The Last Mile Problem Data Transmission via Modem Modem
Transcription
The Last Mile Problem Data Transmission via Modem Modem
Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme The Last Mile Problem Data Transmission via Modem Early approach: use existing telephony network for data transmission • Problem of transferring digital data over an analogous medium • Necessary: usage of a Modem (Modulator - Demodulator) • Digital data are transformed in analogous signals with different frequencies (300 to 3400 Hz, range of voice transmitted over telephony network). The analogous signals are brought to the receiver over the telephony network. The receiver also needs a modem to transform back the analogous signals into digital data. • For the telephony network the modem seems to be a normal phone, the modem even takes over the exchange of signaling information • Data rate up to 56 kBit/s • High susceptibility against transmission errors due to telephony cables • LAN, MAN, WAN – how to connect private users at home to such networks? • Problem of the last mile: somehow connect private homes to the public Internet without laying many new cables • By using existing telephony lines: re-use them for data traffic telephony network Telefonnetz Examples: digital • Classical Modem • Integrated Services Digital Network (ISDN) analog Modem Schaltswitching zentrale center • Digital Subscriber Line (DSL) Page 1 Chapter 2.7: Digital Subscriber Line (DSL) Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Modem Page 2 Chapter 2.7: Digital Subscriber Line (DSL) Modulation of Digital Signals ITU-T standard Mode V.21 (FSK, 4 frequencies) duplex 300 Bit/s each V.22 (QPSK, 2 frequencies) duplex 1.200 Bit/s each V.22bis (16-QAM 4 phases, 2 amplitudes) duplex 2.400 Bit/s each halfduplex 1.200 Bit/s Downlink Uplink 1.200 Bit/s 75 Bit/s duplex 75 Bit/s 1.200 Bit/s duplex 9.600 Bit/s each V.32bis (128-QAM) duplex 14.400 Bit/s each V.34 (960-QAM) duplex 28.800 Bit/s each V.34bis duplex 33.600 Bit/s each V.90 (128-PAM) duplex 56.000 Bit/s The digital signals (0 resp. 1) have to be transformed into electromagnetic signals, that process is called modulation Electromagnetic signal: s(t) = A·sin(2·π·f·t + ϕ) duplex V.32 (32-QAM) Chapter 2.7: Digital Subscriber Line (DSL) Schaltswitching zentrale center digital Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Modem Standards (CCITT) V.23 (FSK, more frequencies) analog digital/analog A: Amplitude f: Frequency (T: Duration of an oscillation) ϕ: Phase A ϕ 0 T = 1/f Modulation means to choose a carrier frequency and “press” on somehow your data: X 33.600 Bit/s Page 3 Not modulated signal Carrier frequency (sin) Chapter 2.7: Digital Subscriber Line (DSL) modulated signal Page 4 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Modulation of Digital Signals Bit value 1 0 Modulation of Digital Signals 1 1 Bit value 0 1 Time 0 1 1 0 Time The conversion of the digital signals can take place in various ways, basing on the parameters of an analogous wave: The conversion of the digital signals can take place in various ways, basing on the parameters of an analogous wave: s(t) = A·sin(2·π f t + ϕ) s(t) = A·sin(2·π f t + ϕ) Frequency Amplitude Phase Amplitude Modulation (Amplitude Shift Keying, ASK) • • • • Resulting signal (frequency range): • „Waste“ of frequencies • Needs high bandwidth • First principle used in data transmission using phone lines Page 5 Chapter 2.7: Digital Subscriber Line (DSL) Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Modulation of Digital Signals 0 Advanced PSK Procedures 1 1 The phase shift can also cover more than two phases: shift between M different phases, whereby M must be a power of two. Thus at the same time more information can be sent. 0 Time The conversion of the digital signals can take place based on different parameters of an analogous wave: s(t) = A·sin(2·π f t + ϕ) Amplitude Page 6 Chapter 2.7: Digital Subscriber Line (DSL) Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme 1 Phase Frequency Modulation (Frequency Shift Keying, FSK) Resulting signal (frequency range): Technically easy to realize Needs not much bandwidth Susceptible against disturbance Often used in optical transmission Bit value Frequency Amplitude Frequency Example: QPSK (Quaternary Phase Shift Keying) • Shifting between 4 phases • 4 phases permit 4 states: code 2 bits at one time • Thus doubled data rate Phase 10 Q = A sinϕ 01 Phase Modulation (Phase Shift Keying, PSK) 11 11 01 01 00 11 11 ϕ I = A cosϕ 180° phase shift Resulting signal (frequency range): • Complex demodulation process • Robust against disturbances • Best principle for most purposes Chapter 2.7: Digital Subscriber Line (DSL) 00 10 00 10 A = amplitude of the signal I = in phase, signal component (in phase with carrier signal) Q = quadrature phase, quadrature component (perpendicular to the carrier phase) Page 7 Chapter 2.7: Digital Subscriber Line (DSL) Page 8 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme PSK Variants (Only for Confusion ;-)) Advanced PSK Procedures Quadrature Amplitude Modulation (QAM) • Combination of ASK and QPSK • n bit can be transferred at the same time (n=2 is QPSK) • Bit error rate rises with increasing n, but less than with comparable PSK procedures Terms also in use: • BPSK = Binary PSK = PSK • 2B1Q = 2 Binary on 1 Quaternary = QPSK • CAP = Carrierless Amplitude Phase Modulation (~QAM) 010 011 000 001 111 110 101 100 011 Also, differential techniques are in use, e.g. DBPSK = Differential PSK • Two different phases like in PSK • Shift phase only if a 1 is the next bit – for a 0, no change is done. • Example: 010 101 000 001 100 110 111 Bit value 1 0 0 1 1 1 0 0010 0001 0011 0000 Chapter 2.7: Digital Subscriber Line (DSL) Page 9 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2.7: Digital Subscriber Line (DSL) Page 10 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Pulse Amplitude Modulation (PAM) Networks and Services Problem of QAM: 960-QAM for 28 kBit/s – hard to increase the number of phases. Thus forget all about FSK, PSK, ASK, …; for 56 kBit/s modems: 128-PAM. Simple principle: • Define 128 different amplitudes – i.e. in this case: tension levels • Transfer one signal (that means, tension level) all 125 µs • By this, similar like in PCM, 56 kBit/s can be transferred • Thus: coming in principle back to cable codes… Chapter 2.7: Digital Subscriber Line (DSL) 16-QAM: 4 bits per signal: • 0011 and 0001 have same phase, but different amplitude • 0000 and 0010 have same amplitude, but different phase Page 11 ATM had shown: it is possible to combine telephony and data networks more efficient than modem does • ATM: digitization of speech / modem: analogization of data • Telephony core networks today are digital, why not digitize voice already at the end user? Thus: service integration – integrate several kinds of data transfer already on user site, with lower costs than ATM technology would cause Integrated Services Digital Network (ISDN) • Integration of different communication services (voice, fax, data, ...) • Digital communication • Higher capacity than modem-based data transfer • Uses existing infrastructure: ISDN is no new network, but something added to an existing network • Different standards (Euro-ISDN resp. national ISDN) Chapter 2.7: Digital Subscriber Line (DSL) Page 12 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Services in ISDN ISDN Telephony • First tests since 1983 Most important services: voice transmission • Commercial usage of a national variant since 1988 But with new features, e.g.: • Several numbers for single telephones • Transmission of own phone number to the receiving party • Forwarding of incoming calls to other phones • Creation of closed user groups • Conferencing with three parties • Handling of several calls in parallel • Presentation of tariff information • Physical relocation of phones • Connection of up to 8 devices to the NT • Since 1994 Euro-ISDN D • Two channels of 64 kBit/s (B channels) for payload digital switching center • One channel of 16 kBit/s (D Channel) for signaling D A A twisted pair digital D analogous A NT Two variants: Computer • Network access with a data rate up to 144 Kb/s Chapter 2.7: Digital Subscriber Line (DSL) • ISDN-Basisanschluss Page 13 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Page 14 Chapter 2.7: Digital Subscriber Line (DSL) Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme ISDN Connections Today: Digital Subscriber Line (DSL) ISDN-Basisanschluss • Two independent channels of 64 kBit/s each for voice or data transmission • Signaling information on the D channel (e.g. path establishment, transfer of phone number to the other party, …) • Overall capacity of 144 kBit/s for data bursts by combining all channels • Time multiplexing of the channels on the cable ISDN-Primärmultiplexanschluss • Simply a combination of several basic connections: one D channel of 64 kBit/s, 30 B channels • Overall 2 MBit/s capacity Broadband-ISDN (B-ISDN) • Was planned as a ISDN variant with a higher bandwidth using the same mechanisms • Two much problems: thus, ATM was used as a basis here Chapter 2.7: Digital Subscriber Line (DSL) Network Termination (NT) • ISDN-Primärmultiplexanschluss Page 15 Characteristics of DSL • High capacity (up to 50 MBit/s) • Usage of the existing infrastructure • Combination of usual phone service (analogous/ISDN) and data service: simply use the whole spectrum a copper cable can transfer, not only the range up to 3.4 kHz! • Data rate depends on distance to the switching center and the cable quality (signal weakening) • Automatic adaptation of data rate in case of distortions • Modulation by means of DMT or CAP • Several variants, general term: xDSL Chapter 2.7: Digital Subscriber Line (DSL) Distance 1,4 km 0,9 km 0,3 km Downstream 12,96 Mbit/s 25,86 Mbit/s 51,85 Mbit/s Modem, ISDN Upstream 1,5 Mbit/s 2,3 Mbit/s 13 Mbit/s DSL Carrier frequency f Page 16 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Discrete Multitone Modulation (DMT) Necessary Equipment • Use multiple carriers (e.g. 32 channels of 4 kHz bandwidth each for upstream and 256 channels for downstream) • Each channel uses a suitable (optimal) modulation method: QPSK up to 64-QAM • Easiest case: use same method on each carrier • Channels in high frequency range are usually of lower quality (faster signal weakening in dependence of the distance) • Modulation method depends on the signal quality, i.e. robustness is given • Only up about 1 MHz, higher frequencies are to susceptible to distortions low-pass filter telephony switching center LT ~ low-pass filter ~ xDSL line DSL LT ~ ~ f2 f3 f4 f5 f6 fn-2 f7 fn-1 fn f [kHz] 4 20 analogous ISDN 40 1000 upstream range Page 17 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Splitter DSL modem xDSL Processing Card Buffer & Switch Chapter 2.7: Digital Subscriber Line (DSL) Page 18 Chapter 2.7: Digital Subscriber Line (DSL) xDSL: Variants In the switching center of the provider, also a splitter separates phone data from computer data • Phone data are forwarded into the telephony network • Computer data are received by a DSLAM In the DSLAM, all DSL lines are coming together The DSLAM multiplexes DSL lines into one high speed line The muxed traffic is passed into an WAN, usually SDH Mux TAE Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme DSL Access Multiplexer (DSLAM) xDSL Card • Splitter: combines low- and high-pass filter to separate data and voice information • DSL modem: does modulation • TAE: normal phone connector downstream range Chapter 2.7: Digital Subscriber Line (DSL) xDSL Card ADSL NT high-pass filter high-pass filter f1 ISDN LT Line Termination NT Network Termination ISDN Internet, broadband systems NT Policing & Monitoring WAN PHY HDSL (High Data Rate Digital Subscriber Line) • High, symmetrical data rate using only two carriers, not DMT • Bases on 2B1Q or CAP modulation • No simultaneous telephony possible • Distance: • Bandwidth: • Sending rate: • Receiving rate: 3 - 4 km 240 KHz 1,544-2,048 MBit/s 1,544-2,048 MBit/s SDSL (Symmetric Digital Subscriber Line) • Variation of HDSL using only one carrier • Symmetrical data rates • 2B1Q, CAP or DMT modulation • Distance : • Bandwidth : • Sending rate: • Receiving rate: 2 - 3 km 240 KHz 1,544-2,048 MBit/s 1,544-2,048 MBit/s ADSL (Asymmetric Digital Subscriber Line) • Duplex connection with asynchronous rates • Data rate depends on length and quality of the cables, adaptation to best possible coding • CAP or DMT modulation • Distance: • bandwidth: • Sending rate: • Receiving rate: 2,7 - 5,5 km up to 1 MHz 16-640 KBit/s 1,5-9 MBit/s VDSL (Very High Data Rate Digital Subscriber Line) • Duplex connection with asynchronous rates • Higher data rate as ADSL, but shorter distances • Variants: symmetrical or asymmetrical • Distance: • Bandwidth: • Sending rate: • Receiving rate: 0,3 - 1,5 km up to 30 MHz 1,5-2,3 MBit/s 13-52 MBit/s WAN Page 19 Chapter 2.7: Digital Subscriber Line (DSL) Page 20 Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme xDSL: Variants Conclusion downstream capacity Applications and Services 50 MBit/s VDSL 8 MBit/s ADSL Integrated multimedia services: Internet access, teleworking teleteaching, telemedicine, multimedia access, video on demand, .... 6 MBit/s 2 MBit/s SDSL 2 MBit/s 130 kBit/s 32 kBit/s Power remote user HDSL ISDN “classical” modem Chapter 2.7: Digital Subscriber Line (DSL) Internet access, digital telephony, terminal emulation (FTP, Telnet) Page 21 Local Area Networks • Today usually Fast/Gigabit Ethernet with star topology • Also coming: 10G Ethernet • CSMA/CD is still considered, even not longer necessary Metropolitan Area Networks • DQDB as only “real MAN standard” • Preferably, Gigabit Ethernet is used, 10G Ethernet directly is also standardized for MANs, maybe Resilient Packet Ring is coming Wide Area Network • Still ATM in use • More and more replaced by SDH/SONET • Synchronization used to achieve higher throughput than in LANs “Last Mile” • DSL for connecting private persons • ADSL is most prominent variant Chapter 2.7: Digital Subscriber Line (DSL) Page 22