensin II converting enzyme inhibitors in low doses: alone or both for treatment of primary glomerulonephritis. Scand. J. Urol. Nephrol. 2004, 38, 427. 33. Renke M., Tylicki L., Rutkowski P. et al.: Low dose dual blockade of the renin angiotensin system improves tubular status in non-diabetic proteinuric patients. Scand. J. Urol. Nephrol. 2005, 39, 511. 34. Rutkowski P., Tylicki L., Renke M. et al.: Low dose dual blockade of the renin angiotensin system in patients with primary glomerulonephritis. Am. J. Kidney Dis. 2004, 43, 260. 35. Schaefer K., von Herrath D., Hensel A. et al.: Investigations on the pharmacokinetics of pentoxyfilline in chronic renal failure. Med. Klin. 1977, 11, 204. 36. Tall M., Brenner B.: Renoprotective benefits of RAS inhibition: from ACEI to angiotensin II antagonists. Kidney Int. 2000, 57, 1803. 37. Tall M., Brenner B.: Combination ACEI and ARB therapy: additional benefit in renoprotection. Curr. Opin. Nephrol. Hypertens. 2002, 11, 377. 38. Tylicki L., Larczyñski W., Rutkowski B.: Renal protective effects of the renin angiotensin aldosteron blockade:from evidence based approach to perspectives. Kidney Blood. Press. Res. 2005, 28, 230. 39. Tylicki L., Rutkowski P., Renke M. et al.: Renoprotective effect of small doses of losartan and enalapril in patients with primary glomerulonephritis. Am J Nephrol 2002, 22, 356. 40. Vadiei K., Brunner L.J., Luke D.R.: Effects of pentoxyfilline in experimental renal failure. Kidney Int. 1989, 36, 466. 41. Wang W., Zolty E., Falks S. et al.: Pentoxyfilline protects against endotoxin induced acute renal failure in mice. Am. J. Physiol. Renal Physiol. 2006, 291, 1090. 42. Yagmurlu A., Boleken M.E., Ertoy D. et al.: Preventive effect of pentoxyfilline on renal scaring in rat model of pyelonephritis. Urology 2003, 61, 1037. 361 Vol. 57, No 1/2010 119–123 on-line at: www.actabp.pl Regular paper Effect of pentoxifylline on proteinuria, markers of tubular injury and oxidative stress in non-diabetic patients with chronic kidney disease — placebo controlled, randomized, cross-over study Marcin Renke1, Leszek Tylicki1, Przemysław Rutkowski1, Narcyz Knap2, Marcin Ziętkiewicz3, Alexander Neuwelt4, Ewa Aleksandrowicz5, Wiesława Łysiak-Szydłowska5, Michał Woźniak2 and Bolesław Rutkowski1 Department of Nephrology, Transplantology and Internal Medicine, 2Department of Medical Chemistry, 3Department of Internal Medicine, Connective Tissue Diseases and Geriatrics, Medical University of Gdańsk, Gdańsk, Poland; 4Blood Brain Barrier and Neuro-Oncology Program, Oregon Health & Science University, Portland, Oregon, USA; 5Department of Clinical Nutrition and Laboratory Diagnostics. Medical University of Gdańsk, Gdańsk, Poland 1 Background: Inhibition of the renin-angiotensin-aldosterone system (RAAS) with angiotensin converting enzyme inhibitors (ACEI) and/or angiotensin II subtype 1 receptor antagonists (ARB) is a common strategy used in the management of patients with chronic kidney disease (CKD). However, there is no universal therapy that can stop progression of CKD. Pentoxifylline (PTE) is a nonspecific phosphodiesterase inhibitor with anti-inflammatory properties. It has been reported to have promising effects in CKD treatment. Methods: In a placebo-controlled, randomized, cross-over study we evaluated the influence of PTE (1200 mg/day) added to RAAS blockade on proteinuria, surrogate markers of tubular injury and oxidative stress-dependent products in 22 non-diabetic patients with proteinuria (0.4–4.3 g per 24 h) with normal or declined kidney function [eGFR 37–178 mL/min]. In an eight-week run-in period, therapy using ACEI and/ or ARB was adjusted to achieve a blood pressure below 130/80 mm Hg. Next, patients were randomly assigned to one of two treatment sequences: PTE/washout/placebo or placebo/washout/PTE. Clinical evaluation and laboratory tests were performed at the randomization point and after each period of the study. Results: The PTE therapy reduced proteinuria (by 26 %) as compared to placebo. There were no differences in α1-microglobulin, urine excretion of N-acetyl-β-d-glucosaminidase (NAG), hsCRP, the urinary excretion of 15-F2t-isoprostane, blood pressure (BP), eGFR and serum creatinine between the PTE and placebo groups. Conclusion: Pentoxifylline may decrease proteinuria in non-diabetic patients with CKD. enzyme inhibitors (ACEI) and angiotensin II subtype 1 receptor antagonists (ARB) have been shown to decrease proteinuria, reduce local renal inflammatory processes and slow down the progression of renal insufficiency (Renke et al., 2004; Renke et al., 2005; Rutkowski et al., 2004; Tylicki et al., 2007a; 2007b). Despite recent progress, there is still no optimal therapy that stops progression of CKD. Therefore, it is necessary to search for alternative therapeutic strategies which can further improve renal outcome. Considering the prognostic impact of proteinuria reduction on long-term renal outcome, in the present study we evaluated the effects of pentoxifylline (PTE) addition to background nephroprotective therapy consisting of ACEI and/or ARB. PTE, a methyl-xanthine derivative, is a non-selective phosphodiesterase inhibitor with anti-inflammatory and immunomodulatory effects. PTE is also widely used to treat peripheral vascular disorders because of its potent hemorrheological properties (Frampton & Brogden, 1995). Moreover, PTE potently inhibits cell proliferation and extracellular matrix accumulation, factors that play important roles in CKD progression. The PTE’s benefit when administered in conjunction with RAAS blockade in patients with CKD is not clear. Our study evaluated the effects of this treatment on proteinuria, inflammation, oxidative stress, renal function and surrogate markers of tubular injury. Keywords: pentoxifylline, oxidative stress, kidney, chronic kidney disease, proteinuria, tubular injury Individuals. Patients were selected from the cohort that attended our renal outpatient department. The inclusion criteria were as follows: age 18–65 years, chronic non-diabetic proteinuric nephropathy without dyslipidemia, normal or slightly impaired stable renal function expressed as estimated glomerular filtration rate (eGFR) Received: 04 January, 2010; revised: 11 March, 20201; accepted: 19 March, 2010; available on-line: 22 March, 2010 INTRODUCTION The incidence and prevalence of chronic kidney disease (CKD) is increasing worldwide. Pharmacological inhibition of the renin-angiotensin-aldosterone system (RAAS) constitutes a cornerstone strategy in the management of patients with chronic nephropathies with proteinuria (Tylicki et al., 2005). Angiotensin converting MATERIAL AND METHODS e-mail: mrenke@gumed.edu.pl Abbreviations: ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin II subtype 1 receptor antagonists; BP, blood pressure; CKD, chronic kidney disease; CVD, cardiovascular diseases; DPE, 24-h urinary protein excretion; eGFR, estiamted glomerular filtration rate; PTE, pentoxifylline; RAAS, renin-angiotensin-aldosterone system. 120 M. Renke and others 2010 Table 1. Patient characteristics at baseline Parameter Gender: female/male (n) 7/15 Mean age years (±S.E.M.) 38.6 ± 10.3 Mean systolic blood pressure mm Hg (± S.E.M.) 123.8 ± 12.6 Mean diastolic blood pressure mm Hg 75.3 (70.6-81.0 ) Urinary protein excretion g/24 h 1.2 (0.4-4.3 ) Serum creatinine mg/dL 1.0 (0.9-1.3 ) eGFR mL/min (± S.E.M.) 121.8 ± 50.2 hsCRP mg/L 2.36 (0.29–10.4 ) BMI kg/m2 27.7 (19.3-36.1) Histopathological diagnosis: (n) 14 Mesangial glomerulonephritis 4 Mesangiocapillary glomerulonephritis 1 Membranous glomerulonephritis 2 Focal segmental glomerulosclerosis (FSGS) 2 IgA nephropathy 5 Unknown non-diabetic proteinuric chronic kidney diseases 8 Background hypotensive therapy: (n) ACEI and ARB 14 ACEI 7 ARB 1 above 30 mL/min, stable proteinuria above 300 mg/ 24 h, and no steroids or other immunosuppressive treatment for a minimum of six months before the study. Stable renal function and proteinuria were defined as a variability of serum creatinine and proteinuria less than 20 % during 6 months before the start of the study. Exclusion criteria were as follows: fertile women who were not taking oral contraceptives, pregnant or lactating women, and a history of adverse reactions to PTE. General protocol. The study was a prospective, placebo-controlled, randomized, two-period cross-over trial in which the renal effects of adding PTE to a background nephroprotective therapy with ACEI and/or ARB were evaluated. Subjects entered an eight-week run-in period during which background nephroprotective therapy using pharmacological blockade of RAAS was adjusted to keep target blood pressure (BP) below 130/80 mm Hg (Table 1). At the end of the run-in period, patients were randomly assigned to one of two treatment sequences: 8-week PTE (1200 mg/day)/8-week washout — background therapy/8-week placebo (sequence 1) or 8-week placebo/8-week washout — background therapy/8-week PTE (1200 mg/day) (sequence 2) (Fig. 1). The allocation was performed according to a computer-generated randomization list by a person that was independent of the research team. The patients received 1200 mg of PTE, in tablet form (Polfilin 400, Polpharma), once a day. The dosages of ACEI, ARB and diuretics, once established in the run-in period, were left unchanged throughout the study. At the randomization point, and after the end of each treatment period, office through BP, serum creatinine, potassium, hsCRP, proteinuria (measured as 24-h Figure 1. Study scheme urinary protein excretion (DPE)), sodium excretion (Na ex), and urea excretion were measured. Further, surrogate markers of tubular injury were analyzed, namely urine excretion of N-acetyl-β-d-glucosaminidase (NAG), α-1microglobulin (α1m) and 15-F2t-isoprostane. 15-F2tisoprostane is accepted as a reliable and sensitive marker of oxidative stress in human pathologies (Fam & Morrow, 2003). The study was approved by the local ethical committee and the investigated patients all gave informed consent. Procedures and laboratory analyses. The office through BP was measured with a Speidel+Keller sphyngomanometer in a sitting position after 10 min of rest and expressed as a mean value of two consecutive measurements taken 2 min apart. DPE, Na ex and urea excretion were evaluated on the basis of 24-h urine collection. All patients were equipped with a graded container and were informed how to collect 24-h urine. They collected two 24-h urines — of those the mean value of DPE was calculated for data evaluation. Patients were asked not to perform heavy physical activity on the urine collection days and were recommended not to change their usual daily protein and sodium intake during the study period. The excretion of urea was used to calculate the protein intake according to the Maroni equation: protein intake normalized to weight (g/ kg per day) = 6.25×([urea-N-excretion urine 24 h (g/ day)] + [0.0031 × body weight (kg)])/body weight (kg) (Maroni et al., 1985). eGFR was calculated according to the Cockcroft-Gault formula (Cockcroft & Gault, 1976). NAG and α1m were analyzed in the second morning spot urine sample. NAG was determined by the spectrophotometric method according to Maruhn (1976). Incubation medium had a final volume of 0.4 mL, containing 5 nmol/L p-nitrophenyl-2-acetamidoβ-d-glucopyranoside as a substrate in 50 mmol/L citrate buffer (pH 4.14). The reaction was started by the addition of 0.2 mL of undialysed urine, carried out for 15 min at 37 °C, and then terminated with 1 mL of glycine buffer, pH 10.5. Absorbance was measured at 405 nm against a sample terminated at time zero. The calculation of the NAG level was made from the molar absorption coefficient of the product of the reaction, p-nitrophenol, which is 18.5 cm2/μmol. From preliminary experiments it was clear that the dialysis did not affect NAG levels in the urine. Immunoturbidimetric test (Tina-quant α1-microglobulin, Roche, Basel, Switzerland) was used for the quantification of α1m in urine. The detection limit of the method was 2 mg/L. Urinary NAG, and α1m were reported per mass of urine creatinine to correct for the variation in urine concentration. High sensitivity C-reac- Vol. 57 Pentoxifylline in chronic kidney diseases 121 Table 2. Changes of parameters after PTE and placebo PTE — Baseline (Δ) Placebo — Baseline (Δ) P –0.41 ± 0.48 0.01 ± 0.62 0.11 α1m excretion mg/g creatinine 0.61 (–8.4–9.6) 0.41 (–5.7–6.5) 0.96 NAG excretion IU/ g creatinine 1.0 ± 1.96 1.16 ± 4.9 0.91 –1.66 ± 1.77 –0.89 ± 4.69 0.63 0.08 (–0.01–0.18) –0.04 (–0.12–0.03) 0.8 Proteinuria (DPE) g/24 h hsCRP mg/L Urine excretion of iPF2α ng/mg creatinine tive protein (hsCRP) was measured with a commercial ELISA kit (DRG, EIA-3954) and reported as mg/L. A commercial ELISA kit (Cayman Chemical Co.) was then used to measure the urinary excretion of 15-F 2tisoprostane in the treated patients. Potassium, sodium, urea, protein and creatinine levels were measured in fresh blood samples drawn after fasting overnight for at least 12 h. These parameters were measured using standard laboratory techniques. Body mass index (BMI) was calculated as weight (kilograms) divided by height (meters) squared. Adverse effects were recorded at each visit in response to questionnaires or as observed by the investigators. Statistics. The primary end point of this study was a change in DPE in measurements available for each patient after treatment with PTE and placebo. The sample size of 16 patients adequately allowed a power of 80 % to detect a difference in variables equal to within one standard deviation, that is a standardized effect size of 1.0 at a significance level of 0.05 (two-tailed). Secondary end points included urine NAG, α1m, and 15-F2t-isoprostane excretions. Normality and homogeneity of the variances were verified by means of the Shapiro-Wilk test and Levene test, respectively. Because of their skewed distribution, diastolic BP, DPE, NAG excretion, 15-F2t-isoprostane, hsCRP, serum creatinine and daily protein intake were logarithmically transformed before statistical analysis, and expressed as geometric means and 95 % confidence intervals. Other results are presented as means ± S.E.M. Differences in the variables’ changes between treatment with PTE and placebo were assessed using Student’s t-test (Table 2). The differences in the variables measured more than twice (Table 3) were assessed using ANOVA. P less than 0.05 (2-tailed) was considered statistically significant. Data were evaluated using Statistica (version 7.1; StatSoft Inc, Tulsa, OK) software package. RESULTS Of the 22 patients who entered the study, 14 (64 %) completed the protocol. Five of the patients dropped out because of the withdrawal of informed consent due to a side effect of therapy (gastrointestinal symptoms — 23 %). The other patients resigned from participation in the study for personal reasons. Clinical characteristics of the patients are listed in Table 1. 24-h urinary protein excretion (DPE) The PTE therapy reduced proteinuria (by 26 %) as compared to placebo, but the result was not significant (P = 0.11) (Table 2). The exact change of DPE in single patients before and after PTE is shown separately (Fig. 2). Urinary NAG and α1m excretion There were no significant changes in urinary NAG (P = 0.91) and α1m excretion level (P = 0.96) using PTE as compared to placebo (Table 2). 15-F2t-isoprostane excretions and hsCRP There were no significant changes in15-F2t-isoprostane excretions and hsCRP during the study (Table 2). Blood pressure, renal function, sodium and protein intake The control of BP was adequate in all study periods; all patients reached the target office trough BP below 130/80 mm Hg. There were no differences in the office through systolic and diastolic BP between the treatment periods. Renal function assessed by means of serum creatinine and eGFR remained stable during the study periods. There were no differences in sodium and protein intake between treatment periods (Table 3). Safety Interestingly, the PTE therapy was not well tolerated in this study. Adverse effects were reported in five patients (22.7 %) who suffered from gastrointestinal symptoms — nausea, dyspepsia and diarrhea. Table 3. Changes of parameters during study Parameter Randomization point After PTE After Placebo P Na urinary excretion mmol/24 h 295 ± 30.2 247 ± 34.5 268 ± 35.5 0.64 Daily protein intake g/24 h 1.1 ± 0.3 1.1 ± 0.3 1.0 ± 0.3 0.45 Serum creatinine mg/dL 1.0 (0.9–1.3 ) 1.1 (0.9–1.4 ) 1.1 (0.9–1.5 ) 0.86 Systolic BP mm Hg 123.8 ± 12.6 122.9 ± 11.2 123.8 ± 10 0.55 Diastolic BP mm Hg 75.3 (70.6–81.0 ) 74.3 (70.2–79.0 ) 77.6 (73.8–82.1 ) 0.64 122 M. Renke and others 2010 Figure 2. Daily protein excretion (DPE) before and after the therapy with pentoxifylline. DISCUSSION To the best of our knowledge the present study was the first to evaluate tubulointerstitial effects of pentoxifylline in proteinuric non-diabetic CKD patients. PTE has potential value as an antiproliferative and antifibrogenic agent, an effect documented in animal research (Chen et al., 1999a; 1999b; Lin et al., 2005) and in patients with diabetic kidney disease (Navarro et al., 2003). Considering that tubular epithelial cell injury may initiate the fibrotic process in kidneys and that the extent of tubulointerstitial damage is a crucial predictor of renal outcome, tubular cells have become a site of particular interest. To evaluate the tubulointerstitial effects of the described interventions, the tubular involvement markers NAG and α1m were analyzed (Bazzi et al., 2002). An increased excretion of NAG is thought to be a specific marker of tubular injury in many renal pathologies including non-diabetic CKD (Bazzi et al., 2002). Increased urinary excretion of α1m, a low-molecular weight protein physiologically filtered and reabsorbed by tubular cells, may indicate a reduced capacity of reabsorption by tubular cells, and thus can act as a marker of established tubular damage, with greater urinary concentrations suggesting greater severity of damage (Holdt-Lehmann et al., 2000). Our results show that treatment with PTE had no influence on these markers of tubular injury. The effects of PTE (1200 mg/day) on proteinuria were also analyzed. Proteinuria is considered a marker of long-term renal outcome. In the present study, the administration of PTE decreased the proteinuria levels in non-diabetic CKD patients, but this was not significant (P = 0.11). Only a few randomized controlled trials directly addressing the effect of PTE on renal function and proteinuria have been reported. Most of those studies were of small size or short duration, used a variety of doses, and many did not include a placebo arm. Some of these studies suggest that PTE reduces proteinuria (Ducloux et al., 2001; Galindo-Rodriguez et al., 2003; Lin et al., 2008) and the rate of GFR decline (Perkins et al., 2009). These positive effects were summarized in published meta-analyses (McCormick et al., 2008) and review articles (Lin et al., 2004; Lin et al., 2005; Renke et al., 2008; Vilayur & Harris, 2009). The pleiotropic effects of PTE have important clinical implications, as it displays anti-tumor necrosis factor alpha (TNF-α) (Mandell, 1995) and anti-interferon gamma (IFN-γ) (Benbernou et al., 1995; Bienvenu et al., 1995) action, as well as antioxidant (Freitas & Filipe, 1995) and antiapoptotic effects (Belloc et al., 1995). Patients with CKD are at increased risk for cardiovascular disease (CVD), and recent reviews suggest that inflammation and oxidative stress could be the primary mediators of CVD in CKD patients (Arici & Walls, 2001). Moreover, inflammation plays a central role in the progression of CKD (Tonelli et al., 2005; Zoja et al., 2006). In our study we used hsCRP, a protein found in the blood, as a marker of inflammatory process. Interestingly, patients with elevated basal levels of CRP are at an increased risk of diabetes, hypertension and cardiovascular disease (Pradhan et al., 2001; Dehghan et al., 2007). In our study this parameter had a tendency to decrease with PTE treatment (70 %), but the result was not statistically significant (P = 0.63). The facts that most of the patients had serum hsCRP levels within the normal range at the beginning of the study and the small number of participants are probably the main reasons why our results differ from those of other studies. The urinary excretion of 15-F2t-isoprostane, a reliable and sensitive marker of oxidative stress, was also measured. Urinary excretion of 15-F2t-isoprostane was not found to change with treatment (P = 0.8). Interestingly, the PTE therapy was not well tolerated in this study, a finding in contrast to the perception that PTE has few side effects in CKD patients (Ward & Clissold, 1987; McCormick et al., 2008). Adverse effects, namely gastrointestinal symptoms, were reported in 5 patients (23 %) during the study period. This finding is perhaps attributable to accumulation of PTE metabolites, a known mechanism of toxicity in patients with chronic renal failure (Paap et al., 1996). In the present study, the PTE doses were unchanged in patients with moderate renal dysfunction (Navarro et al., 2003). A potential limitation of the study is the relatively small sample size, which was unsufficiently powered to detect a significant difference equal to the S.D. value between treatment periods. Further, 24-h urine collections used to assess proteinuria may be associated with significant collection errors, largely because of improper timing and missed samples, leading to overcollection and undercollection. In conclusion, the study results suggest that treatment with PTE (1200 mg/day) for 8 weeks in nondialysed patients with CKD induced the reduction of DPE (by 26 %), without affecting markers of tubular injury and Vol. 57 Pentoxifylline in chronic kidney diseases oxidative stress. However, the potential nephroprotective properties of PTE need to be addressed further in future controlled long term studies. Acknowledgements The study was supported by grant from the State Committee for Scientific Research via the Medical University of Gdańsk (ST-4). The authors thank Polpharma for providing drugs. The drug providers and sponsors had no involvement in the study design, patient recruitment, analysis, interpretation of data, writing of the report, or the decision to submit the report for publication. REFERENCES Arici M, Walls J (2001) End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int 59: 407–414. Bazzi C, Petrini C, Rizza V, Arrigo G, Napodano P, Paparella M, D’Amico G (2002) Urinary N-acetyl-β-glucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol Dial Transplant 17: 1890–1896. Belloc F, Jaloustre C, Dumain P, Lacombe F, Lenoble M, Boisseau MR (1995) Effect of pentoxifylline on apoptosis of cultured cells. J Cardiovasc Pharmacol 25 (Suppl 2): S71–S74. Benbernou N, Esnault S, Potron G, Guenounou M (1995) Regulatory effects of pentoxifylline on T-helper cell-derived cytokine production in human blood cells. J Cardiovasc Pharmacol 25 (Suppl 2): S75– S79. Bienvenu J, Doche C, Gutowski MC, Lenoble M, Lepape A, Perdrix JP (1995) Production of proinflammatory cytokines and cytokines involved in the TH1/TH2 balance is modulated by pentoxifylline. J Cardiovasc Pharmacol 25 (Suppl 2): S80–S84. Chen YM, Chien CT, Hu-Tsai MI, Wu KD, Tsai CC, Wu MS, Tsai TJ (1999a) Pentoxifylline attenuates experimental mesangial proliferative glomerulonephritis. Kidney Int 56: 932–943. Chen YM, Wu KD, Tsai TJ, Hsieh BS (1999b) Pentoxifylline inhibits PDGF-induced proliferation of and TGF-β-stimulated collagen synthesis by vascular smooth muscle cells. J Mol Cell Cardiol 31: 773–783. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41. Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, Stijnen T, Hofman A, Schram MT, Witteman JC (2007) Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes 56: 872–878. Ducloux D, Bresson-Vautrin C, Chalopin J (2001) Use of pentoxifylline in membranous nephropathy. Lancet 357: 1672–1673. Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation — a review. Curr Med Chem 10: 1723–1740. Frampton JE, Brogden RN (1995) Pentoxifylline (oxpentifylline) A review of its therapeutic efficacy in the management of peripheral vascular and cerebrovascular disorders. Drugs Aging 7: 480–503. Freitas JP, Filipe PM (1995) Pentoxifylline. A hydroxyl radical scavenger. Biol Trace Elem Res 47: 307–311. Galindo-Rodriguez G, Bustamante R, Esquivel-Nava G, Salazar-Exaire D, Vela-Ojeda J, Vadillo-Buenfil M, Avina-Zubieta JA (2003) Pentoxifylline in the treatment of refractory nephrotic syndrome secondary to lupus nephritis. J Rheumatol 30: 2382–2384. Holdt-Lehmann B, Lehmann A, Korten G, Nagel H, Nizze H, Schuff-Werner P (2000) Diagnostic value of urinary alanine aminopeptidase and N-acetyl-β-d-glucosaminidase in comparison to α1-microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 297: 93–102. Lin SL, Chen YM, Chiang WC, Tsai TJ, Chen WY (2004) Pentoxifylline: a potential therapy for chronic kidney disease. Nephrology (Carlton) 9: 198–204. 123 Lin SL, Chen RH, Chen YM, Chiang WC, Lai CF, Wu KD, Tsai TJ (2005) Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol 16: 2702–2713. Lin SL, Chiang WC, Chen YM, Lai CF, Tsai TJ, Hsieh BS (2005) The renoprotective potential of pentoxifylline in chronic kidney disease. J Chin Med Assoc 68: 99–105. Lin SL, Chen YM, Chiang WC, Wu KD, Tsai TJ (2008) Effect of pentoxifylline in addition to losartan on proteinuria and GFR in CKD: a 12-month randomized trial. Am J Kidney Dis 52: 464–474. Mandell GL (1995) Cytokines, phagocytes, and pentoxifylline. J Cardiovasc Pharmacol 25 (Suppl 2): S20–S22. Maroni BJ, Steinman TI, Mitch WE (1985) A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int 27: 58–65. Maruhn D (1976) Rapid colorimetric assay of β-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin Chim Acta 73: 453–461. McCormick BB, Sydor A, Akbari A, Fergusson D, Doucette S, Knoll G (2008) The effect of pentoxifylline on proteinuria in diabetic kidney disease: a meta-analysis. Am J Kidney Dis 52: 454–463. Navarro JF, Mora C, Muros M, Maca M, Garca J (2003) Effects of pentoxifylline administration on urinary N-acetyl-β-glucosaminidase excretion in type 2 diabetic patients: a short-term, prospective, randomized study. Am J Kidney Dis 42: 264–270. Paap CM, Simpson KS, Horton MW, Schaefer KL, Lassman HB, Sack MR (1996) Multiple-dose pharmacokinetics of pentoxifylline and its metabolites during renal insufficiency. Ann Pharmacother 30: 724–729. Perkins RM, Aboudara MC, Uy AL, Olson SW, Cushner HM, Yuan CM (2009) Effect of pentoxifylline on GFR decline in CKD: a pilot, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 53: 606–616. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM (2001) C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. Jama 286: 327–334. Renke M, Rutkowski P, Tylicki L, Zietkiewicz M, Larczynski W, Rutkowski B (2008) Pentoxifylline old drug or new hope for nephrology? Przegl Lek 65: 358–361 (in Polish). Renke M, Tylicki L, Rutkowski P, Rutkowski B (2004) Low-dose angiotensin II receptor antagonists and angiotensin II-converting enzyme inhibitors alone or in combination for treatment of primary glomerulonephritis. Scand J Urol Nephrol 38: 427–433. Renke M, Tylicki L, Rutkowski P, Wojnarowski K, Lysiak-Szydlowska W, Rutkowski B (2005) Low-dose dual blockade of the renin-angiotensin system improves tubular status in non-diabetic proteinuric patients. Scand J Urol Nephrol 39: 511–517. Rutkowski P, Tylicki L, Renke M, Korejwo G, Zdrojewski Z, Rutkowski B (2004) Low-dose dual blockade of the renin-angiotensin system in patients with primary glomerulonephritis. Am J Kidney Dis 43: 260–268. Tonelli M, Sacks F, Pfeffer M, Jhangri GS, Curhan G (2005) Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int 68: 237–245. Tylicki L, Larczynski W, Rutkowski B (2005) Renal protective effects of the renin-angiotensin-aldosterone system blockade: from evidence-based approach to perspectives. Kidney Blood Press Res 28: 230–242. Tylicki L, Biedunkiewicz B, Chamienia A, Wojnarowski K, Zdrojewski Z, Aleksandrowicz E, Lysiak-Szydlowska W, Rutkowski B (2007a) Renal allograft protection with angiotensin II type 1 receptor antagonists. Am J Transplant 7: 243–248. Tylicki L, Rutkowski P, Renke M, Rutkowski B (2007b) Addition of aldosterone receptor blocker to dual renin-angiotensin-aldosterone blockade leads to limitation of tubulointerstitial injury of kidney. Kidney Int 72: 1164–1165. Vilayur E, Harris DC (2009) Emerging therapies for chronic kidney disease: what is their role? Nat Rev Nephrol 5: 375–383. Ward A, Clissold SP (1987) Pentoxifylline. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic efficacy. Drugs 34: 50–97. Zoja C, Abbate M, Remuzzi G (2006) Progression of chronic kidney disease: insights from animal models. Curr Opin Nephrol Hypertens 15: 250–257.
Similar documents
GDASKI UNIWERSYTET MEDYCZNY Andrzej Chamienia
Chamienia A., Biedunkiewicz B., Król E., Debska-Slizie A., Rutkowski B.: Oneyear observation of kidney allograft recipients converted from cyclosporine microemulsion to tacrolimus. Transplant Proc....
More information