M - Freie Universität Berlin
Transcription
M - Freie Universität Berlin
Ferromagnetic resonance in nanostructures, rediscovering its roots in paramagnetic resonance Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany 1. Historical reminiscences 2. Orbital- and spin-magnetic moments in ferromagnetic monolayers 3. Spin-phonon, spin-spin dynamics 4. Summary and future http://www.physik.fu-berlin.de/~bab Freie Universität Berlin Alt100, Kazan 21–25 June 2011 1/21 1. Historical reminiscences EPR was discovered in 1944. 2004 we celebrated this, here in Kazan. The resonant microwave absorption in ferromagnetic metals (FMR) was discovered shortly after (Griffith 1946, Zavoiskii 1947) Usually the Landau-Lifshitz-Gilbert equation (1935) is used to analyze and interprete the experimental results dm mHeff m dm dt dt g with B Gilbert damping |M|=const. M spirals on a sphere into the z-axis It was difficult to measure g because of various contributions to the internal anisotropy field Heff. For itinerant ferromagnets (Fe, Co, Ni) often the g-factor was assumed to be g~2 and |M|= const (see Section 3) . Freie Universität Berlin Alt100, Kazan 21–25 June 2011 2/21 Kazan, Juli 1959 Shortly after it was translated into German Kazan, Januar 1962 Freie Universität Berlin Alt100, Kazan 21–25 June 2011 3/21 Orbital magnetism in second order perturbation theory H '= µBH•L + L•S d1 LZ • SZ +L • S L± • S _+ 2 ( 2 ) 1 / 2 { 2 2 } 2 The orbital moment is quenched in cubic symmetry 2- LZ 2- = 0, but not for tetragonal symmetry Freie Universität Berlin Are generated by the same matrix element Alt100, Kazan 21–25 June 2011 4/21 Magnetic Anisotropy Energy (MAE) and anisotropic µL 1. Magnetic anisotropy energy = f(T) 2. Anisotropic magnetic moment f(T) M (G) 500 [111] 300 100 0 0 g|| - g= ge(-||) anisotropic µL MAE D= g g e [111] [100] L ~~ 0.1 G LS MAE 4µ µL B [100] Ni 100 200 B (G) Bruno (‘89) 300 MAE = ∫ M·dB ≈ ½ ∆M·∆B ≈ ½ 200 · 200 G2 MAE ≈ 2·104 erg / cm3 ≈ 0.2 µeV / atom 1µeV/atom is very small compared to 10 eV/atom total energy but all important Characteristic energies of metallic ferromagnets binding energy 1 - 10 eV/atom exchange energy 10 - 103 meV/atom cubic MAE (Ni) 0.2 µeV/atom uniaxial MAE (Co) 70 µeV/atom K. Baberschke, Lecture Notes in Physics, Springer 580, 27 (2001) Freie Universität Berlin Alt100, Kazan 21–25 June 2011 5/21 2. Orbital- and spin- magnetic moments μL ,μS in ferromagnetic monolayers Determination of MAE Ki and g-tensor 2 , [001] H0, 4M 2K 2 K 4 M g B with l g 2 s 2 C. Kittel, J.Phys. Radiat. 12, 291 (1951 ) f 2(GHz2 ) or f (Ghz) K 4 || K 2 4K 4 || K 2 2K 4 || 2 4M 2 2 H 0,[100 ] H 0,[100 ] 4M 2 2 M M M M M ||, [100 ] 0 0 g,[001 ] g||,[100] / [110] H0 (kOe) In FMR a large range of frequencies is needed 1 to >200 GHz Freie Universität Berlin Alt100, Kazan 21–25 June 2011 6/21 In situ UHV-FMR set up 1, 4, 9 GHz lHe cryostat thermocouple -11 pressure: 10 mbar temperature: 20K - 500K cavity sample UHV quartzfinger electromagnet 7.2 ML Ni/Cu(001) T=297 K M. Zomak et al., Surf. Sci. 178, 618 (1986) J. Lindner, K.B. J. Phys.: Cond. Matt 15, R193 (2003) Freie Universität Berlin W. Platow, Ph.D. thesis (1999) Alt100, Kazan 21–25 June 2011 7/21 Freie Universität Berlin Alt100, Kazan 21–25 June 2011 8/21 Ferromagnetic resonance on Fen/Vm(001) superlattices [100]Fe/V [110] MgO MgO T/TC 0.2 0.4 0.6 0.8 K2 K4 K 4II 3 1.0 2 1.2 0 .4 0 .3 0 .2 1 0 .1 0 0 .0 -1 -0.1 -2 -0.2 1 prop. S prop. L L3 L2 0.12 V Fe g<2 g>2 S L S L 0.06 bulk Fe x5 510 520 530 0 700 720 740 MAE (eV/ atom) -0.5 bcc (001) Fe2/V5 superlattice MAE= E[001]-E [110] g -1.0 Fe 2 V5 -1.5 -2.0 -2.5 0 50 100 L / S(V) XMCD 40 nm Fe Fe4 / V2 Fe4 / V4 Fe2 / V5 Photon Energy (eV) b) 0.0 XMC D: L / S (Fe) FMR: L / S (Fe+V) 0 -1 K4 II (eV/atom) K 2,K 4 (eV/atom) 0 .0 4 a) 2 L / S Fe XMCD Integral (arb. units) a=2. 83Å (-1 .3%) FMR X-rayMCD a=3.05Å (+0.8%) 150 200 T (K) Freie Universität Berlin A.N. Anisimov et al. J. Phys. C 9, 10581 (1997) and PRL 82, 2390 (1999) and Europhys. Lett. 49, 658 (2000) 2.264 g µ L/µS 2.268 0.133 MAE µL (µB ) µS (µB ) µeV/atom 0.215 1.62 -2.0 2.13 -1.4 bcc Fe-bulk 2.09 2.09 0.045 0.10 Alt100, Kazan 21–25 June 2011 9/21 Enhancement of Orbital Magnetism at Surfaces: Co on Cu(100) ML Ae D ( d 1) / B nd 3e D ( n 2 ) / C d 1 nD / M n 0 e S exp M. Tischer et al., Phys. Rev. Lett. 75, 1602 (1995) Freie Universität Berlin Alt100, Kazan 21–25 June 2011 10/21 3. spin-phonon, spin-spin dynamics Freie Universität Berlin Alt100, Kazan 21–25 June 2011 11/21 90% of today’s FMR experiments use Landau-Lifshitz-Gilbert equation(1935) dm dm m H eff m dt dt Gilbert damping |M|=const. M spirals on a sphere into z-axis Bloch-Bloembergen Equation (1956) mz M S dm z ( m H eff ) z dt T1 dm x , y dt ( m H eff ) x , y mx , y T2 spin-lattice relaxation (longitudinal) spin-spin relaxation (transverse) Mz=const. Freie Universität Berlin Alt100, Kazan 21–25 June 2011 12/21 Gilbert damping versus magnon-magnon scattering. Mostly an effective damping (path 1) is modeled/fitted. In nanoscale magnetism path 2 has been discussed very very little. Freie Universität Berlin Path 3: magnon-phonon scattering, see Bovensiepen PRL 2008 Alt100, Kazan 21–25 June 2011 13/21 All these processes…do not preserve the magnitude of the uniform mode… Longitudinal T1 and transvers T2 - scattering …the GLL damping term no longer applies… Freie Universität Berlin Alt100, Kazan 21–25 June 2011 14/21 FMR Linewidth - Damping Landau-Lifshitz-Gilbert-Equation 2-magnon-scattering R. Arias, and D.L. Mills, Phys. Rev. B 60, 7395 (1999); D.L. Mills and S.M . Rezende in ‘Spin Dynamics in Confined Magnetic Structures ‘, edt. by B. Hillebrands and K. Ounadjela, Springer Verlag 1 M = _ (M H ) + G (M M ) eff t MS2 t (k|| ) viscous damping, energy dissipation k|| > c k|| < c FMR Gilbert-damping ~ G H () = 2 MS Gil in conventional FMR k|| H () = arcsin 2 Ma g 2+(0/2)2]1/2- 0/2 2 2 1/2 +(0 /2) ] + 0 /2 0 = (2K2 - 4MS ), =(B /h)g K2- uniaxial anisotropy constant MS - saturation magnetization Which (FMR)-publication has checked (disproved) quantitatively this analytical function? Freie Universität Berlin Alt100, Kazan 21–25 June 2011 15/21 80 200 400 HGilbert 100 0 4 8 200 H*0 H2-magnon Hinhom 0 0 HPP (Oe) H (Oe) H 15 Oe ! 40 0 inhomogeneous broadening 20 40 /2 (GHz) 60 80 0 0 50 100 150 200 f (GHz) J. Lindner et al. PRB 68, 060102(R) (2003) two-magnon scattering dominates Gilbert damping by two orders of magnitude: T2~ 0.2 n s vs. T1~ 40 n s anisotropic spin wave scattering G isotropic dissipation no anisotropic conductivity is need Freie Universität Berlin K. Lenz et al. PRB 73, 144424 (2006) (kOe) Fe4V2 ; H||[100] Fe4V4 ; H||[100] Fe4V2 ; H||[110] Fe4V4 ; H||[110] Fe4V4 ; H||[001] 0.270 0.139 0.150 0.045 0 G 8 -1 8 -1 50.0 26.1 27.9 8.4 0 0.26 0.45 0.22 0.77 0.76 (10 s ) (10 s ) Alt100, Kazan -3 H0 (10 ) (Oe) 1.26 2.59 1.06 4.44 4.38 0 0 0 0 5.8 21–25 June 2011 16/21 Angular- and frequency-dependent FMR on Fe3Si binary Heusler structures epitaxially grown on MgO(001) d = 40nm Kh. Zakeri et al. PRB 76,104416 (2007) PRB 80, 059901 (2009) A phenomenological effective Gilbert damping parameter gives very little insight into the microscopic relaxation and scattering . Freie Universität Berlin Angular dependence at 9 and 24 GHz (26 –53) • 107 sec-1, anisotropic G 5 • 107 sec-1, isotropic Alt100, Kazan 21–25 June 2011 17/21 Freie Universität Berlin Alt100, Kazan 21–25 June 2011 18/21 Freie Universität Berlin Alt100, Kazan 21–25 June 2011 19/21 4. Summary and future 2 magnon scattering in permalloy = f(ω, l) , I. Barsukov, Farle-group, unpublished 2011 FMR using Synchrotron radiation in THz Freie Universität Berlin Alt100, Kazan 21–25 June 2011 20/21 •Todays analysis of spin-wave dynamics should not assume |M| = const, i. e. T=0 assumption. •g – tensor and spin wave excitations are ignored in most cases •Long wavelength spin-waves relax slowly with G ~ nano sec 2-magnon scattering with Γ~ 10-100 pico sec. r e l u h •All spin wave excitations need a second scattering –dephasingconstant. Important for femto sec. relaxation. s t ’ l A . u o y S. A k n . a f Don’t follow the standard literature and reasoning. h o r powerful in unexplored areas. FMRT can be muchpmore d n a Freie Universität Berlin Alt100, Kazan 21–25 June 2011 21/21 Ferromagnetic resonance in nanostructures, rediscovering its roots in paramagnetic resonance Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem e-mail: bab@physik.fu-berlin.de http://www.physik.fu-berlin.de/~bab In 1944 Zavoiskii discovered the electron paramagnetic resonance (EPR), here in Kazan. Shortly after the resonant microwave absorption in ferromagnetic Fe, Co, Ni metals (FMR) was discovered (Griffiths 1946, Zavoiskii and Kittel 1947). Surprisingly both techniques went different routes: The EPR explored an enormous variety of para-magnets in solids, liquids, and gas phase. Already one decade later Altshuler and Kosyrew published a comprehensive book – the first “EPR-bible” [1]). The focus was to determine orbital- and spin-magnetic moments (g-tensor), hyperfine interactions, and from the linewidth the spin dynamics (T1, T2 relaxation). In FMR most of the experi-ments and theory assumed the total value M to be constant in the equation of motion and used only one effective damping parameter (Gilbert). This is an enormous, unneces-sary limitation for today’s analysis of magnetism in nanostructures and ultrathin films. To assume M= const (p.196 in [2]) ignores spin wave excitations, scattering between longitudinal and transverse components of M. Moreover, in the framework of itinerant ferromagnetism, the magnetic moment/atom μ was assumed to be isotropic with g = 2! That ignores the anisotropy of μ in nanostructures and the importance of the orbital magnetic moments with μL/μS = (g-2)/2. Without finite μL we would have no magnetic anisotropy energy (MAE), no hard magnets. Only recently the “language” of EPR was adapted to FMR in ultrathin films [3]. A g-tensor is discussed and its interrelation with the MAE is pointed out. Also recent theory points out, that “…there is no reason to assume a fixed magnetization length for nanoelements…”[4]. This allows a detailed dis-cussion of magnon-magnon scattering, spin-spin, and spin-lattice relaxation – useful, for example, for fs spin dynamics. We will discuss recent FMR experiments using frequencies from 1 GHz up to several hundred GHz, which allow measuring the proper g-factor components and μL, μS. From the frequency dependent linewidth magnon-magnon scattering can be separated from dissipative spin-lattice damping. [1] Paramagnetische Elektronenresonanz S.A. Altshuler, B.M. Kosyrew Teubner Verlag Leipzig 1963 (Moskau 1961) [2]Ultrathin MagneticStructures II B. Heinrich, J:A:C: Bland (Eds.) Springer Verlag Berlin Heidelberg 1994 [3] K. Baberschke in Handbook of Magnetism and Advanced Magnetic Materials, Vol.3 H. Kronmüller and S.S. Parkin (Eds.) John Wiley, New York 2007, p. 1617 ff [4] O. Chubykalo-Fesenko et al. Phys. Rev. B 74, 094436 (2006) Freie Universität Berlin Alt100, Kazan 21–25 June 2011 22/21