The Last Mile Problem Data Transmission via Modem Modem

Transcription

The Last Mile Problem Data Transmission via Modem Modem
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
The Last Mile Problem
Data Transmission via Modem
Early approach: use existing telephony network for data transmission
• Problem of transferring digital data over an analogous medium
• Necessary: usage of a Modem (Modulator - Demodulator)
• Digital data are transformed in analogous signals with different frequencies (300 to
3400 Hz, range of voice transmitted over telephony network). The analogous
signals are brought to the receiver over the telephony network. The receiver also
needs a modem to transform back the analogous signals into digital data.
• For the telephony network the modem seems to be a normal phone, the modem
even takes over the exchange of signaling information
• Data rate up to 56 kBit/s
• High susceptibility against transmission errors due to telephony cables
• LAN, MAN, WAN – how to connect private users
at home to such networks?
• Problem of the last mile: somehow connect
private homes to the public Internet without
laying many new cables
• By using existing telephony lines: re-use them
for data traffic
telephony
network
Telefonnetz
Examples:
digital
• Classical Modem
• Integrated Services Digital Network (ISDN)
analog
Modem
Schaltswitching
zentrale
center
• Digital Subscriber Line (DSL)
Page 1
Chapter 2.7: Digital Subscriber Line (DSL)
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Modem
Page 2
Chapter 2.7: Digital Subscriber Line (DSL)
Modulation of Digital Signals
ITU-T standard
Mode
V.21 (FSK, 4 frequencies)
duplex
300 Bit/s each
V.22 (QPSK, 2 frequencies)
duplex
1.200 Bit/s each
V.22bis (16-QAM 4 phases, 2
amplitudes)
duplex
2.400 Bit/s each
halfduplex
1.200 Bit/s
Downlink
Uplink
1.200 Bit/s
75 Bit/s
duplex
75 Bit/s
1.200 Bit/s
duplex
9.600 Bit/s each
V.32bis (128-QAM)
duplex
14.400 Bit/s each
V.34 (960-QAM)
duplex
28.800 Bit/s each
V.34bis
duplex
33.600 Bit/s each
V.90 (128-PAM)
duplex
56.000 Bit/s
The digital signals (0 resp. 1) have to be transformed into electromagnetic
signals, that process is called modulation
Electromagnetic signal: s(t) = A·sin(2·π·f·t + ϕ)
duplex
V.32 (32-QAM)
Chapter 2.7: Digital Subscriber Line (DSL)
Schaltswitching
zentrale
center
digital
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Modem Standards (CCITT)
V.23 (FSK, more frequencies)
analog
digital/analog
A: Amplitude
f: Frequency
(T: Duration of an oscillation)
ϕ: Phase
A
ϕ
0
T = 1/f
Modulation means to choose a carrier frequency and “press” on somehow your data:
X
33.600 Bit/s
Page 3
Not modulated signal
Carrier frequency (sin)
Chapter 2.7: Digital Subscriber Line (DSL)
modulated signal
Page 4
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Modulation of Digital Signals
Bit value
1
0
Modulation of Digital Signals
1
1
Bit value
0
1
Time
0
1
1
0
Time
The conversion of the digital signals can take place in various ways, basing on the
parameters of an analogous wave:
The conversion of the digital signals can take place in various ways, basing on the
parameters of an analogous wave:
s(t) = A·sin(2·π f t + ϕ)
s(t) = A·sin(2·π f t + ϕ)
Frequency
Amplitude
Phase
Amplitude Modulation (Amplitude Shift Keying, ASK)
•
•
•
•
Resulting signal (frequency range):
• „Waste“ of frequencies
• Needs high bandwidth
• First principle used in data transmission
using phone lines
Page 5
Chapter 2.7: Digital Subscriber Line (DSL)
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Modulation of Digital Signals
0
Advanced PSK Procedures
1
1
The phase shift can also cover more than two phases: shift between M different
phases, whereby M must be a power of two. Thus at the same time more
information can be sent.
0
Time
The conversion of the digital signals can take place based on different parameters of
an analogous wave:
s(t) = A·sin(2·π f t + ϕ)
Amplitude
Page 6
Chapter 2.7: Digital Subscriber Line (DSL)
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
1
Phase
Frequency Modulation (Frequency Shift Keying, FSK)
Resulting signal (frequency range):
Technically easy to realize
Needs not much bandwidth
Susceptible against disturbance
Often used in optical transmission
Bit value
Frequency
Amplitude
Frequency
Example: QPSK (Quaternary Phase Shift Keying)
• Shifting between 4 phases
• 4 phases permit 4 states: code 2 bits at one time
• Thus doubled data rate
Phase
10
Q = A sinϕ
01
Phase Modulation (Phase Shift Keying, PSK)
11
11
01
01
00
11
11
ϕ
I = A cosϕ
180° phase shift
Resulting signal (frequency range):
• Complex demodulation process
• Robust against disturbances
• Best principle for most purposes
Chapter 2.7: Digital Subscriber Line (DSL)
00
10
00
10
A = amplitude of the signal
I = in phase, signal component (in phase with carrier signal)
Q = quadrature phase, quadrature component (perpendicular to the carrier phase)
Page 7
Chapter 2.7: Digital Subscriber Line (DSL)
Page 8
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
PSK Variants (Only for Confusion ;-))
Advanced PSK Procedures
Quadrature Amplitude Modulation (QAM)
• Combination of ASK and QPSK
• n bit can be transferred at the same time (n=2 is QPSK)
• Bit error rate rises with increasing n, but less than with comparable PSK
procedures
Terms also in use:
• BPSK = Binary PSK = PSK
• 2B1Q = 2 Binary on 1 Quaternary = QPSK
• CAP = Carrierless Amplitude Phase Modulation (~QAM)
010
011
000
001
111
110
101
100
011
Also, differential techniques are in use, e.g. DBPSK = Differential PSK
• Two different phases like in PSK
• Shift phase only if a 1 is the next bit – for a 0, no change is done.
• Example:
010
101
000 001
100
110
111
Bit value
1
0
0
1
1
1
0
0010 0001
0011 0000
Chapter 2.7: Digital Subscriber Line (DSL)
Page 9
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Chapter 2.7: Digital Subscriber Line (DSL)
Page 10
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Pulse Amplitude Modulation (PAM)
Networks and Services
Problem of QAM: 960-QAM for 28 kBit/s – hard to increase the number of phases.
Thus forget all about FSK, PSK, ASK, …; for 56 kBit/s modems: 128-PAM. Simple
principle:
• Define 128 different amplitudes – i.e. in this case: tension levels
• Transfer one signal (that means, tension level) all 125 µs
• By this, similar like in PCM, 56 kBit/s can be transferred
• Thus: coming in principle back to cable codes…
Chapter 2.7: Digital Subscriber Line (DSL)
16-QAM: 4 bits per signal:
• 0011 and 0001 have same phase, but different amplitude
• 0000 and 0010 have same amplitude, but different phase
Page 11
ATM had shown: it is possible to combine telephony and data networks more
efficient than modem does
• ATM: digitization of speech / modem: analogization of data
• Telephony core networks today are digital, why not digitize voice already at the
end user?
Thus: service integration – integrate several kinds of data transfer already on user
site, with lower costs than ATM technology would cause
Integrated Services Digital Network (ISDN)
• Integration of different communication services (voice, fax, data, ...)
• Digital communication
• Higher capacity than modem-based data transfer
• Uses existing infrastructure: ISDN is no new network, but something added to an
existing network
• Different standards (Euro-ISDN resp. national ISDN)
Chapter 2.7: Digital Subscriber Line (DSL)
Page 12
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Services in ISDN
ISDN
Telephony
• First tests since 1983
Most important services: voice transmission
• Commercial usage of a national
variant since 1988
But with new features, e.g.:
• Several numbers for single telephones
• Transmission of own phone number to the receiving party
• Forwarding of incoming calls to other phones
• Creation of closed user groups
• Conferencing with three parties
• Handling of several calls in parallel
• Presentation of tariff information
• Physical relocation of phones
• Connection of up to 8 devices
to the NT
• Since 1994 Euro-ISDN
D
• Two channels of 64 kBit/s
(B channels) for payload
digital
switching
center
• One channel of 16 kBit/s (D
Channel) for signaling
D
A
A
twisted pair
digital
D
analogous
A
NT
Two variants:
Computer
• Network access with a data rate up to 144 Kb/s
Chapter 2.7: Digital Subscriber Line (DSL)
• ISDN-Basisanschluss
Page 13
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Page 14
Chapter 2.7: Digital Subscriber Line (DSL)
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
ISDN Connections
Today: Digital Subscriber Line (DSL)
ISDN-Basisanschluss
• Two independent channels of 64 kBit/s each for voice or data transmission
• Signaling information on the D channel (e.g. path establishment, transfer of
phone number to the other party, …)
• Overall capacity of 144 kBit/s for data bursts by combining all channels
• Time multiplexing of the channels on the cable
ISDN-Primärmultiplexanschluss
• Simply a combination of several basic connections: one D channel of 64 kBit/s,
30 B channels
• Overall 2 MBit/s capacity
Broadband-ISDN (B-ISDN)
• Was planned as a ISDN variant with a higher bandwidth using the same
mechanisms
• Two much problems: thus, ATM was used as a basis here
Chapter 2.7: Digital Subscriber Line (DSL)
Network Termination (NT)
• ISDN-Primärmultiplexanschluss
Page 15
Characteristics of DSL
• High capacity (up to 50 MBit/s)
• Usage of the existing infrastructure
• Combination of usual phone service
(analogous/ISDN) and data service:
simply use the whole spectrum a copper
cable can transfer, not only the range up
to 3.4 kHz!
• Data rate depends on distance to the
switching center and the cable quality
(signal weakening)
• Automatic adaptation of data rate in case
of distortions
• Modulation by means of DMT or CAP
• Several variants, general term: xDSL
Chapter 2.7: Digital Subscriber Line (DSL)
Distance
1,4 km
0,9 km
0,3 km
Downstream
12,96 Mbit/s
25,86 Mbit/s
51,85 Mbit/s
Modem,
ISDN
Upstream
1,5 Mbit/s
2,3 Mbit/s
13 Mbit/s
DSL
Carrier frequency f
Page 16
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Discrete Multitone Modulation (DMT)
Necessary Equipment
• Use multiple carriers (e.g. 32 channels of 4 kHz bandwidth each for upstream and
256 channels for downstream)
• Each channel uses a suitable (optimal) modulation method: QPSK up to 64-QAM
• Easiest case: use same method on each carrier
• Channels in high frequency range are usually of lower quality (faster signal
weakening in dependence of the distance)
• Modulation method depends on the signal quality, i.e. robustness is given
• Only up about 1 MHz, higher frequencies are to susceptible to distortions
low-pass filter
telephony
switching
center
LT
~
low-pass filter
~
xDSL
line
DSL
LT
~
~
f2
f3
f4
f5
f6
fn-2
f7
fn-1 fn
f [kHz]
4
20
analogous ISDN
40
1000
upstream range
Page 17
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Splitter
DSL
modem
xDSL Processing Card
Buffer &
Switch
Chapter 2.7: Digital Subscriber Line (DSL)
Page 18
Chapter 2.7: Digital Subscriber Line (DSL)
xDSL: Variants
In the switching center of the provider, also a splitter separates phone data from
computer data
• Phone data are forwarded into the telephony network
• Computer data are received by a DSLAM
In the DSLAM, all DSL lines are coming together
The DSLAM multiplexes DSL lines into one high speed line
The muxed traffic is passed into an WAN, usually SDH
Mux
TAE
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
DSL Access Multiplexer (DSLAM)
xDSL Card
• Splitter: combines low- and high-pass
filter to separate data and voice
information
• DSL modem: does modulation
• TAE: normal phone connector
downstream range
Chapter 2.7: Digital Subscriber Line (DSL)
xDSL Card
ADSL
NT
high-pass filter
high-pass filter
f1
ISDN
LT Line Termination
NT Network Termination
ISDN
Internet, broadband
systems
NT
Policing &
Monitoring
WAN
PHY
HDSL (High Data Rate Digital Subscriber Line)
• High, symmetrical data rate using only two
carriers, not DMT
• Bases on 2B1Q or CAP modulation
• No simultaneous telephony possible
• Distance:
• Bandwidth:
• Sending rate:
• Receiving rate:
3 - 4 km
240 KHz
1,544-2,048 MBit/s
1,544-2,048 MBit/s
SDSL (Symmetric Digital Subscriber Line)
• Variation of HDSL using only one carrier
• Symmetrical data rates
• 2B1Q, CAP or DMT modulation
• Distance :
• Bandwidth :
• Sending rate:
• Receiving rate:
2 - 3 km
240 KHz
1,544-2,048 MBit/s
1,544-2,048 MBit/s
ADSL (Asymmetric Digital Subscriber Line)
• Duplex connection with asynchronous rates
• Data rate depends on length and quality of the
cables, adaptation to best possible coding
• CAP or DMT modulation
• Distance:
• bandwidth:
• Sending rate:
• Receiving rate:
2,7 - 5,5 km
up to 1 MHz
16-640 KBit/s
1,5-9 MBit/s
VDSL (Very High Data Rate Digital Subscriber Line)
• Duplex connection with asynchronous rates
• Higher data rate as ADSL, but shorter distances
• Variants: symmetrical or asymmetrical
• Distance:
• Bandwidth:
• Sending rate:
• Receiving rate:
0,3 - 1,5 km
up to 30 MHz
1,5-2,3 MBit/s
13-52 MBit/s
WAN
Page 19
Chapter 2.7: Digital Subscriber Line (DSL)
Page 20
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
Lehrstuhl für Informatik 4
Kommunikation und verteilte Systeme
xDSL: Variants
Conclusion
downstream capacity
Applications and Services
50 MBit/s
VDSL
8 MBit/s
ADSL
Integrated multimedia services:
Internet access, teleworking
teleteaching, telemedicine,
multimedia access, video on
demand, ....
6 MBit/s
2 MBit/s
SDSL
2 MBit/s
130 kBit/s
32 kBit/s
Power remote user
HDSL
ISDN
“classical” modem
Chapter 2.7: Digital Subscriber Line (DSL)
Internet access,
digital telephony,
terminal emulation
(FTP, Telnet)
Page 21
Local Area Networks
• Today usually Fast/Gigabit Ethernet with star topology
• Also coming: 10G Ethernet
• CSMA/CD is still considered, even not longer necessary
Metropolitan Area Networks
• DQDB as only “real MAN standard”
• Preferably, Gigabit Ethernet is used, 10G Ethernet directly is also standardized
for MANs, maybe Resilient Packet Ring is coming
Wide Area Network
• Still ATM in use
• More and more replaced by SDH/SONET
• Synchronization used to achieve higher throughput than in LANs
“Last Mile”
• DSL for connecting private persons
• ADSL is most prominent variant
Chapter 2.7: Digital Subscriber Line (DSL)
Page 22

Similar documents