Models for Railway Track Allocation

Transcription

Models for Railway Track Allocation
Models
for
Railway Track Allocation
Thomas Schlechte
Joint work with
Ralf Borndörfer
Martin Grötschel
16.11.2007
ATMOS 2007 Sevilla
Thomas Schlechte
ƒ Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
schlechte@zib.de
http://www.zib.de/schlechte
2
Overview
1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Thomas
Schlechte
3
Overview
1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Thomas
Schlechte
4
Planning in Public Transport
Tracks
Timetables
Vehicles
Crews
Strategic
Tactical
Operational
Stage
Stage
Stage
Stops
Thomas
Schlechte
Lines/Freq.
Cycles
Connections
Rotations
Duties
5
The Problem (TraVis by M.Kinder)
Thomas
Schlechte
6
Schedule in 3d
Thomas
Schlechte
7
Conflict-Free-Allocation
Thomas
Schlechte
8
Railway Timetabling –
State of the Art
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Charnes and Miller (1956), Szpigel (1973), Jovanovic and
Harker (1991),
Cai and Goh (1994), Schrijver and Steenbeck (1994),
Carey and Lockwood (1995)
Nachtigall and Voget (1996), Odijk (1996) Higgings,
Kozan and Ferreira (1997)
Brannlund, Lindberg, Nou, Nilsson (1998), Lindner
(2000), Oliveira and Smith (2000)
Caprara, Fischetti and Toth (2002), Peeters (2003)
Kroon and Peeters (2003), Mistry and Kwan (2004)
Barber, Salido, Ingolotti, Abril, Lova, Tormas (2004)
Semet and Schoenauer (2005),
Caprara, Monaci, Toth and Guida (2005)
Kroon, Dekker and Vromans (2005),
Vansteenwegen and Van Oudheusden (2006),
Cacchiani, Caprara, T. (2006), Cachhiani (2007)
Caprara, Kroon, Monaci, Peeters, Toth (2006)
non-cyclic timetabling literature
Thomas
Schlechte
9
Complexity
2
1
Proposition [Caprara, Fischetti, Toth (02)]:
5
4
3
OPTRA/TTP is NP-hard.
5
4
3
2
1
Proof:
Reduction from Independent-Set.
5
4
3
2
1
s
Thomas
Schlechte
(1,2) (2,3) (2,4) (3,4) (4,5) t
10
Track Allocation Problem
…
Thomas
Schlechte
Train Requests
Scheduling Digraph
Timetable
11
Overview
1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Thomas
Schlechte
12
Packing Models
ƒ Conflict graph
ƒ Cliques
ƒ Perfect
Cacchiani (2007) – Path Compatibility Graphs
Thomas
Schlechte
A
B
13
Arc Packing Problem
Variables
ƒ
Arc occupancy (request i uses arc a)
Constraints
ƒ
Flow conservation and
ƒ
Arc conflicts (pairwise )
Objective
Thomas
Schlechte
ƒ
Maximize proceedings
(PPP) transformation from arc to path
variables (see Cachhiani (2007))
14
Packing Models
ƒ Proposition:
The LPrelaxation of
APP can be
solved in
polynomial
time.
ƒ … and in
practice.
Thomas
Schlechte
15
Novel Model
ƒ Track Digraph
ƒ Timeline(s)
ƒ Config paths
Thomas
Schlechte
A
B
Artificial arcs represent valid successors !
16
Path Coupling Problem
Variables
ƒ
Path und config usage (request i uses path p, track j uses config q)
Constraints
ƒ
Path and config choice
ƒ
Path-config-coupling (track capacity)
Objective Function
Thomas
Schlechte
ƒ
Maximize proceedings
(ACP) transformation from path to arc
variables (see Borndörfer, S. (2007))
17
Linear Relaxation of PCP
dual variable
Thomas
Schlechte
information about
useful to
bundle price
analyse request
track price
analyse network
arc price
-
18
Dualization
Thomas
Schlechte
19
Pricing of x-variables
Pricing Problem(x) :
Acyclic shortest path problems
for each slot request i with
modified cost function c !
Thomas
Schlechte
20
Pricing of y-variables
Pricing Problem(y) :
Acyclic shortest path problem
for each track j with modified
cost function c !
Thomas
Schlechte
21
Observation
Thomas
Schlechte
22
And analogously ...
Thomas
Schlechte
23
Pricing Upper Bound
• Lemma [ZR-07-02]: Given (infeasible) dual
variables of PCP and let vLP(PCP) be the optimum
objective value of the LP-Relaxtion of PCP,
then:
Thomas
Schlechte
24
Model Comparison
• Theorem [ZR-07-02]:
The LP-relaxations of ACP
and PCP can be solved in
polynomial time.
APP’
• Lemma [ZR-07-02]:
vLP(PCP) = vLP(ACP)
APP
PPP
ACP
PCP
= vLP(APP) = vLP(PPP)
≤ vLP(APP´)
Thomas
Schlechte
25
Overview
1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Thomas
Schlechte
26
Two Step Approach
TS-OPT
Thomas
Schlechte
Duals
by
Duals
by Bundle
CPLEX
Method
1. LP Solving
Column
Generation
2. IP Solving
Rapid Branching
Heuristic
Pricing by
Dijkstra’s
Shortest Path
27
Branch-Bound-Price
or Dive-Generate
Evaluation of only few highly different subproblems at iteration j to reach IP-Solutions fast.
Thomas
Schlechte
28
Rapid Branching
Node selection of set of fixed to 1 variables by using
perturbated cost function (bonus close to 1.0).
Update
Upper Bound
Go on if target was reached,
otherwise pseudo-backtrack.
Thomas
Schlechte
Column
Generation
29
Overview
1. Problem Introduction
2. Model Discussion
3. Column Generation Approach
4. Computational Results
Thomas
Schlechte
30
Results
• Test Network
• 45
Tracks
• 37
Stations
•6
Traintypes
• 10
Trainsets
• 146 Nodes
• 1480 Arcs
• 96
Station Capacities
• 4320 Headway Times
Thomas
Schlechte
31
Model Comparison
• Test Scenarios
• 146 Train Requests
• 285 Train Requests
• 570 Train Requests
• Flexibility
• 0-30 Minutes
• earlier departure penalties
• late arrival penalties
• train type depending profits
Thomas
Schlechte
32
Run of TS-OPT /LP Stage
Thomas
Schlechte
33
Model Comparison
Thomas
Schlechte
34
Model Comparison
For details see [ZR-07-02, ZR-07-20].
Thomas
Schlechte
Thank you
for your attention !
Thomas Schlechte
Fon (+49 30) 84185-317
Zuse-Institut
Berlin (ZIB) für
Fax
(+49 30) 84185-269
Thomas Schlechte
ƒ Konrad-Zuse-Zentrum
Informationstechnik
Berlin (ZIB)
Takustr. 7, 14195 Berlin
schlechte@zib.de
Deutschland
www.zib.de/schlechte
schlechte@zib.de
http://www.zib.de/schlechte
36
Traffic Projects @ ZIB
ˆ
MCF
92-94
Thomas
Schlechte
94-97
VS-OPT
97-00
DS-OPT
VS: BVG
00-03
IS-OPT
DS: BVG
03-07
TS-OPT
Line+Price
Planning
Telebus
CS-OPT
37
Planning in Public Transport
B1 – B15
Tracks
Timetables
VS-OPT
DS-OPT
IS-OPT
CS-OPT
Vehicles
Crews
Strategic
Tactical
Operational
Stage
Stage
Stage
Stops
Thomas
Schlechte
Lines/Freq.
TS-OPT
Cycles
Connections
Rotations
Duties
38
The Problem (TraVis by M.Kinder)
Thomas
Schlechte
39
Schedule in 3d
Thomas
Schlechte
40
Conflict-Free-Allocation
Thomas
Schlechte
41
Outlook
Algorithmic Developments
• Bundle method
• Model refinement (connections)
• Adaptive IP Heuristics
• Dynamic Discretization
Simulation of results by
Thomas
Schlechte

Similar documents